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In this work, hydrothermally synthesized CeO3 nanorods (CeO2NR) were chemically etched by strong reducing
agent NaBH4 with 0.6~30 wt% addition, and further transition metal (TM) oxides (TM: Cu, Co, Ni, Fe and Mn)
were loaded on the surface modified 6 wt% NaBH4—CeOsNR powder (mCeO,NR) to prepare mCeOs;NR sup-
ported TM oxide catalysts. Both mCeOsNR supports (treated by 0.6-30 wt% NaBH4) and mCeO2NR supported
TM oxide catalysts were employed to investigate the effect of chemical etching on their surface structure, CO
adsorption, CO, desorption and catalytic performance. Compared with pristine CeO,NR, one strong CO
adsorption band for polydentate carbonate is found from in situ DRITFS as a result of NaBH4 etching, which can
explain the enhanced low temperature reducibility and catalytic performance of mCeO;NR supports and
mCeO2NR supported TM oxide catalysts. The vibrational band signals of bicarbonate, monodentate/bidentate/
polydentate carbonate and bridged carbonate are detected in all mCeO,NR supported TM catalysts and the effect
of CO adsorption mode on CO oxidation activity is discussed.

1. Introduction

Several transition metals (TM) oxides or their mixture, including
MnOy, CuOy, NiOy, CoOy, and FeOy, have been reported as active, cost-
effective and sustainable catalysts to replace costly noble metals (Pt, Rh,
and Au etc.) for low-temperature CO oxidation reactions and attracted
great attention in recent years [1-5]. Among TM oxide catalysts,
copper-containing catalysts or supported copper oxides, including
CuO/ZrOy, CuO/Si03, CuO/Al;03 and so on, show superior
low-temperature activity and thermal stability [6-9], although the un-
derlying mechanism is not well understood. In order to meet increasing
emissions control requirements including EPA regulations challenges,
low conversion, poisoning resistance, and thermal stability must be
overcome before TM oxide catalysts can be used industrially [10]. It has
been reported that TM oxides and reducible oxide supports (CeOz and
TiO3) exhibit strong catalyst-support interactions through oxide solid
solutions or electronic perturbations, unlike TM oxide catalysts sup-
ported on irreducible oxides (ZrOs, SiO, and Aly0O3) [11,12]. The TM
oxide catalysts on reducible oxide supports have demonstrated excellent
low temperature activity and are potential candidates to replace noble
metal catalysts.

Ceria (CeOy) is well-known for its excellent oxygen storage capacity
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and high redox ability via a reversible Ce** to Ce®* transition [13]. Ceria
can act as an active component in many redox-related catalytic reactions
and has been extensively studied. CeO, nanocrystals with different
morphologies, such as nanoctahedra, nanospheres, nanocubes, and
nanorods (NR) have been studied to determine the effects of nano-
particle morphology and exposed crystal planes on the activity of CeO,
supported catalysts [14,15]. According to others’ and our previous work
[16-18], CeOy nanorods (CeO,NR) supported metals or metal oxides (i.
e. Ru and CuOy) show superior activity in water-gas shift reaction and
CO oxidation compared to CeO5 nanocubes (CeO;NC) and nanoctahedra
(CeO2NO) supported metals or metal oxides.

In addition to utilization of catalytically active supports, surface
modification of supports and catalysts has been widely adopted to
further enhance the performance of the existed catalysts system for
economic and large-scale practical application [19,20]. For instance,
Gao et al. [21] reported that surface engineering of CeO2NR by chemical
redox etching resulted in rough, high porosity catalyst surfaces, which
can increase the catalytic activity for CO oxidation due to the
enhancement of specific surface area, oxygen vacancy content and the
surface Ce®" fraction of CeOsNR. Furthermore, Bae et al. [22] studied
the catalytic activity of nanoscale zero-valent iron (FeO) after NaBHy4
etching for reduction of p-nitrophenol and found that NaBH, initiated

Received 6 February 2021; Received in revised form 24 April 2021; Accepted 5 May 2021

2468-8231/© 2021 Elsevier B.V. All rights reserved.


mailto:rwang@eng.ua.edu
www.sciencedirect.com/science/journal/24688231
https://www.journals.elsevier.com/molecular-catalysis
https://doi.org/10.1016/j.mcat.2021.111629
https://doi.org/10.1016/j.mcat.2021.111629
https://doi.org/10.1016/j.mcat.2021.111629
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mcat.2021.111629&domain=pdf

Y. Wang et al.

the disintegration of iron species into smaller clusters with increased
reactive surface.

