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A B S T R A C T   

In this work, hydrothermally synthesized CeO2 nanorods (CeO2NR) were chemically etched by strong reducing 
agent NaBH4 with 0.6~30 wt% addition, and further transition metal (TM) oxides (TM: Cu, Co, Ni, Fe and Mn) 
were loaded on the surface modified 6 wt% NaBH4–CeO2NR powder (mCeO2NR) to prepare mCeO2NR sup
ported TM oxide catalysts. Both mCeO2NR supports (treated by 0.6–30 wt% NaBH4) and mCeO2NR supported 
TM oxide catalysts were employed to investigate the effect of chemical etching on their surface structure, CO 
adsorption, CO2 desorption and catalytic performance. Compared with pristine CeO2NR, one strong CO 
adsorption band for polydentate carbonate is found from in situ DRITFS as a result of NaBH4 etching, which can 
explain the enhanced low temperature reducibility and catalytic performance of mCeO2NR supports and 
mCeO2NR supported TM oxide catalysts. The vibrational band signals of bicarbonate, monodentate/bidentate/ 
polydentate carbonate and bridged carbonate are detected in all mCeO2NR supported TM catalysts and the effect 
of CO adsorption mode on CO oxidation activity is discussed.   

1. Introduction 

Several transition metals (TM) oxides or their mixture, including 
MnOx, CuOx, NiOx, CoOx, and FeOx, have been reported as active, cost- 
effective and sustainable catalysts to replace costly noble metals (Pt, Rh, 
and Au etc.) for low-temperature CO oxidation reactions and attracted 
great attention in recent years [1–5]. Among TM oxide catalysts, 
copper-containing catalysts or supported copper oxides, including 
CuO/ZrO2, CuO/SiO2, CuO/Al2O3 and so on, show superior 
low-temperature activity and thermal stability [6–9], although the un
derlying mechanism is not well understood. In order to meet increasing 
emissions control requirements including EPA regulations challenges, 
low conversion, poisoning resistance, and thermal stability must be 
overcome before TM oxide catalysts can be used industrially [10]. It has 
been reported that TM oxides and reducible oxide supports (CeO2 and 
TiO2) exhibit strong catalyst-support interactions through oxide solid 
solutions or electronic perturbations, unlike TM oxide catalysts sup
ported on irreducible oxides (ZrO2, SiO2, and Al2O3) [11,12]. The TM 
oxide catalysts on reducible oxide supports have demonstrated excellent 
low temperature activity and are potential candidates to replace noble 
metal catalysts. 

Ceria (CeO2) is well-known for its excellent oxygen storage capacity 

and high redox ability via a reversible Ce4+ to Ce3+ transition [13]. Ceria 
can act as an active component in many redox-related catalytic reactions 
and has been extensively studied. CeO2 nanocrystals with different 
morphologies, such as nanoctahedra, nanospheres, nanocubes, and 
nanorods (NR) have been studied to determine the effects of nano
particle morphology and exposed crystal planes on the activity of CeO2 
supported catalysts [14,15]. According to others’ and our previous work 
[16–18], CeO2 nanorods (CeO2NR) supported metals or metal oxides (i. 
e. Ru and CuOx) show superior activity in water-gas shift reaction and 
CO oxidation compared to CeO2 nanocubes (CeO2NC) and nanoctahedra 
(CeO2NO) supported metals or metal oxides. 

In addition to utilization of catalytically active supports, surface 
modification of supports and catalysts has been widely adopted to 
further enhance the performance of the existed catalysts system for 
economic and large-scale practical application [19,20]. For instance, 
Gao et al. [21] reported that surface engineering of CeO2NR by chemical 
redox etching resulted in rough, high porosity catalyst surfaces, which 
can increase the catalytic activity for CO oxidation due to the 
enhancement of specific surface area, oxygen vacancy content and the 
surface Ce3+ fraction of CeO2NR. Furthermore, Bae et al. [22] studied 
the catalytic activity of nanoscale zero-valent iron (Fe0) after NaBH4 
etching for reduction of p-nitrophenol and found that NaBH4 initiated 
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the disintegration of iron species into smaller clusters with increased 
reactive surface. 

