AIAA JOURNAL
Vol. , No. ,

Unifying Monolithic Architectures for Large-Scale System
Design Optimization

Anugrah Jo Joshy* and John T. Hwang"
University of California, San Diego, La Jolla, California 92093

https://doi.org/10.2514/1.J059954

Large-scale system design optimization is a numerical technique used in solving system design problems that
involve a large number of design variables. These systems are often multidisciplinary, with many disciplines
interacting with each other. The scale of these problems demands a gradient-based approach for efficient
solutions, and it is often implemented by coupling an engineering model with an optimizer. A recently developed
theory on multidisciplinary derivative computation has made it feasible to solve large-scale system design
optimization problems in only hundreds of model evaluations. This has led to an increase in the number of
applications for large-scale system design optimization with new applications still emerging. This paper presents a
new optimization formulation that can further reduce the required number of model evaluations by unifying two
widely used optimization architectures, namely, multidisciplinary feasible, and simultaneous analysis and design.
Complex engineering systems that require solutions of large nonlinear systems can potentially benefit from this new
formulation, and the optimized solutions can be reached in just tens of equivalent model evaluations. We demonstrate
this order of magnitude improvement using a bar design problem. The paper also provides details on the practical
implementation of this new formulation in an equality-constrained optimization setting.

Nomenclature
df/dx = total derivative of a variable f with respect to a variable x
0F/ox = partial derivative of a function F with respect to a

variable x

I. Introduction

M ULTIDISCIPLINARY design optimization (MDO) is a field
of engineering that uses numerical optimization techniques in
design problems that involve multiple engineering disciplines. An
MDO problem usually takes the form of a numerical optimization
problem that minimizes an objective subject to constraints. In prac-
tice, such problems are solved by coupling a general-purpose opti-
mization algorithm, called the optimizer, with an engineering model
that computes the objective and constraints, as well as their deriva-
tives. The optimizer evaluates the model at different design variable
values until convergence, reading the outputs of the model.

Large-scale system design optimization (LSDO) focuses on prob-
lems that are high-dimensional, defined as having hundreds or more
design variables, and that represent system-level design problems.
High-dimensional design spaces and coupled multidisciplinary mod-
els are characteristics of design problems involving large-scale com-
plex engineered systems because these systems have a large number
of parts that interact with each other in unintuitive ways. For instance,
a modern commercial airliner has millions of parts, and its design
involves a large number of disciplines such as aerodynamics, struc-
tures, and propulsion that are coupled via feedback loops. In these
complex design problems, intuition and experience have their limits;
when that is the case, LSDO provides an alternative, which is a
rigorous and automatic way to compute the best design given a
sufficiently accurate model.

High-dimensional design spaces in large-scale systems necessitate
the use of gradient-based optimizers in LSDO to ensure efficient

Presented as Paper 2020-3125 at the ATAA Aviation 2020 Forum, June 15—
19,2020; received 3 July 2020; revision received 1 October 2020; accepted for
publication 12 November 2020; published online XX epubMonth XXXX.
Copyright © 2021 by the authors. Published by the American Institute of
Aeronautics and Astronautics, Inc., with permission. All requests for copying
and permission to reprint should be submitted to CCC at www.
copyright.com; employ the eISSN 1533-385X to initiate your request. See
also AIAA Rights and Permissions www.aiaa.org/randp.

*Ph.D. Student, Department of Mechanical and Aerospace Engineering.
Student Member AIAA.

T Assistant Professor, Department of Mechanical and Aerospace Engineer-
ing. Member AIAA.

scalability. Applying large-scale optimization to system design is
challenging, because of the conflicting requirements of efficient
derivative computation (for scalability) and coupling multiple disci-
plines (for system-level modeling). However, a recently developed
theory [1] that unifies different total derivative computation methods
(such as the chain rule, the coupled chain rule, and the adjoint
method) overcomes these challenges. OpenMDAO (which stands
for open-source multidisciplinary design, analysis, and optimization)
[2] is an open-source software framework from NASA that imple-
ments this theory to automate total derivative computation, following
a modular approach in the construction of models.

These developments have enabled large-scale MDO to be acces-
sible to a larger audience from different fields in the scientific
community. The number of LSDO applications implemented in
OpenMDAO has grown rapidly in the past few years. However, the
current algorithms in LSDO still require hundreds of model evalua-
tions to solve a problem, and this poses a significant barrier to its
adoption into an industrial setting.

