
J
H
E
P
0
9
(
2
0
2
0
)
1
3
9

Published for SISSA by Springer

Received: May 25, 2020

Accepted: August 10, 2020

Published: September 22, 2020

On Sugawara construction on celestial sphere

Wei Fan,a Angelos Fotopoulos,b,c Stephan Stiebergerd and Tomasz R. Taylorb

aDepartment of Physics, College of Science, Jiangsu University of Science and Technology,
Zhenjiang, 212003, China

bDepartment of Physics, Northeastern University,
Boston, MA 02115, U.S.A.

cDepartment of Sciences, Wentworth Institute of Technology,
Boston, MA 02115, U.S.A.

dMax-Planck-Institut für Physik, Werner-Heisenberg-Institut,
80805 München, Germany

E-mail: fanweiphysicist@hotmail.com, agelosf1973@gmail.com,

stephan.stieberger@mpp.mpg.de, taylor@neu.edu

Abstract: Conformally soft gluons are conserved currents of the Celestial Conformal

Field Theory (CCFT) and generate a Kac-Moody algebra. We study celestial amplitudes

of Yang-Mills theory, which are Mellin transforms of gluon amplitudes and take the double

soft limit of a pair of gluons. In this manner we construct the Sugawara energy-momentum

tensor of the CCFT. We verify that conformally soft gauge bosons are Virasoro primaries

of the CCFT under the Sugawara energy-momentum tensor. The Sugawara tensor though

does not generate the correct conformal transformations for hard states. In Einstein-Yang-

Mills theory, we consider an alternative construction of the energy-momentum tensor, sim-

ilar to the double copy construction which relates gauge theory amplitudes with gravity

ones. This energy momentum tensor has the correct properties to generate conformal trans-

formations for both soft and hard states. We extend this construction to supertranslations.

Keywords: Conformal and W Symmetry, Scattering Amplitudes

ArXiv ePrint: 2005.10666

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP09(2020)139

mailto:fanweiphysicist@hotmail.com
mailto:agelosf1973@gmail.com
mailto:stephan.stieberger@mpp.mpg.de
mailto:taylor@neu.edu
https://arxiv.org/abs/2005.10666
https://doi.org/10.1007/JHEP09(2020)139


J
H
E
P
0
9
(
2
0
2
0
)
1
3
9

Contents

1 Introduction 1

2 Remarks on gluon operator products and Sugawara construction 3

3 Gluon amplitudes, gauge current insertion and operator products 8

3.1 Gluon amplitudes and operator products for SU(N) 9

3.2 Gluon color sums and operator products for general gauge group 12

4 Mellin transform and the Sugawara energy-momentum tensor 17

4.1 Sugawara energy-momentum tensor and conformally soft gluons 17

4.2 Comments on the OPE of the Sugawara tensor for hard operators 21

5 The general gauge group using OPE and conformal soft limits of currents 23

6 Energy-momentum tensor from shadow transform and double copy 24

6.1 A double copy construction of the energy momentum tensor 24

6.2 A double copy construction for supertranslations 28

7 Conclusions 29

A Solution of the n-particle momentum-conservating delta function 30

B Seven-gluon NMHV amplitude and TS j̄ OPE 31

C Sugawara OPE with soft shadow operators 33

1 Introduction

The null infinity of D = 4 asymptotically flat spacetime is the product of a conformal

two-sphere (celestial sphere) CS2 with a null line. It was realized some time ago, that

for asymptotically flat space-times the Poincare group can be extended to the local BMS

group. The local BMS algebra, is an infinite dimensional extension of the Poincare algebra.

It contains the Virasoro algebra generators, which generate the conformal group, and in

addition supertranslations. This is very suggestive of a conformal field theory living on the

null infinity of Minkowski space-time.

Indeed, scattering amplitudes in D = 4 Minkowski spacetime can be recast, via a

Mellin transform, into conformal correlation functions (celestial amplitudes) on the celestial

sphere [1–6].1 The theory describing the dynamics of celestial amplitudes is expected to be a

novel conformal field theory on CS2. The celestial amplitudes, correspond to a subset of the

1In theories with gravity the Mellin transform from 4d to the CS2 is sensitive to UV divergencies. String

amplitudes are known for their soft UV properties. Celestial amplitudes for string theories were discussed

in [7, 8]. The role of UV constraints on scattering amplitudes was discussed recently in [9].
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correlators on the celestial conformal field theory (CCFT). One of the main motivations,

for studying such a theory, is the proposal that CCFT is a holographic description of

4d physics in Minkowski spacetime [5, 10, 11]. This originates from early studies of flat

holography [12] and the BMS algebra [13–15] of asymptotic symmetries. Recently, the

study of CCFT and its properties has led to several advances along various aspects of the

proposed theory [4, 7, 16–26], but a lot remains in order to make the CCFT a solid proposal

for flat space-time holography.

In CCFT, a particle is described [1, 2] by conformal primary wave function. These

functions are labeled by the conformal weights (h, h̄) and position (z, z̄). The coordinates

(z, z̄) on the celestial sphere are related to the asymptotic direction of the four-momentum

in 4d Minkowski spacetime. The scaling dimension ∆ and spin helicity J can be obtained

from the conformal weights via ∆ = h+ h̄, J = h− h̄. In CCFT, each particle corresponds

to a conformal field operator with Re(∆) = 1, i.e. ∆ = 1 + iλ, λ ∈ R [2]. For massless

particles, conformal field operators are Mellin transforms of plane wave functions in the 4d

Minkowski spacetime [2, 5].

At this stage, many details of the CCFT are under investigation. From current studies

nontrivial and elegant features have already been discovered, especially its algebraic struc-

ture extracted from celestial operator spectra and celestial amplitudes. At the classical

level, the Ward identities of conserved currents and energy-momentum tensor have been

shown to correspond to soft theorem of gluons and gravitons [5, 27–33]. For gluons, con-

served currents of the CCFT correspond to the conformal soft limit [8, 34, 35] of conformal

operators, i.e. ∆ = 1 (λ = 0).2 A similar picture holds between conformally soft gravitons

and the energy-momentum tensor [5, 16]. The studies of the conformal soft limit of ce-

lestial amplitudes allowed making a direct connection between Ward identities of currents

on CS2 and the low energy theorems of gluons [17] and gravitons [17–19]. Moreover, the

collinear singularities of gluon and graviton amplitudes, correspond to the case where two

operators of the CCFT approach each other. The study of collinear singularities of celestial

amplitudes was used in [17, 20] to derive the operator product expansion (OPE) of celestial

operators. Similar work has appeared recently for massive states [36].

In this work we want in particular to elaborate on the energy-momentum tensor T (z)

which generates the Virasoro algebra on the CS2. The energy-momentum tensor T (z) is a

∆ = 2 conformal field operator that can be constructed through a shadow transformation

from the ∆ = 0 operator of the graviton [5, 16]. The OPE of this energy-momentum

tensor with the conformal field operators of gluons and gravitons was derived in [18, 20]

and indeed it was found that these conformal operators transforms as Virasoro primary

fields. In addition, OPEs of all the BMS generators, superrotations and supertranslations,

were derived [20].3 The study of these OPEs allowed us to derive the BMS algebra [38] of

asymptotic symmetries.

An alternative proposal for the energy-momentum tensor of a pure gluon theory ap-

peared in [39]. It was shown that positive helicity soft gluons correspond to holomorphic

2Any operator with ∆ "= 1, (λ "= 0) is called a hard operator for the purposes of this work.
3A study of representations of the BMS algebra on CS2 was initiated in [37].
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conserved currents on the CS2 which generate a D= 2 Kac-Moody algebra. In standard

CFT, in the presence of a Kac-Moody algebra, we can use the Sugawara construction [40] to

build the energy-momentum tensor. It is natural to ask ourselves if it is possible to extend

this construction on the CCFT. Some initial attempts in this direction using double soft

theorems of gluons appeared in [41, 42]. These results showed several interesting features

and short-comings of the Sugawara construction. In the current paper we will approach

this problem from the point of view of celestial amplitudes. We will construct the Sug-

awara tensor from the double conformal soft limit of gluons. Furthermore, we will derive its

OPE with conformal operators of gluons and discuss its properties depending on whether

the operators are soft or hard. We will conclude that the Sugawara energy-momentum

tensor can only capture the dynamics of the soft sector of the theory confirming earlier

observations in [5]. In the setup of an Einstein-Yang-Mills (EYM) theory, we will present

an alternative approach, based on a pair of gluon conformal operators. This is reminiscent

of the double copy or Kawai-Lewellen-Tye (KLT) construction of gravity amplitudes from

gauge theory amplitudes. This energy momentum tensor captures the dynamics of soft

and hard operators alike. We will see that we can extend this construction to include the

supertranslation generators as well.

This article is organized as follows. In section 2, we review the notation, useful formulas

of the CCFT and the Mellin transform of 4d gluon amplitudes which generates celestial

amplitudes. We also review the Kac-Moody algebra on CS2 and the proposed Sugawara

energy-momentum tensor based on conformally soft gluon operators. In sections 3 and 4,

we compute the celestial amplitudes with a Sugawara energy-momentum tensor insertion.

We discuss in details the case of SU(N) and general gauge groups studying the Mellin

transform of MHV gluon amplitudes [43] under the double conformal soft limit. We derive

the OPE of the energy momentum tensor with conserved currents. Our results agree with

standard Kac-Moody current algebra expectations. In section 5 we re-derive the OPEs of

the Sugawara tensor applying the OPE between currents and then taking the conformal

soft limits. Our results are consistent. Finally, in section 6 we derive an energy momentum

tensor which is inspired by the double copy or KLT construction of gravity amplitudes

from gauge amplitudes. This energy-momentum tensor captures the conformal properties

of both hard and soft operators.

2 Remarks on gluon operator products and Sugawara construction

The D = 4 momentum of a massless particle is parametrized by coordinates (z, z̄) of the

celestial sphere as

pµ = εωqµ, qµ =
1

2

(
1 + |z|2, z + z̄,−i(z − z̄), 1− |z|2

)
, (2.1)

with ω the light-cone energy and ε = ± indicating outgoing/incoming particles. The asymp-

totic direction along which the particle propagates is given by the null vector qµ(z, z̄). This

vector is parametrised by the coordinates (z, z̄) on the celestial sphere. In working on the

celestial sphere we will need to transform plane wave solutions to conformal primary wave

– 3 –
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functions [2]. For gluons, a conformal primary wave function with conformal dimension

(h, h̄) is given by the following expression:

A∆,J
µ = g(∆)V ∆

µJ + pure gauge term, (2.2)

where g(∆) = (∆−1)
Γ(∆+1) is the normalization constant, ∆ = h + h̄ is the scaling dimension

and J = h − h̄ = ±1 is the spin helicity. The function V ∆
µJ is the Mellin transform of the

4d plane wave function

V ∆,J
µ (Xµ, z, z̄) ≡ ∂Jqµ

∫ ∞

0
dω ω∆−1e∓iωq·X−εω , J = ±1 , (2.3)

where ∂J = ∂z for J = +1 and ∂J = ∂z̄ for J = −1. The polarization vectors are

∂zqµ = εµ+(p) and ∂z̄qµ = εµ−(p). The scaling dimensions are ∆ = 1 + iλ, λ ∈ R, [2]. In a

similar manner for gravitons the conformal primary wave function is

H∆,#
µν (Xµ, z, z̄) ≡ ∂Jqµ∂Jqν

∫ ∞

0
dω ω∆−1e∓iωq·X−εω , % = ±2 , (2.4)

where J = +1 for % = +2 and J = −1 for % = −2. The conformal (quasi-primary) wave

functions can be written as

G∆,#
µν = f(∆)H∆,#

µν + diff (2.5)

with the normalization constant f(∆) = 1
2
∆(∆−1)
Γ(∆+2) . The presence of these normalization

factors makes it clear that, as mentioned in the introduction, fields with spin 1 become

pure gauge when ∆ = 1 while fields with spin 2 become pure diffeomorphisms for ∆ = 0, 1.

In this work we will study D = 4 tree-level gluon amplitudes4 An and their celes-

tial sphere representation An. For a generic gauge group G the D = 4 gluon scattering

amplitudes can be expressed as a sum over partial subamplitudes as follows5

An({ωi, qi, Ji}) =
∑

σ∈Sn−1

Tr (T a1T aσ(2) . . . T aσ(n))Aσ
J1J2...Jn ({ωi, zi, z̄i}) , (2.6)

with T a gauge generators in the fundamental representation of the gauge group G, the spin

helicities denoted by Ji = ±1, i = 1, 2, . . . , n and Aσ
J1J2...Jn

is the partial subamplitude for a

given permutation σ expressed in celestial coordinates {ωi, zi, z̄i}. The CCFT amplitudes

are identified with the space-time amplitudes transformed from the plane wave basis into

the conformal basis (2.2), (2.5) by using properly normalized Mellin transform [1, 3, 4, 7].

Concretely, the gluon partial subamplitudes Aσ
J1J2...Jn

give rise to the celestial gluon am-

plitude:

Aσ
J1...Jn {(∆i, zi, z̄i}) =

(
n∏

i=1

g (∆i)

∫ ∞

0
dωi ω

∆1−1
i

)
Aσ

J1...Jn ({ωi, zi, z̄i}) δ4
(

n∑

i=1

εiωiqi

)
.