Inspired by our previous results [23], in this study, CeO;NR was first
chemically etched by the strong reducing agent NaBH4 (hereinafter
referred to as mCeO,NR; “m” refers to “modified”) and then mCeO,NR
supported 10 wt% TM oxide catalysts were prepared and used to study
the effect of chemical etching on low-temperature CO oxidation. In situ
diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)
was used to elucidate the mechanisms of CO adsorption and oxidation.
The effect of strong interactions between TM oxides and mCeO,NR on
CO oxidation is discussed.

2. Experiment
2.1. Preparation of pristine CeO2NR support

A hydrothermal method was used to synthesize CeO;NR. According
to our previous study [5], 8.8 mmol cerium nitrate hexahydrate (Ce
(NO3)3-6H50) was dissolved in 88 mL deionized water (DI water) and
48 mmol sodium hydroxide (NaOH) was dissolved in 8 mL of DI water.
The NaOH solution was added dropwise into the Ce(NO3)3 solution with
simultaneous mild stirring. After that, the mixture was transferred to a
Teflon lined stainless-steel autoclave. After hydrothermal reaction at 90
°C for 48 h, the sample was filtered and dried at 60 °C overnight to
obtain the dry, pristine CeOoNR powder.

2.2. NaBH4 chemical etching treatment of CeO2NR powder

NaBH4 was used to “modify” the pristine CeO2NR powder in the
following steps. 0.5 g CeO,NR powder was dispersed in 250 mL of DI
water with mild stirring, and 0.6, 3, 6, 12, or 30 wt% NaBH4 was added
to the CeO5NR suspension. The CeO,NR/NaBH,4 suspension was then
stirred at room temperature for 12 h. After the solution was filtered and
dried at 60 °C overnight, the powder sample was calcined at 300 °C for 5
h in air. Fig. S1 compared the Hy-TPR profiles of mCeO,;NR before and
after calcination. After the calcination, the low temperature surface
reducibility was significantly improved, which is believed to link with
the boron (B) diffusion into the lattice of CeO;NR during thermal
treatment. The samples after calcination were labelled as 0.6, 3, 6, 12, or
30 wt% NaBH4—CeO,NR. Specially, the 6 wt% NaBH4—CeO,NR was also
noted as mCeO,NR.

2.3. Deposition of TM oxide catalysts on modified CeO2NR

The mCeO,;NR powder was used as support to prepare TM oxide
catalysts. To prepare supported Cu, Ni, Co, Fe, or Mn catalysts, 0.5 g
mCeO2NR was added to 100 mL DI water with mild magnetic stirring on
hot plate, and 10 wt% of TM precursors: Cu(NO3)3-2.5 Hy0: 98%, from
Acros Organics, NiCly: 98% from Acros Organics, Co(NOs3)2-6 HyO:
98.0-102.0% from Alfa Aesar, Fe(NO3)3-9 HyO: 99+% from Acros Or-
ganics and Mn(CH3COO)s: 98+% from Alfa Aesar were added to the
mCeO,NR suspension. Aqueous ammonia (NH3-H;0) was added drop-
wise into the TM/mCeO,NR suspension to control the pH of the samples
at ~9. The sample solution was heated to 80 °C for 4 h, filtered and dried
at 80 °C overnight. The dry catalyst powders were calcined at 400 °C for
5 h in air to ensure a complete decomposition of TM precursor. The
calcined samples were denoted as 10M-mCeO2NR (M = Cu, Ni, Co, Fe, or
Mn for each precursor).

2.4. Catalyst characterizations

A Philips X'Pert MPD diffractometer with Cu K a radiation source
(A= 1.5418 A) was used to obtain the X-ray diffraction (XRD) patterns of
the powder samples. The scanning Bragg’s angle was set at a range of 20
from 5° to 90° with scanning rate of 0.01° per second. The working
conditions of voltage and current for XRD were 45 kV and 40 mA,
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respectively.