Computer-aided engineering tools such as computational fluid
dynamics, finite element analysis, and other partial differential
(PDE) solvers have significantly impacted industrial design proc-
esses by permeating into day-to-day workflows of engineers. For
LSDO to have the same impact, the jump in computational cost from
running a single simulation to solving an optimization problem with
the same model should be limited to only tens of times. This would
allow a 1 h simulation to be optimized over a weekend rather than a
few weeks, or a 1 min simulation to be optimized in 1 h rather than a
day. In practice, these differences are significant in assessing whether
LSDO can be a vital, integrated part of practical design cycles. This
motivates the primary objective of this paper, which is to accelerate
the current LSDO algorithms through a significant reduction in the
number of equivalent model evaluations.

In the current paradigm for LSDO, the optimizer views the model
as a black box that outputs the objective, constraints, and their
gradients. This paper presents a new, intrusive paradigm where the
internal components of the model are exposed to the optimizer. An
intrusive paradigm enables a novel optimization algorithm that could
achieve the robustness of a reduced-space formulation (also known as
the multidisciplinary feasible architecture) and the efficiency of a
full-space formulation (also known as the simultaneous analysis and
design architecture) if the two formulations can be unified. The
difference between the two is that full space treats the model state
variables as design variables and the implicit equations that define the
state variables as constraints.

2 JOSHY AND HWANG

Such an intrusive paradigm is used in the field of PDE-constrained
optimization. PDE-constrained optimization is a field of research that
deals with the optimization of partial differential equations involving
large, three-dimensional meshes with up to billions of degrees of
freedom. The envisioned feasibility of a reduction in the number of
model evaluations is partly based on the success of the Lagrange—
Newton—Krylov—Schur (LNKS) algorithm in solving PDE-constrained
optimization problems with the cost of as low as five model evaluations
[3.4]. In this setting, the PDE solver (i.e., the model) and the optimizer
are often integrated in a single piece of software where the optimizer is
tailored to the PDE.

In LSDO, the model is complex, heterogeneous, and multidisci-
plinary: three reasons why the black-box model has been favored
over the intrusive model, thus far. However, the proposed paradigm
shift is timely because recent work in LSDO is trending toward the
construction of models within computational frameworks (as in
OpenMDAO). In this case, the work required to expand the interface
is entirely on the framework side.

This paper presents a new, hybrid architecture and provides numeri-
cal results that validate its efficacy. The paper proceeds as follows. In
Sec. II, we provide some background for the unification algorithm with
details on the unified derivatives equation, the reduced-space formu-
lation, and the full-space formulation. In Sec. III, we present a new
algorithm that can achieve our aggressive speed improvement target
for an equality-constrained case. This section also provides some
details on the practical implementation of the algorithm. In Sec. IV,
we solve a bar design problem using the reduced-space approach and
our novel approach, and then we compare the results.

II. Background
A. Current Paradigm

In the current approach for LSDO, an engineering model is built
within a software framework (such as OpenMDAQ) that couples

Optimizer

4 \4
Fx),C(x)
df dc
dx’ dx

Model

Fig.1 Current approach. The design variables are x. The objective and
the constraints are, respectively, F(x) and C(x).

104 4
b 101 -
é
£ 1072 4
o
1075 -
0 200 400 600 800
Model evaluations
Vq’./;
= 10* 4
!
>
2 10°3
E
g 107 4
Ey [P
et Pl . A
2 10! 4 =
2
g
= 100 J
2 100
0 200 400 600 800

Model evaluations

Feasibility

an optimizer, from a library of optimizers, with the model. The
coupled optimizer—model structure (shown in Fig. 1) built in the
software framework solves a problem iteratively; the optimizer gen-
erates new design variable values based on the model outputs from
the previous iteration. The iterations proceed until the optimality and
feasibility criteria for the problem are satisfied, where optimality is
the reduced-gradient norm and feasibility is the norm of constraint
violations.

With this approach, the computational cost of solving an optimi-
zation can be measured via the number of model evaluations
required. For simplicity, we can treat both computing the objective
and constraints and computing the derivatives as one model evalu-
ation because, in efficient implementations, the computation times
are similar. State-of-the-art LSDO methods can solve problems
[6-12] with up to tens of thousands of design variables in only
hundreds of model evaluations [5] as can be seen in Fig. 2.

Given the current level of efficiency of LSDO, a paradigm shift is
necessary to achieve further reductions in computation time. The
only way to reduce the optimization time further is to reduce the cost
of each running of the model, which is possible by enabling partial
model evaluations. Partial model evaluations are possible only with
an intrusive paradigm where the optimizer has access to the oper-
ations performed inside a model. This makes it necessary to have
computational frameworks that can facilitate such an intrusive envi-
ronment. Therefore, an improvement over the state-of-the-art in
LSDO calls for the creation of new optimizers and computational
frameworks that can handle an intrusive paradigm.