(2.7)

4Here we use capital A for gluon amplitudes, with An representing the full amplitude and Aσ representing

the partial amplitude. We choose to use the calligraphic A for Mellin/celestial amplitude. This is different

convention from reference [17], where the calligraphic M is used for gluon partial amplitudes.
5In the amplitudes community, color generators T a differ from the mathematics definition ta by a factor

of
√
2 absorbed into each generator, i.e. T a =

√
2ta. As a consequence, for the Lie algebra g the commutation

relation [ta, tb] = ifabctc implies [T a, T b] = if̃abcT c with the following dictionary for the structure constants

f̃abc =
√
2fabc. See also footnote 8 for further details.
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In eq. (2.7) εi = +1 or −1 depending whether the particles are incoming or outgoing,

respectively. The full CCFT correlator is identified with the S-matrix element transformed

from the plane wave basis into conformal basis:

〈
Oa1

∆1J1
Oa2

∆2J2
. . .Oan

∆nJn

〉
=

∑

σ∈Sn−1

Aσ
J1J2···Jn Tr (T

a1T aσ(2) . . . T aσ(n))

:=An ({∆i, zi, z̄i, Ji}) ,
(2.8)

where Oai
∆iJi

is the conformal field operator which corresponds to a gluon conformal primary

wave function (2.2).

On the celestial sphere, the limit z → w of coinciding positions for two operators,

corresponds to qµ(z) → qµ(w) for the 4d gluon particles. This limits corresponds to

the collinear momentum limit pµ(z) ‖ pµ(w). It is well known that gauge and gravity

amplitudes have collinear singularities and based on the discussion above, they give rise to

the OPE singularities of the holographic CCFT. In [17, 20] (see also [19]), using collinear

limits of the 4d gluon amplitude, it was shown that the CCFT has the following OPEs for

gluon conformal primaries

Oa
∆1,+(z, z̄)O

b
∆2,+(w, w̄) =

C(+,+)+(∆1,∆2)

z − w
fabcOc

(∆1+∆2−1),+(w, w̄) + regular , (2.9)

with

C(+,+)+(∆1,∆2) = 1− (∆1 − 1)(∆2 − 1)

∆1∆2
, (2.10)

and

Oa
∆1,+(z, z̄)O

b
∆2,−(w, w̄) =

C(+,−)−(∆1,∆2)

z − w
fabcOc

(∆1+∆2−1),−(w, w̄) (2.11)

+
C(+−)+(∆1,∆2)

z̄ − w̄
fabcOc

(∆1+∆2−1),+(w, w̄)

+ C(+−)−−(∆1,∆2)
z̄ − w̄

z − w
δabO(∆1+∆2),−2(w, w̄)

+ C(+−)++(∆1,∆2)
z − w

z̄ − w̄
δabO(∆1+∆2),+2(w, w̄) + regular ,

with:

C(+,−)−(∆1,∆2) =
∆2 − 1

∆1(∆1 +∆2 − 2)
,

C(+,−)+(∆1,∆2) =
∆1 − 1

∆2(∆1 +∆2 − 2)
,

C(+−)−−(∆1,∆2) = − 2(∆2 − 1)(∆2 + 1)(∆1 − 1)

∆1(∆1 +∆2)(∆1 +∆2 − 1)
, (2.12)

C(+−)++(∆1,∆2) = − 2(∆1 − 1)(∆1 + 1)(∆2 − 1)

∆2(∆1 +∆2)(∆1 +∆2 − 1)
.
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The subleading terms6 of the mixed helicity OPE are associated with corrections of the

EYM theory and won’t be important in the pure YM case. Nevertheless, we present

these terms here since they will be important in the shadow construction of the energy

momentum tensor of section 6.

In this work we will explore further the properties of a class of correlators, which

involve the conformally soft gluon operators λ → 0 [17, 34]. On the CCFT side these lead

to ∆ = 1 conserved currents:

ja(z) = Oa
∆=1,J=+(z, z̄), j̄a(z̄) = Oa

∆=1,J=−(z, z̄). (2.13)

The conserved currents suggest an emerging infinite dimensional symmetry algebra, com-

monly known as Kac-Moody current algebra. The soft limit ∆1 → 1 (2.9) leads to the

following OPE on gluon conformal primaries:

ja(z)Ob
∆,+(w) ∼

fabc Oc
∆,+(w)

z − w
. (2.14)

In the case of same helicity gluons the consecutive soft limit is equivalent to the double soft

limit. Taking the consecutive soft limit ∆1,∆2 → 1 in (2.9), we are led to the holomorphic

current algebra:

ja(z)jb(w) ∼ fabc jc(w)

z − w
. (2.15)

On the other hand, the soft limit ∆1 on the mixed OPE (2.11) leads to the following result

ja(z)Ob
∆,−(w) ∼

fabc Oc
∆,−(w)

z − w
(2.16)

and similar results for j̄a(z̄). Now taking the consecutive double soft limit ∆1,∆2 → 1

of the mixed helicity gluon OPE we see that the result depends on the order of limits.

Specifically taking the soft limit of the positive helicity gluon always first we get

ja(z)j̄b(w̄) ∼ fabc j̄c(w̄)

z − w
, (2.17)

and taking the negative one first followed by the positive we get:

j̄a(z̄)jb(w) ∼ fabc jc(w)

z̄ − w̄
. (2.18)

The order of the soft limits is crucial when we have opposite helicity states or equivalently

opposite spin operators.

The relations above imply that the antiholomorphic currents j̄a(z̄) transform in the

adjoint representation of the Kac-Moody symmetry generated by the holomorphic currents

ja(z) and vice-versa. As explained in more details in [39] a symmetric limit which realizes

both the holomorphic and antiholomorphic Kac-Moody non-Abelian algebras is not pos-

sible. This seems to be related to 3d Chern-Simons theory on a manifold with boundary.

6In our units, the gravitational and gauge coupling constants κ = 2 and gYM = 1, respectively.
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The theory naively has two gauge connections Az and Az̄, which generate Kac-Moody sym-

metries, but in the non-Abelian case, boundary conditions eliminate one of them leaving

only one copy. In [5] this idea was further explored. The 4d Minkowski spacetime is written

as a foliation of AdS3 slices. There, it was demonstrated that indeed the soft sector of the

theory leads to a CS theory on the AdS3 slices. For the non-Abelian case boundary con-

ditions allow either positive or negative helicity gluons. The AdS3/CFT2 correspondence

implies only a single copy of a Kac-Moody algebra for the soft gluon sector. We conclude

that in the CCFT we need to consider correlators where either the positive or the negative

helicity gluons are conformally soft, but not both. When discussing the energy momentum

tensor, we chose to study the realisation of the holomorphic Kac-Moody algebra generated

by ja(z) in (2.13).

It is known that for two dimensional CFT2 the energy momentum tensor for affine

current algebras is given by the Sugawara construction. As mentioned before we expect only

one copy of the Kac-Moody algebra and therefore only one Sugawara energy momentum

tensor. The soft sector of positive helicity gauge bosons forms a sub-CFT2 of the full

CCFT. Hard particles are sources of soft radiation.7 On the CCFT side, correlation

functions factorize into a hard and a soft part. The soft part is expected to be described

by a current algebra and its conformal properties encoded in the Ward identities of the

Sugawara energy momentum tensor. In this paper we will construct the Sugawara energy

momentum tensor using the double conformal soft limit of celestial amplitudes like (2.8).

We will consider gluon amplitudes and study the limit where the Sugawara tensor becomes

collinear with conformally soft positive helicity gluons, the holomorphic current algebra

currents ja(z).

The Sugawara construction [40, 45] gives an expression of the energy momentum tensor

in terms of gauge currents

TS(w) =
1

2k + C2

∑

a

: Ja(w)Ja(w) : , (2.19)

where k is the level of the affine current algebra and the quadratic Casimir8 of the adjoint

representation is C2 = δabfacdf bcd, which is twice the dual Coxeter number h(g), i.e.

C2 = 2h(g). Usually, for free fields the normal ordering is achieved by subtracting the

corresponding two-point correlator

TS(w1) =
1

2k + C2
lim

w2→w1

{
∑

a

Ja(w1)J
a(w2)−

k dim g

(w1 − w2)2

}
(2.20)

where dim g =
∑

a δaa is the dimension of the underlying gauge group [46]. We assume

roots of length-squared two. A more general normal ordering can explicitly be imposed by

the following contour integral:

TS(w1) =
1

2k + C2

1

2πi

∮

w1

dw2

w2 − w1

∑

a

Ja(w2)J
a(w1) . (2.21)

7As explained in [5, 39] hard sources can be described by Wilson lines in the 4d-gauge theory along the

spirit of jet physics [44]. We will discuss this further in section 4.2.
8As a consequence we have C̃2 = 2C2, with C̃2 referring to the structure constants f̃abc of the generators

T a, i.e. C̃2 = δabf̃acdf̃ bcd .

– 7 –
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This more general definition of normal ordering takes into account all possible singular

terms and is appropriate in case of fields which are not free [45].

In the following sections we will construct the Sugawara energy momentum tensor first

implementing the normal ordering prescription (2.20)

TS(z) = γ
∑

a

ja(z)ja(z) = γ lim
∆,∆′→1

lim
z′→z

∑

a

Oa
∆,+(z, z̄)Oa

∆′,+(z
′, z̄′) , (2.22)

where γ is a normalization constant depending on the details of the Yang-Mills theory. For

simplicity, we will ignore this normalization constant and determine its value in the end of

the computation. We expect that this value will help determine a discrepancy regarding

the level k observed in [5]. The relation above is to be considered always as an insertion

in a celestial CFT correlator. We will demonstrate that in the case of celestial correlators

of MHV amplitudes, (2.22) is indeed the energy momentum tensor for the sub-CFT of

currents ja(z). The expected OPE of TS(z) with a conserved current ja(w) should be

TS(z)ja(w) =
1

(z − w)2
ja(w) +

1

z − w
∂wj

a(w) + . . . . (2.23)

The collinear limit of the Sugawara tensor with negative and positive helicity hard

states will also be discussed. We will see that conformal invariance of the full CCFT in-

cluding the hard sources, necessitates additional contributions to the energy momentum

tensor beyond the Sugawara construction. Our discussion in section 6 extends our con-

struction to a double copy (or KLT) type energy momentum tensor, where the conformally

soft graviton in [18] is described as a pair of conformally soft gluons. This provides an

alternative definition of the energy momentum tensor which includes both soft and hard

modes on equal footing. It is nevertheless distinct to the Sugawara tensor, since it does

not include a bilinear of the dimension one currents ja(z).

3 Gluon amplitudes, gauge current insertion and operator products

In this section we shall discuss gluon amplitudes (2.6) with insertion of a pair of gauge cur-

rents (2.22). From the CCFT theory point of view the Sugawara construction (2.22) corre-

sponds to performing the double conformal soft limit of two positive helicity gluons taken

to be collinear at the same time. In order to study the OPEs of this tensor with primaries

we start at the D = 4 tree-level n+ 2-point gluon MHV amplitude An+2({ωi, qi, Ji}). We

shall construct the Sugawara energy-momentum TS(z) and derive its OPE with conserved

currents j(z) in the celestial amplitude (2.8). In the latter we use the conformal primary

operators Oan+1

∆n+1+
and Oan+2

∆n+2+
of the last two gluons to construct TS(z). Obviously, the re-

sult does not depend on this choice. Their color indices will be contracted an+2 = an+1 = a

and their positions will approach each other by taking the limit zn+1, zn+2 → z. In the

next step, in section 4 we shall take the conformal soft limit ∆n+1,∆n+2 → 1 to get

TS(z) ∼ ja(z)ja(z). The OPE with the primaries j(z) is extracted by taking the coin-

ciding limit z → zj , j = 3, 4, . . . , n of TS(z) with primaries Oaj
∆j+

. Finally, since we are

interested only in the soft sector, at the end we will take the conformal soft limit ∆j → 1

to get the OPE TS(z)jaj (zj).

– 8 –
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In order to study the OPEs with primaries we shall focus on the MHV case. Hence,

we will restrict (2.6) to the D = 4 tree-level n + 2-point gluon MHV amplitude [43]

An+2({ωi, qi, Ji}) with spin helicities J1 = J2 = −1, Ji = +1, i = 3, 4, . . . , n + 2 and

their corresponding partial subamplitudes Aσ
J1J2...Jn+2

in celestial sphere representation

Aσ
J1J2...Jn+2

({ωi, zi, z̄i}) =
〈12〉4

〈1σ(2)〉〈σ(2)σ(3)〉 . . . 〈σ(n+ 2)1〉

=
ω1ω2

ω3ω4 . . . ωn+2

z412
z1σ(2)zσ(2)σ(3) . . . zσ(n+2)1

, (3.1)

with zjk = zj − zk.

To summarize, in the following two subsections we shall demonstrate the following

relation

lim
zn+1→zj

An+2({g+n+2, g1, . . . , gn, g
+
n+1}) = − C̃2(G)

ωn+1ωn+2
(3.2)

×
(

1

(zn+1 − zj)2
+

∂̃zj
zn+1 − zj

)
An({g1, . . . , gn}), j = 1, . . . , n ,

with the full n gluon amplitude An({g1, . . . , gn}) and the quadratic Casimir

C̃2(G) = 2C2(G).