Inspired by our previous results [23], in this study, CeO2NR was first 
chemically etched by the strong reducing agent NaBH4 (hereinafter 
referred to as mCeO2NR; “m” refers to “modified”) and then mCeO2NR 
supported 10 wt% TM oxide catalysts were prepared and used to study 
the effect of chemical etching on low-temperature CO oxidation. In situ 
diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) 
was used to elucidate the mechanisms of CO adsorption and oxidation. 
The effect of strong interactions between TM oxides and mCeO2NR on 
CO oxidation is discussed. 

2. Experiment 

2.1. Preparation of pristine CeO2NR support 

A hydrothermal method was used to synthesize CeO2NR. According 
to our previous study [5], 8.8 mmol cerium nitrate hexahydrate (Ce 
(NO3)3⋅6H2O) was dissolved in 88 mL deionized water (DI water) and 
48 mmol sodium hydroxide (NaOH) was dissolved in 8 mL of DI water. 
The NaOH solution was added dropwise into the Ce(NO3)3 solution with 
simultaneous mild stirring. After that, the mixture was transferred to a 
Teflon lined stainless-steel autoclave. After hydrothermal reaction at 90 
◦C for 48 h, the sample was filtered and dried at 60 ◦C overnight to 
obtain the dry, pristine CeO2NR powder. 

2.2. NaBH4 chemical etching treatment of CeO2NR powder 

NaBH4 was used to “modify” the pristine CeO2NR powder in the 
following steps. 0.5 g CeO2NR powder was dispersed in 250 mL of DI 
water with mild stirring, and 0.6, 3, 6, 12, or 30 wt% NaBH4 was added 
to the CeO2NR suspension. The CeO2NR/NaBH4 suspension was then 
stirred at room temperature for 12 h. After the solution was filtered and 
dried at 60 ◦C overnight, the powder sample was calcined at 300 ◦C for 5 
h in air. Fig. S1 compared the H2-TPR profiles of mCeO2NR before and 
after calcination. After the calcination, the low temperature surface 
reducibility was significantly improved, which is believed to link with 
the boron (B) diffusion into the lattice of CeO2NR during thermal 
treatment. The samples after calcination were labelled as 0.6, 3, 6, 12, or 
30 wt% NaBH4–CeO2NR. Specially, the 6 wt% NaBH4–CeO2NR was also 
noted as mCeO2NR. 

2.3. Deposition of TM oxide catalysts on modified CeO2NR 

The mCeO2NR powder was used as support to prepare TM oxide 
catalysts. To prepare supported Cu, Ni, Co, Fe, or Mn catalysts, 0.5 g 
mCeO2NR was added to 100 mL DI water with mild magnetic stirring on 
hot plate, and 10 wt% of TM precursors: Cu(NO3)3⋅2.5 H2O: 98%, from 
Acros Organics, NiCl2: 98% from Acros Organics, Co(NO3)2⋅6 H2O: 
98.0–102.0% from Alfa Aesar, Fe(NO3)3⋅9 H2O: 99+% from Acros Or
ganics and Mn(CH3COO)2: 98+% from Alfa Aesar were added to the 
mCeO2NR suspension. Aqueous ammonia (NH3⋅H2O) was added drop
wise into the TM/mCeO2NR suspension to control the pH of the samples 
at ~9. The sample solution was heated to 80 ◦C for 4 h, filtered and dried 
at 80 ◦C overnight. The dry catalyst powders were calcined at 400 ◦C for 
5 h in air to ensure a complete decomposition of TM precursor. The 
calcined samples were denoted as 10M-mCeO2NR (M = Cu, Ni, Co, Fe, or 
Mn for each precursor). 

2.4. Catalyst characterizations 

A Philips X’Pert MPD diffractometer with Cu K α radiation source 
(λ= 1.5418 Å) was used to obtain the X-ray diffraction (XRD) patterns of 
the powder samples. The scanning Bragg’s angle was set at a range of 2θ 
from 5◦ to 90◦ with scanning rate of 0.01◦ per second. The working 
conditions of voltage and current for XRD were 45 kV and 40 mA, 

respectively. 
Transmission electron microscopy (TEM) and scanning transmission 

electron microscopy (STEM) characterization was conducted using a FEI 
Tecnai F20 operated at 200 kV, equipped with a high angle annular dark 
field (HAADF) detector. The samples were dispersed in ethanol and then 
dropped onto an ultrathin holey carbon film supported on copper grid 
(from Ted Pella). The energy-dispersive X-Ray spectroscopy (EDS) 
analysis was employed by the same FEI Tecnai F20 microscope equipped 
with an EDAX detector to collect EDS spectrum and elemental 
distributions. 