Transmission electron microscopy (TEM) and scanning transmission
electron microscopy (STEM) characterization was conducted using a FEI
Tecnai F20 operated at 200 kV, equipped with a high angle annular dark
field (HAADF) detector. The samples were dispersed in ethanol and then
dropped onto an ultrathin holey carbon film supported on copper grid
(from Ted Pella). The energy-dispersive X-Ray spectroscopy (EDS)
analysis was employed by the same FEI Tecnai F20 microscope equipped
with an EDAX detector to collect EDS spectrum and elemental
distributions.

The Brunauer-Emmett-Teller method (BET) was used to determine
the specific surface area of the powder samples by measuring Ny
adsorption/desorption at ~ —196 °C through the signal from a thermal
conductivity detector (TCD) on the Micromeritics AutoChem II 2920
chemisorption analyzer. The same chemisorption analyzer was also used
for hydrogen temperature programmed reduction (H,-TPR) and carbon
monoxide temperature programmed desorption (CO-TPD). The Hy-TPR
measurements were operated in a quartz U-tube reactor equipped with a
TCD. During the testing, a 10% Hy /Ar gas mixture (flow rate: 50 mL/
min) was introduced and the temperature of reactor with the powder
samples (90 mg) was controlled from 30 °C to 900 °C at rate of 10 °C/
min. CO-TPD was performed by introducing a 10% CO/He gas flow
(flow rate: 50 mL/min) for 1 h at 30 °C first and then heating the samples
from 30 °C to 900 °C in a He gas flow (flow rate: 50 mL/min) to monitor
the desorption behavior of various gas species. The sample was pre-
treated from room temperature to 400 °C under He gas flow to remove
residual moisture.

In situ diffuse reflectance infrared spectroscopy (DRIFTS) measure-
ments were studied using a Bruker Vertex 70 FTIR spectrometer
equipped with a Harrick DRIFTS cell and measured using a room tem-
perature DLaTGS detector. Before testing, each catalyst was pre-treated
inside the cell in UHP N gas environment with a flow rate of 30 mL/min
at 200 °C for 30 min to remove the surface moisture. After cooling to
35 °C, the background spectrum was collected at the same flow of Nj.
The in-situ DRIFTS spectra were collected with 30 mL/min 5 vol.% CO/
95 vol.% Ar mixture feeding gas for 40 min, after which the flow was
switched back to 30 mL/min UHP N, gas for 40 min. During the whole
time, the DRIFTS spectra were recorded every 10 min (continuously) by

collecting 64 scans with a resolution of 4 cm ™.

2.5. Catalytic activity and stability test

The catalytic stability test for CO conversion was carried out with a
fixed bed plug flow reactor system. Typically, 50 mg of catalyst was
mixed with quartz wool and loaded into the quartz tube reactor. The
sample was heated from room temperature to the experimental tem-
perature (temperature providing ~90% CO conversion) and was kept at
that temperature for 24 h under a 1 vol% CO/20 vol% Oy/He gas flow
(flow rate: 30 mL/min corresponding to a weight hour space velocity
(WHSV) value of 46,000 mL h! g;,lt). The reactants and products were
analyzed by an online gas chromatograph (SRI multiple gas analyzer GC,
8610C chassis) system. The conversion of CO (Cco) were defined ac-
cording to the following equation:

Coo(%) = ([CO};, - [CO,,,)/[CO];, x 100

in

Where [CO]jj is the influent CO concentration and [CO] oy is the effluent
CO concentration.

3. Results and discussion
3.1. Morphological and structural characterizations
Part of XRD and Raman data of the CeO,NR supports after NaBH,4

etching and mCeO,NR supported TM oxide catalysts was reported in our
previous work [23]. All the samples containing mCeO3NR exhibit strong
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(a) mCeO,NR
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(b) 10Cu-mCeO,NR
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(c) 10Ni-mCeO,NR

Fig. 1. TEM images of (a) mCeO,NR, (b) 10 Cu-mCeO3NR, (c) 10 Ni-mCeO,NR, (d) 10 Co-mCeO;,NR, (e) 10 Fe-mCeO,NR and (f) 10 Mn-mCeO,NR.