The relation (3.2) holds for any gauge group G. Above we have introduced the derivative

∂̃zj =
∂

∂zj
− 4

δj,j1 − δj,j2

zj1j2
, (3.3)

which singles out the two gluons j1, j2 with negative helicity. Of course, for (3.1) we have:

j1 = 1, j2 = 2. For j *= j1, j2 we get ∂̃zj = ∂zj and the relation (3.2) takes the form of (4.1)

further used in section 4.

3.1 Gluon amplitudes and operator products for SU(N)

Let us first discuss9 the gauge group G = SU(N). For simplicity, we also include the

photon and choose the gauge group10 to be U(N). The fundamental representation of

U(N) satisfies the following useful relations:

(T a)jk (T
a)sl = δjl δ

s
k,

[
T a, T b

]
= i

√
2fabcT c ≡ if̃abcT c. (3.4)

In the following computation, we firstly analyze the D = 4 MHV amplitudes and then

perform the Mellin transform in section 4. From the partial amplitude (3.1), various poles

9A similar construction restricted to SU(N) gauge group and considering double soft limit of gluons

appears in [41]. However, in the latter reference the Mellin representation, which will be determined in

section 4 is not addressed. Moreover, our analysis which is based on the CCFT formulation, will be extended

to arbitrary gauge groups in subsection 3.2 and section 5, respectively.
10The final result for SU(N) is the same as U(N). We will explain this point later.
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of the OPE obviously come from the denominators zn+1,n+2, zn+2,j and zn+1,j . The poles

zn+1,n+2 are to be subtracted under the normal ordering of TS(z) (2.20). We will show

though that since our tree amplitudes imply that the level k of the Kac-Moody is zero,

such a subtraction wont be necessary. All such zn+1,n+2 poles will drop automatically.

Among all the permutations, the double poles arise in the following 6 kinds of ordering

A(. . . , j, n+ 1, n+ 2, . . .) A(. . . , n+ 1, j, n+ 2, . . .) A(. . . , n+ 1, n+ 2, j, . . .),

A(. . . , j, n+ 2, n+ 1, . . .) A(. . . , n+ 2, j, n+ 1, . . .) A(. . . , n+ 2, n+ 1, j, . . .),
(3.5)

while the single poles arise in the following 12 possible orderings

A(. . . , j, n+ 1, . . . , n+ 2, . . .) A(. . . , n+ 1, . . . , j, n+ 2, . . .) A(. . . , n+ 1, n+ 2, . . . , j, . . .)

A(. . . , n+ 1, j, . . . , n+ 2, . . .) A(. . . , n+ 1, . . . , n+ 2, j, . . .) A(. . . , n+ 2, n+ 1, . . . , j . . .)

A(. . . , j, . . . , n+ 2, n+ 1, . . .) A(. . . , n+ 2, j, . . . , n+ 1, . . .) A(. . . , n+ 2, . . . , n+ 1, j . . .)

A(. . . , j, . . . , n+ 1, n+ 2, . . .) A(. . . , j, n+ 2, . . . , n+ 1, . . .) A(. . . , n+ 2, . . . , j, n+ 1 . . .).

The double poles. Now let’s analyze the terms that contribute to double poles. Con-

sider the two kinds of ordering (σ(i), j, n+1, n+2, σ(i+1)) and (σ(i), j, n+2, n+1, σ(i+1)).

Using the formula (3.4), it is straightforward to get the contraction of the color indices

for U(N)

Tr(. . . T aσ(i)T ajT aT aT aσ(i+1) . . .) = (N)Tr(. . . T aσ(i)T ajT aσ(i+1) . . .), (3.6)

hese two ordering have the same group factor, which means their partial amplitudes can

be combined together. To get the double poles, we first take the limit zn+2 → zn+1, then

take the limit zn+1 → zj . It is easy to get the following poles from the diverging parts of

the partial amplitudes

1

zj,n+1zn+1,n+2zn+2,σ(i+1)
+

1

zj,n+2zn+2,n+1zn+1,σ(i+1)
=

1

z2j,n+1zj,σ(i+1)
+

2

zj,n+1z2j,σ(i+1)

,

(3.7)

where a single pole also arises in addition to the double pole. Combining the group factor

and the remaining parts of the partial amplitudes, we get an MHV amplitude of n gluons

(
1

z2j,n+1

+
2

zj,n+1zj,σ(i+1)

)
NTr(. . . T aσ(i)T ajT aσ(i+1) . . .)

(
. . .

1

zσ(i),jzj,σ(i+1)
. . .

)
(3.8)

=
N

ωn+1ωn+2

(
1

z2j,n+1

+
2

zj,n+1zj,σ(i+1)

)
An({ωi, qi, Ji}).

For the other two orderings (σ(i), n+1, n+2, j, σ(i+1)) and (σ(i), n+2, n+1, j, σ(i+

1)), it is easy to see that the contraction of color indices is the same as (3.6). Then

it is straightforward to get the following poles from the diverging parts of their partial

amplitudes

1

zσ(i),n+1zn+1,n+2zn+2,j
+

1

zσ(i),n+2zn+2,n+1zn+1,j
=

1

z2n+1,jzσ(i),j
+

2

zn+1,jz2σ(i),j
. (3.9)
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So the result is also an MHV amplitude of n gluons
(

1

z2n+1,j

+
2

zn+1,jzσ(i),j

)
NTr(. . . T aσ(i)T ajT aσ(i+1) . . .)

(
. . .

1

zσ(i),jzj,σ(i+1)
. . .

)

=
N

ωn+1ωn+2

(
1

z2n+1,j

+
2

zn+1,jzσ(i),j

)
An({ωi, qi, Ji}). (3.10)

For the remaining two orderings (σ(i), n+ 1, j, n+ 2, σ(i+ 1)) and (σ(i), n+ 2, j, n+

1, σ(i + 1)), the contraction of color indices has a single trace term Tr(T aj ) = 0, which is

zero because it is a gluon. So the contribution is zero.

Combining all the above results, we get the following result from all possible orderings

in (3.5)

2N

ωn+1ωn+2

(
1

z2n+1,j

+
1

zn+1,j
∂j

)
An({ωi, qi, Ji}), (3.11)

which contains a double pole and a single pole with a derivative acting on the j-th gluon.

Now let us see what would happen if the gauge group is chosen to be SU(N), in which

case the following formula is used

(T a)jk(T
a)sl = δjl δ

s
k −

1

N
δjkδ

s
l . (3.12)

The extra term in this formula leads to an extra term −(1/N)Tr(. . . T aσ(i)T ajT aσ(n+1) . . .)

in the color index contractions of all six kinds of ordering. When combining the partial

amplitudes, this extra term cancels out, leaving the complete result the same as (3.11).

This is of course the U(1) decoupling identity of standard YM, as expected.

The single poles. Now let us analyze the terms that only contribute to single poles.

Consider the four orderings (σ(i), j, n+1, . . . , n+2, σ(i+1)), (σ(i), n+1, j, . . . , n+2, σ(i+1)),

(σ(i), n + 2, . . . , j, n + 1, σ(i + 1)) and (σ(i), n + 2, . . . , n + 1, j, σ(i + 1)). Using (3.4), the

contraction of color indices contains double traces

Tr(. . . T aσ(i)T ajT a . . .T aT aσ(i+1) . . .) = Tr(. . . T aσ(i)T a . . . T aT ajT aσ(i+1) . . .)

= Tr(. . .)Tr(. . . T aσ(i)T ajT aσ(i+1) . . .)

Tr(. . . T aσ(i)T aT aj . . .T aT aσ(i+1) . . .) = Tr(. . . T aσ(i)T a . . . T ajT aT aσ(i+1) . . .)

= Tr(T aj . . .)Tr(. . . T aσ(i)T aσ(i+1) . . .) . (3.13)

Combining the corresponding partial amplitudes, they cancel out in the coinciding limit

zn+2 = zn+1 and zn+1 = zj , so the complete result is zero.

Now let’s see what would happen if the gauge group is chosen to be SU(N), where the

contraction of color indices contains extra single traces

Tr(. . . T aσ(i)T ajT a . . .T aT aσ(i+1) . . .) = Tr(. . . T aσ(i)T aT aj . . . T aT aσ(i+1) . . .)

= (− 1

N
)Tr(. . . T aσ(i)T aj . . . T aσ(i+1) . . .)

Tr(. . . T aσ(i)T a . . . T aT ajT aσ(i+1) . . .) = Tr(. . . T aσ(i)T a . . . T ajT aT aσ(i+1) . . .)

= (− 1

N
)Tr(. . . T aσ(i) . . . T ajT aσ(i+1) . . .). (3.14)
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Again the combination of partial amplitudes for these extra terms cancels out in the co-

inciding limit zn+2 = zn+1 and zn+1 = zj . So the result is the same as the case of U(N),

which is zero. Similarly, for the four kinds of ordering (σ(i), j, n + 2, . . . , n + 1, σ(i + 1)),

(σ(i), n+2, j, . . . , n+1, σ(i+1)), (σ(i), n+1, . . . , j, n+2, σ(i+1)) and (σ(i), n+1, . . . , n+

2, j, σ(i+ 1)), the complete result is zero. The remaining four kinds of ordering (σ(i), n+

2, n+1, . . . , j, σ(i+1)), (σ(i), n+1, n+2, . . . , j, σ(i+1)), (σ(i), j, . . . , n+2, n+1, σ(i+1))

and (σ(i), j, . . . , n+ 1, n+ 2, σ(i+ 1)) is also zero.

Eventually, after combining all permutations for the singular terms of the 4d MHV

amplitude we get the result (3.2) for j = 3, 4, . . . , n and C̃2(G) = 2N for G = SU(N).

We can generalize the above manipulations to negative helicity gluons j = 1, 2. Due to

the cyclic structure of the denominator for the partial amplitude (3.1), the poles in (3.8)

and (3.10) are the same for j = 1, 2. The only difference is in the single pole term, where

the numerator z412 would modify the derivative term of (3.11) as (3.3).

3.2 Gluon color sums and operator products for general gauge group

In this subsection we worked out color sums with insertion of a pair of gauge currents. This

generalizes the previous discussion for the case of general gauge group G. We will need to

develop several gauge group identities, some of which are novel and potentially useful for

scattering amplitude computations in general. We start with the color decomposition of

an n+ 2-point gluon amplitude

An+2({pi, Jj}) =
∑

σ∈Sn

f̃an+2bσ(1)x1 f̃x1bσ(2)x2 . . . f̃xn−1bσ(n)an+1

×An+2 (n+ 2, σ (1, 2, . . . , n) , n+ 1) , (3.15)

with the partial subamplitudes An+2(. . .). The color decomposition is w.r.t. a n!-dimen-

sional basis of subamplitudes An+2 (n+ 2, σ (1, 2, . . . , n) , n+ 1) subject to the DDM rep-

resentation [47], with the structure constants

f̃abc = −i tr(T a[T b, T c]) ,

with T a generators in the fundamental representation. Note, that (3.15) is just an other

representation of the color sum (2.6) for n→n+ 2.

We are interested in the pair of gluons gn+1, gn+2 of positive helicity and in (3.15) we

shall consider their double soft limits11 pn+1, pn+2→0

An+2
(
(n+2)+, σ (1,2, . . . ,n) , (n+1)+

)
→ 〈n+1, σ(1)〉

〈n+1,n+2〉〈n+2, σ(1)〉 (3.16)

× 〈σ(n), σ(1)〉
〈σ(n),n+1〉〈n+1, σ(1)〉 An (σ (1,2, . . . ,n)) ,

11Note, that in the MHV case the double-soft limit (3.16) gives rise to an exact equation:

An+2

(
(n+ 2)+, σ (1, 2, . . . , n) , (n+ 1)+

)
=

1
〈n+ 1, n+ 2〉

〈σ(n), σ(1)〉
〈n+ 2, σ(1)〉 〈σ(n), n+ 1〉An (σ (1, 2, . . . , n)) .

The latter just describes splitting off all dependence on the gluons gn+1, gn+2 from the remaining amplitude.

This is the method discussed in the previous subsection.
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and perform the sum over the color indices an+1 and an+2, i.e.:

∑

an+1,an+2

δan+1an+2 f̃an+2bσ(1)x1 f̃x1bσ(2)x2 . . . f̃xn−1bσ(n)an+1 . (3.17)

Actually, the object (3.17) is interesting on its own, since it appears in (planar) one-

loop gluon amplitudes. It yields the group trace Tr(T
bσ(1)

A . . . T
bσ(n)

A ) with the gauge group

generators T a
A in the adjoint representation with (T a

A)bc = −f̃abc. E.g. for n = 3 we

have [48]:
∑

a

f̃ab1x1 f̃x1b2x2 f̃x2b3a = −1

2
C̃2(G) f̃ b1b2b3 , (3.18)

with the invariant C̃2(G) ≡ C̃2 referring to the adjoint representation of the gauge group G,

cf. also footnote 8. For general n ≥ 4 we decompose (3.17) into combinations of symmetric

tensors and fewer numbers of structure constants. This way for n = 4 we have [48]:

f̃ab1x1 f̃x1b2x2 f̃x2b3x3 f̃x3b4a = d̃b1b2b3b4A +
1

6
C̃2(G)

{
f̃ b1b4af̃ab2b3 − f̃ b1b2af̃ab3b4

}
, (3.19)

with the symmetric invariant tensor dA given as trace over symmetrized products of gauge

group generators T a
A:

d̃A := d̃b1b2b3b4A =
1

4!