The Brunauer-Emmett-Teller method (BET) was used to determine 
the specific surface area of the powder samples by measuring N2 
adsorption/desorption at ~ −196 ◦C through the signal from a thermal 
conductivity detector (TCD) on the Micromeritics AutoChem II 2920 
chemisorption analyzer. The same chemisorption analyzer was also used 
for hydrogen temperature programmed reduction (H2-TPR) and carbon 
monoxide temperature programmed desorption (CO-TPD). The H2-TPR 
measurements were operated in a quartz U-tube reactor equipped with a 
TCD. During the testing, a 10% H2 /Ar gas mixture (flow rate: 50 mL/ 
min) was introduced and the temperature of reactor with the powder 
samples (90 mg) was controlled from 30 ◦C to 900 ◦C at rate of 10 ◦C/ 
min. CO-TPD was performed by introducing a 10% CO/He gas flow 
(flow rate: 50 mL/min) for 1 h at 30 ◦C first and then heating the samples 
from 30 ◦C to 900 ◦C in a He gas flow (flow rate: 50 mL/min) to monitor 
the desorption behavior of various gas species. The sample was pre
treated from room temperature to 400 ◦C under He gas flow to remove 
residual moisture. 

In situ diffuse reflectance infrared spectroscopy (DRIFTS) measure
ments were studied using a Bruker Vertex 70 FTIR spectrometer 
equipped with a Harrick DRIFTS cell and measured using a room tem
perature DLaTGS detector. Before testing, each catalyst was pre-treated 
inside the cell in UHP N2 gas environment with a flow rate of 30 mL/min 
at 200 ◦C for 30 min to remove the surface moisture. After cooling to 
35 ◦C, the background spectrum was collected at the same flow of N2. 
The in-situ DRIFTS spectra were collected with 30 mL/min 5 vol.% CO/ 
95 vol.% Ar mixture feeding gas for 40 min, after which the flow was 
switched back to 30 mL/min UHP N2 gas for 40 min. During the whole 
time, the DRIFTS spectra were recorded every 10 min (continuously) by 
collecting 64 scans with a resolution of 4 cm−1. 

2.5. Catalytic activity and stability test 

The catalytic stability test for CO conversion was carried out with a 
fixed bed plug flow reactor system. Typically, 50 mg of catalyst was 
mixed with quartz wool and loaded into the quartz tube reactor. The 
sample was heated from room temperature to the experimental tem
perature (temperature providing ~90% CO conversion) and was kept at 
that temperature for 24 h under a 1 vol% CO/20 vol% O2/He gas flow 
(flow rate: 30 mL/min corresponding to a weight hour space velocity 
(WHSV) value of 46,000 mL h−1 gcat

−1). The reactants and products were 
analyzed by an online gas chromatograph (SRI multiple gas analyzer GC, 
8610C chassis) system. The conversion of CO (CCO) were defined ac
cording to the following equation: 

Cco(%) = ([CO]in − [CO]out)/[CO]in × 100  

Where [CO]in is the influent CO concentration and [CO]out is the effluent 
CO concentration. 

3. Results and discussion 

3.1. Morphological and structural characterizations 

Part of XRD and Raman data of the CeO2NR supports after NaBH4 
etching and mCeO2NR supported TM oxide catalysts was reported in our 
previous work [23]. All the samples containing mCeO2NR exhibit strong 
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and dominant diffraction peaks related to face-centered cubic fluorite 
CeO2 (JCPDS No. 34–0394) with typical Raman signals including triply 
degenerate F2g vibration near 458 cm−1, doubly degenerate TO vibra
tion near at 255 cm−1 and defects-induced band near 600 cm−1. 

