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ABSTRACT: Conformally soft gluons are conserved currents of the Celestial Conformal
Field Theory (CCFT) and generate a Kac-Moody algebra. We study celestial amplitudes
of Yang-Mills theory, which are Mellin transforms of gluon amplitudes and take the double
soft limit of a pair of gluons. In this manner we construct the Sugawara energy-momentum
tensor of the CCFT. We verify that conformally soft gauge bosons are Virasoro primaries
of the CCFT under the Sugawara energy-momentum tensor. The Sugawara tensor though
does not generate the correct conformal transformations for hard states. In Einstein-Yang-
Mills theory, we consider an alternative construction of the energy-momentum tensor, sim-
ilar to the double copy construction which relates gauge theory amplitudes with gravity
ones. This energy momentum tensor has the correct properties to generate conformal trans-
formations for both soft and hard states. We extend this construction to supertranslations.
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1 Introduction

The null infinity of D = 4 asymptotically flat spacetime is the product of a conformal
two-sphere (celestial sphere) CS? with a null line. It was realized some time ago, that
for asymptotically flat space-times the Poincare group can be extended to the local BMS
group. The local BMS algebra, is an infinite dimensional extension of the Poincare algebra.
It contains the Virasoro algebra generators, which generate the conformal group, and in
addition supertranslations. This is very suggestive of a conformal field theory living on the
null infinity of Minkowski space-time.

Indeed, scattering amplitudes in D = 4 Minkowski spacetime can be recast, via a
Mellin transform, into conformal correlation functions ( celestial amplitudes) on the celestial
sphere [1-6].! The theory describing the dynamics of celestial amplitudes is expected to be a
novel conformal field theory on CS%. The celestial amplitudes, correspond to a subset of the

'In theories with gravity the Mellin transform from 4d to the CS? is sensitive to UV divergencies. String
amplitudes are known for their soft UV properties. Celestial amplitudes for string theories were discussed
in [7, 8]. The role of UV constraints on scattering amplitudes was discussed recently in [9].



correlators on the celestial conformal field theory (CCFT). One of the main motivations,
for studying such a theory, is the proposal that CCFT is a holographic description of
4d physics in Minkowski spacetime [5, 10, 11]. This originates from early studies of flat
holography [12] and the BMS algebra [13-15] of asymptotic symmetries. Recently, the
study of CCFT and its properties has led to several advances along various aspects of the
proposed theory [4, 7, 16-26], but a lot remains in order to make the CCFT a solid proposal
for flat space-time holography.

In CCFT, a particle is described [1, 2] by conformal primary wave function. These
functions are labeled by the conformal weights (h, h) and position (z, Z). The coordinates
(2, Z) on the celestial sphere are related to the asymptotic direction of the four-momentum
in 4d Minkowski spacetime. The scaling dimension A and spin helicity J can be obtained
from the conformal weights via A = h+h,J = h — h. In CCFT, each particle corresponds
to a conformal field operator with Re(A) = 1, ie. A =1+ 4\, A € R [2]. For massless
particles, conformal field operators are Mellin transforms of plane wave functions in the 4d
Minkowski spacetime [2, 5].

At this stage, many details of the CCFT are under investigation. From current studies
nontrivial and elegant features have already been discovered, especially its algebraic struc-
ture extracted from celestial operator spectra and celestial amplitudes. At the classical
level, the Ward identities of conserved currents and energy-momentum tensor have been
shown to correspond to soft theorem of gluons and gravitons [5, 27-33]. For gluons, con-
served currents of the CCFT correspond to the conformal soft limit [8, 34, 35] of conformal
operators, i.e. A =1 (A =0).2 A similar picture holds between conformally soft gravitons
and the energy-momentum tensor [5, 16]. The studies of the conformal soft limit of ce-
lestial amplitudes allowed making a direct connection between Ward identities of currents
on CS? and the low energy theorems of gluons [17] and gravitons [17-19]. Moreover, the
collinear singularities of gluon and graviton amplitudes, correspond to the case where two
operators of the CCFT approach each other. The study of collinear singularities of celestial
amplitudes was used in [17, 20] to derive the operator product expansion (OPE) of celestial
operators. Similar work has appeared recently for massive states [36].

In this work we want in particular to elaborate on the energy-momentum tensor 7'(z)
which generates the Virasoro algebra on the CS?. The energy-momentum tensor T'(z) is a
A = 2 conformal field operator that can be constructed through a shadow transformation
from the A = 0 operator of the graviton [5, 16]. The OPE of this energy-momentum
tensor with the conformal field operators of gluons and gravitons was derived in [18, 20]
and indeed it was found that these conformal operators transforms as Virasoro primary
fields. In addition, OPEs of all the BMS generators, superrotations and supertranslations,
were derived [20].> The study of these OPEs allowed us to derive the BMS algebra [38] of
asymptotic symmetries.

An alternative proposal for the energy-momentum tensor of a pure gluon theory ap-
peared in [39]. It was shown that positive helicity soft gluons correspond to holomorphic

2 Any operator with A # 1, (X # 0) is called a hard operator for the purposes of this work.
3 A study of representations of the BMS algebra on CS? was initiated in [37].



conserved currents on the CS? which generate a D =2 Kac-Moody algebra. In standard
CFT, in the presence of a Kac-Moody algebra, we can use the Sugawara construction [40] to
build the energy-momentum tensor. It is natural to ask ourselves if it is possible to extend
this construction on the CCFT. Some initial attempts in this direction using double soft
theorems of gluons appeared in [41, 42]. These results showed several interesting features
and short-comings of the Sugawara construction. In the current paper we will approach
this problem from the point of view of celestial amplitudes. We will construct the Sug-
awara tensor from the double conformal soft limit of gluons. Furthermore, we will derive its
OPE with conformal operators of gluons and discuss its properties depending on whether
the operators are soft or hard. We will conclude that the Sugawara energy-momentum
tensor can only capture the dynamics of the soft sector of the theory confirming earlier
observations in [5]. In the setup of an Einstein-Yang-Mills (EYM) theory, we will present
an alternative approach, based on a pair of gluon conformal operators. This is reminiscent
of the double copy or Kawai-Lewellen-Tye (KLT) construction of gravity amplitudes from
gauge theory amplitudes. This energy momentum tensor captures the dynamics of soft
and hard operators alike. We will see that we can extend this construction to include the
supertranslation generators as well.

This article is organized as follows. In section 2, we review the notation, useful formulas
of the CCFT and the Mellin transform of 4d gluon amplitudes which generates celestial
amplitudes. We also review the Kac-Moody algebra on CS? and the proposed Sugawara
energy-momentum tensor based on conformally soft gluon operators. In sections 3 and 4,
we compute the celestial amplitudes with a Sugawara energy-momentum tensor insertion.
We discuss in details the case of SU(N) and general gauge groups studying the Mellin
transform of MHV gluon amplitudes [43] under the double conformal soft limit. We derive
the OPE of the energy momentum tensor with conserved currents. Our results agree with
standard Kac-Moody current algebra expectations. In section 5 we re-derive the OPEs of
the Sugawara tensor applying the OPE between currents and then taking the conformal
soft limits. Our results are consistent. Finally, in section 6 we derive an energy momentum
tensor which is inspired by the double copy or KLT construction of gravity amplitudes
from gauge amplitudes. This energy-momentum tensor captures the conformal properties
of both hard and soft operators.

2 Remarks on gluon operator products and Sugawara construction

The D = 4 momentum of a massless particle is parametrized by coordinates (z, z) of the
celestial sphere as

Pr=ewg, ¢ =< 1+ |z 2+ 2 —i(z—2),1—|2%), (2.1)

N | —

with w the light-cone energy and e = =+ indicating outgoing/incoming particles. The asymp-
totic direction along which the particle propagates is given by the null vector ¢*(z, z). This
vector is parametrised by the coordinates (z,z) on the celestial sphere. In working on the
celestial sphere we will need to transform plane wave solutions to conformal primary wave



functions [2]. For gluons, a conformal primary wave function with conformal dimension

(h, h) is given by the following expression:
Aﬁ"] = g(A)V#AJ + pure gauge term, (2.2)

where g(A) = F((AA:Lll)) is the normalization constant, A = h + h is the scaling dimension
and J = h — h = £1 is the spin helicity. The function VﬂAJ is the Mellin transform of the
4d plane wave function

o0
VuA,J (X“, z, 2) = a]qﬂ/ dw wAfle¥zwq-X—sw ’ J = il’ (2.3)
0

where 0y = 0, for J = +1 and 9; = 95 for J = —1. The polarization vectors are
0.¢" = €' (p) and 9z¢" = €” (p). The scaling dimensions are A =1+ i\, X € R, [2]. In a
similar manner for gravitons the conformal primary wave function is

oo
Hipt(XH,2,2) = a]q#any/ dw whTleFwaX—aw g = 42 (2.4)
0

where J = 41 for £ = +2 and J = —1 for £ = —2. The conformal (quasi-primary) wave
functions can be written as

Gl = f(AHL" + diff (2.5)
with the normalization constant f(A) = %?((2;21)) The presence of these normalization

factors makes it clear that, as mentioned in the introduction, fields with spin 1 become
pure gauge when A = 1 while fields with spin 2 become pure diffeomorphisms for A = 0, 1.

In this work we will study D = 4 tree-level gluon amplitudes* A, and their celes-
tial sphere representation A,. For a generic gauge group G the D = 4 gluon scattering
amplitudes can be expressed as a sum over partial subamplitudes as follows®

An({wingi, J}) = D Te(TUT%® . T%m) A 5 5 (w2, 5}, (2:6)
oESH_1

with 7% gauge generators in the fundamental representation of the gauge group G, the spin
helicities denoted by J; = +1,i =1,2,...,n and Aj',l J...J,, 18 the partial subamplitude for a
given permutation o expressed in celestial coordinates {wj, z;, Z;}. The CCFT amplitudes
are identified with the space-time amplitudes transformed from the plane wave basis into
the conformal basis (2.2), (2.5) by using properly normalized Mellin transform [1, 3, 4, 7].
Concretely, the gluon partial subamplitudes Af}l Jo...J, 8lve rise to the celestial gluon am-
plitude:

Trdn 1D, 20, Zi}) = <H9(Ai)/0 dw; w,»ml) Gy (wis 20, 2i}) 6 (Z Giwz‘Qi) ~
=1

=1
(2.7)

4Here we use capital A for gluon amplitudes, with A, representing the full amplitude and A° representing
the partial amplitude. We choose to use the calligraphic A for Mellin/celestial amplitude. This is different
convention from reference [17], where the calligraphic M is used for gluon partial amplitudes.