∑

π∈S4

Tr
(
T
aπ(1)

A T
aπ(2)

A T
aπ(3)

A T
aπ(4)

A

)
. (3.20)

Furthermore, for n = 5 we derive:

f̃ab1x1 f̃x1b2x2 f̃x2b3x3 f̃x3b4x4 f̃x4b5a =

− 1

12
C̃2(G)

{
f̃ b1b2af̃ab3cf̃ cb4b5 + f̃ b2b3af̃ab4cf̃ cb5b1 + f̃ b5b1af̃ab2cf̃ cb3b4 − f̃ b1b4af̃ab3cf̃ cb2b5

}

− 1

2

{
f̃ b1b5ad̃ab2b3b4A + f̃ b3b2ad̃ab1b4b5A + f̃ b4b2ad̃ab1b3b5A + f̃ b4b3ad̃ab1b2b5A

}
. (3.21)

For general n we have the relation of the following structure

f̃abσ(1)x1 f̃x1bσ(2)x2 . . . f̃xn−1bσ(n)a = d̃
bσ(1)bσ(2)...bσ(n)

A + . . .+ C̃2(G)
{
f̃n−2 . . .

}
(3.22)

Let us now introduce celestial coordinates. With 〈ij〉 = (ωiωj)1/2zij the split factors

in (3.16) can be expressed in terms of celestial coordinates as:

An+2

(
(n+2)+, σ (1,2, . . . ,n) ,(n+1)+

)
→ 1

ωn+1ωn+2

(
1

zn+1−zn+2
+

1

zn+2−zσ(1)

)

×
(

1

zσ(n)−zn+1
+

1

zn+1−zσ(1)

)
An (σ (1,2, . . . ,n)) . (3.23)

With these preparations we may compute the color sum (3.15) supplemented by (3.17)

and (3.23). One important observation is that all the terms 1
zn+1−zn+2

cancel in the color
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sum. Therefore, we may safely take the limit zn+2→zn+1. In the sequel the following

universal functions will specify the color sum. There is the function

Z0 =
n∑

i=1

1

(zn+1 − zi)2
, (3.24)

universal to all color orderings and an other function

Zi1,i2,...,in =
1

(zn+1 − zi1)(zn+1 − zi2)
+

1

(zn+1 − zi2)(zn+1 − zi3)

+ . . .+
1

(zn+1 − zin)(zn+1 − zi1)
, (3.25)

which sums over all neighbours of a given color ordering (i1, i2, . . . , in).

n = 3. For n = 3 with (3.18) in the limit z5→z4 we find:

A5({g+5 , g1, g2, g3, g
+
4 }) = −C̃2(G) f̃ b1b2b3 A3(1, 2, 3)

× 1

ω4ω5

1

z14z24z34

{
z12 z13
z14

+
z13z23
z34

− z12 z23
z24

}
. (3.26)

Then, e.g. for z4→z1 we have the expansion series:

lim
z4→z1

A5({g+5 , g1, g2, g3, g
+
4 }) = −C̃2(G) f̃ b1b2b3 A3(1, 2, 3)

× 1

ω4ω5

{
1

z214
+

1

z14

(
1

z12
+

1

z13

)}
. (3.27)

In the following we shall rewrite the subleading piece 1
z14

(. . .) of (3.27). The three-point

amplitudes are MHV amplitudes (3.1). Therefore, the latter assume the generic form

A3(1, i2, i3) ∼
z4j1j2

z1i2zi2i3zi31
,

with j1, j2 denoting those two gluons of negative helicity. After inspecting the rational

terms in (3.27) we deduce that the terms in the bracket can be represented as derivative

w.r.t. z1 on the corresponding amplitude:

1

z14

(
1

z12
+

1

z13

)
A3(1, i2, i3) = − 1

z14

(
∂

∂z1
− 4

δ1,j1 − δ1,j2

zj1j2

)
A3(1, i2, i3)

≡ 1

z41
∂̃z1A3(1, i2, i3) , (3.28)

with the derivative (3.3) singling out the two gluons j1, j2 with negative helicity. Eventually,

the limit (3.27) gives rise to the following Ward identity:

lim
z4→z1

A5({g+5 , g1, g2, g3, g
+
4 }) = − C̃2(G)

ω4ω5

(
1

z241
+

∂̃z1
z41

)
A3({g1, g2, g3}) , (3.29)

with the full three gluon amplitude:

A3({g1, g2, g3}) = f̃ b1b2b3 A3(1, 2, 3) . (3.30)

Similar Ward identities can be derived for the other two cases z4→z2, z3. To this end, we

get (3.2) for n = 3 with the amplitude (3.30).
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n = 4. Next, for n = 4 with (3.19) in the limit z6→z5 we determine:

A6({g+6 ,g1,g2,g3,g4,g
+
5 })=

1

ω5ω6

{[
C̃2(G)

3
(−cs−cu)+2dA

]
(Z0−Z1234) A4(1,2,3,4)

+

[
C̃2(G)

3
(−ct+cu)+2dA

]
(Z0−Z1324) A4(1,3,2,4)

+

[
C̃2(G)

3
(cs+ct)+2dA

]
(Z0−Z1243) A4(1,2,4,3)

}
, (3.31)

with the color factors

cs = f̃ b1b2af̃ b3b4a , ct = f̃ b1b3af̃ b2b4a , cu = f̃ b4b1af̃ b2b3a , (3.32)

obeying the Jacobi relation ct+cu = cs. Note, that the following Kleiss-Kuijf (KK) relation

holds [49]:

A4(1, 2, 3, 4) +A4(1, 2, 4, 3) +A4(1, 3, 2, 4) = 0 . (3.33)

As a consequence any universal term cancels in the above color sum (3.31).

Let us consider the limit z5→z1, for which we have:

Z0→
1

(z5 − z1)2
, ZΣ→






1
(z1−z5)

(
1

z1−z2
+ 1

z1−z4

)
, Σ = 1234,

1
(z1−z5)

(
1

z1−z3
+ 1

z1−z4

)
, Σ = 1324,

1
(z1−z5)

(
1

z1−z2
+ 1

z1−z3

)
, Σ = 1243 .

(3.34)

Again in the same way (3.28) as in the previous n = 3 case we are able to rewrite the

subleading pieces 1
z15

(. . .) given in (3.34) and entering (3.31). To this end as a consequence

of (3.33) up to the next leading order only the terms multiplying the color factors (3.32)

contribute in the color sum (3.31). The same conclusions can be drawn for the other limits

z5→z2, z3, z4 resulting in the following Ward identity (3.2) with n = 4 and the full four

gluon amplitude:

A4({g1, g2, g3, g4}) =
∑

σ∈S2

f̃ b1bσ(2)af̃abσ(3)b4 A4(1, σ(2), σ(3), 4)

= cs A4(1, 2, 3, 4) + ct A4(1, 3, 2, 4) . (3.35)
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n = 5. Next, for n = 5 with (3.21) in the limit z7→z6 we derive:

A7({g+7 ,g1,g2,g3,g4,g5,g
+
6 })=− 1

ω6ω7

×
{[

C̃2(G)

6
(−c1−c2−c5+c6)+x1+x2+x3+x5+x6+x8

]
(Z0−Z12345) A5(1,2,3,4,5)

+

[
C̃2(G)

6
(c1−c7+c11+c14)−x1+x2+x3+x5+x6+x8

]
(Z0−Z12354) A5(1,2,3,5,4)

+

[
C̃2(G)

6
(c5+c9−c11−c12)+x1+x2+x3−x5+x6+x8

]
(Z0−Z12435) A5(1,2,4,3,5)

+

[
C̃2(G)

6
(c2+c12+c15−c10)+x1−x2+x3−x5+x6+x8

]
(Z0−Z12453) A5(1,2,4,5,3)

+

[
C̃2(G)

6
(c2+c11+c14−c15)+x1+x2+x3+x5+x6+x8

]
(Z0−Z13245) A5(1,3,2,4,5)

+

[
C̃2(G)

6
(c6+c7+c15−c5)−x1+x2+x3+x5+x6−x8

]
(Z0−Z13254) A5(1,3,2,5,4)

+

[
C̃2(G)

6
(c5+c12−c9−c11)+x1+x2+x3+x5−x6−x8

]
(Z0−Z13425) A5(1,3,4,2,5)

+

[
C̃2(G)

6
(c1+c3+c9−c2)+x1+x2−x3+x5−x6−x8

]
(Z0−Z13452) A5(1,3,4,5,2)

+

[
C̃2(G)

6
(c2+c11+c15−c14)+x1+x2+x3−x5−x6+x8

]
(Z0−Z14235) A5(1,4,2,3,5)

+

[
C̃2(G)

6
(c5+c9+c10+c14)+x1−x2+x3−x5−x6+x8

]
(Z0−Z14253) A5(1,4,2,5,3)

+

[
C̃2(G)

6
(c1−c2−c5−c6)+x1+x2+x3−x5−x6−x8

]
(Z0−Z14325) A5(1,4,3,2,5)

+

[
C̃2(G)

6
(c6+c12−c3−c11)+x1+x2−x3−x5−x6−x8

]
(Z0−Z14352)A5(1,4,3,5,2)

}
,

(3.36)

with the color factors [50]

c1 = f̃ b1b2af̃ab3cf̃ cb4b5 , c2 = f̃ b2b3af̃ab4cf̃ cb5b1 , c3 = f̃ b3b4af̃ab5cf̃ cb1b2 ,

c4 = f̃ b4b5af̃ab1cf̃ cb2b3 , c5 = f̃ b5b1af̃ab2cf̃ cb3b4 , c6 = f̃ b1b4af̃ab3cf̃ cb2b5 ,

c7 = f̃ b3b2af̃ab5cf̃ cb1b4 , c8 = f̃ b2b5af̃ab1cf̃ cb4b3 , c9 = f̃ b1b3af̃ab4cf̃ cb2b5 ,

c10 = f̃ b4b2af̃ab5cf̃ cb1b3 , c11 = f̃ b5b1af̃ab3cf̃ cb4b2 , c12 = f̃ b1b2af̃ab4cf̃ cb3b5 ,

c13 = f̃ b3b5af̃ab1cf̃ cb2b4 , c14 = f̃ b1b4af̃ab2cf̃ cb3b5 , c15 = f̃ b1b3af̃ab2cf̃ cb4b5 . (3.37)

fulfilling various Jacobi relations leaving the set of six independent {c1, c6, c9, c12, c14, c15},
and the ten tensors

x1 = f̃ b4b5cdcb1b2b3A , x2 = f̃ b3b5cdcb1b2b4A , x3 = f̃ b2b5cdcb1b3b4A ,

x4 = f̃ b1b5cdcb2b3b4A , x5 = f̃ b3b4cdcb1b2b5A , x6 = f̃ b2b4cdcb1b3b5A ,

x7 = f̃ b1b4cdcb2b3b5A , x8 = f̃ b2b3cdcb1b4b5A , x9 = f̃ b1b3cdcb2b4b5A ,

x10 = f̃ b1b2cdcb3b4b5A , (3.38)
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which fulfill the relations

x4 = −x1 − x2 − x3 , x7 = x1 − x5 − x6 ,

x9 = x2 + x5 − x8 , x10 = x3 + x6 + x8 , (3.39)

leaving six independent combinations {x1, x2, x3, x5, x6, x8}.
Again, for the limits z6→zj , j = 1, . . . , 5 the leading term 1

z2j6
can easily be extracted

from (3.36) by taking into account Jacobi and KK relations. To determine the next leading

piece 1
zj6

arising from (3.25) we can proceed in the same way as in the previous case n = 4

which has lead to the receipt (3.28). To this end we find (3.2) for n = 5 with the full five

gluon amplitude:

A5({g1, g2, g3, g4, g5}) =
∑

σ∈S3

f̃ b1bσ(2)af̃abσ(3)cf̃ cbσ(4)b5 A5(1, σ(2), σ(3), σ(4), 5) (3.40)

= c1 A5(1, 2, 3, 4, 5) + c12 A5(1, 2, 4, 3, 5) + c15 A5(1, 3, 2, 4, 5)

+ c9 A5(1, 3, 4, 2, 5) + c14 A5(1, 4, 2, 3, 5) + c6 A5(1, 4, 3, 2, 5) .

Finally, for generic n we compute the color sum (3.15) supplemented by (3.17)

and (3.23) and consider the limit zn+2→zn+1. From the consideration above it is evident,

that for general n we obtain (3.2) with the full n gluon amplitude:

An({g1, . . . , gn}) =
∑

σ∈Sn−2

f̃ b1bσ(2)x1 f̃x1bσ(3)x2 . . . f̃xn−5bσ(n−3)bn−2

×An (1, σ (1, 2, . . . , n− 1) , n) . (3.41)

This completes the general proof of equation (3.2). In the following section we will per-

form the Mellin transform of this amplitude and derive the OPE of the Sugawara energy-

momentum tensor with primaries.