(a) mCeO,NR’

CE0;1111)
0:32nm 4}

Fig. 2. HRTEM images of (a) mCeO,NR and (b) 10 Cu-mCeO,NR.

and dominant diffraction peaks related to face-centered cubic fluorite
CeO; (JCPDS No. 34-0394) with typical Raman signals including triply
degenerate Fpg vibration near 458 em™!, doubly degenerate TO vibra-
tion near at 255 cm ™! and defects-induced band near 600 cm L.

TEM image of mCeO>NR (treated by 6 wt% NaBHjy), Fig. 1(a), shows
that the modified CeO2NR support is 50-100 nm long and 5-7 nm in
diameter. Fig. 1(b-f) contain TEM images of 10 wt% CuOy, NiOy, CoOx,
FeOyx, and MnOx-mCeO,NR catalysts respectively, and no size or shape
change is observed for mCeO5NR in any of the catalyst samples. HRTEM
images of mCeO2NR and 10Cu-mCeO,NR are shown in Fig. 2, displaying
CuOy embedded in the lattice of CeO;NR, which is indicative of strong
CuOx-CeOoNR interaction. In these supported catalyst samples, the
apparent absence of large metal oxide clusters or agglomeration formed
or found on the mCeO,NR support is consistent with the previous results
[23], indicating well dispersed TM oxide catalysts on the mCeO;NR
surface or partial diffusion of TM oxides into mCeO,NR lattice. Fig. S2
and S3 show the STEM images and EDS elemental mapping for

10Cu-mCeO2NR and 10Co-mCeO,NR, respectively, to identify the cop-
per and cobalt distribution. The EDS mapping results in Fig. S2 and S3
present the excellent distribution of metal species on mCeO2NR.
Hy-TPR profiles of pristine and NaBH4 modified CeO;NR supports
are presented in Fig. 3(a). The results of three samples (0.6/3/6 wt%
NaBH4—CeO3NR) were reported previously and included in Fig. 3(a) for
comparison [23]. The Hy-TPR profile of pristine CeO2NR shows two
major hydrogen consumption peaks at 480 °C and 746 °C, which
correspond to the surface and bulk reduction of CeO5 respectively [23].
For NaBH4 modified CeO2NR supports (0.6, 3, 6, 12, and 30 wt% NaBH4
addition), the onset of hydrogen consumption and surface reduction
temperature of mCeO,NR clearly shifts to lower temperature. Ho-TPR
peak shift is especially pronounced for the 6 wt% NaBH;—CeO,NR
sample. The shifted peaks for surface reduction (395 °C for 0.6 wt%
NaBH4—CeO3NR, 394 °C for 3 wt% NaBH4—CeO2NR, 336 °C for 6 wt%
NaBH4—CeO2NR, 405 °C for 12 wt% NaBH4—CeO,NR and 401 °C for 30
wt% NaBH4—CeO,NR) suggest that the addition of NaBHy significantly
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Fig. 3. (a) H,-TPR profiles of the pristine and modified CeO,NR supports by 0.6/3/6/12/30 wt% NaBH,4 addition (The data for 0.6-6 wt% NaBH,—CeO,NR samples
was reprinted from ref [23]), and (b) CO-TPD profiles for mCeO,NR supported TM oxide catalysts (It should be noted that the scale of TCD signal for 10 Cu-mCeO,NR
is remarkably larger than others).
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Table 1

BET surface area and H, consumption of mCeO,NR with different amounts of NaBH, addition.
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Sample BET surface H, consumption (30 °C to 600 °C) H, consumption (600 °C to 900 °C) H, consumption (total)
aream?/g pmol/g pmol/g pmol/g
CeOy NR 120.4 455.8 606.2 1062.0
0.6 wt% NaBH,—CeO,NR 124.4 741.2 558.2 1299.4
3 wt% NaBH4,—CeO;NR 121.2 740.4 511.1 1251.5
6 wt% NaBH4—CeO;NR(mCeOy 120.4 1026.2 553.8 1580.0
NR)
12 wt% NaBH4—CeO,;NR 114.8 776.9 447.9 1224.8
30 wt% NaBH4—CeO,NR 98.5 737.6 516.7 1254.3
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Fig. 4. In situ DRIFTS spectra of CO adsorption on (a) pristine CeO;NR and (b) surface modified CeO2NR.
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Table 2
Peak assignments of in situ DRIFTS spectra for CeO,NR supports before and after NaBH, etching.
Wavenumber (cm~!) Description Ref
2170, 2120 CO gas [31,32]
1609, 1615 bicarbonate [32,33]
1591 polydentate carbonate .
[36,37]
Ce—O0 ~
Ce—0O0—C
Ce—O0—
1568, 1303, 1298 bidentate carbonate
0 [32,34]
— N~
Ce[;==C=0
1540, 1509 mono dentate carbonate .
o [33,35]
=z
Ce—0~ "
o0
1365 formates (33.35]
Ce—O ~~cH
Ce—o—
1216 bridged carbonate .
[32,34]
Ce—0 ~— c=0
Ce—o—""
1422 unassigned