5In the amplitudes community, color generators T differ from the mathematics definition t* by a factor
of v/2 absorbed into each generator, i.e. T* = v/2t*. As a consequence, for the Lie algebra g the commutation
relation [t7, %] = i f**°t° implies [T*, T"] = if**°T° with the following dictionary for the structure constants
fabe = /212 See also footnote 8 for further details.



In eq. (2.7) ¢, = +1 or —1 depending whether the particles are incoming or outgoing,
respectively. The full CCFT correlator is identified with the S-matrix element transformed
from the plane wave basis into conformal basis:

(OR POR gy 0%y ) = D0 AT gy, Tr (THT@) L To00) oy
0€Sn-1 .

= An ({Au Ziy Zis JZ}) ’

where (’)Zli 7, is the conformal field operator which corresponds to a gluon conformal primary
wave function (2.2).

On the celestial sphere, the limit z — w of coinciding positions for two operators,
corresponds to ¢M(z) — ¢*(w) for the 4d gluon particles. This limits corresponds to
the collinear momentum limit p#(z) || p*(w). It is well known that gauge and gravity
amplitudes have collinear singularities and based on the discussion above, they give rise to
the OPE singularities of the holographic CCFT. In [17, 20] (see also [19]), using collinear
limits of the 4d gluon amplitude, it was shown that the CCFT has the following OPEs for
gluon conformal primaries

Ct,+)+ (A1, Ag)

O}, +(2,2) ObAQ’+(w, w) = f“bCOfA1+A271)’+(w, w) +regular,  (2.9)

Z—w
with
(A1 —1)(Az — 1)
Cir+(A1,42) =1 - AA, ; (2.10)
and
a — c T *(AI’AQ) abc e —
Ok, 4 (= Ok, _(w,0) =~ pobeory Ly (w,) (2.11)
C(JF*H‘(Al’ A2) abe e —
t = [0 a-1) 4 (0, D)
Tow _
+ Clh)—- (A1, B2) —— 87 O(a 4.4,), -2 (w, @)
2 =W qp _
+ C’(+,)++(A1,A2)2 0 0" O(a,+2,),+2(w, W) + regular,
with:
Ay —1
Ciy (A1, A9) = AA A, D)
Ay —1

CrrlAnbe) = A o, — oy

2(A— DA+ (A - 1)
A(A+DA2) (A1 +Ar—1)

)

)

Clyo)——(A1,A2) = (2.12)
2(A1 — 1)(A1 + 1)(A2 —1

Ay, Ag) = —
Croyrs (A1 B2) = = N By + By — 1




The subleading terms® of the mixed helicity OPE are associated with corrections of the
EYM theory and won’t be important in the pure YM case. Nevertheless, we present
these terms here since they will be important in the shadow construction of the energy
momentum tensor of section 6.

In this work we will explore further the properties of a class of correlators, which
involve the conformally soft gluon operators A — 0 [17, 34]. On the CCFT side these lead
to A =1 conserved currents:

74 (2) = OX_1 g—y(2,2), JU(2) = OX_y j—_(2,2). (2.13)

The conserved currents suggest an emerging infinite dimensional symmetry algebra, com-
monly known as Kac-Moody current algebra. The soft limit A; — 1 (2.9) leads to the
following OPE on gluon conformal primaries:

e 0,4 (w)

zZ—w

§*(2)O% 4 (w) (2.14)
In the case of same helicity gluons the consecutive soft limit is equivalent to the double soft
limit. Taking the consecutive soft limit Ay, Ay — 1 in (2.9), we are led to the holomorphic

current algebra:

abc ;c w
()t (w) ~ L) (2.15)

z—w
On the other hand, the soft limit A; on the mixed OPE (2.11) leads to the following result

fe 0 (w)
%(2) Ok ~— 2.16
J(2)0h () ~ T2 (216)
and similar results for j%(z). Now taking the consecutive double soft limit Ay, Ay — 1
of the mixed helicity gluon OPE we see that the result depends on the order of limits.
Specifically taking the soft limit of the positive helicity gluon always first we get
be Ze(om
-a “b— fa J (w)
~— 2.17
@) ~ T (217)

and taking the negative one first followed by the positive we get:

gy b feve jé(w)

74(2)5" (w) ~ o (2.18)
The order of the soft limits is crucial when we have opposite helicity states or equivalently
opposite spin operators.

The relations above imply that the antiholomorphic currents j*(Z) transform in the
adjoint representation of the Kac-Moody symmetry generated by the holomorphic currents
j%(z) and vice-versa. As explained in more details in [39] a symmetric limit which realizes
both the holomorphic and antiholomorphic Kac-Moody non-Abelian algebras is not pos-

sible. This seems to be related to 3d Chern-Simons theory on a manifold with boundary.

5In our units, the gravitational and gauge coupling constants k = 2 and gyn = 1, respectively.



The theory naively has two gauge connections A, and Az, which generate Kac-Moody sym-
metries, but in the non-Abelian case, boundary conditions eliminate one of them leaving
only one copy. In [5] this idea was further explored. The 4d Minkowski spacetime is written
as a foliation of AdSj3 slices. There, it was demonstrated that indeed the soft sector of the
theory leads to a CS theory on the AdSj slices. For the non-Abelian case boundary con-
ditions allow either positive or negative helicity gluons. The AdSs/CFT, correspondence
implies only a single copy of a Kac-Moody algebra for the soft gluon sector. We conclude
that in the CCFT we need to consider correlators where either the positive or the negative
helicity gluons are conformally soft, but not both. When discussing the energy momentum
tensor, we chose to study the realisation of the holomorphic Kac-Moody algebra generated
by j%(z) in (2.13).

It is known that for two dimensional C'FT; the energy momentum tensor for affine
current algebras is given by the Sugawara construction. As mentioned before we expect only
one copy of the Kac-Moody algebra and therefore only one Sugawara energy momentum
tensor. The soft sector of positive helicity gauge bosons forms a sub-CFT, of the full
CCFT. Hard particles are sources of soft radiation.” On the CCFT side, correlation
functions factorize into a hard and a soft part. The soft part is expected to be described
by a current algebra and its conformal properties encoded in the Ward identities of the
Sugawara energy momentum tensor. In this paper we will construct the Sugawara energy
momentum tensor using the double conformal soft limit of celestial amplitudes like (2.8).
We will consider gluon amplitudes and study the limit where the Sugawara tensor becomes
collinear with conformally soft positive helicity gluons, the holomorphic current algebra
currents j%(z).

The Sugawara construction [40, 45] gives an expression of the energy momentum tensor
in terms of gauge currents
1

TS(’LU) - 2k + Co

> T w) I (w) 5, (2.19)
a

where k is the level of the affine current algebra and the quadratic Casimir® of the adjoint

representation is Co = §%focd fbed which is twice the dual Coxeter number h(g), i.e.

Cy = 2h(g). Usually, for free fields the normal ordering is achieved by subtracting the

corresponding two-point correlator

1 . kdimg
T3 = 1 a a - g 2.2
W)= 5556w, {Za I (w)J* (w2) = - w2)2} (2.20)

where dimg = ), daq is the dimension of the underlying gauge group [46]. We assume
roots of length-squared two. A more general normal ordering can explicitly be imposed by
the following contour integral:

1 1 d’wQ
T¥(w)=——or — ¢ ——— a “(wy). 2.21
(wl) Qk + Cg 211 fivl wyo — W1 Z J (wZ)J (wl) ( )

a

7As explained in [5, 39] hard sources can be described by Wilson lines in the 4d-gauge theory along the
spirit of jet physics [44]. We will discuss this further in section 4.2.

8 As a consequence we have Cy = 2C%, with C» referring to the structure constants f**° of the generators
T% ie 612 _ 6abfacdfbcd

, L.e. = .



This more general definition of normal ordering takes into account all possible singular
terms and is appropriate in case of fields which are not free [45].

In the following sections we will construct the Sugawara energy momentum tensor first
implementing the normal ordering prescription (2.20)

T3(:) =9 Y50 =7 lim lm Y08 (2,208 (7). (222)
a a

where v is a normalization constant depending on the details of the Yang-Mills theory. For
simplicity, we will ignore this normalization constant and determine its value in the end of
the computation. We expect that this value will help determine a discrepancy regarding
the level k observed in [5]. The relation above is to be considered always as an insertion
in a celestial CF'T correlator. We will demonstrate that in the case of celestial correlators
of MHV amplitudes, (2.22) is indeed the energy momentum tensor for the sub-CFT of
currents j%(z). The expected OPE of T°(z) with a conserved current j%(w) should be

IHW) + —— 8§ w) + ... (2.23)

Sz 4 (w) =
T (25 (0) = () + =

The collinear limit of the Sugawara tensor with negative and positive helicity hard
states will also be discussed. We will see that conformal invariance of the full CCFT in-
cluding the hard sources, necessitates additional contributions to the energy momentum
tensor beyond the Sugawara construction. Our discussion in section 6 extends our con-
struction to a double copy (or KLT) type energy momentum tensor, where the conformally
soft graviton in [18] is described as a pair of conformally soft gluons. This provides an
alternative definition of the energy momentum tensor which includes both soft and hard
modes on equal footing. It is nevertheless distinct to the Sugawara tensor, since it does
not include a bilinear of the dimension one currents j%(z).

3 Gluon amplitudes, gauge current insertion and operator products

In this section we shall discuss gluon amplitudes (2.6) with insertion of a pair of gauge cur-
rents (2.22). From the CCFT theory point of view the Sugawara construction (2.22) corre-
sponds to performing the double conformal soft limit of two positive helicity gluons taken
to be collinear at the same time. In order to study the OPEs of this tensor with primaries
we start at the D = 4 tree-level n + 2-point gluon MHV amplitude Ay,42({wi,qi, Ji}). We
shall construct the Sugawara energy-momentum 7°%(z) and derive its OPE with conserved
currents j(z) in the celestial amplitude (2.8). In the latter we use the conformal primary
operators 02”1:1 4 and (’)Z":é 4 of the last two gluons to construct T5(z). Obviously, the re-
sult does not depend on this choice. Their color indices will be contracted an4+2 = apt+1 = a
and their positions will approach each other by taking the limit 2,41, 2n42 — 2. In the
next step, in section 4 we shall take the conformal soft limit A,i1,Apto — 1 to get
T9(z) ~ j%(2)j%(2). The OPE with the primaries j(z) is extracted by taking the coin-
ciding limit z — 2;,j = 3,4,...,n of T9(z) with primaries (’)ij - Finally, since we are
interested only in the soft sector, at the end we will take the conformal soft limit A; — 1
to get the OPE T°(2)7% (z;).