4 Mellin transform and the Sugawara energy-momentum tensor

In this section we will use the results we derived for gauge theory amplitudes to derive the

OPE of the Sugawara energy-momentum tensor with the operators of our theory. We will

split the discussion into two parts. One part regarding the conformally soft gluons and in

the second part we will discuss the hard states. We will see that although the Sugawara

energy-momentum tensor has the right OPE to generate conformal transformations for

soft operators, it is not so for the hard ones and a modified tensor will be necessary. The

correction needed will not be discussed in this work, although in section 6 we will propose

an alternative construction, and it is an interesting open question.

4.1 Sugawara energy-momentum tensor and conformally soft gluons

We start with the OPE result (3.2) for generic gauge groups G. After Mellin transforming

the latter we extract the OPE of the energy-momentum tensor TS(zn+1) with the currents
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jaj (zj) from the celestial amplitude (2.8). We follow the steps explained in the beginning

of section 3. The Mellin transform leads to

lim
zn+1→zj

〈Oa1
∆1J1

(z1, z̄1) . . .O
aj
∆j+

(zj , z̄j) . . .Oa
∆n+1+(zn+1, z̄n+1)Oa

∆n+2+(zn+1, z̄n+1)〉

= lim
zn+1→zj




n+2∏

i=1

g (∆i)

∞∫

0

dωi ω
iλi
i



 × δ4
(

n∑

i=1

εiωiqi + εn+1ω
′
n+1qn+1

)

× C̃2(G)

ωn+1ωn+2

(
1

z2n+1,j

+
∂j

zn+1,j

)
An({−,−,+, . . . ,+}) , (4.1)

where in the coinciding limit12 we can define the total energy ω′
n+1 = ωn+1 + ωn+2 of the

collinear pair.

Consider first the Mellin integral of the double pole part

C̃2(G)

z2n+1,j

lim
zn+1→zj

(
n+2∏

i=1

g (∆i)

∫ ∞

0
dωi ω

iλi
i

)
1

ωn+1ωn+2

× δ4




n∑

i=1
i #=j

εiωiqi + εjω
′
jqj



An({−,−,+, . . . ,+}) , (4.2)

where in the coinciding limit zn+1 = zj we can further define ω′
j = ωj +ω′

n+1. The integral

of the collinear states becomes∫ ∞

0
dωjdωn+1dωn+2 ω

iλj

j ωiλn+1
n+1 ωiλn+2

n+2
1

ωjωn+1ωn+2
. . .

=

∫ ∞

0
dω′

j

∫ ω′
j

0
dω′

n+1

∫ ω′
n+1

0
dωn+1 ω

−1+iλn+1
n+1 (ω′

n+1 − ωn+1)
−1+iλn+2(ω′

j − ω′
n+1)

−1+iλj . . .

= B(iλn+1, iλn+2)B(iλ′
n+1, iλj)

∫ ∞

0
dω′

jω
′−1+iλ′

j

j . . . , (4.3)

where we use the new variables λ′
n+1 = λn+1 + λn+2 and λ′

j = λj + λ′
n+1. Combing

with the normalization factors g(λj), g(λn+1), g(λn+2) and taking the conformal soft limit

∆n+1 = ∆n+2 = 1, we obtain the double pole of the OPE

C̃2(G)

z2n+1,j

〈Oa1
∆1J1

. . .Oaj
∆j+

(zj) . . .〉 . (4.4)

Next, for the Mellin integral of the single pole part, we can move the derivative out of

the integral by adding an extra term:

C̃2(G)

zn+1,j
lim

zn+1→zj
∂j

{(
n+2∏

i=1

g (λi)

∫
dωiω

iλi
i

)
δ4
(

n∑

i=1

εiωiqi+εnω
′
n+1qn+1

)
An({. . .})
ωn+1ωn+2

}

− C̃2(G)

zn+1,j
lim

zn+1→zj

(
n+2∏

i=1

g (λi)

∫
dωiω

iλi
i

)
An({. . .})
ωn+1ωn+2

{
∂jδ

4

(
n∑

i=1

εiωiqi+εn+1ω
′
n+1qn+1

)}
.

(4.5)

12Without losing generality, we assume that collinear particles are either incoming or outgoing, i.e.

εj = εn+1 = εn+2. In fact, we can assume that all positive helicity particles are outgoing as in reference [18].
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For the second term in (4.5), the coinciding limit zn+1 = zj and the derivative ∂j on the

delta function do not commute. An explicit computation shows that

lim
zn+1→zj

∂jδ
4

(
n∑

i=1

εiωiqi + εn+1ω
′
n+1qn+1

)
=

ωj

ω′
j

∂jδ
4




n∑

i=1
i #=j

εiωiqi + εjω
′
jqj



 , (4.6)

where on the right hand side the coinciding limit zn+1 = zj was used and we defined

ω′
j = ωj + ω′

n+1. For the first term in (4.5), using the delta function expanded around

zn+1 = zj + zn+1,j

δ4
(

n∑

i=1

εiωiqi + εn+1ω
′
n+1qn+1

)

= δ4




n∑

i=1
i #=j

εiωiqi + εjω
′
jqj



+ zn+1,j∂n+1δ
4

(
n∑

i=1

εiωiqi + εnω
′
n+1qn+1

)
|zn+1=zj

= δ4




n∑

i=1
i #=j

εiωiqi + εjω
′
jqj



+ zn+1,j
ω′
n+1

ω′
j

∂jδ
4




n∑

i=1
i #=j

εiωiqi + εjω
′
jqj



 (4.7)

we get:

C̃2(G)

zn+1,j
lim

zn+1→zj
∂j

∫




δ4




n∑

i=1
i #=j

εiωiqi+εjω
′
jqj



+zn+1,j
ω′
n+1

ω′
j

∂jδ
4




n∑

i=1
i #=j

εiωiqi+εjω
′
jqj



(. . .)






=
C̃2 (G)

zn+1,j
∂j

∫
δ4




n∑

i=1
i #=j

εiωiqi+εjω
′
jqj



(. . .)

− C̃2 (G)

zn+1,j

∫
ω′
n+1

ω′
j

∂jδ
4




n∑

i=1
i #=j

εiωiqi+εjω
′
jqj



(. . .)+O(z0n+1,j). (4.8)

Combining the two terms eq. (4.6) and eq. (4.8), the Mellin transform (4.5) becomes

C̃2(G)

zn+1,j
∂j






(
n+2∏

i=1

g (λi)

∫
dωiω

iλi
i

)
1

ωn+1ωn+2
δ4




n∑

i=1
i #=j

εiωiqi+εjω
′
jqj



 An({. . .})






− C̃2(G)

zn+1,j

(
n+2∏

i=1

g (λi)

∫
dωiω

iλi
i

)
1

ωn+1ωn+2
An({. . .})





∂jδ

4(
n∑

i=1
i #=j

εiωiqi+εjω
′
jqj)





. (4.9)
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The energy integral over ωn+1, ωn+2 is the same as the integral of the double pole part (4.3),

so this part of the OPE is

C̃2(G)

zn+1,j

(
∂j〈Oa1

∆1J1
. . .Oaj

∆j+
(zj) . . .〉 −

(
g (λj)

∫ ∞

0
dωjω

iλj

j . . .

)
An ({. . .}) ∂jδ4

(
n∑

i=1

εiωiqi

))
,

(4.10)

where the integration variable is changed from ω′
j to ωj for convenience.

As discussed in section 2, the Sugawara energy-momentum tensor is expected to de-

scribe the conformal properties of the soft sector of the theory, which corresponds to the

conformal soft limit [17]. Therefore as explained earlier, we need to take the conformal

soft limit ∆j = 1 of the j-th conformal field operator. In the second term of (4.10), the

derivative ∂j on the delta function contributes an extra ωj to the Mellin integral

∂jδ
4

(
n∑

i=1

εiωiqi

)
= εjωj(∂jqj)

δ4(
∑n

i=1 εiωiqi)∑n
i=1 εiωiqi

. (4.11)

According to the analysis [17], this extra ωj gives a Mellin integral without a pole 1/λj so

under the λj → 0 conformal soft limit vanishes due to g(λj) → 0.

Combining the above results, we obtain:

lim
zn+1→zj

〈Oa1
∆1,J1

. . . jaj (zj) . . .Oan
∆n,Jn

ja(zn+1)j
a(zn+1)〉 =

= C̃2(G)

(
1

z2n+1,j

+
∂j

zn+1,j

)
〈Oa1

∆1,J1
. . . jaj (zj) . . .Oan

∆n,Jn
〉 , j = 3, . . . n .

(4.12)

We see that the overall constant of the OPE is C̃2(G). Therefore, in (2.22) we need to

choose a normalization γ = 1
C̃2(G)

. We can define therefore,

TS(z) =
ja(z)ja(z)

C̃2(G)
, (4.13)

which agrees with its general definition (2.21) [45] for level k = 0. We have shown that

indeed the OPE of TS(z) with a current ja(w) is given by:

TS(z)ja(w) =
h

(z − w)2
ja(w) +

∂wja(w)

z − w
, h = 1. (4.14)

In section 5 we discuss the Sugawara construction and its OPE with the currents ja(z) for

a general group, using directly the soft theorem for conformally soft states [17]. It agrees

with our result from the previous subsections, namely (4.14).

We close this subsection, with a comment for the case of the negative helicity gluons

j = 1, 2 in eq. (4.12). For j = 1, 2, the respective Mellin integral in eq. (4.3) and eq. (4.4)

will give the following result for the j-th operator

g(λj)

∫ ∞

0
dωj ω

1+iλj

j . . .
λj=0
= 0 , j = 1, 2 . (4.15)
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It is zero under the conformal soft limit of the j-th operator, because there is no 1/λj

pole [8, 17, 22] that can cancel the λj factor in g(λj). Hence, for the case of MHV ampli-

tudes An(−,−,+,+, . . . ,+), the conformal soft limit of the negative helicity states gives

zero. This was observed also in [8], which is consistent with the vanishing of the MHV

amplitude (3.1) in momentum space under the soft limit of a negative helicity gluon. In

total we can write (4.12) as

lim
zj→zn+1

〈Oa1
∆1J1

. . . jaj (zj) . . .Oan
∆nJn

TS(zn+1)〉

=






(
1

(zn+1−zj)2
+

∂j
(zn+1 − zj)

)
〈Oa1

∆1J1
. . . jaj (zj) . . .Oan

∆nJn
〉 , j = 3, . . . , n,

0 , j = 1, 2 ,

(4.16)

with ∆j→1.

Therefore we cannot extract any OPE of TS(z) with j̄(w̄). Naively, we expect this

OPE to be regular since the operators j̄(w̄) are antiholomorphic with weights h = 0 and

h̄ = 1. Also this assertion, although discussed here only for MHV amplitudes, makes a

connection with our earlier discussion regarding the CS interpretation of the theory. Only

one set of currents can survive in the soft limit, holomorphic or antiholomorphic. We have

made the choice which leads to a holomorphic Kac-Moody algebra and the antiholomorphic

currents j̄(w̄) are expected to decouple. Indeed, as shown above, this is the case for MHV

amplitudes. But unfortunately this does not hold for NMHV amplitudes, see appendix B.

So we must restrict our discussion solely on correlators which involve only one type of

soft gluons, positive or negative ones. In appendix C we discuss the role of the shadow

transform, which allows soft negative helicity states to be expressed as positive helicity

ones. Therefore allowing us to have a purely holomorphic correlator, alas in an apparently

non-local formulation.

As a final remark, had we chosen to work in a MHV basis we would be led to an

antiholomorphic Kac-Moody algebra. For an antiholomorphic Kac-Moody algebra, we will

get the T̄S(z̄)j̄a(w̄)-OPE as:

T̄S(z̄)j̄a(w̄) =
h̄

(z̄ − w̄)2
j̄a(w̄) +

∂w̄ j̄a(w̄)

z̄ − w̄
, h̄ = 1 . (4.17)

Similar conclusions as for the holomorphic sector apply in this case.

4.2 Comments on the OPE of the Sugawara tensor for hard operators

On the other hand, hard operators Oa
∆,− as well as Oa

∆,+ act as color sources for soft modes.

The complete theory requires an energy-momentum tensor for the hard states as well. We

can try to examine the collinear limit of the Sugawara tensor with a hard operator. Looking

carefully at (3.2) we see that the single poles for negative helicity states have a modified

partial derivative (3.3). This already poses an issue with the negative helicity gluons. Also,

in the Mellin transform derivation we encounter (4.10). We see that only for the soft limit

λj → 0 we can recover the simple partial derivative of the celestial amplitude. Finally,
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the double poles for hard operators pose a problem as well. These states have weights

h = iλ2 and h̄ = 1 + iλ2 . But the Sugawara energy momentum tensor will give always

weights proportional to the eigenvalues of the quadratic Casimir operator on the states. In

all situations completing the Mellin integrals and taking the double conformal soft limit

for gluons n + 1, n + 2, results in the double poles of (4.14). From the analysis above we

conclude, that when the Sugawara energy momentum tensor acts on hard negative or hard

positive helicity states we do not derive the desired OPE.