TEM image of mCeO2NR (treated by 6 wt% NaBH4), Fig. 1(a), shows 
that the modified CeO2NR support is 50–100 nm long and 5–7 nm in 
diameter. Fig. 1(b-f) contain TEM images of 10 wt% CuOx, NiOx, CoOx, 
FeOx, and MnOx-mCeO2NR catalysts respectively, and no size or shape 
change is observed for mCeO2NR in any of the catalyst samples. HRTEM 
images of mCeO2NR and 10Cu-mCeO2NR are shown in Fig. 2, displaying 
CuOx embedded in the lattice of CeO2NR, which is indicative of strong 
CuOx-CeO2NR interaction. In these supported catalyst samples, the 
apparent absence of large metal oxide clusters or agglomeration formed 
or found on the mCeO2NR support is consistent with the previous results 
[23], indicating well dispersed TM oxide catalysts on the mCeO2NR 
surface or partial diffusion of TM oxides into mCeO2NR lattice. Fig. S2 
and S3 show the STEM images and EDS elemental mapping for 

10Cu-mCeO2NR and 10Co-mCeO2NR, respectively, to identify the cop
per and cobalt distribution. The EDS mapping results in Fig. S2 and S3 
present the excellent distribution of metal species on mCeO2NR. 

H2-TPR profiles of pristine and NaBH4 modified CeO2NR supports 
are presented in Fig. 3(a). The results of three samples (0.6/3/6 wt% 
NaBH4–CeO2NR) were reported previously and included in Fig. 3(a) for 
comparison [23]. The H2-TPR profile of pristine CeO2NR shows two 
major hydrogen consumption peaks at 480 ◦C and 746 ◦C, which 
correspond to the surface and bulk reduction of CeO2 respectively [23]. 
For NaBH4 modified CeO2NR supports (0.6, 3, 6, 12, and 30 wt% NaBH4 
addition), the onset of hydrogen consumption and surface reduction 
temperature of mCeO2NR clearly shifts to lower temperature. H2-TPR 
peak shift is especially pronounced for the 6 wt% NaBH4–CeO2NR 
sample. The shifted peaks for surface reduction (395 ◦C for 0.6 wt% 
NaBH4–CeO2NR, 394 ◦C for 3 wt% NaBH4–CeO2NR, 336 ◦C for 6 wt% 
NaBH4–CeO2NR, 405 ◦C for 12 wt% NaBH4–CeO2NR and 401 ◦C for 30 
wt% NaBH4–CeO2NR) suggest that the addition of NaBH4 significantly 

Fig. 1. TEM images of (a) mCeO2NR, (b) 10 Cu-mCeO2NR, (c) 10 Ni-mCeO2NR, (d) 10 Co-mCeO2NR, (e) 10 Fe-mCeO2NR and (f) 10 Mn-mCeO2NR.  

Fig. 2. HRTEM images of (a) mCeO2NR and (b) 10 Cu-mCeO2NR.  
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Fig. 3. (a) H2-TPR profiles of the pristine and modified CeO2NR supports by 0.6/3/6/12/30 wt% NaBH4 addition (The data for 0.6–6 wt% NaBH4–CeO2NR samples 
was reprinted from ref [23]), and (b) CO-TPD profiles for mCeO2NR supported TM oxide catalysts (It should be noted that the scale of TCD signal for 10 Cu-mCeO2NR 
is remarkably larger than others). 
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Table 1 
BET surface area and H2 consumption of mCeO2NR with different amounts of NaBH4 addition.  

Sample BET surface 
aream2/g 

H2 consumption (30 ◦C to 600 ◦C) 
μmol/g 

H2 consumption (600 ◦C to 900 ◦C) 
μmol/g 

H2 consumption (total) 
μmol/g 

CeO2 NR 120.4 455.8 606.2 1062.0 
0.6 wt% NaBH4–CeO2NR 124.4 741.2 558.2 1299.4 
3 wt% NaBH4–CeO2NR 121.2 740.4 511.1 1251.5 
6 wt% NaBH4–CeO2NR(mCeO2 

NR) 
120.4 1026.2 553.8 1580.0 

12 wt% NaBH4–CeO2NR 114.8 776.9 447.9 1224.8 
30 wt% NaBH4–CeO2NR 98.5 737.6 516.7 1254.3  