In order to study the OPEs with primaries we shall focus on the MHV case. Hence,
we will restrict (2.6) to the D = 4 tree-level n + 2-point gluon MHV amplitude [43]
Apt+o({wi, ¢i, Ji}) with spin helicities J; = Jo = —1,J; = +1,i = 3,4,...,n + 2 and

their corresponding partial subamplitudes A7 ; - in celestial sphere representation

~Jn+2
o s = (12)*
Aisacnia Wi 20 38) = o GR B0 @) (o(n 5 2)0)
w1y 2’4112

= , (3.1)
W3Wq - . - Wn42 210(2)%0(2)0(3) - - - Fo(n+2)1

with 2z, = 2; — 2.
To summarize, in the following two subsections we shall demonstrate the following

relation
Co(G)
: + oy
szlrllH%lz]' An+2({gn+2> 915+ -5 9n, gn+1}) - W1 Wnt2 (32)

1 d., .
X(( + )An({glv“'7gn})7.7_17'”7”7

Zngl — %)% Zngl — %

with the full n gluon amplitude A,({g1,...,9n}) and the quadratic Casimir

Ca(G) = 2C5(G).
The relation (3.2) holds for any gauge group G. Above we have introduced the derivative

_ 0 §iin _ gide

Oy =5——4———, (3.3)
9z Zj1ja

which singles out the two gluons ji, jo with negative helicity. Of course, for (3.1) we have:

j1 =1,72 =2. For j # j1,jo we get 5zj = 0,; and the relation (3.2) takes the form of (4.1)

further used in section 4.

3.1 Gluon amplitudes and operator products for SU(NN)

Let us first discuss’ the gauge group G' = SU(N). For simplicity, we also include the
photon and choose the gauge group'® to be U(N). The fundamental representation of
U(NV) satisfies the following useful relations:

(TYAT™); = §oi,  [T°,T°) = ivafere = ifere. (3.4)

In the following computation, we firstly analyze the D =4 MHV amplitudes and then
perform the Mellin transform in section 4. From the partial amplitude (3.1), various poles

9A similar construction restricted to SU(N) gauge group and considering double soft limit of gluons
appears in [41]. However, in the latter reference the Mellin representation, which will be determined in
section 4 is not addressed. Moreover, our analysis which is based on the CCFT formulation, will be extended
to arbitrary gauge groups in subsection 3.2 and section 5, respectively.

"The final result for SU(N) is the same as U(N). We will explain this point later.



of the OPE obviously come from the denominators z,11n+2, Znt2,; and zp41,;. The poles
Zn41m+42 are to be subtracted under the normal ordering of 79(z) (2.20). We will show
though that since our tree amplitudes imply that the level k£ of the Kac-Moody is zero,
such a subtraction wont be necessary. All such z,41,n42 poles will drop automatically.
Among all the permutations, the double poles arise in the following 6 kinds of ordering

A(... jon+1n+2,..) AL..,n+ 1L, 4n+2,..) A(..,n+1,n+2,4,...),

3.5
A(c.oygm+2n+1,..) A(..,n+2,5,n+1,...) A(...,n+2,n+1,4,...), (3:5)

while the single poles arise in the following 12 possible orderings

A(.oygn+ 1o n+2,. ) Ao on+ 1,0 4n+2,..) A(.oon+ Ln4 2,00 ,4,..)
A(c..on+1,4,...,n+2,..) A(..,on+1,....0n+2,4,...) A(...,n+2,n+1,...,75...)
A(ooydyeeoom+2n+1,..) Ao on+2,5,...,n+1,..) A(..,n+2,...,n+1,5...)
A(oydyeeom+1n+20) A jn+ 2, n+ 1,000 A(.oon 42,0 4,n+ 1.0,

The double poles. Now let’s analyze the terms that contribute to double poles. Con-
sider the two kinds of ordering (o (i), j,n+1,n+2,0(i+1)) and (o(i), j,n+2,n+1,0(i+1)).
Using the formula (3.4), it is straightforward to get the contraction of the color indices
for U(N)

Tr(... T%O TS TOTOT %6+ ) = (N)Te(... T O T T% ) | ), (3.6)

hese two ordering have the same group factor, which means their partial amplitudes can
be combined together. To get the double poles, we first take the limit 2,492 — zp4+1, then
take the limit z,11 — 2;. It is easy to get the following poles from the diverging parts of
the partial amplitudes

1 1 1 2

)

Zjn+12n+1n42%8n42,0(i+1)  %jn+22n+2,n+1%n4+1,0(i+1) Zf,n+12j,a(i+1) Zj,n+1zf,g(i+1)
(3.7)

where a single pole also arises in addition to the double pole. Combining the group factor
and the remaining parts of the partial amplitudes, we get an MHV amplitude of n gluons

1 2 1
( — + )NTr(...T%(UT‘”T%(HU...) ( > (3.8)

Zintl  Zim+1%50(i+1) 2o (i),j%4,0(i4+1)

_ N ( 1 =+ 2 ) An({wivqiaJi})'

= 2 .
Wn1Wnt2 \ Z5nq1 Zjnt1%j,0(i+1)

For the other two orderings (o (i), n+1,n+2,5,0(i+1)) and (o(i),n+2,n+1,5,0(i+
1)), it is easy to see that the contraction of color indices is the same as (3.6). Then
it is straightforward to get the following poles from the diverging parts of their partial
amplitudes

1 1 1 2
= + . (3.9)

: =3 3
Zo(i)n+1Pn+ln+2%n+2,5  Zo(i)n+2fnt2n+1%n+1i  Zpyjfe(i)y  AntliZo()
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So the result is also an MHV amplitude of n gluons

21 + 2 NTr(... T%OT%T%6+D ) (é)
Zntl,j  AntlgRo(i)g o (i),j%5,0(i+1)

= N < ! + 2 ) A7z({wiaQi7Ji})' (310)

= 5 .
Wnt1Wnt2 \ Zpy15  2AntljRo(i),g

For the remaining two orderings (o(i),n + 1,j5,n + 2,0(i + 1)) and (o(i),n + 2,5, n +
1,0(2 + 1)), the contraction of color indices has a single trace term Tr(7%) = 0, which is
zero because it is a gluon. So the contribution is zero.

Combining all the above results, we get the following result from all possible orderings
in (3.5)

2
Wn41Wn+2 Zn+1,j Zn+1,j

2N ( Lo aj) A (fon i ), (3.11)

which contains a double pole and a single pole with a derivative acting on the j-th gluon.
Now let us see what would happen if the gauge group is chosen to be SU(N), in which
case the following formula is used

a\J (a\s j o8 1 s
(T).(T*); = 6] 6% — Néﬁz : (3.12)

The extra term in this formula leads to an extra term —(1/N)Tr(...T%OT%T%q+1) )
in the color index contractions of all six kinds of ordering. When combining the partial
amplitudes, this extra term cancels out, leaving the complete result the same as (3.11).
This is of course the U(1) decoupling identity of standard YM, as expected.

The single poles. Now let us analyze the terms that only contribute to single poles.
Consider the four orderings (o (i), j,n+1,...,n+2,0(i+1)), (c(i),n+1,4,...,n+2,0(i+1)),
(c(@)ymn+2,....,5,n+1,0(i+1)) and (c(i),n+2,...,n+ 1,4,0(i + 1)). Using (3.4), the
contraction of color indices contains double traces
Tr(... T%OTYT, TT%6+0) ) =Tr(... T%OT . TT%T%0D )
=Tr(.. )Te(... TOTUTW6+D) )
Tr(... T%OTTY , TT% 6+ ) =Tr(... T%OT . TUTYT% 0D )
=Te(TY .. )Te(... T%OT%6+) ), (3.13)
Combining the corresponding partial amplitudes, they cancel out in the coinciding limit
Zn+2 = Zn+1 and zp41 = 2j, so the complete result is zero.

Now let’s see what would happen if the gauge group is chosen to be SU(N), where the
contraction of color indices contains extra single traces

Te(...T%OTST | TOT% 6+ ) = Tr(...T%OTT% . T*T%+D) )
1
= (=) Tr(... T%OT% . T%+D)
(=) T )
Te(...T%OT . TOT%T% ) ) = Te(... T%OT . T%TO %6+ )

1
= () Tr( . T TOT ), (3.14)

11



Again the combination of partial amplitudes for these extra terms cancels out in the co-
inciding limit z,42 = zp41 and zp41 = 2;. So the result is the same as the case of U(N),
which is zero. Similarly, for the four kinds of ordering (o (i), j,n + 2,...,n+ 1,0(i + 1)),
(c(@)yn+2,4,...,n+1,0(i+1)), (6(i),n+1,...,5,n+2,0(i+1)) and (o(é),n+1,...,n+
2,4,0(i + 1)), the complete result is zero. The remaining four kinds of ordering (o (), n +
2,;n+1,...,5,0(G+1)), (c@),n+1,n+2,...,4,0(i+1)), (¢(3),4,...,n+2,n+1,0(i+1))
and (o(4),4,...,n+1,n+2,0(i + 1)) is also zero.

Eventually, after combining all permutations for the singular terms of the 4d MHV
amplitude we get the result (3.2) for j = 3,4,...,n and Cy(G) = 2N for G = SU(N).
We can generalize the above manipulations to negative helicity gluons 7 = 1, 2. Due to
the cyclic structure of the denominator for the partial amplitude (3.1), the poles in (3.8)
and (3.10) are the same for j = 1, 2. The only difference is in the single pole term, where
the numerator 27, would modify the derivative term of (3.11) as (3.3).

3.2 Gluon color sums and operator products for general gauge group

In this subsection we worked out color sums with insertion of a pair of gauge currents. This
generalizes the previous discussion for the case of general gauge group G. We will need to
develop several gauge group identities, some of which are novel and potentially useful for
scattering amplitude computations in general. We start with the color decomposition of
an n + 2-point gluon amplitude

Apta({pi, Jj}) = Z fan+2bo(1>$1 Jfﬂﬂlba(z)zz o fwn—lba(n)an+1
oESh

X Apta(n+2,0(1,2,...,n),n+1), (3.15)

with the partial subamplitudes A, 12(...). The color decomposition is w.r.t. a n!-dimen-
sional basis of subamplitudes A, 2 (n+ 2,0 (1,2,...,n),n+ 1) subject to the DDM rep-
resentation [47], with the structure constants

f-abc = —i tr(T" [Tb,TCD )

with 7% generators in the fundamental representation. Note, that (3.15) is just an other
representation of the color sum (2.6) for n—n + 2.

We are interested in the pair of gluons g,11, gnto of positive helicity and in (3.15) we
shall consider their double soft limits!! Dn+1, Pnt+2—0

(n+1,0(1))
(n+1,n+2)(n+2,0(1))
(o(n),a(1))
(e(n),n+1)(n+1,0(1))

Apgz (n+2)",0(1,2,...,n),(n+1)7)— (3.16)

A, (0(1,2,...,n)),

" Note, that in the MHV case the double-soft limit (3.16) gives rise to an exact equation:

1 (o(n), (1))
Aniz (042700 (12, 0m), (04 1)) = oy T o A (L2

The latter just describes splitting off all dependence on the gluons gn+1, gn+2 from the remaining amplitude.