One might wonder if we can consider a subsector of the theory where the Sugawara

decouples completely from hard and soft negative helicity states. We know that all positive

helicity states can be taken soft under consecutive soft limits. In the previous section we

concluded though, that soft limits of negative helicity gluons, lead to vanishing MHV

amplitudes. It is also known that a pure plus helicity amplitude does not exist in the

gauge theory side and therefore in the CCFT we cannot have a correlator with only ja(z)

operators.13 We conclude that we need to modify the Sugawara tensor to account for the

proper conformal properties of hard operators. As suggested in [5, 41] one should include

an additional term in the definition of the full energy-momentum tensor:

T (z) = TS(z) + T ′(z) . (4.18)

This remains an open problem. So at this stage, in order to have non-vanishing correlators

with ja(z) operator insertions, we need correlators with heavy states of the CCFT. As

suggested in [5, 39, 42] we can treat external, heavy negative and positive helicity states

as Wilson lines. In section 6.1 we will make an alternative proposal based on our analysis

for the Einstein-Yang-Mills theory, which works for soft and hard operators alike.

As an example we can consider massive particles as sources of soft gauge radiation [42].

Massive particles are described by time-like Wilson lines which source soft gauge bosons.

Unlike massless particles whose wave function localizes on the CS2 at null infinity, massive

particles’ trajectories do not asymptote to the celestial sphere CS2 at null infinity. Massless

particles i.e gluons correspond to local operators on CS2, but massive particles correspond

to smeared operators and involve non-local integrals of local operators on CS2.

To make our point we restrict to the case of QED to avoid a heavy notation with colour

matrices and traces. For QED, consider as in [42], the CCFT operator O(p), where p the

four-momentum, describes massive states. We will assume that this operator factorizes into

two parts. One part Ô(p) is neutral under large gauge transformations and decouples from

soft radiation. The second part WQ(p), where Q is the charge of the massive state, is a

Wilson line, a smeared operator on CS2, that transforms under large gauge transformations

and describes the coupling of massive states to soft radiation. Correlation functions on the

CCFT are expected to factorize [42, 44]:

〈j1, j2 . . . jnO1, O2 . . . Om〉 = 〈Ô1, Ô2 . . . Ôm〉︸ ︷︷ ︸
hard

〈j1, j2 . . . jnWQ1 ,WQ2 . . .WQm〉︸ ︷︷ ︸
soft

. (4.19)

The Sugawara tensor is expected to be the energy momentum tensor of the sub-CFT

of conformally soft operators and Wilson lines of the CCFT. It is very interesting to

13See though appendix C for a formulation which includes shadow operators j̃a(z).
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extend our present discussion in the non-Abelian case and include Wilson operators in

our correlators, staring from the hard-soft-collinear factorization of scattering amplitudes

in QCD [44].

5 The general gauge group using OPE and conformal soft limits of cur-
rents

In this section we discuss the Sugawara energy-momentum tensor for general gauge groups

by using directly the conformal soft limit result of [17] and subsequently the collinear limit.

This is different sequence of operations compared to the one of the previous section. It can

be applied only for the OPE of the energy momentum tensor with a soft gauge boson. We

still consider the MHV case and follow closely the discussion in chapter 15 of [45]. We write

the Sugawara energy momentum tensor in the form (2.21). We will consider the following

expression

γ

2πi

∮

zn+2

dzn+1

zn+1 − zn+2
〈Ob1

∆1−(z1, z̄1) . . . j
bn(zn)j

a(zn+1)j
a(zn+2)〉

= lim
∆n+1∆n+2→1

lim
∆n→1

γ

2πi

∮

zn+2

dzn+1

zn+1 − zn+2
〈Ob1

∆1−(z1, z̄1)O
b2
∆2−(z2, z̄2)O

b3
∆3+

(z3, z̄3) . . .

Obn
∆n+

(zn, z̄n)Oa
∆n+1+(zn+1, z̄n+1)Oa

∆n+2+(zn+2, z̄n+2)〉 , (5.1)

where γ a normalization constant to be determined soon. Now we apply the soft limit

iteratively following closely the derivation in equations (15.51-15.56) of [45]. We use the

collinear and soft limits in (2.15). First, we take the soft limit for the operator Obn
∆n+

(zn, z̄n)

=
n−1∑

i=1

f̃ bnbic

zn,i

〈
Ob1

∆1
(z1, z̄1) . . .Oc

∆i
(zi, z̄i) . . .

. . .Obn−1(zn−1, z̄n−1)Oa
∆n+1+(zn+1, z̄n+1)Oa

∆n+2+(zn+1, z̄n+1)
〉

+
f̃ bnac

zn,n+1

〈
Ob1

∆1
(z1, z̄1) . . .Oc

∆n+1,+(zn+1, z̄n+1)Oa
∆n+2+(zn+2, z̄n+2)

〉

+
f̃ bnac

zn,n+2

〈
Ob1

∆1
(z1, z̄1) . . .Oa

∆n+1,+(zn+1, z̄n+1)Oc
∆n+2+(zn+2, z̄n+2)

〉
. (5.2)

Then we consider the collinear limit for the operator Obn
∆n+

(zn, z̄n) as it approaches the two

operators at zn+1 and zn+2 The first line above does not contribute to the OPE of interest

since it is finite as zn → zn+1. The last two lines are inserted in the contour integral (5.1).

Now we apply the conformal soft limit on the operator Oa
∆n+1,+

→ Ja(zn+1) and use the

OPE (2.15) with Ob
∆n+2,+

.

γ

2πi

∮

zn+2

dzn+1

zn+1,n+2

( f̃ bnacf̃ cad

zn,n+1zn+1,n+2

〈
Ob1

∆1
(z1, z̄1) . . .Od

∆n+2+(zn+2, z̄n+2)
〉

+
f̃ bnacf̃acd

zn,n+2zn+1,n+2

〈
Ob1

∆1
(z1, z̄1) . . .Od

∆n+2+(zn+2, z̄n+2)
〉)

. (5.3)
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The second term gives only regular terms in the contour integral. Only the first one is

relevant. We use the integration formula:

1

2πi

∮

w

dx

(x− w)n
F (w)

(z − x)m
=

(n+m− 2)!

(n− 1)!(m− 1)!

F (w)

(z − w)n+m−1
. (5.4)

Finally, we derive the following expression

γ
−C̃2

(zn − zn+2)2

〈
Ob1

∆1
(z1, z̄1) . . .Obn

∆n+2,+
(zn+2, z̄n+2)

〉
, (5.5)

where the overall minus sign comes from the formula f̃ bnacf̃ cad = −C̃2δbnd and will be

thrown away because it reflects only the antisymmetric property of the structure constant.

At this point we need to expand the correlator for zn+2 around zn. We can use a similar

method as in [18] or use the delta function expansion in (4.7) leading to (4.10). Finally, lest

consider the conformal soft limit of O∆n+2,+ and follow the discussion that leads to (4.12).

In this situation, for the MHV case discussed in the previous section, we can simply Taylor

expand the Mellin transform of the partial amplitude (3.1) At the end we arrive at

〈
Ob1

∆1
(z1, z̄1) . . . T (zn+2)j

bn(zn)
〉
∼ γ C̃2

(
1

z2n+2,n

+
∂n

zn+2,n

)〈
Ob1

∆1
. . . jbn(zn)

〉
, (5.6)

where the choice γ = 1
C̃2

gives the correct normalization for a level k = 0 Sugawara energy

momentum tensor. This concludes the derivation of the OPE for the Sugawara tensor using

an approach with the soft limits first and collinear after.

6 Energy-momentum tensor from shadow transform and double copy

As discussed in the introduction, the set of BMS algebra generators consists of super-

rotations and supertranslations. The energy momentum tensors T (z), T̄ (z̄) encode the

superrotation generators and the supertranslation field P (z, z̄) encodes the supertransla-

tion generators. In this section we will follow an alternative approach to the Sugawara

construction of the energy-momentum tensor. We will follow an observation from [19] to

construct the energy-momentum tensor using a pair of dimension zero, opposite helicity

gauge bosons. Inspired by this relation, we will propose a similar construction for the

supertranslation field P (z, z̄).

6.1 A double copy construction of the energy momentum tensor

In the following we shall consider a pair of dimension zero gauge boson operators with

a shadow transform of one of the gauge bosons. In general the shadow transform of an

operator of the CCFT is given by the relation [51]:

Õa
∆,J(z, z̄) = Õa

2−∆,−J(z, z̄) =
K∆,J

π

∫
d2w

(z − w)2−∆−J(z̄ − w̄)2−∆+J
Oa

∆,J(w, w̄) , (6.1)
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where K∆,J = ∆+J−1.14 Following (2.19) we can introduce a modified energy momentum

tensor on the celestial sphere by choosing a pair of dimension zero gauge boson operators

and considering the following expression

T (w1) ∼ lim
w2→w1

∑

a

δab Oa
0,+(w2, w̄2)Õb

2,+(w1, w̄1) , (6.2)

based on (2.20) for level k = 0. Here, the first gluon operator Oa
0,+ has spin one and

vanishing dimension ∆2 = 0 (with h2 =
1
2 +

iλ2
2 , h̄2 = −1

2 +
iλ2
2 , λ2 → 0), while the second

operator Õb
2,+ with ∆̃1 = 2 arises from a shadow operation

Õb
2,+(w1, w̄1) ∼

∫
d2z1 (z1 − w1)

−3(z̄1 − w̄1)
−1 Ob

0,−(z1, z1) , (6.3)

of a gluon operator of negative spin one and vanishing dimension ∆1 = 0 (with h1 =

−1
2 +

iλ1
2 , h̄1 =

1
2 +

iλ1
2 , λ1 → 0). We have ignored the normalization factors of the shadow

transform since they are not important for our arguments below and can be absorbed in

an overall normalization for the energy momentum tensor. To proceed we use the OPE of

two gluon states of opposite spins, which can be found in (2.11)

Oa
∆2,+(w2, w̄2)Ob

∆1,−(z1, z̄1)=
∆1−1

∆2(∆1+∆2−2)

∑

c

f̃abc

w2−z1
Oc

(∆1+∆2−1),−(z1, z̄1)

−2δab
w̄2−z̄1
w2−z1

(∆1−1)(∆1+1)(∆2−1)

∆2(∆1+∆2)(∆1+∆2−1)
O(∆1+∆2),−2(z1, z̄1)

+f̃abc Λ(∆1,∆2) (w̄2−z̄1) Oc
∆1+∆2+1,−(z1, z̄1)+

+δab M(∆1,∆2) (w̄2−z̄1)
2 O∆1+∆2+2,−2(z1, z̄1)+. . . , (6.4)

where Λ(∆1,∆2),M(∆1,∆2) are constants which depend on the details of the D = 4 theory

from which their OPE has been derived. Above we have included possible single-pole or

finite terms [19]. After inserting (6.3) into (6.2) and using (6.4) we arrive at:

lim
∆1,∆2→0

lim
w1→w2

∫
d2z1 (z1−w1)

−3(z̄1−w̄1)
−1 δaa (6.5)

×
{

2

∆2(∆1+∆2)

w̄2−z̄1
w2−z1

O∆1+∆2,−2(z1, z̄1)+M(∆1,∆2)(w̄2−z̄1)
2 O∆1+∆2+2,−2(z1, z̄1)

}

Note, that the first and third term of the OPE (6.4) cancel after performing the color sum

in (6.2). The first term of the equation above can be related to the energy-momentum

tensor [18]:

T (w) ∼
∫

d2z (z − w)−4 O0,−2(z, z̄) . (6.6)

14It seems there is a clash in the literature concerning the normalization factor for the shadow transform.

In [52] the normalization constant is K∆,J = Γ(2−∆+J)
Γ(∆+J−1) unlike the one of [2, 34] which we use in the main

text. For J = −1 and as ∆→0, the normalization of [52] behaves as K∆,J ∼ ∆ and goes to zero. It is not

clear why this discrepancy occurs, but in this case the only modification will be that in (6.8) we will need

only the (∆1 +∆2) factor in the definition of the energy momentum tensor. The rest of our analysis leads

though to the same conclusions.
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In fact, after taking the limit w1 → w2 we obtain

2 dim g lim
∆1,∆2→0

1

∆2(∆1 +∆2)

∫
d2z1 (z1 − w1)

−4 O0,−2(z1, z̄1)

= 2 dim g lim
∆1,∆2→0

1

∆2(∆1 +∆2)
T (w1) , (6.7)

with the dimension dim g = δaa of the underlying gauge group. In total we have the

following relation

T (w1) =
1

C̃2(G)
lim

∆1,∆2→0
[∆2(∆1 +∆2)] lim

w2→w1

∑

a

Oa
∆2,+(w2, w̄2)Õa

2−∆1,+(w1, w̄1), (6.8)

which assumes the desired form (6.2). The latter takes the Sugawara form (2.20) upon

replacing the factor 1
2 dim g by 1

2k+C̃2(G)
for k = 0.

Having fixed the normalization constant we can consider the regular terms of the OPE.