Fig. 4. In situ DRIFTS spectra of CO adsorption on (a) pristine CeO2NR and (b) surface modified CeO2NR.  
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transforms the surface structure and/or chemical composition of 
CeO2NR. Combination of H2-TPR data with previous XPS analysis [23], 
indicates that the low temperature reduction peaks may be associated 
with the existence of boron species on mCeO2NR surface, where boron 
species might partially involve the surface reduction of CeO2 NR. 
Compared to the 6 wt% NaBH4–CeO2NR, the CeO2NR supports etched 
by higher concentrations of NaBH4 (12 and 30 wt%) demonstrate lower 
BET surface area and higher reduction temperatures, indicating that 
excess NaBH4 addition inhibits the oxygen release of etched CeO2NR 
surface. A possible explanation of the declined reducibility with extra 
NaBH4 addition is due to the rapid heat release and cluster agglomera
tion of CeO2 induced by violent hydrolysis reaction of large amount of 
NaBH4. The total H2 consumption of pristine CeO2NR, 0.6, 3, 6, 12, and 
30 wt% NaBH4–CeO2NR, summarized in Table 1, indicates that NaBH4 
etching is an effective surface modification method for preparing highly 
reducible catalyst support possessing both lower reduction temperature 
and higher hydrogen consumption compared to the pristine sample, 
where the H2 consumption from 600 to 900 ◦C is assigned as the bulk 
reduction of CeO2. This observation is especially true for the H2 con
sumption at low temperature range (30 ◦C to 600 ◦C, which refers to the 
surface reduction range), where the 6 wt% NaBH4–CeO2NR sample 
showed 125% higher consumption than the pristine CeO2NR. Based on 
the H2-TPR performance, 6 wt% NaBH4–CeO2NR was chosen as the 
support material (mCeO2NR) for the study of gas adsorption and 
desorption, activity stability test, and in situ DRIFTS study of mCeO2NR 
supported TM oxide catalysts. 

3.2. Temperature programmed desorption (TPD) 

CO-TPD profiles of mCeO2NR supported TM oxide catalysts are 
presented in Fig. 3(b). The CO2 desorption peaks in the CO-TPD profiles 
of supported TM oxide catalysts can be divided into three different 
temperature regions [24–27]. The peak region I, room temperature to 
180 ◦C, was assigned to the CO2 desorption from CO oxidation over 
active surface oxygen species, and the peaks in region II, 180 ◦C to 
650 ◦C, were assigned to the CO2 desorption from CO oxidation through 
lattice oxygen species of CeO2 and the conversion of surface and inter
face carbonates. The peaks in region III, 650 ◦C to 800 ◦C, correspond to 

the CO2 desorption from decomposition of carbonate species. It can be 
observed that all supported TM catalysts show higher desorption in
tensity in region I than that of mCeO2NR, indicating the enhanced CO2 
desorption at low temperature region due to TM-CeO2NR interaction. 
The order of relative intensities of peak in the region I is 10Cu-mCeO2NR 
>> 10Ni-mCeO2NR > 10Co-mCeO2NR > 10Mn-mCeO2NR > 10Fe-m
CeO2NR. Based upon the CO-TPD profiles, the amount of active reaction 
sites for CO oxidation over 10Cu-mCeO2NR surface is significantly 
higher than for other TM oxides and the CO2 product can be easily 
desorbed. 

3.3. In situ DRIFTS study 

In situ CO adsorption DRIFTS was performed to identify the active 
species and sites for catalytic oxidation of CO using mCeO2NR and 
mCeO2NR supported TM oxide catalysts. The in situ CO adsorption 
DRIFTS spectra of both pristine CeO2NR and mCeO2NR are presented in 
Fig. 4. As a result of CO gas flow, the bands at ca 2170 and 2120 cm−1 are 
assigned to the free gaseous CO in the testing chamber [28]. After 40 
mins of CO flow, N2 flow was started to remove the gas-phase CO and 
any weakly adsorbed CO species (including physiosorbed species). CO 
adsorbed at the surface oxygen sites of CeO2NR to form various surface 
species, as shown in Fig. 4, including bicarbonate (v(CO3) at 1609 and 
1615 cm−1) [29,30], bidentate carbonate (v(CO3) at 1568, 1303 and 
1298 cm−1) [29,31], monodentate carbonate (v(CO3) at 1540 and 1509 
cm−1), formate (v(OCO) at 1365 cm−1) [30,32], bridged carbonate (v 
(CO3) at 1216 cm−1) [29,31] and unassigned carbonate (v(CO3) at 1422 
cm−1). There is a strong band at 1591 cm−1 in the mCeO2NR sample 
spectra, which was attributed to the polydentate carbonate [33]. Ac
cording to Vayssilov et al. [34], polydentate carbonate associated with 
CeO2 only forms in the vicinity of Ce(III) or oxygen vacancies. The 
formation of polydentate carbonate species is consistent with our pre
vious results of the XPS analysis for the same sample [35] because 
mCeO2NR has a higher concentration of Ce(III) and oxygen vacancies 
than the pristine CeO2NR sample. The DRIFTS band assignments of 
CeO2NR supports before and after NaBH4 etching are summarized in 
Table 2. 