This is the method discussed in the previous subsection.
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and perform the sum over the color indices a,+1 and a,42, i.e.:

Z 6an+1an+2 fan+2bd<1)z1 fmlbg‘(Q)m? e fzn—lbo-(n)an+1 . (317)

An+41,an+42

Actually, the object (3.17) is interesting on its own, since it appears in (planar) one-
loop gluon amplitudes. It yields the group trace Tr(TZ”(l) . TZ"(")) with the gauge group
generators T4 in the adjoint representation with (7). = — fabe. Eg. for n = 3 we
have [48]:

Zfablmfzubzxzfxzbw — _% 612(G) flubabs (3.18)

a

with the invariant C’z(G) = (, referring to the adjoint representation of the gauge group G,
cf. also footnote 8. For general n > 4 we decompose (3.17) into combinations of symmetric
tensors and fewer numbers of structure constants. This way for n = 4 we have [48]:

fabwl fz1b2m2fx2b313 fzsbz;a _ dzlbgbgm + % ég (G) {fb1b4af~ab2b3 _ fblb?afabi‘b‘l} , (3.19)

with the symmetric invariant tensor d4 given as trace over symmetrized products of gauge
group generators T'g:

~ 1
dy = dybebabs = = Z Tr (Tzwu)Tzw(‘z)TZw)TZwm) . (3.20)
: TESY
Furthermore, for n = 5 we derive:

falnxl lebga:g fx2b3w3 fz3b49:4j7;v4b5a _

_ leéz(G) {f'blb2af7abscfcb4bs 4 bebsafabz;cf.cbsbl 4 f'bsblaf-abgcfcbgb4 _ fb1b4afab3(;f-cb2b5}

7% {fb1b5ajzb2b3b4 + fb3b2ad?4b1b4b5 + fb4b2ad‘£2b1b3b5 + fb4b3ad~aAblb2b5} . (321)

For general n we have the relation of the following structure
- - - Db (1)bor(2)---bor(n 5 e
fabg(l)itl fmbg(Q)zz B .fzn—lba('n,)a — dA (1)%e(2) (n) o+ CQ(G) {fn 2 N } (3.22)

Let us now introduce celestial coordinates. With (ij) = (wjw;)!/22;; the split factors
in (3.16) can be expressed in terms of celestial coordinates as:

1 1 1
An+2((n+2)+,o(1,2,...,n),(n+1)+)_> ( " )
WntlWnt2 \Zntl~2Zn+2  Znt2 = Zo(1)

x( L 1 )An(0(1727...7n)). (3.23)
Zg(n) ~An+l  Zn+l 7 Zo(1)

With these preparations we may compute the color sum (3.15) supplemented by (3.17)
1

———— cancel in the color
Zn+4+1—"2n+2

and (3.23). One important observation is that all the terms

13



sum. Therefore, we may safely take the limit z,42—2z,11. In the sequel the following
universal functions will specify the color sum. There is the function

1

n

Zo=> — | 3.24
i1 (Znt1 — Zi)2 ( )
universal to all color orderings and an other function
1 1
Zirsinin = -
W (g = 2i) (041 = 2in)  (Zn1 — 2ig) (Zna1 — Zig)
1
+ ...+ , 3.25
(Zn41 = 2i,) (Zn41 — 20) (3:25)
which sums over all neighbours of a given color ordering (i1, i2,...,iy).
n = 3. For n =3 with (3.18) in the limit z5—z4 we find:
A5({g;—7g17927g37g2_}) - _OQ(G) fb1b2b3 A3(17 27 3)
1 1
y { 212 213 | 213203 212 z23} (326
W45 214224234 Z14 234 %24

Then, e.g. for z4—2z; we have the expansion series:

lim A5({95+a91a92793agz}) = _C’Z(G) fb1b2b3 A3(1a 273)

Z4—rZ21
1 1 1 1 1
Waws 214 214 \ %12 213

In the following we shall rewrite the subleading piece -1~ (...) of (3.27). The three-point

Z14
amplitudes are MHV amplitudes (3.1). Therefore, the latter assume the generic form

4
“j1j2

)
Rlip RigigRigl

A3(1,dg,13) ~

with ji1,jo denoting those two gluons of negative helicity. After inspecting the rational
terms in (3.27) we deduce that the terms in the bracket can be represented as derivative
w.r.t. z; on the corresponding amplitude:

1 /1 1 Lo (0 ot ot
= (7 + 7) As(1,dg,i3) = ( 4 7> As(1, i, i3)

z14 \ 212 213 Sz \0n #j1j2
1 5 .
= — 821A3(17 12, 23) I (328)
Z41
with the derivative (3.3) singling out the two gluons ji, jo with negative helicity. Eventually,
the limit (3.27) gives rise to the following Ward identity:

) Co(G) [ 1 8,
lim As({g g1, 92, 93,91 }) = —2E) (2+1> As({grgngsd)s  (3.29)

24—21 Wy 11 241
with the full three gluon amplitude:
As({g1,92,93}) = [""" A5(1,2,3). (3.30)

Similar Ward identities can be derived for the other two cases z4— 23, z3. To this end, we
get (3.2) for n = 3 with the amplitude (3.30).

14



n = 4. Next, for n = 4 with (3.19) in the limit 26— 25 we determine:

As({9d 91,92, 93, 94,97 } (Zo—Z1234) As(1,2,3,4)

{ [ Q(G) (—cs—cu)+2da

[ 2(G) (—c+cy)+2dy

(Zo—Z1324) A4(1,3,2,4)

Co(G
+ 2; ) (es+ce)+2da| (Zo—Z1243) A4(1,2,4,3)}, (3.31)
with the color factors
Co = fblbzafbgb4a , Ct — fblbgﬂ.szb4a , Cu — fb4b1afb2b3ll , (332)

obeying the Jacobi relation ¢;+ ¢, = ¢s. Note, that the following Kleiss-Kuijf (KK) relation
holds [49]:

As(1,2,3,4) + A4(1,2,4,3) + A4(1,3,2,4) = 0. (3.33)

As a consequence any universal term cancels in the above color sum (3.31).

Let us consider the limit z5—z1, for which we have:

1 (1 41 ),2:1234,

(z1—25) \2z1—22 ' 21—24

1
/L SN S ( L, 1 ),2:1324, (3.34)

(z1—25) \z1—23 21—24

1 (1 + 1),2:1243.

(z1—25) \z1—22 ' z1—23

Again in the same way (3.28) as in the previous n = 3 case we are able to rewrite the
subleading pieces i (...) given in (3.34) and entering (3.31). To this end as a consequence
of (3.33) up to the next leading order only the terms multiplying the color factors (3.32)
contribute in the color sum (3.31). The same conclusions can be drawn for the other limits
25—22, 23, 24 resulting in the following Ward identity (3.2) with n = 4 and the full four

gluon amplitude:

As{g1, 92, 93,901 = 3 rbee fabebs A,(1,0(2),0(3),4)

€Sy
= Cg A4(1, 2,3, 4) + ¢ 144(17 3, 2,4) . (3.35)
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n = 5. Next, for n =5 with (3.21) in the limit z;—z¢ we derive:

1
[o31%%4

A?({g;»;91792;93794795,_98»}) =

Ca(G
X { [L (_Cl_62_C5+C6)+131+$2+$3+$5+$6+$8:| (Zo—Z12345) As(1,2,3,4,5)

6

[64(G)

+ | =6 (a—crtenten) —a+rota3t+as+re+as | (Zo—Zizssa) As(1,2,3,5,4)
Ke(e)

+| =5 (est+co—cn—cio)+a1+rotas—zs w6+ | (Zo—Zi2a35) As(1,2,4,3,5)
[62(G)

+ | =6 (cataates—cio) +a1—zo+a3—as5+re+ 38 | (Zo— Z12453) As(1,2,4,5,3)
[64(G)

+| =5 (cetcntea—cis)+a+otars+os+re+os| (Zo—Zi32s) As(1,3,2,4,5)
[Co(G)

+ T(06+C7+015—05)—$1+$2+$3+$5+$6—$8 (Zo—Z13254) As(1,3,2,5,4)
[64(G)

+| =5 (es+ca—co—cn) a1+ rotas+zs—x6—38 | (Zo—Z13425) As(1,3,4,2,5)

+ %(Cl+03+09_62)+$1+1’2_$3+1‘5_$6_$8:| (Zo—Z13452) As(1,3,4,5,2)

e,

G
é )(C2+C11+C15—014)+SE1+$2+$3—$5—I6+$8} (Zo—Z14235) As(1,4,2,3,5)

[Cu(a
+ Lé )(05+Cg+010+014)+w1*17324‘353*1'5*1'64’1’8] (Zo—Z14253) A5(1,4,2,5,3)

+ Czéc) (c1—ca—c5—cp)+a1 +$2+$3_$5_16_x81| (Zo—Z14325) As(1,4,3,2,5)
+ O2éG) (c6+ciz—c3—ci1)+r +$2*$3*x5*x6*$8} (Zo—Z14352) A5 (1,4, 3,5, 2)} ;
(3.36)
with the color factors [50]
¢y = foibea fabse febabs o fhobsa fabse febshi . _ fbsbia fabsc febiby
¢y = foabsafabie febsbs o _ fhsbia fabse febshs o _ fbibia fabsc febsbs
o7 = fhabaa fabse febiby o fhobsa fabiefebibs o _ fbibsa fabac febobs
Crp = foubea fabse febibs o fhsbia fabse febibs o fhibsa fabac febsbs
Crg = fbsbse fabie febabs o fhibaa fabse febsbs o fhibsa fabse febibs (3 37)

fulfilling various Jacobi relations leaving the set of six independent {c1, g, cg, c12, €14, 15},
and the ten tensors

zy = foabsegehibabs zq = fiabscgehibabs 23 = fabsegehibabs
24 = forbsegehababs x5 = frabicgehibabs 2 = frebicgehibabs
zy = forbicgehababs zg = frebacgehibibs zg = frrbacgehabibs
w10 = frrPeedits (3.38)
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which fulfill the relations

Ty = —T1 — T2 — 23, T7 =T1 —Ts5 — L6,

T9 = x9 + x5 — X3, T10 = T3 + T + 238, (3.39)

leaving six independent combinations {z1, z2, 3, T5, ¢, T3 }.