The limit at w2 → w1 gives

lim
∆1,∆2→0

[∆2(∆1 +∆2)] δ
aaM(∆1,∆2) (6.9)

× lim
w2→w1

∫
d2z1 (z1 − w1)

−3(z̄1 − w̄1)
−1(w̄2 − z̄1)

2 O∆1+∆2+2,−2(z1, z̄1)

= lim
∆1,∆2→0

[∆2(∆1 +∆2)] δ
aa M(∆1,∆2)

∫
d2z1 (z1 − w1)

−3(z̄1 − w̄1) O2,−2(z1, z̄1).

The action of this hard operator on primaries will lead to the following potentially singu-

lar terms

O2,−2(z1, z̄1)Oa
∆,±(w, w̄) ∼ ρ(∆)

z1 − w

z̄1 − w̄
Oa

∆+2,±(w, w̄) (6.10)

Naively, after integration in (6.9) we get, that close to the operator insertion the integral

behaves as
∫

d2z1
(z̄1 − w̄1)

(z1 − w1)3
O2,−2(z1, z̄1)Oa

∆,±(w, w̄) ∼ ρ(∆)
w̄1 − w̄

w1 − w
Oa

∆+2,±(w, w̄) (6.11)

where we have used standard conformal integrals (cf. [52])

∫
d2z1

(z̄1 − w̄1)

(z1 − w1)3
z1 − w

z̄1 − w̄
= π

w̄ − w̄1

w − w1
(6.12)

to extract the singular part of this integral. Equation (6.11) leads to singular behaviour,

either pole type if we consider separately the holomorphic limit w → w1 or of a singular

angular distribution if both w → w1 and w̄ → w̄1. If we consider strictly EYM theory this

term does not exist. As explained in [19], the subleading term in the OPE (6.4) originates

from higher derivative bulk interactions of the form RF 2. So in the pure EYM case, these

are absent and the final result is given by (6.8) and we have demonstrated the desired result.

Nevertheless, we are interested in the energy-momentum tensor for more general the-

ories with higher derivative corrections i.e. RF 2 due to quantum, stringy or other effects.

– 26 –



J
H
E
P
0
9
(
2
0
2
0
)
1
3
9

The important point is that such corrections will not contribute to the proposal (6.2). We

will demonstrate, that the constant M(∆1,∆2) has at most single poles under the dou-

ble soft limit ∆1,∆2 → 0. Then in (6.9) the last term will drop in the double soft limit

∆1,∆2 → 0. The prefactor ∆2(∆1 +∆2) goes to zero quadratically but M(∆1,∆2) has a

single pole. To see this we need to follow the discussion of appendix A in [19]. The term

of interest in the OPE (6.4) stems from RF 2 higher derivative corrections of EYM.

In general the cubic vertex has the form

V = ∂mΦ1(x)Φ2(x)Φk(x) (6.13)

where the fields Φ can be Aµ, hµν but Lorentz indices are suppressed and the total number

of derivatives m distributed among all three fields Φ1.Φ2,Φk. The net dimension of the

vertex is dV = 3 + m. A Mellin transform analysis of the collinear limit in a celestial

amplitude, leads to the following result [19]

A ∼
∑

α,β

B(∆1 +m+ α− 1,∆2 + β − 1)

∞∫

0

dωP ω∆1+∆2+m−3
P Aα,β(z1, z̄1, z2, z̄2, ωP , . . . ),

(6.14)

where ωP = ω1 + ω2 and in our case m = 4. In this case the operator Φk has dimensions

∆k = ∆1 + ∆2 + m − 2 → 2 which is the dimension of O2,−2 in (6.9). The remaining

Mellin transform is a celestial amplitude with a hard operator insertion O2,−2 and no poles

are expected unlike for soft operators with dimension one. The labels α, β determine the

different powers of the energy factors in the collinear splitting functions [17, 19, 20]

Spitss1,s2(p1, p2) =
1

z12

ωm+α
1 ωβ

2

ωα+β
P

1

ω1ω2
, (6.15)

with si the helicities of the collinear states and α, β ≥ −1 in YM and α, β ≥ −2 in GR. In

higher derivative theories with couplings RF 2 etc. they are always α, β ≥ −m.

As it is clear from the derivation of (6.14)

M(∆1,∆2) = c B(∆1 +m+ α− 1,∆2 + β − 1) , (6.16)

where c is a numerical constant independent of the dimensions ∆1,∆2. We notice that in

the limit ∆1,∆2 → 0, at most single poles can appear in the prefactor B(∆1 + m + α −
1,∆1+β−1) → B(3+α, β−1). Actually, our result is more general, since the Beta function

has at most single poles and could be applied to arbitrary higher derivative corrections.

This concludes the proof that the prefactor M(∆1,∆2) in (6.9) has at most a single

pole as ∆1,∆2 → 0. In (6.9) we see that automatically the limit leads to zero since we

have a double zero from the overall prefactor. We conclude that the result (6.8) holds for

more general extensions of EYM.

The Sugawara inspired relation (6.8) gives a gauge gravity relation established as a

relation between a pair of gauge boson operators Oa
0,+,Ob

0,− and a graviton operator O0,−2

on the celestial sphere. Notice that this is not the usual Sugawara construction since the
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operators Oa
0,± are not dimension one and do not generate a Kac-Moody symmetry. Having

said this, it seems that our construction is more like the KLT or double-copy equivalent in

CCFT. Note, that the well-known KLT relations express gravitational amplitudes as sums

over squares of gauge amplitudes supplemented by a momentum dependent kernel. The

latter accounts for disentangling monodromy relations on the string world-sheet. On the

other hand, (6.8) gives a direct relation between a graviton and a pair of gauge bosons on

the celestial sphere without any additional momentum dependent factors.

6.2 A double copy construction for supertranslations

In [20, 34], it was shown that supertranslations are generated by the operator P

P (z, z̄) ≡ ∂z̄O∆→1,+2 , (6.17)

where its OPE with spin one primaries is given by the relation:

P (z, z̄)O∆,J(w, w̄) =
(∆− 1)(∆ + 1)

4∆

1

z − w
O∆+1,J(w, w̄) + regular , J = ±1 . (6.18)

The presence of (∆ − 1) factors in the above OPE coefficients implies that the products

P (z)ja(w), P (z)j̄a(w̄) are regular. Similar relations hold for the antiholomorphic operator

P̄ . An important property is that supertranslations shift the dimension of the usual fields

up ∆ → ∆ + 1 or equivalently (h, h̄)→(h + 1
2 , h̄ + 1

2). This may be checked by applying

in particular the momentum operator which generates translations along the light-cone

direction (see [20, 53]):

P− 1
2 ,−

1
2
= P0 + P3 = e(∂h+∂h̄)/2 . (6.19)

Proceeding one step ahead one can try a kind of double copy construction of the

operator P (z, z̄) of (6.17) as well. We will show that:

O∆→1,+2(w1, w̄1) ∼ lim
∆2→0,∆1→1

lim
w2→w1

∆2

∑

a

Oa
∆2,+(w2, w̄2)Õa

2−∆1,+(w1, w̄1) . (6.20)

To prove the equivalence above, we use once more the OPE (6.4).

lim
∆1→1,∆2→0

lim
w1→w2

∫
d2z1 (z1 − w1)

−2 (6.21)

× δaa
{

4

∆2

w̄2 − z̄1
w2 − z1

O∆1+∆2,−2(z1, z̄1) +M(∆1,∆2) (w̄2 − z̄1)
2 O∆1+∆2+2,−2(z1, z̄1)

}
.

In the equation above we need to chose a specific order of limits ∆2 → 0 first and ∆1 → 1

last. The first term is the one we need for our purpose. For EYM there are no higher deriva-

tive terms and the leading term is all we need. As in the case of the energy-momentum

tensor, for general theories beyond EYM, we need to analyze the potential implications

of the subleading operator O∆1+∆2+2,−2 → O3,−2. The coefficient M(∆1,∆2) of the sub-

leading term can have a single pole as ∆2 → 0 following the collinear limits of celestial

amplitudes (6.14). So naively this term can create additional contributions in the pro-

posal (6.20). Nevertheless, this operator has the following OPEs with primary operators:

O3,−2(z1, z̄1)Oa
∆,±(w, w̄) ∼ ρ(∆)

z1 − w

z̄1 − w̄
Oa

∆+3,±(w, w̄) . (6.22)
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Applying the integration in (6.21) the integrant near the operator insertion behaves

as follows
∫

d2z1 (z1 − w1)
−2(z̄1 − w̄1)

2 O3,−2(z1, z̄1)Oa
∆,±(w, w̄)

∼ ρ(∆)

∫
d2z1

(z̄1 − w̄1)2

(z1 − w1)2
z1 − w

z̄1 − w̄
Oa

∆+3,±(w, w̄) . (6.23)

Unlike (6.11) no poles can emerge from this expression. So finally, we derive

lim
∆2→0,∆1→1

lim
w2→w1

∆2

∑

a

Oa
∆2,+(w2, w̄2)Õa

2−∆1,+(w1, w̄1)

= lim
∆2→0,∆1→1

lim
w2→w1

∫
d2z

(w1 − z)2
w̄2 − z̄

w2 − z
O∆1+∆2,−2(z, z̄)

=

∫
d2z

w̄1 − z̄

(w1 − z)3
O1,−2(z, z̄)

= Õ1,−2(w1, w̄1) = Õ1,+2(w1, w̄1) = O1,+2(w1, w̄1) , (6.24)

where in the last step we have used the relation for dimension one operators Õa
1,+(w1) =

Oa
1,+(w1) [2]. For completeness we give the OPE of the operators O1,+2(w) with spin one

primaries J = ±1,

O∆→1,+2(z, z̄)O∆i,J(w, w̄) ∼
(∆− 1)(∆ + 1)

4∆

z̄ − w̄

z − w
O∆i+1,J(w, w̄) (6.25)

from [20]. Then applying this on (6.17) we derive the OPE of P (z, z̄) with primaries

P (z, z̄)O∆i,J(w, w̄) ∼
(∆− 1)(∆ + 1)

4∆

1

z − w
O∆i+1,+(w, w̄) (6.26)

One mode of this field is the operator P− 1
2 ,−

1
2
in (6.19).

7 Conclusions

From the study of scattering amplitudes in four-dimensional Minkowski space-time some

striking relations between gravity and gauge amplitudes have emerged. For a review

see [54]. These observations suggest a deeper connection between gauge and gravity theo-

ries and indicate the existence of some gauge structure in quantum gravity. However, the

origin of these relations is yet poorly understood in four-dimensional Minkowski space-time.

The Mellin transform of gauge and gravitational states and amplitudes to celestial sphere

gives a new way of looking at quantum field theory and quantum gravity and might shed

light on the underlying symmetries of these amplitude relations. In particular, it seems

feasible that the manifestation of double-copy-constructions may have a simpler emergence

when considered within the underlying conformal field theory on the celestial sphere.

In this work we discussed the energy-momentum tensor of the pure gauge sector of

the CCFT. For the pure gauge theory, it has been suggested [5, 39], that a particular

subsector of the CCFT, the one of soft operators, can be described by a current algebra, a
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Kac-Moody algebra. In this work, we used the Sugawara method to construct the energy-

momentum tensor TS(z) from the celestial amplitude of gluons. From the analysis of

the soft and collinear limits of gluon amplitudes we extracted the OPEs of the Sugawara

energy momentum tensor with primary fields of the CCFT. The OPE of the holomorphic

Sugawara energy-momentum tensor has the expected form for soft holomorphic operators

ja(z) which correspond to soft positive helicity gluons. For antiholomorphic soft operators

and hard operators, the OPE is not as expected. A modification will be necessary. We

discussed these shortcomings and suggested potential resolutions on how to decouple the

sub-CFT that describes the positive helicity soft sector from the rest of the theory. We also

developed several gauge group identities, some of which are novel and potentially useful

for scattering amplitude computations in general.

Subsequently we used CCFT OPEs for EYM theory to construct from a pair of gluon

operators the energy momentum tensor and the supertranslation operator of the BMS

algebra. This method bears resemblance to the double-copy method that relates gauge

and gravity amplitudes. The energy momentum tensor we constructed has the correct

action on both the soft and hard operators of the theory. It is a generalization of the

Sugawara method, although the Kac-Moody current algebra origin of this construction is

not so clear.

There are several open questions which deserve further study. In section 4.2 we dis-

cussed the importance of massive states in relation to the soft sub-sector of the theory.

Massive states should correspond to Wilson lines on the CCFT and it is an interesting

question how to implement them in the celestial amplitudes picture. It is important to

investigate correlators of soft operators with Wilson lines and extract the OPE with the

Sugawara energy momentum tensor. Finally, the BMS algebra on the CCFT language

was discussed recently in [20]. It would be interesting to compute the algebra using the

Sugawara energy-momentum tensor and see if we can have a BMS type of symmetry for

the soft sub-sector of the theory.
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A Solution of the n-particle momentum-conservating delta function

We use [17] and give an expression of the n-particle momentum-conservating delta functions

which appear in the amplitudes (2.7) in terms of energies ωi and celestial coordinates zi, z̄i.