Notably, shown in Fig. 5, when the CO flow was started to purge into 

Table 2 
Peak assignments of in situ DRIFTS spectra for CeO2NR supports before and after NaBH4 etching.  

Wavenumber (cm¡1) Description Ref 

2170, 2120 CO gas [31,32] 
1609, 1615 bicarbonate [32,33] 
1591 polydentate carbonate 

[36,37] 

1568, 1303, 1298 bidentate carbonate 
[32,34] 

1540, 1509 mono dentate carbonate 
[33,35] 

1365 formates 
[33,35] 

1216 bridged carbonate 
[32,34] 

1422 unassigned   
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Fig. 5. In situ DRIFTS spectra of CO adsorption of pristine CeO2NR and modified CeO2NR when (a) CO gas feeding started and (b) N2 gas feeding finished.  
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the system, the CO-DRIFTS data for CeO2NR and mCeO2NR presents that 
the CO adsorbed much faster and higher concentration on the surface of 
mCeO2NR than on the surface of pristine CeO2NR, indicating higher 
number of CO adsorption sites and easy formation of polydentate car
bonate type species on mCeO2NR. This is in agreement with the results 
of H2-TPR and CO catalytic oxidation [23]. Compared to CeO2NR (Fig. 5 
(b)), the very weak band at ca 1297 cm−1 for mCeO2NR reveals a ten
dency for less formation of that type of bidentate carbonate. One 
possible explanation for these observations is that, the NaBH4 etched 
CeO2NR with more surface defects and active sites prefers to react with 
CO to form polydentate carbonate, compared to the formation of 
bidentate carbonate. 

The in situ CO adsorption DRIFTS spectra of 10Cu-mCeO2NR, 10Ni- 
mCeO2NR, 10Co-mCeO2NR, 10Fe-mCeO2NR and 10Mn-mCeO2NR are 
presented in Fig. 6. Only the Cu catalyst sample (Fig. 6(a)) demonstrates 
a strong band at 2110 cm−1 that can be mainly assigned to linear 
adsorbed CO with Cu(I) [36–38], which agrees with others’ work that 
CO is difficult to linearly adsorb to transition metal catalysts except Cu 
[39,40]. The presence of linearly adsorbed CO on the Cu sample explains 
why Cu-based catalysts demonstrate excellent low temperature CO 
conversion: the large amount of linearly adsorbed CO on catalysts sur
face can easily transfer and react with adjacent oxygen to form CO2 even 
near room temperature. 

Similar to mCeO2NR, there were various adsorption peaks of car
bonate species and more defined profiles were observed in the 
mCeO2NR supported TM oxide catalysts including bicarbonate [30,41] 
(v(CO3) at 1615), bidentate carbonate [37,42] (v(CO3) at 1579, 1568, 
1564, and 1559 cm−1), monodentate carbonate [37,43,44] (v(CO3) at 
1543, 1530 and 1507 cm−1) and bridged carbonate [45–47] (v(CO3) at 
1392, 1217 cm−1). 

Fig. 7 compares the in situ CO adsorption DRIFTS spectra of the 
mCeO2NR supported TM oxide catalysts after 40 min of UHP N2 gas 
flow. The order of intensity for linear adsorbed CO (2110 cm−1) plus 
bicarbonate (~ 1615 cm−1) follows: 10 Cu-mCeO2NR >> 10 Ni- 
mCeO2NR > 10 Co-mCeO2NR> 10 Mn-mCeO2NR> 10 Fe-mCeO2NR, 
which is consistent with the CO-TPD results (Fig. 3). And the bands 
around 1579 to 1559 cm−1 could be assigned to bidentate carbonate, 
where 1543 to 1507 cm−1 is related to polydentate. The bands at 1392 
cm−1 could be assigned to bridged carbonate. In addition, the order of 
intensity for the bridged carbonate is 10 Co-mCeO2NR > 10 Mn- 
mCeO2NR> 10 Ni-mCeO2NR> 10 Fe-mCeO2NR, which agrees with the 
results of CO oxidation performance [23]. This may indicate that the 