Again, for the limits z6—z2;, 7 =1,...,5 the leading term Z% can easily be extracted
6

j
from (3.36) by taking into account Jacobi and KK relations. To determine the next leading
piece 2%6 arising from (3.25) we can proceed in the same way as in the previous case n =4
which has lead to the receipt (3.28). To this end we find (3.2) for n = 5 with the full five

gluon amplitude:

A5({gl7927 937.94795}) = Z f'blbc,@)afaba(3>cfcba<4)b5 A5(17 0(2)7 0(3)7 0(4)7 5) (340)
ocES3
=C1 145(17 2,3,4,5) + c12 A5(1,2,4,3, 5) + c15 A5(1,3,2,4,5)

+ c9 145(1,3,47 2,5) + C14 A5(1,4,2,3, 5) + ¢c¢ A5(1,4,3, 2,5) .

Finally, for generic n we compute the color sum (3.15) supplemented by (3.17)
and (3.23) and consider the limit z,4+9—2,+1. From the consideration above it is evident,
that for general n we obtain (3.2) with the full n gluon amplitude:

An({gh o 7gn}) _ Z fblbg(z)wl f‘mlbg(:s)wz N .fxn—f)ba(nfii)bn—Z

€S2

x Ap(1,0(1,2,...,n—1),n) . (3.41)

This completes the general proof of equation (3.2). In the following section we will per-
form the Mellin transform of this amplitude and derive the OPE of the Sugawara energy-
momentum tensor with primaries.

4 Mellin transform and the Sugawara energy-momentum tensor

In this section we will use the results we derived for gauge theory amplitudes to derive the
OPE of the Sugawara energy-momentum tensor with the operators of our theory. We will
split the discussion into two parts. One part regarding the conformally soft gluons and in
the second part we will discuss the hard states. We will see that although the Sugawara
energy-momentum tensor has the right OPE to generate conformal transformations for
soft operators, it is not so for the hard ones and a modified tensor will be necessary. The
correction needed will not be discussed in this work, although in section 6 we will propose
an alternative construction, and it is an interesting open question.

4.1 Sugawara energy-momentum tensor and conformally soft gluons

We start with the OPE result (3.2) for generic gauge groups G. After Mellin transforming
the latter we extract the OPE of the energy-momentum tensor 7°(2,1) with the currents
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J%(z;) from the celestial amplitude (2.8). We follow the steps explained in the beginning
of section 3. The Mellin transform leads to

lim <0211J1 (Zl, 51) e OaAjj+(Zj, 5]') . OZH+1+(ZTL+17 2n+1)(’)2n+2+(zn+1, Zn+1)>

Z7L+1—>Z]'
n+2 n
: i\ 4 !
= lim H g(Ay) /dwi w ] xé E €iWigi + €Ent1Wy11Gn+1
Zn+1—>Z]’

i=1

3 +
Zntl,  Antlg

G2(6) ( ! % )An({—,—,+,...,+}), (4.1)

Wn+1Wn+2

where in the coinciding limit'? we can define the total energy Wy 1 = Wntt + Wnqo of the
collinear pair.
Consider first the Mellin integral of the double pole part

é n+2 . 1
22( lim H g(A / duy Wi | — 1
n+1] Pnt1rZ; Wn+1Wn+2
n
Zéiwiqi + 6jW;'Qj An({_7 -t +}) ) (42)
i=1
i#j

where in the coinciding limit z,41 = 2; we can further define w} = wj +w), ;. The integral

of the collinear states becomes
1

WiWn+1Wn+-2

/
ntl —1+idnt1 14i) / ’ —1+i);
/ duw; / dwn+1/ dwni1Wpig " (Whgt — W) T (W] — Wiy T

. . . . 1+1)\
= B(idp+1,iAng2) B(iN,1,1);)) /0 duwjw ] e (4.3)

(o]
)\ l/\ +1 7,)\ L +2
/ dwjdwy1dwny 2 w; Yw Wl

where we use the new variables A} ,; = Aug1 + Apg2 and )\; = Aj+ A1 Combing
with the normalization factors g(A;), g(An+1), 9(An+2) and taking the conformal soft limit
Apt+1 = Apgo = 1, we obtain the double pole of the OPE

Ca(G)

2, (08 0%, () (44)
nr1J

Next, for the Mellin integral of the single pole part, we can move the derivative out of
the integral by adding an extra term:

~ n+2 n
2O 9 {(Hg (A )/dwl >54 (ZeiwiQi+€nw;+IQn+l> A"({})}

Zntl,j Ant17E i=1 Wr1 W42

n+2 n
02( lim <Hg (N )/dww ) ({ }) {@64 <Zeiw¢qz'+en+1w;+1qn+1)}.

Zn41,j #n+17r%j Wn+1Wn+2 im1
(4.5)

12Without losing generality, we assume that collinear particles are either incoming or outgoing, i.e.
€j = €nt1 = €nt2. In fact, we can assume that all positive helicity particles are outgoing as in reference [18].
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For the second term in (4.5), the coinciding limit z,41 = z; and the derivative 9; on the
delta function do not commute. An explicit computation shows that

n n
s
lim 9;6" [ D €iwidi + ens1wpatnit | = 50560 | D ciwigi +ejuwias |, (4.6)
Fnt17rE) i=1 Wi i=1 '
i#i

where on the right hand side the coinciding limit 2,11 = z; was used and we defined

wj = wj + wy 4. For the first term in (4.5), using the delta function expanded around

Zntl = Zj + Znglyg

n
5 (Z €iwigi + En+1w;+1qn+1>

i=1

n n
4 / 4 /
=61 | Y eiwigi + €jwiq5 | + 20100110 (Z €iwigi + Enwn+1Qn+1> lens1=2

i=1 i=1
it
n W' n
1
= Zeiwiqi—l—ejw;-qj + Zn+1,j :j; 6]-64 Zeiwiqi —‘rij;-qj (47)
i= J i=1
P i
we get
Co(@) s / Wiit 5 o | o /
zn+1jzn+lln—l>z]8 0 ;Qw,qﬂrgw]qj +2n41, w§ 0;0 ;awzQerejquj ()
i i
8 /54 €iwi g+ €W 4
- Dy, [5t{ S ewartess | )
1#1
Cy(G) [w! -
2 +1 4 <4 0
~ 7'/7", ;6" | S cwngiesdias | (2 )+OGL ). (4.8)
Pntl,g Wy i=1
i

Combining the two terms eq. (4.6) and eq. (4.8), the Mellin transform (4.5) becomes

n+2 n
i 1
)\ /dwiw?)\i 754 €iWwi H—e-w’» . An
Zn+1,g (Hg( ! ) Wn41Wn+2 ; a J ](]] ({ })
i#j

( n+2 1 \ n

dwiw;™ | ————— An({... 0,0 €iwiqi +ejwhq;) p . (4.9

Z”H’J zl_Ilg / W4 1Wn42 (b (; ¢i +€jw;45) (4.9)
i#]
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The energy integral over wy+1,wn+o is the same as the integral of the double pole part (4.3),
so this part of the OPE is

(? (; a; *© iAj -
(6 (ajw&h 0% ) = (90 [T el ) (Dot (; wq))
(4.10)

where the integration variable is changed from w§ to w; for convenience.

As discussed in section 2, the Sugawara energy-momentum tensor is expected to de-
scribe the conformal properties of the soft sector of the theory, which corresponds to the
conformal soft limit [17]. Therefore as explained earlier, we need to take the conformal
soft limit A; = 1 of the j-th conformal field operator. In the second term of (4.10), the
derivative 0; on the delta function contributes an extra w; to the Mellin integral

n
SN ewigr)
9,04 cwiqi | = €;w;(0,q;) —SE=L 4.11
J (; i Z%) jw;(9545) S ewids (4.11)
According to the analysis [17], this extra w; gives a Mellin integral without a pole 1/X; so
under the A; — 0 conformal soft limit vanishes due to g(A;) — 0.

Combining the above results, we obtain:

lim (08, 53 (3) O, 5,3 G 1) () =

~ 1 0; " @ )
= C5(G) (2 + — >(OA117J1...3 (zj) ... OF 1) j=3,...mn.

Zn+1J Zn41,j

(4.12)

We see that the overall constant of the OPE is Cy(G). Therefore, in (2.22) we need to

choose a normalization y = =1

&G We can define therefore,

7*(2)i"(2)

C(G)
which agrees with its general definition (2.21) [45] for level £k = 0. We have shown that
indeed the OPE of T%(z) with a current j%(w) is given by:

ﬁja(wH%(y, h=1. (4.14)

T(z) = , (4.13)

T5(2)j%(w) =

In section 5 we discuss the Sugawara construction and its OPE with the currents j(z) for
a general group, using directly the soft theorem for conformally soft states [17]. It agrees
with our result from the previous subsections, namely (4.14).

We close this subsection, with a comment for the case of the negative helicity gluons
j=1,21ineq. (4.12). For j = 1,2, the respective Mellin integral in eq. (4.3) and eq. (4.4)
will give the following result for the j-th operator

o 14ih; =0 .
g()\j)/ dwjw;"7 ... =70, j=1,2. (4.15)
0
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It is zero under the conformal soft limit of the j-th operator, because there is no 1/\;
pole [8, 17, 22] that can cancel the A; factor in g(A;). Hence, for the case of MHV ampli-
tudes Ap(—, —,+,+,...,+), the conformal soft limit of the negative helicity states gives
zero. This was observed also in [8], which is consistent with the vanishing of the MHV
amplitude (3.1) in momentum space under the soft limit of a negative helicity gluon. In
total we can write (4.12) as

. o n S
ngrZI}LH(OleJl Y (25) - OR 5 TP (2041))

1 a a Qs a .
(( + : )><OA11J1"'.] J(Zj)"'OAnan>’ j=3,...,n,

Zn41—27)?  (2nt1 — 2j
0, Jj=12,
(4.16)

with Aj—>1.

Therefore we cannot extract any OPE of T°(z) with j(w). Naively, we expect this
OPE to be regular since the operators j(w) are antiholomorphic with weights h = 0 and
h = 1. Also this assertion, although discussed here only for MHV amplitudes, makes a
connection with our earlier discussion regarding the CS interpretation of the theory. Only
one set of currents can survive in the soft limit, holomorphic or antiholomorphic. We have
made the choice which leads to a holomorphic Kac-Moody algebra and the antiholomorphic
currents j(w) are expected to decouple. Indeed, as shown above, this is the case for MHV
amplitudes. But unfortunately this does not hold for NM HV amplitudes, see appendix B.
So we must restrict our discussion solely on correlators which involve only one type of
soft gluons, positive or negative ones. In appendix C we discuss the role of the shadow
transform, which allows soft negative helicity states to be expressed as positive helicity
ones. Therefore allowing us to have a purely holomorphic correlator, alas in an apparently
non-local formulation.

As a final remark, had we chosen to work in a MHV basis we would be led to an
antiholomorphic Kac-Moody algebra. For an antiholomorphic Kac-Moody algebra, we will
get the T°(2);%(w)-OPE as:

7S 2\ A, h = a_ja(’w) 7
T°(2)5 (w):m ————= h=1. (4.17)

Similar conclusions as for the holomorphic sector apply in this case.