For the n-particle (n ≥ 5) momentum-conservating delta function, we choose to use the

first four energies ω1, ω2, ω3, ω4 to localize the solution. This choice is arbitrary and any
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other choice also works. Define the following cross-ratios of celestial coordinates:

ti =
z12z3i
z13z2i

, i = 4, 5, . . . , n. (A.1)

Then the n-point momentum delta function is solved as

δ4
( N∑

i=1

εiωiqi
)
=

i

4

(1− t4)(1− t̄4)

t4 − t̄4

1

|z14|2|z23|2
4∏

i=1

δ(ωi − ω,
i ). (A.2)

The solutions for the four chosen energies are

ω,
i = fi5ω5 + fi6ω6 + . . .+ finωn , (A.3)

where fij , i = 1, 2, 3, 4, j = 5, 6, . . . , n are functions of cross-ratios:

f1j = t4
∣∣∣
z24
z12

∣∣∣
2 (1− t4)(1− t̄4)

t4 − t̄4
ε1εj

tj − t̄j
(1− tj)(1− t̄j)

∣∣∣
z1j
z14

∣∣∣
2
− ε1εjtj

∣∣∣
z2j
z12

∣∣∣
2
,

f2j = −1− t4
t4

∣∣∣
z34
z23

∣∣∣
2 (1− t4)(1− t̄4)

t4 − t̄4

ε1εj
ε1ε2

tj − t̄j
(1− tj)(1− t̄j)

∣∣∣
z1j
z14

∣∣∣
2
+

ε1εj
ε1ε2

1− tj
tj

∣∣∣
z3j
z23

∣∣∣
2
,

f3j = (1− t4)
∣∣∣
z24
z23

∣∣∣
2 (1− t4)(1− t̄4)

t4 − t̄4

ε1εj
ε1ε3

tj − t̄j
(1− tj)(1− t̄j)

∣∣∣
z1j
z14

∣∣∣
2
− ε1εj

ε1ε3
(1− tj)

∣∣∣
z2j
z23

∣∣∣
2
,

f4j = −(1− t4)(1− t̄4)

t4 − t̄4

ε1εj
ε1ε4

tj − t̄j
(1− tj)(1− t̄j)

∣∣∣
z1j
z14

∣∣∣
2
.

B Seven-gluon NMHV amplitude and T S j̄ OPE

In this appendix we will compute the mixed TS(z)j̄(w̄)-OPE in the seven-gluon NMHV

amplitude A7(−,−,−,+,+,+,+). We use the last two operators to define the Sugawara

energy momentum tensor TS(z7) ∼ limz6→z7 j
a(z6)ja(z7), and extract its OPE with the

first operator TS(z7)j̄(z̄1).

The explicit form of the subamplitude A7(−,−,−,+,+,+,+) was obtained by the

BCFW method in reference [55], which reads as:

A
(
1−, 2−, 3−, 4+, 5+, 6+, 7+

)
=

〈1|2 + 3|4]3

t[3]2 〈56〉〈67〉〈71〉[23][34]〈5|4 + 3|2]

− 1

〈34〉〈45〉〈6|7 + 1|2]

(
〈3|(4 + 5)(6 + 7)|1〉3

t[3]3 t[3]6 〈67〉〈71〉〈5|4 + 3|2]
+

〈3|2 + 1|7]3

t[3]7 〈65〉[71][12]

)
.

(B.1)

Taking limit of z6 → z7 for defining the Sugawara T (z7) and the limit of z7 → z1 for

extracting the mixed OPE, this seven-gluon NMHV amplitude has the following leading

order poles in terms of celestial coordinates

lim
z6→z7→z1

A7(−,−,−,+,+,+,+) = − ω1ω4ω5

ω2ω3ω6ω7 (ω1 + ω6 + ω7)
2

z̄345
z̄12z̄23z̄34z̄51

(
1

z67z71

)

− ω2ω3 (ω6 + ω7)
2

ω1ω4ω5ω6ω7 (ω1 + ω6 + ω7)
2

z323
z12z34z45z51

(
1

z67z̄71

)

− ω2ω3ω7

ω2
1 (ω1 + ω7)ω4ω5ω6

z323
z12z34z45z51

(
1

z71z̄71

)
. (B.2)
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The Mellin integral of the first term in the above equation is

g(λ1)g(λ6)g(λ7)

∫ ∞

0
dω1dω6dω7ω

iλ1
1 ωiλ6

6 ωiλ7
7

ω1

ω6ω7(ω1+ω6+ω7)2
. . .

= g(λ1)g(λ6)g(λ7)

∫ ∞

0
dω′

1

∫ ω′
1

0
dω′

6

∫ ω′
6

0
dω6ω

−1+iλ6
6 (ω′

6−ω6)
−1+iλ7(ω′

1−ω′
6)

1+iλ1ω′−2
1 . . .

= g(λ1)g(λ6)g(λ7)B(iλ6, iλ7)B(iλ′
6,2+iλ1)

∫ ∞

0
dω′

1ω
′−1+iλ′

1
1 . . . , (B.3)

where the integral is performed with change of variable ω′
6 = ω6 + ω7, ω′

1 = ω1 + ω′
6 and

we have defined new quantities λ′
6 = λ6 + λ7, λ′

1 = λ1 + λ′
6. In the conformal soft limit

λ6, λ7 → 0, the integral is nonzero

g(λ1)g(λ6)g(λ7)B(iλ6, iλ7)B(iλ′
6, 2 + iλ1)

∫ ∞

0
dω′

1ω
′−1+iλ′

1
1 . . .

=
iλ6Γ(iλ6)

Γ(2 + iλ6)

iλ7Γ(iλ7)

Γ(2 + iλ7)

iλ1

Γ(2 + iλ′
1)

∫ ∞

0
dω′

1ω
′1+iλ′

1
1 . . . = g(λ1)

∫ ∞

0
dω1ω

1+iλ1
1 . . . , (B.4)

where in the last step we have relabelled ω′
1 as ω1. Similarly, the Mellin integral of the

second term in eq. (B.2) is

g(λ1)g(λ6)g(λ7)

∫ ∞

0
dω1dω6dω7 ω

iλ1
1 ωiλ6

6 ωiλ7
7

(ω6 + ω7)2

ω1ω6ω7(ω1 + ω6 + ω7)2
. . .

= g(λ1)g(λ6)g(λ7)

∫ ∞

0
dω′

1

∫ ω′
1

0
dω′

6

×
∫ ω′

6

0
dω6 ω

−1+iλ6
6 (ω′

6 − ω6)
−1+iλ7(ω′

1 − ω′
6)

−1+iλ1ω′26ω′−2
1 . . .

= g(λ1)g(λ6)g(λ7)B(iλ6, iλ7)B(2 + iλ′
6, iλ1)

∫ ∞

0
dω′

1ω
′−1+iλ′

1
1 . . . . (B.5)

In the conformal soft limit λ6, λ7 → 0, the integral is zero

g(λ1)g(λ6)g(λ7)B(iλ6, iλ7)B(2 + iλ′
6, iλ1)

∫ ∞

0
dω′

1ω
′−1+iλ′

1
1 . . .

= iλ′
6(1 + iλ′

6)
iλ6Γ(iλ6)

Γ(2 + iλ6)

iλ7Γ(iλ7)

Γ(2 + iλ7)

iλ1Γ(iλ1)

Γ(2 + iλ1)Γ(2 + iλ′
1)

∫ ∞

0
dω′

1ω
′−1+iλ′

1
1 . . .

= 0. (B.6)

Finally, the Mellin integral of the third term in eq. (B.2) is

g(λ1)g(λ6)g(λ7)

∫ ∞

0
dω1dω6dω7 ω

iλ1
1 ωiλ6

6 ωiλ7
7

ω7

ω2
1ω6(ω1 + ω7)

. . .

= g(λ1)g(λ7)

∫ ∞

0
dω1dω7 ω

1+iλ7
7 ω−2+iλ1

1 (ω1 + ω7)
−1 . . .

= g(λ1)g(λ7)B(−1 + iλ1, 2 + iλ7)

∫ ∞

0
dω′

1ω
′−1+i(λ1+λ7)
1 . . . , (B.7)
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where in the first line we took the conformal soft limit of λ6 → 0 and used the following

formula [22]

lim
λ6=0

g(iλ6)

∫
dω6ω

−1+iλ6
6 = lim

λ6=0

∫
dω6iλ6ω

−1+iλ6
6 = 1. (B.8)

In the conformal soft limit λ7 → 0, the integral is zero

g(λ1)g(λ7)B(−1 + iλ1, 2 + iλ7) =
iλ7Γ(2 + iλ7)

Γ(2 + iλ7)
g(λ1)

Γ(−1 + iλ1)

Γ(1 + +iλ1 + iλ7)
λ7=0
= 0. (B.9)

Combining the above three Mellin integrals, the final result is

A7(−,−,−,+,+,+,+)
z7→z6→z1= −

(
1

z67z71

)
A5(1

−, 2−, 3−, 4+, 5+). (B.10)

Adding the contribution for z6 ↔ z7 we derive

A7(−,−,−,+,+,+,+)
z7,z6→z1= −

(
1

z271

)
A5(1

−, 2−, 3−, 4+, 5+). (B.11)

Obviously T (z7)j̄(z̄1)-OPE has a double pole and it is not zero.

C Sugawara OPE with soft shadow operators

In this appendix we discuss the role of the Sugawara energy momentum tensor in correlators

with insertions of the soft (∆ → 1) shadow of spin one conformal primary operators. The

shadow of an operator is given by (6.1). For the case of spin one and dimension one operator

this becomes

j̃a(z) = − 1

2π

∫
d2w

(z − w)2
j̄a(w) (C.1)

In [2] the conformal primary wave functions for dimension one operators were shown to

be equivalent to their shadow transforms. Nevertheless, in [34] it was shown that at the

subleading order of the ∆ → 1 limit the two conformal primary wave functions differ by a

logarithmic mode. We will leave the operator j̃a+(z) as a distinct operator from ja(z).

In order to discuss the algebra of the shadow currents with the holomorphic currents

ja(z), we will need the conformal soft theorems (or OPEs) of both ja(z) and j̄a(z̄). At

this point it is important to distinguish two different situations depending on the order of

the consecutive soft limits. This is important in the case of opposite helicity gluons only.

The OPEs in (2.17) correspond to the case where positive helicity gluons are taken soft

before negative ones and vice versa for (2.18). The action of the shadow currents on hard

primary operators has no ambiguity and agrees with (2.14), (2.16).

Let us discuss case 1. Using the OPEs in (2.17) we derive

ja(z)j̄b(w̄) ∼ fabc j̄c(w̄)

z − w
, j̃a(z)j̄b(w̄) ∼ fabc j̄c(w̄)

z − w
(C.2)

ja(z)jb(w) ∼ fabc jc(w)

z − w
, ja(z)j̃b(w) ∼ reg, j̃a(z)j̃b(w) ∼ reg
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Since we are discussing the OPE of the Sugawara tensor with a soft operator we can use

the method of section 5. It is straight forward to apply the derivation there and derive the

following OPE

TS(z)j̃a(w) ∼ reg (C.3)

This implies that the shadow currents j̃a are inert under the conformal transformations

generated by the Sugawara energy momentum tensor. This again leads to the neces-

sity to modify the energy momentum tensor to account for the conformal transformation

properties of the j̃a(z) holomorphic currents. Nevertheless, this is more promising than

considering correlators with antiholomorphic currents, since we found that contrary to

expectations the holomorphic Sugawara energy momentum tensor acts on those currents

which have weights (0, 1) and should be normally inert. Of course the result above does

not apply to the case of MHV amplitudes, since conformal soft limit of negative helicity

gluons leads to a vanishing correlator. For the case of NkMHV though Mellin plus shadow

transform lead to

An(g
−
1 , g

−
2 , . . . g

−
k , g

+
k+1, . . . g

+
n ) −→ 〈j̃(z1) . . . j̃(zk)j(zk+1) . . . j(zn)〉 (C.4)

which is non vanishing generally and purely holomorphic.

For case 2, similarly we derive

ja(z)jb(w) ∼ fabc jc(w)

z − w
, j̃a(w)jb(z) ∼ fabc jc(w)

z − w
, j̃a(z)j̃b(w) ∼ reg (C.5)

j̄a(z̄)jb(w) ∼ fabc jc(w)

z̄ − w̄
, j̃b(z)j̄a(w̄) ∼ fabc j̄c(w̄)

z − w

This leads to the surprising conclusion that there is a Kac-Moody algebra of ja(z) and

j̃a(z) which closes only on the ja(z).15 Repeating the previous steps we find

TS(z)j̃a(w) ∼ C̃2

[
1

(z − w)2
ja(w) +

1

z − w
∂ja(w)

]
(C.6)

We see that if we identify j̃a(z) ≡ ja(z) we have agreement with the conformal properties of

the operators as currents with weights (1, 0). This is very interesting and consistent with the

identification of dimension one states in [2]. Nevertheless, it implies an one-to-two relation

between gauge amplitudes and CCFT correlators since in this way any negative helicity

gluon is mapped to a positive one. It is plausible that this discrepancy lies in the detailed

analysis of the conformal primary wave functions for the dimension one primary and its

shadow. In [34] there is a subtle difference between the two operators due to a dimension

one logarithmic operator. So it is more sensible to have the relation j̃a(z) / ja(z) modulo

subleading in the limit ∆ → 1 logarithmic operators. In that sense the Sugawara energy

momentum tensor captures the leading conformal properties of the shadow operators. We

leave this interesting question for future work.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

15This is plausibly the manifestation of a degeneracy in the algebra.
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