transforms the surface structure and/or chemical composition of
CeO2NR. Combination of Ho-TPR data with previous XPS analysis [23],
indicates that the low temperature reduction peaks may be associated
with the existence of boron species on mCeO,NR surface, where boron
species might partially involve the surface reduction of CeO, NR.
Compared to the 6 wt% NaBH4—CeO,NR, the CeO2NR supports etched
by higher concentrations of NaBH,4 (12 and 30 wt%) demonstrate lower
BET surface area and higher reduction temperatures, indicating that
excess NaBH4 addition inhibits the oxygen release of etched CeO;NR
surface. A possible explanation of the declined reducibility with extra
NaBH, addition is due to the rapid heat release and cluster agglomera-
tion of CeO; induced by violent hydrolysis reaction of large amount of
NaBHy, The total Hy consumption of pristine CeO,NR, 0.6, 3, 6, 12, and
30 wt% NaBH4—CeO,NR, summarized in Table 1, indicates that NaBH4
etching is an effective surface modification method for preparing highly
reducible catalyst support possessing both lower reduction temperature
and higher hydrogen consumption compared to the pristine sample,
where the Hy consumption from 600 to 900 °C is assigned as the bulk
reduction of CeO,. This observation is especially true for the Hy con-
sumption at low temperature range (30 °C to 600 °C, which refers to the
surface reduction range), where the 6 wt% NaBH4CeO2NR sample
showed 125% higher consumption than the pristine CeO,NR. Based on
the Hy-TPR performance, 6 wt% NaBH4—CeOoNR was chosen as the
support material (mCeOyNR) for the study of gas adsorption and
desorption, activity stability test, and in situ DRIFTS study of mCeO;NR
supported TM oxide catalysts.

3.2. Temperature programmed desorption (TPD)

CO-TPD profiles of mCeO;NR supported TM oxide catalysts are
presented in Fig. 3(b). The CO, desorption peaks in the CO-TPD profiles
of supported TM oxide catalysts can be divided into three different
temperature regions [24-27]. The peak region I, room temperature to
180 °C, was assigned to the CO5 desorption from CO oxidation over
active surface oxygen species, and the peaks in region II, 180 °C to
650 °C, were assigned to the CO, desorption from CO oxidation through
lattice oxygen species of CeO5 and the conversion of surface and inter-
face carbonates. The peaks in region III, 650 °C to 800 °C, correspond to

the CO, desorption from decomposition of carbonate species. It can be
observed that all supported TM catalysts show higher desorption in-
tensity in region I than that of mCeO,NR, indicating the enhanced CO,
desorption at low temperature region due to TM-CeO2NR interaction.
The order of relative intensities of peak in the region I is 10Cu-mCeO,;NR
>> 10Ni-mCeO3NR > 10Co-mCeO2NR > 10Mn-mCeOsNR > 10Fe-m-
CeO2NR. Based upon the CO-TPD profiles, the amount of active reaction
sites for CO oxidation over 10Cu-mCeOyNR surface is significantly
higher than for other TM oxides and the CO; product can be easily
desorbed.