4.2 Comments on the OPE of the Sugawara tensor for hard operators

On the other hand, hard operators OZ,_ as well as O“A7 - act as color sources for soft modes.
The complete theory requires an energy-momentum tensor for the hard states as well. We
can try to examine the collinear limit of the Sugawara tensor with a hard operator. Looking
carefully at (3.2) we see that the single poles for negative helicity states have a modified
partial derivative (3.3). This already poses an issue with the negative helicity gluons. Also,
in the Mellin transform derivation we encounter (4.10). We see that only for the soft limit
Aj — 0 we can recover the simple partial derivative of the celestial amplitude. Finally,
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the double poles for hard operators pose a problem as well. These states have weights
h = z% and h = 1+ z% But the Sugawara energy momentum tensor will give always
weights proportional to the eigenvalues of the quadratic Casimir operator on the states. In
all situations completing the Mellin integrals and taking the double conformal soft limit
for gluons n + 1,n + 2, results in the double poles of (4.14). From the analysis above we
conclude, that when the Sugawara energy momentum tensor acts on hard negative or hard
positive helicity states we do not derive the desired OPE.

One might wonder if we can consider a subsector of the theory where the Sugawara
decouples completely from hard and soft negative helicity states. We know that all positive
helicity states can be taken soft under consecutive soft limits. In the previous section we
concluded though, that soft limits of negative helicity gluons, lead to vanishing MHV
amplitudes. It is also known that a pure plus helicity amplitude does not exist in the
gauge theory side and therefore in the CCFT we cannot have a correlator with only j%(z)
operators.'> We conclude that we need to modify the Sugawara tensor to account for the
proper conformal properties of hard operators. As suggested in [5, 41] one should include
an additional term in the definition of the full energy-momentum tensor:

T(z) =T%(2) +T'(2). (4.18)

This remains an open problem. So at this stage, in order to have non-vanishing correlators
with j*(z) operator insertions, we need correlators with heavy states of the CCFT. As
suggested in [5, 39, 42] we can treat external, heavy negative and positive helicity states
as Wilson lines. In section 6.1 we will make an alternative proposal based on our analysis
for the Einstein-Yang-Mills theory, which works for soft and hard operators alike.

As an example we can consider massive particles as sources of soft gauge radiation [42].
Massive particles are described by time-like Wilson lines which source soft gauge bosons.
Unlike massless particles whose wave function localizes on the CS? at null infinity, massive
particles’ trajectories do not asymptote to the celestial sphere CS? at null infinity. Massless
particles i.e gluons correspond to local operators on CS?, but massive particles correspond
to smeared operators and involve non-local integrals of local operators on CS2.

To make our point we restrict to the case of QED to avoid a heavy notation with colour
matrices and traces. For QED, consider as in [42], the CCFT operator O(p), where p the
four-momentum, describes massive states. We will assume that this operator factorizes into
two parts. One part O(p) is neutral under large gauge transformations and decouples from
soft radiation. The second part Wq(p), where @ is the charge of the massive state, is a
Wilson line, a smeared operator on CS?, that transforms under large gauge transformations
and describes the coupling of massive states to soft radiation. Correlation functions on the
CCFT are expected to factorize [42, 44]:

(j1,92 -+ §n01,09...0p) = (01,09...0w) (j1,72 - - - 5uWa1; Wa, -- - Wa,,) - (4.19)
hard soft

The Sugawara tensor is expected to be the energy momentum tensor of the sub-CFT
of conformally soft operators and Wilson lines of the CCFT. It is very interesting to

13See though appendix C for a formulation which includes shadow operators Ea(z)
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extend our present discussion in the non-Abelian case and include Wilson operators in
our correlators, staring from the hard-soft-collinear factorization of scattering amplitudes
in QCD [44].

5 The general gauge group using OPE and conformal soft limits of cur-
rents

In this section we discuss the Sugawara energy-momentum tensor for general gauge groups
by using directly the conformal soft limit result of [17] and subsequently the collinear limit.
This is different sequence of operations compared to the one of the previous section. It can
be applied only for the OPE of the energy momentum tensor with a soft gauge boson. We
still consider the MHV case and follow closely the discussion in chapter 15 of [45]. We write
the Sugawara energy momentum tensor in the form (2.21). We will consider the following
expression

Y dzn+1 b > b ‘a ‘a
— — (O} g
i s bl — 2 ( Al_(zlvzl) 37 (2n) 3 (2ng1) 5" (Zn42))

) . v dzni1 b — \ b _ \ b: .
= lim lim — ———— (O (21,21)0% (29,29)O0%  (23,%3)...
Api1Bppaol Ag—1 20 J, 0 Zng1 — Zng2 (04, (21, 21)0%, (22, 2) O, 4 (25, %)

O%n_;,_(znv zn)OaAn+l+(Zn+17 Zn+1)OaAn+2+(Zn+27 2n+2)> ) (51)

where 7 a normalization constant to be determined soon. Now we apply the soft limit
iteratively following closely the derivation in equations (15.51-15.56) of [45]. We use the
collinear and soft limits in (2.15). First, we take the soft limit for the operator (DbA"n +(2n,Zn)

n—1 fbnbic b
= <0A11(z1,51)...ogi(zi,z,.)...

2o i
i=1 n,t

O (2, Zn-1)OR, 14 (241, Znt1) OR, o4 (2041, 5n+1)>

f'bnac ~ ~ ~
+ <ObAll (2’1, 21) PN OCAnJrl,‘F (Zn+1, Zn+1)OaAn+2+(Zn+2, Zn+2)>
Zn,n+1
f'bnac b
— <o B (z1,21) . O% s (ot Znr1) O, ot (s, zn+2)> . (5.2
n,n

Then we consider the collinear limit for the operator (’)bA"n +(2n, Z1,) as it approaches the two
operators at z,+1 and z,19 The first line above does not contribute to the OPE of interest
since it is finite as 2z, — zp+1. The last two lines are inserted in the contour integral (5.1).
Now we apply the conformal soft limit on the operator OZHH’ L J %(zp41) and use the
OPE (2.15) with 0%, ..

5 dZnJrl < fbnacfcad
2mi S, Pntimt2

f'bnacf'acd B )
(OR (21,21) - O o (ot 2ns2) ) ) (5.3)

b - d -
Ox (z1,71)...0 (z Zn+2)
A 1,21) - YA, 1o+ \Fn+2s “nt2
Znnt1Zn41n42 < 1 2

Zn,n+22n+1,n+2
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The second term gives only regular terms in the contour integral. Only the first one is
relevant. We use the integration formula:

1 dx F(w) (n4+m —2)! F(w)

— = . 5.4
21 Jy, (x—w)" (z—2)™ (n—1)(m— 1! (z — w)rtm-1 (54)
Finally, we derive the following expression
—02 b _ b _
Yy m <OA11(217Z1)"’OAn+2,+(Zn+2’Z'"’+2)>’ (55)
where the overall minus sign comes from the formula fonacfcad — _(Cytnd and will be

thrown away because it reflects only the antisymmetric property of the structure constant.
At this point we need to expand the correlator for z,49 around z,. We can use a similar
method as in [18] or use the delta function expansion in (4.7) leading to (4.10). Finally, lest
+ and follow the discussion that leads to (4.12).
In this situation, for the MHV case discussed in the previous section, we can simply Taylor

consider the conformal soft limit of Oa,,,,,

expand the Mellin transform of the partial amplitude (3.1) At the end we arrive at

<0”Al] (21751)”.T(anjbn(zn»NWOQ ( 21 O ><(9bAll.,,jb"(Zn)>, (5.6)

n+2,n Zn+2,n

where the choice v = C‘L gives the correct normalization for a level £ = 0 Sugawara energy
momentum tensor. This concludes the derivation of the OPE for the Sugawara tensor using
an approach with the soft limits first and collinear after.

6 Energy-momentum tensor from shadow transform and double copy

As discussed in the introduction, the set of BMS algebra generators consists of super-
rotations and supertranslations. The energy momentum tensors T'(z),T(2) encode the
superrotation generators and the supertranslation field P(z,z) encodes the supertransla-
tion generators. In this section we will follow an alternative approach to the Sugawara
construction of the energy-momentum tensor. We will follow an observation from [19] to
construct the energy-momentum tensor using a pair of dimension zero, opposite helicity
gauge bosons. Inspired by this relation, we will propose a similar construction for the
supertranslation field P(z, z).

6.1 A double copy construction of the energy momentum tensor

In the following we shall consider a pair of dimension zero gauge boson operators with
a shadow transform of one of the gauge bosons. In general the shadow transform of an
operator of the CCFT is given by the relation [51]:

/—a\/ _ Aa _ KAJ d2w a _
OAyJ(za Z) = OZ—A,—J(Z7 Z) = / (Z _ ’LU)QiA*J(Z _ u*})ZfAJrJ OA,J(w7 U}) ) (61)

™
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where Ka j = A+.J—1.1 Following (2.19) we can introduce a modified energy momentum
tensor on the celestial sphere by choosing a pair of dimension zero gauge boson operators
and considering the following expression

T(wy) ~ lim Y 6% OF | (we,w2)04 | (wy, 1), (6.2)

wo—rwW1

based on (2.20) for level k = 0. Here, the first gluon operator Of , has spin one and
vanishing dimension Ay = 0 (with hy = % + ”\72, ho = —% + MTZ’, A2 — 0), while the second
operator @g L with Al = 2 arises from a shadow operation

B8, (wy,0y) ~ / P2y (21— w1) (51 —01) " OY_(z1,71), (6.3)

of a gluon operator of negative spin one and vanishing dimension Ay = 0 (with h; =
—% + ”\71, hi = % + ”\71, A1 — 0). We have ignored the normalization factors of the shadow
transform since they are not important for our arguments below and can be absorbed in
an overall normalization for the energy momentum tensor. To proceed we use the OPE of
two gluon states of opposite spins, which can be found in (2.11)

N - A1 Fabe -
OR, + (w2, W2)Op, _(21,71) = Az(AllJFAZ —) Z Ola,+0,-1),—(21,71)
C

w2 —21

ab W2—2z1 (A1—1)(A1+1)(Az-1) _
20 As(A1+A2) (A + A, —1) Oar+ag),-2(21,71)

+ 0 A(AL Ag) (Wa—71) OR,rayi,—(21.51)+
+(5ab M(Al,Ag) (117)2751)2 OA1+A2+2,—2(2'1751)+~- , (6.4)

where A(Aq, Ag), M (A1, Ag) are constants which depend on the details of the D = 4 theory
from which their OPE has been derived. Above we have included possible single-pole or
finite terms [19]. After inserting (6.3) into (6.2) and using (6.4) we arrive at:

li li d2 _ —3(z. _ .\ —1 §aa .