bridged carbonate at 1392 cm−1 is associated with the CO catalytic 
oxidation to CO2. According to Li et al. [48], when compared with 
bidentate carbonate, monodentate carbonate, and inorganic carbox
ylate, bridged carbonate species had the lowest thermal stability, and 
therefore were most easily decomposed to CO2. It should be noted that 
for 10Cu-mCeO2NR, the adsorption spectrum possesses not only the 
strongest peak of bridged carbonate, but also the unique linear CO gas 
adsorption, where the latter one is believed to be the main reason for its 
excellent CO catalytic oxidation performance. The DRIFTS band as
signments of mCeO2NR supported TM catalysts are summarized in 
Table 3. 

3.4. Stability test 

The temperature at 90% CO conversion was used as a criterion for 
evaluating the stability of the prepared catalysts. The test temperatures 
for CuOx-mCeO2NR, NiOx-mCeO2NR; CoOx-mCeO2NR, FeOx-mCeO2NR, 
are MnOx-mCeO2NR were 122 ◦C, 243 ◦C, 199 ◦C, 364 ◦C, and 254 ◦C, 
respectively. The stability tests at different temperatures to obtain 
~90% CO conversion of each mCeO2NR supported TM oxide catalyst are 
presented in Fig. 8, which shows that the CO conversion for all five 
catalysts was nearly unchanged during the dwell time of 24 h, indicating 
the NaBH4 etching process is an effective and stable modification 
method to enhance the catalyst activity and durability of CO oxidation. 
In addition, TEM analysis after thermal stability tests shows these 
catalyst powders inherit the morphology of the untreated powders, 
especially for the mCeO2NR supports. 

4. Conclusions 

In this work, CeO2NR were chemically etched by various contents 
(0.6 wt%−30 wt%) of the strong reducing agent NaBH4. Compared with 
non-etched CeO2NR, mCeO2NR support exhibited superior reducibility 
at low temperature and lower onset temperature for hydrogen con
sumption. According to the surface reduction temperature and hydrogen 
consumption, it was determined that the optimal NaBH4 concentration 
of chemical etching of CeO2NR was ~6 wt% NaBH4 addition. Transition 
metal oxides (TM: Cu, Co, Ni, Fe and Mn) were loaded on the 6 wt% 
NaBH4 etched CeO2NR support. And the in situ CO-DRIFTS results show 
the outstanding CO adsorption ability of mCeO2NR, which is related to 
one strong CO adsorption mode for polydentate carbonates formation 
found as the result of NaBH4 etching. And the existence of this poly

Fig. 6. In situ DRIFTS spectra of CO adsorption on (a) 10Cu-mCeO2NR, (b) 10Ni-mCeO2NR, (c) 10Co-mCeO2NR, (d) 10Fe-mCeO2NR, and (e) 10Mn-mCeO2NR.  
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Fig. 6. (continued). 
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Fig. 6. (continued). 
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dentate carbonate species can also explain the effect of NaBH4 etching 
on CeO2NR for CO oxidation: the extra generation of surface defects 
including Ce3+ and oxygen vacancy by etching process enhances the CO 
adsorption at low temperature, which further accelerates the reaction of 
CO to CO2. Only the Cu oxide catalyst demonstrated a linearly adsorbed 
CO molecule near room temperature, indicating excellent CO adsorption 
that can promote low temperature catalytic CO oxidation. 
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Fig. 7. In situ DRIFTS spectra of CO adsorption for mCeO2NR supported TM oxide catalysts.  

Table 3 
Peak assignments of in situ DRIFTS spectra for mCeO2NR supported TM catalysts.  

Wavenumber (cm¡1) Description Ref 

2170, 2120 CO gas [41,42] 
2110 CO–Cu 

[38-40] 

1615 bicarbonate [33,43] 
1579, 1568, 1564, 1559 bidentate carbonate 

[39,44] 

1543, 1530, 1507 mono dentate carbonate 
[39,45,47] 

1392, 1217 bridged carbonate [47-49]  
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