3.3. In situ DRIFTS study

In situ CO adsorption DRIFTS was performed to identify the active
species and sites for catalytic oxidation of CO using mCeO;NR and
mCeO,NR supported TM oxide catalysts. The in situ CO adsorption
DRIFTS spectra of both pristine CeOoNR and mCeO,NR are presented in
Fig. 4. As a result of CO gas flow, the bands at ca 2170 and 2120 cm ™! are
assigned to the free gaseous CO in the testing chamber [28]. After 40
mins of CO flow, Ny flow was started to remove the gas-phase CO and
any weakly adsorbed CO species (including physiosorbed species). CO
adsorbed at the surface oxygen sites of CeO2NR to form various surface
species, as shown in Fig. 4, including bicarbonate (v(CO3) at 1609 and
1615 ecm™) [29,30], bidentate carbonate (»(CO3) at 1568, 1303 and
1298 cm™ 1) [29,31], monodentate carbonate (v(CO3) at 1540 and 1509
crn_l), formate (v(OCO) at 1365 cm_l) [30,32], bridged carbonate (v
(CO3) at 1216 cm 1) [29,31] and unassigned carbonate (v(CO3) at 1422
em™ ). There is a strong band at 1591 em! in the mCeO,NR sample
spectra, which was attributed to the polydentate carbonate [33]. Ac-
cording to Vayssilov et al. [34], polydentate carbonate associated with
CeO; only forms in the vicinity of Ce(Ill) or oxygen vacancies. The
formation of polydentate carbonate species is consistent with our pre-
vious results of the XPS analysis for the same sample [35] because
mCeO,NR has a higher concentration of Ce(Ill) and oxygen vacancies
than the pristine CeO3NR sample. The DRIFTS band assignments of
CeO,NR supports before and after NaBHy etching are summarized in
Table 2.

Notably, shown in Fig. 5, when the CO flow was started to purge into
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Fig. 5. In situ DRIFTS spectra of CO adsorption of pristine CeO,NR and modified CeO,NR when (a) CO gas feeding started and (b) N, gas feeding finished.
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Fig. 6. In situ DRIFTS spectra of CO adsorption on (a) 10Cu-mCeO,NR, (b) 10Ni-mCeO,NR, (¢) 10Co-mCeO,NR, (d) 10Fe-mCeO,NR, and (e) 10Mn-mCeO,NR.

the system, the CO-DRIFTS data for CeO2NR and mCeO5NR presents that
the CO adsorbed much faster and higher concentration on the surface of
mCeO2NR than on the surface of pristine CeO3NR, indicating higher
number of CO adsorption sites and easy formation of polydentate car-
bonate type species on mCeO,NR. This is in agreement with the results
of Ho-TPR and CO catalytic oxidation [23]. Compared to CeO,NR (Fig. 5
(b)), the very weak band at ca 1297 cm ! for mCeOsNR reveals a ten-
dency for less formation of that type of bidentate carbonate. One
possible explanation for these observations is that, the NaBH4 etched
CeO2NR with more surface defects and active sites prefers to react with
CO to form polydentate carbonate, compared to the formation of
bidentate carbonate.

The in situ CO adsorption DRIFTS spectra of 10Cu-mCeO,NR, 10Ni-
mCeO,NR, 10Co-mCeOsNR, 10Fe-mCeOsNR and 10Mn-mCeO,NR are
presented in Fig. 6. Only the Cu catalyst sample (Fig. 6(a)) demonstrates
a strong band at 2110 cm™! that can be mainly assigned to linear
adsorbed CO with Cu(I) [36-38], which agrees with others’ work that
CO is difficult to linearly adsorb to transition metal catalysts except Cu
[39,40]. The presence of linearly adsorbed CO on the Cu sample explains
why Cu-based catalysts demonstrate excellent low temperature CO
conversion: the large amount of linearly adsorbed CO on catalysts sur-
face can easily transfer and react with adjacent oxygen to form CO; even
near room temperature.

Similar to mCeO,NR, there were various adsorption peaks of car-
bonate species and more defined profiles were observed in the
mCeO2NR supported TM oxide catalysts including bicarbonate [30,41]
(v(CO3) at 1615), bidentate carbonate [37,42] (v(CO3) at 1579, 1568,
1564, and 1559 crn’l), monodentate carbonate [37,43,44] (v(CO3) at
1543, 1530 and 1507 cm ) and bridged carbonate [45-47] (v(CO3) at
1392, 1217 cm™ ).