s, i, [ Ea oo ©9
2 W9 — 21 _ _ = \2 5

VDo (Br4Dg) wa—nt Ony+as,-2(21,21) + M (A1, Ag) (w2 —21)" Oaj4a,+2,-2(21,71)

Note, that the first and third term of the OPE (6.4) cancel after performing the color sum
in (6.2). The first term of the equation above can be related to the energy-momentum
tensor [18]:

T(w) ~ / P2 (2 —w) ™ Op_a(2,7). (6.6)

141t seems there is a clash in the literature concerning the normalization factor for the shadow transform.
In [52] the normalization constant is Ka j = %
text. For J = —1 and as A—0, the normalization of [52] behaves as Ka,7 ~ A and goes to zero. It is not
clear why this discrepancy occurs, but in this case the only modification will be that in (6.8) we will need
only the (A1 + A;) factor in the definition of the energy momentum tensor. The rest of our analysis leads

though to the same conclusions.

unlike the one of [2, 34] which we use in the main

25



In fact, after taking the limit w; — w9 we obtain

. . 1 2 -4 -
2 dlmg AI}IAT*)O m / d 21 (2:1 - 'LUl) 00772(21; Zl)
1
= 2di li B — 6.7
g Al,lAHgl%O AQ(Al + Ag) (wl) ’ ( )

with the dimension dimg = d,, of the underlying gauge group. In total we have the
following relation

T(w) =

1 . . " _\Aa _
&0 Al,hAn;ﬁo[AQ(Al—’_Aﬂ} wgﬂlg OR, 4 (w2, 02)O3_, 4 (w1, 101), (6.8)

which assumes the desired form (6.2). The latter takes the Sugawara form (2.20) upon

. 1 1 _
replacing the factor 5 Tmg by TSYATE) for k = 0.
Having fixed the normalization constant we can consider the regular terms of the OPE.

The limit at wy — wy gives

lim O[AQ(Al -+ Ag)] (SaaM(Al, Ag) (69)

Al,Agﬁ

x lim d2211 (2’1 — wl)_?’(él — 11_)1)_1(71)2 — 51)2 OA1+A2+21,2(2’1,51)
w2 —wW1

= lim [Ag(Al + Ag)] 0% M(AhAg) /d221 (21 - w1)73(21 - ’LTJl) 027_2(2’1, 51).
Al,AQ*}O

The action of this hard operator on primaries will lead to the following potentially singu-

lar terms

— \na _ 21— W ., _
Os-(z1,21)04 1 (w, W) ~ p(&) Z— = Ohy 1 (w, ) (6.10)

Naively, after integration in (6.9) we get, that close to the operator insertion the integral

behaves as
/ P %ow(zhzl)ogi(w,w) ~ p(A)HOZJFZi(w,w) (6.11)
where we have used standard conformal integrals (cf. [52])
/d221 (G1ow) w0 (6.12)
(71 —w1)? 2z —w w— w

to extract the singular part of this integral. Equation (6.11) leads to singular behaviour,
either pole type if we consider separately the holomorphic limit w — w; or of a singular
angular distribution if both w — w; and w — w;. If we consider strictly EYM theory this
term does not exist. As explained in [19], the subleading term in the OPE (6.4) originates
from higher derivative bulk interactions of the form RF2. So in the pure EYM case, these
are absent and the final result is given by (6.8) and we have demonstrated the desired result.

Nevertheless, we are interested in the energy-momentum tensor for more general the-
ories with higher derivative corrections i.e. RF? due to quantum, stringy or other effects.
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The important point is that such corrections will not contribute to the proposal (6.2). We
will demonstrate, that the constant M (A1, Ay) has at most single poles under the dou-
ble soft limit Ay, As — 0. Then in (6.9) the last term will drop in the double soft limit
A1, Ay — 0. The prefactor As(A; + Ag) goes to zero quadratically but M (A, Az) has a
single pole. To see this we need to follow the discussion of appendix A in [19]. The term
of interest in the OPE (6.4) stems from RF? higher derivative corrections of EYM.

In general the cubic vertex has the form

V = 0" P (2)B(2) B (x) (6.13)

where the fields ® can be A, h,, but Lorentz indices are suppressed and the total number
of derivatives m distributed among all three fields ®;.®5, &,. The net dimension of the
vertex is dy = 3 + m. A Mellin transform analysis of the collinear limit in a celestial
amplitude, leads to the following result [19]

[ee]
A~ ZB(Al +m+a—1,A+5— 1)/dwp w§1+A2+m_3Aaﬁ(zl,21,22,22,wp, c )y
a,B 0
(6.14)

where wp = w1 + we and in our case m = 4. In this case the operator ®; has dimensions
Ap = A; + Ay +m — 2 — 2 which is the dimension of Oy _5 in (6.9). The remaining
Mellin transform is a celestial amplitude with a hard operator insertion Oz _3 and no poles
are expected unlike for soft operators with dimension one. The labels «, 8 determine the
different powers of the energy factors in the collinear splitting functions [17, 19, 20]

1 w{”"'awg 1

Spitil,sz (pl’pz) = 712

6.15
w?ﬁﬁ wiwy ( )
with s; the helicities of the collinear states and a, 5 > —1 in YM and «, 8 > —2 in GR. In
higher derivative theories with couplings RF? etc. they are always a, f > —m.

As it is clear from the derivation of (6.14)

M(ALA) =c B(A +m+a—1,0+5—1), (6.16)

where ¢ is a numerical constant independent of the dimensions A1, Ay. We notice that in
the limit Ay, Ag — 0, at most single poles can appear in the prefactor B(A; + m + a —
1,A1+8-1) = B(3+a,B—1). Actually, our result is more general, since the Beta function
has at most single poles and could be applied to arbitrary higher derivative corrections.

This concludes the proof that the prefactor M (A1, Ag) in (6.9) has at most a single
pole as A1, Ay — 0. In (6.9) we see that automatically the limit leads to zero since we
have a double zero from the overall prefactor. We conclude that the result (6.8) holds for
more general extensions of EYM.

The Sugawara inspired relation (6.8) gives a gauge gravity relation established as a
relation between a pair of gauge boson operators Of . , (’)8’7 and a graviton operator Oy
on the celestial sphere. Notice that this is not the usual Sugawara construction since the
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operators Of , are not dimension one and do not generate a Kac-Moody symmetry. Having
said this, it seems that our construction is more like the KLT or double-copy equivalent in
CCFT. Note, that the well-known KLT relations express gravitational amplitudes as sums
over squares of gauge amplitudes supplemented by a momentum dependent kernel. The
latter accounts for disentangling monodromy relations on the string world-sheet. On the
other hand, (6.8) gives a direct relation between a graviton and a pair of gauge bosons on
the celestial sphere without any additional momentum dependent factors.

6.2 A double copy construction for supertranslations

In [20, 34], it was shown that supertranslations are generated by the operator P
P(Z, 5) = agOA_)L_,_Q, (617)

where its OPE with spin one primaries is given by the relation:

(A-1)(A+1) 1
4A z—w

The presence of (A — 1) factors in the above OPE coeflicients implies that the products

P(z,2)0n, j(w, @) = Oa+1,g(w,w) +regular, J==+1. (6.18)

P(2)j%w), P(2)j%(w) are regular. Similar relations hold for the antiholomorphic operator
P. An important property is that supertranslations shift the dimension of the usual fields
up A — A + 1 or equivalently (h,h)—(h + %, h+ %) This may be checked by applying
in particular the momentum operator which generates translations along the light-cone
direction (see [20, 53]):

P 1=P+P= eOntoR)/2 (6.19)

Proceeding one step ahead one can try a kind of double copy construction of the
operator P(z,z) of (6.17) as well. We will show that:

OA_>17+2(IU1,7IJ1) ~ lim lim AzZOZZ#(UJQ,IDQ)@g,Ath(wl,wl) . (6.20)
a

Ag—0,A1—1 wa—w1

To prove the equivalence above, we use once more the OPE (6.4).

lim lim d?z (21 —wy) ™2 (6.21)

A1—1,A2—0 wi—w2

4 wy—Z
x 5% { 2" Opypaa—2(21,21) + M(A1, Ag) (2 — 21)? O, 4 ag42,-2(21, 51)} '

Ao wy — 21

In the equation above we need to chose a specific order of limits Ay — 0 first and Ay — 1
last. The first term is the one we need for our purpose. For EYM there are no higher deriva-
tive terms and the leading term is all we need. As in the case of the energy-momentum
tensor, for general theories beyond EYM, we need to analyze the potential implications
of the subleading operator Oa,1a,+2,—2 — O3 2. The coefficient M (A1, A) of the sub-
leading term can have a single pole as Ay — 0 following the collinear limits of celestial
amplitudes (6.14). So naively this term can create additional contributions in the pro-

posal (6.20). Nevertheless, this operator has the following OPEs with primary operators:
zZ1 —w

Y 08 g (w,m). (6.22)

Os3,-2(21, 21)O4 1 (w, w) ~ p(A) o
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Applying the integration in (6.21) the integrant near the operator insertion behaves
as follows

/d221 (21 — w1)2(21 — 11)? O3 _a(z1, 21)O% _ (w, )

=2
() [ a2y BLZ ) 2 m 7). 6.23
O e e T (6.23)

Unlike (6.11) no poles can emerge from this expression. So finally, we derive

lim lim A E O% W, 9) O% w1, W
Ao—0,A1—1 wa—w1 2 A2’+( 2 2) 27A1’+( b 1)
a

2z wy—z
= 1 li — -2(2,2
AQ—)éTRl—)l w21—r>r1lv1/ (w1 — 2)2 wg — ZOANLAQ’ 2(2’2)
w, — 2 _
Y O L Sk NN
/ ¢ (wr —2)3 " 2(#2)
= Oy _a(wy, 1) = O1 42wy, 1) = Op 12wy, 1), (6.24)

where in the last step we have used the relation for dimension one operators (7)%7 L(wr) =
T+ (w1) [2]. For completeness we give the OPE of the operators 01 y2(w) with spin one
primaries J = +1,

Oasi,42(2,2) 04, 5(w, w) ~

A-1A+1)z—w _
( 4)2 ) o wOAiJrLJ(w’ w) (6.25)

from [20]. Then applying this on (6.17) we derive the OPE of P(z, z) with primaries

(A-1)(A+1) 1

P(Z>Z)OA1‘,J(U]’7I]) ~ N — wOAi+1,+(w?w) (6'26)

One mode of this field is the operator P_:

2

in (6.19).