Fig. 7 compares the in situ CO adsorption DRIFTS spectra of the
mCeO,NR supported TM oxide catalysts after 40 min of UHP Ny gas
flow. The order of intensity for linear adsorbed CO (2110 cm_l) plus
bicarbonate (~ 1615 em™') follows: 10 Cu-mCeOsNR >> 10 Ni-
mCeOsNR > 10 Co-mCeO2NR> 10 Mn-mCeO2NR> 10 Fe-mCeO3NR,
which is consistent with the CO-TPD results (Fig. 3). And the bands
around 1579 to 1559 cm ! could be assigned to bidentate carbonate,
where 1543 to 1507 cm ™ is related to polydentate. The bands at 1392
em ! could be assigned to bridged carbonate. In addition, the order of
intensity for the bridged carbonate is 10 Co-mCeO2NR > 10 Mn-
mCeO,NR> 10 Ni-mCeO,NR> 10 Fe-mCeO,NR, which agrees with the
results of CO oxidation performance [23]. This may indicate that the

bridged carbonate at 1392 cm™! is associated with the CO catalytic
oxidation to COj. According to Li et al. [48], when compared with
bidentate carbonate, monodentate carbonate, and inorganic carbox-
ylate, bridged carbonate species had the lowest thermal stability, and
therefore were most easily decomposed to CO,. It should be noted that
for 10Cu-mCeO,NR, the adsorption spectrum possesses not only the
strongest peak of bridged carbonate, but also the unique linear CO gas
adsorption, where the latter one is believed to be the main reason for its
excellent CO catalytic oxidation performance. The DRIFTS band as-
signments of mCeOsNR supported TM catalysts are summarized in
Table 3.

3.4. Stability test

The temperature at 90% CO conversion was used as a criterion for
evaluating the stability of the prepared catalysts. The test temperatures
for CuOx-mCeO-NR, NiOyx-mCeOsNR; CoOx-mCeO5NR, FeO,-mCeO5NR,
are MnOx-mCeO,NR were 122 °C, 243 °C, 199 °C, 364 °C, and 254 °C,
respectively. The stability tests at different temperatures to obtain
~90% CO conversion of each mCeO,NR supported TM oxide catalyst are
presented in Fig. 8, which shows that the CO conversion for all five
catalysts was nearly unchanged during the dwell time of 24 h, indicating
the NaBH, etching process is an effective and stable modification
method to enhance the catalyst activity and durability of CO oxidation.
In addition, TEM analysis after thermal stability tests shows these
catalyst powders inherit the morphology of the untreated powders,
especially for the mCeOsNR supports.

4. Conclusions

In this work, CeO,NR were chemically etched by various contents
(0.6 wt%—30 wt%) of the strong reducing agent NaBH4. Compared with
non-etched CeO,NR, mCeO,NR support exhibited superior reducibility
at low temperature and lower onset temperature for hydrogen con-
sumption. According to the surface reduction temperature and hydrogen
consumption, it was determined that the optimal NaBH4 concentration
of chemical etching of CeO,NR was ~6 wt% NaBH,4 addition. Transition
metal oxides (TM: Cu, Co, Ni, Fe and Mn) were loaded on the 6 wt%
NaBH4 etched CeO2NR support. And the in situ CO-DRIFTS results show
the outstanding CO adsorption ability of mCeO,NR, which is related to
one strong CO adsorption mode for polydentate carbonates formation
found as the result of NaBH4 etching. And the existence of this poly-
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Fig. 7. In situ DRIFTS spectra of CO adsorption for mCeO3;NR supported TM oxide catalysts.

Table 3

Peak assignments of in situ DRIFTS spectra for mCeO2NR supported TM catalysts.

Wavenumber (cm ™) Description Ref

2170, 2120 CO gas [41,42]

2110 CO—Cu [38-40]
Cu(l)—cCo

1615 bicarbonate [33,43]

1579, 1568, 1564, 1559

bidentate carbonate

O [39,44]
Ly =c=0
1543, 1530, 1507 mono dentate carbonate
O [39,45,471
e
X0
1392, 1217 bridged carbonate [47-49]

Ce

dentate carbonate species can also explain the effect of NaBH,4 etching
on CeOyNR for CO oxidation: the extra generation of surface defects
including Ce3" and oxygen vacancy by etching process enhances the CO
adsorption at low temperature, which further accelerates the reaction of
CO to COy. Only the Cu oxide catalyst demonstrated a linearly adsorbed
CO molecule near room temperature, indicating excellent CO adsorption
that can promote low temperature catalytic CO oxidation.
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