_1
2
7 Conclusions

From the study of scattering amplitudes in four-dimensional Minkowski space-time some
striking relations between gravity and gauge amplitudes have emerged. For a review
see [54]. These observations suggest a deeper connection between gauge and gravity theo-
ries and indicate the existence of some gauge structure in quantum gravity. However, the
origin of these relations is yet poorly understood in four-dimensional Minkowski space-time.
The Mellin transform of gauge and gravitational states and amplitudes to celestial sphere
gives a new way of looking at quantum field theory and quantum gravity and might shed
light on the underlying symmetries of these amplitude relations. In particular, it seems
feasible that the manifestation of double-copy-constructions may have a simpler emergence
when considered within the underlying conformal field theory on the celestial sphere.

In this work we discussed the energy-momentum tensor of the pure gauge sector of
the CCFT. For the pure gauge theory, it has been suggested [5, 39], that a particular
subsector of the CCFT, the one of soft operators, can be described by a current algebra, a
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Kac-Moody algebra. In this work, we used the Sugawara method to construct the energy-
momentum tensor 7°(z) from the celestial amplitude of gluons. From the analysis of
the soft and collinear limits of gluon amplitudes we extracted the OPEs of the Sugawara
energy momentum tensor with primary fields of the CCFT. The OPE of the holomorphic
Sugawara energy-momentum tensor has the expected form for soft holomorphic operators
j%(z) which correspond to soft positive helicity gluons. For antiholomorphic soft operators
and hard operators, the OPE is not as expected. A modification will be necessary. We
discussed these shortcomings and suggested potential resolutions on how to decouple the
sub-CF'T that describes the positive helicity soft sector from the rest of the theory. We also
developed several gauge group identities, some of which are novel and potentially useful
for scattering amplitude computations in general.

Subsequently we used CCEF'T OPEs for EYM theory to construct from a pair of gluon
operators the energy momentum tensor and the supertranslation operator of the BMS
algebra. This method bears resemblance to the double-copy method that relates gauge
and gravity amplitudes. The energy momentum tensor we constructed has the correct
action on both the soft and hard operators of the theory. It is a generalization of the
Sugawara method, although the Kac-Moody current algebra origin of this construction is
not so clear.

There are several open questions which deserve further study. In section 4.2 we dis-
cussed the importance of massive states in relation to the soft sub-sector of the theory.
Massive states should correspond to Wilson lines on the CCFT and it is an interesting
question how to implement them in the celestial amplitudes picture. It is important to
investigate correlators of soft operators with Wilson lines and extract the OPE with the
Sugawara energy momentum tensor. Finally, the BMS algebra on the CCFT language
was discussed recently in [20]. It would be interesting to compute the algebra using the
Sugawara energy-momentum tensor and see if we can have a BMS type of symmetry for
the soft sub-sector of the theory.
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A Solution of the n-particle momentum-conservating delta function

We use [17] and give an expression of the n-particle momentum-conservating delta functions
which appear in the amplitudes (2.7) in terms of energies w; and celestial coordinates z;, ;.
For the n-particle (n > 5) momentum-conservating delta function, we choose to use the
first four energies w1, ws, ws,ws to localize the solution. This choice is arbitrary and any
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other choice also works. Define the following cross-ratios of celestial coordinates:
21223
=2 =45, n. (A.1)
Z13%2i

Then the n-point momentum delta function is solved as

- 4
(1 —t4)(1 —t4) 1 .
ewq = Ow; — wi). A2
Z (et K1 t4 o t4 |Zl4|2|223|2 2:111 ( 7 1) ( )
The solutions for the four chosen energies are
w; = fisws + fiswe + ... + finwn (A.3)
where f;;,i=1,2,3, 4,j =5,6,...,n are functions of cross-ratios:
294 |2 t4)(1 — 1?4) t; — t_j 215 |2 225 |2
fij = 4’ = €1€5 = —' et’ ’ ,
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293 ty — 14 €1€3 (1 —t; ) 1 7t 214 6163 223
(1—t4)(1 —1?4) €1€; t; 775]‘ 213’2
faj=— —
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B Seven-gluon NMHV amplitude and T°j OPE

In this appendix we will compute the mixed 7°° (2)j(0)-OPE in the seven-gluon NMHV
amplitude A7(—,—, —, +,+,+,+). We use the last two operators to define the Sugawara
energy momentum tensor 7%(z7) ~ lim, ., 7%(26)7%(27), and extract its OPE with the
first operator T (z7)7(%1).

The explicit form of the subamplitude A7(—,—,—,+,+,+,+) was obtained by the
BCFW method in reference [55], which reads as:

A(17,27,37,47,57,6%,77) = (112 + 34"
#531(56)(67) (71 [23][34](5/4 + 3|2] B
1 ( (3|(4 +5)(6 + 7)|1)3 . (32 + 1|73 ) '
 BHES)6]7+ 112 \ (BiBlier)r1y s+ 312) Py )

Taking limit of z6 — 27 for defining the Sugawara T'(z7) and the limit of 27 — z; for
extracting the mixed OPE, this seven-gluon NMHV amplitude has the following leading
order poles in terms of celestial coordinates

=3
lim  Ar(—, —, — 4+ +,4) = — 1S S ( L )
262721 wowswewr (w1 + we + wy)” 212223234251 \ 267271
B waws (we + wr)? 233 ( 1 )
wiwawswewr (w1 + we + w7)2 212234245251 \ 267271
Wows3ws7 235 < 1 ) (B.2)
w? (W1 + wr) wawswe 212234245251 \ 271271 ) .
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The Mellin integral of the first term in the above equation is

w1
wewr (w1 +we+wr)?

( /\6 )\7 / dwl/ dwﬁ/ dwﬁw 1+1)\5( w) 1+z>\7( 6)1+i/\1w/ 2

:g()\l)g()\ﬁ)g()\7)B(i)\6,Z')\7)B(Z')\%,2+i)\1)/0 dwlw'l Hidy RN (B.3)

g(A)g(Ne)g(A7) / dw dweduwr Wit Wit WM

where the integral is performed with change of variable wj = wg + w7, w] = w1 + wg; and
we have defined new quantities \j = A\ + A7, A} = A1 + A;. In the conformal soft limit
A6, A7 — 0, the integral is nonzero

g(Al)g(Aﬁ)g(mB(mﬁ,m)B(ZAg,z+M1)/ dw)w' T TN
0
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where in the last step we have relabelled w] as wy. Similarly, the Mellin integral of the
second term in eq. (B.2) is

(we + wr)?
wiwswr (w1 + we + wr)?
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In the conformal soft limit Ag, A7 — 0, the integral is zero
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Finally, the Mellin integral of the third term in eq. (B.2) is

wr
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where in the first line we took the conformal soft limit of A\¢ — 0 and used the following
formula [22]

lim g(i)g) / dwpwg 7T = lim | dwgirgwg T = 1. (B.8)
Ag=0 Ag=0

In the conformal soft limit A7 — 0, the integral is zero

. . i/\71“(2 + i)\7) F(—l + i)\l) A7=0
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Combining the above three Mellin integrals, the final result is

X 1
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Adding the contribution for zg <> 27 we derive
1
Ar(= = = 4,4, 4+, +) TET (7> As(17,27,37, 4% 5). (B.11)
27

Obviously T'(27)j(z1)-OPE has a double pole and it is not zero.

C Sugawara OPE with soft shadow operators

In this appendix we discuss the role of the Sugawara energy momentum tensor in correlators
with insertions of the soft (A — 1) shadow of spin one conformal primary operators. The
shadow of an operator is given by (6.1). For the case of spin one and dimension one operator

this becomes
~ 1 dPw -

J(z) = “or m]a(w) (C.1)

In [2] the conformal primary wave functions for dimension one operators were shown to
be equivalent to their shadow transforms. Nevertheless, in [34] it was shown that at the
subleading order of the A — 1 limit the two conformal primary wave functions differ by a
logarithmic mode. We will leave the operator L“_(z) as a distinct operator from j%(z).

In order to discuss the algebra of the shadow currents with the holomorphic currents
j%(2), we will need the conformal soft theorems (or OPEs) of both j%(z) and j*(2z). At
this point it is important to distinguish two different situations depending on the order of
the consecutive soft limits. This is important in the case of opposite helicity gluons only.
The OPEs in (2.17) correspond to the case where positive helicity gluons are taken soft
before negative ones and vice versa for (2.18). The action of the shadow currents on hard
primary operators has no ambiguity and agrees with (2.14), (2.16).

Let us discuss case 1. Using the OPEs in (2.17) we derive

abe e @ - _ abc e )

@@ ~ IO ) ~ LI (©2)
abc ;c w - ~ ~

@) ~ T ) ey, (27 w) ~ res
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Since we are discussing the OPE of the Sugawara tensor with a soft operator we can use
the method of section 5. It is straight forward to apply the derivation there and derive the
following OPE
(=) (w) ~ reg (C.3)

This implies that the shadow currents 3‘1 are inert under the conformal transformations
generated by the Sugawara energy momentum tensor. This again leads to the neces-
sity to modify the energy momentum tensor to account for the conformal transformation
properties of the }“(z) holomorphic currents. Nevertheless, this is more promising than
considering correlators with antiholomorphic currents, since we found that contrary to
expectations the holomorphic Sugawara energy momentum tensor acts on those currents
which have weights (0,1) and should be normally inert. Of course the result above does
not apply to the case of MHV amplitudes, since conformal soft limit of negative helicity
gluons leads to a vanishing correlator. For the case of N* M HV though Mellin plus shadow
transform lead to

Aulgr 95900000 — ) FEi ) o G2)(C)
which is non vanishing generally and purely holomorphic.

For case 2, similarly we derive

abc ;c w - abc ;c w - -

@) ~ I ey T ey ey (05)
abc ;c w - B abc “c o

@) ~ LI e L)

This leads to the surprising conclusion that there is a Kac-Moody algebra of j*(z) and
j%(2) which closes only on the j%(z).!5 Repeating the previous steps we find

T ()7 (w) ~ G | () + =04 () (o)

(z—w

We see that if we identify Ea(z) = j%(z) we have agreement with the conformal properties of
the operators as currents with weights (1,0). This is very interesting and consistent with the
identification of dimension one states in [2]. Nevertheless, it implies an one-to-two relation
between gauge amplitudes and CCFT correlators since in this way any negative helicity
gluon is mapped to a positive one. It is plausible that this discrepancy lies in the detailed
analysis of the conformal primary wave functions for the dimension one primary and its
shadow. In [34] there is a subtle difference between the two operators due to a dimension
one logarithmic operator. So it is more sensible to have the relation }a(z) ~ j%(z) modulo
subleading in the limit A — 1 logarithmic operators. In that sense the Sugawara energy
momentum tensor captures the leading conformal properties of the shadow operators. We
leave this interesting question for future work.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

15This is plausibly the manifestation of a degeneracy in the algebra.
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