B. Modular Analysis and Unified Derivatives

LSDO is challenging because the difficult requirements for effi-
ciency in large-scale problems are exacerbated by the complex,
multidisciplinary models in system-level design problems. The scal-
ability aspect necessitates gradient-based optimization and efficient,
accurate derivative computation. The adjoint method is a critical
technique because for a problem with n, design variables, it can
reduce the gradient computation time in each optimization iteration
from the cost of , model evaluations (in the finite difference method)
to less than one model evaluation.

The challenge is that the implementation of the adjoint method is
time intensive, and it is specific to a particular choice of the output
(objective or constraints). Therefore, any change in the model or the
optimization problem requires deriving and implementing the new
adjoint equations. This significantly reduces the usability of the

10[1 4 |
104 4
108 4

1012

1016

600 800

400
Model evaluations

0 200

Cantilever beam thickness optimization
Airliner design-allocation MDO

Propeller blade and shape optimization
CubeSat MDO

X-57 preliminary design MDO
Two-dimensional topology optimization
Morphing aircraft design optimization
Common research model wing optimization
Air taxi design-economics optimization
Robotic arm design and control optimization
Air taxi system-level MDO

Fig.2 State of the artin LSDO [5]. Previous LSDO problems [6-12] require hundreds of model evaluations. Superbasic variables are the design variables

that are not fixed due to bounds or constraints.

JOSHY AND HWANG 3

adjoint method in a practical design setting, where the model is
modified, disciplines are added or temporarily removed, and the
optimization problem is tweaked frequently, within an iterative cycle.
Moreover, the adjoint method only applies to a particular model
structure where there is a single set of state variables implicitly
defined by residuals. If all states are explicitly defined, if there are
multiple disciplines (i.e., submodels) with implicit states, or if there is
a combination of disciplines with implicit and explicit states, the
adjoint method cannot be applied, and a different method such as the
chain rule or the coupled adjoint method must be used. The modular
analysis and unified derivatives (MAUD) architecture unifies all
derivative computation methods using a single equation so that,
regardless of the model structure, solving this equation is mathemati-
cally equivalent to using the appropriate method: the adjoint method,
chain rule, and so on.

We now present the equations underlying MAUD. A general
optimization problem given a model with internal state variables
can be stated as

min F(x)
subjectto x>0
C(x) =0,

R(x, Y(x)) =0
where F(x) = F(x,Y(x)) (D
C(x) = Cx, Y(x))

where x € R" represents the design variables, F:R" — R and
F:R" xR" — R represent the objective function, C:R" — R™ and
C:R" xR" —» R™ represent the vector-valued constraint function,
and): R" — R” represents the implicit solution of R(x, Y(x)) =0
as an explicit function. Therefore, we have n design variables, m
constraints, and r state variables. Moreover, we can define y € R" as
the vector of state variables, f € R as the objective value, and ¢ €
R™ as the vector of constraint values.

The components in a complex model can be of many types: PDE
solvers, surrogate models, closed-form expressions, or algebraic
systems of equations. In all cases, we can describe the model by
concatenating all variables into a single vector u € R" and defining
an appropriate residual function R: RV — RY. Solving the system
R(u) = 0 is then equivalent to evaluating the model.

Under mild conditions, we can apply the inverse function theorem
to R to obtain [1,13]

ORdu _
oudr

_oR"du"

7= =
ou dr

(€5

where 0R/du consists of partial derivatives of R, F, and C. and
du /dr contains the derivatives we need: df /dx and dc /dx. Based on
the model structure, the chain rule, the adjoint method, hybrid
methods, and all other methods for computing discrete derivatives

x OpenMDAO

F(x), C(x ﬂ ‘; E
...
--------- i
R du _, ORT du'
oJu dr ou dr
4 de
dx’ dx MAUD architecture

Fig.3 OpenMDAO framework. OpenMDA O couples the model with an
optimizer and automatically computes model derivatives using MAUD
architecture. Opt is the optimizer, and C and D denote the internal
components of the model and their partial derivatives, respectively.

can be derived from Eq. (2). For example, we can derive the adjoint
method by choosing u = [x,y, f]” and R(u) = [x — x*, =R(x,y),
f = F(x,y)]" (where x* is the design variable vector at which we
compute the adjoint), inserting into the right equality of Eq. (2), and
applying block back-substitution.

MAUD can be summarized as follows: the user can implement
their model as a modular set of components within a computational
framework and provide partial derivatives of each component’s out-
puts with respect to its inputs, where the combined set of partial
derivatives form dR /du. Then, regardless of the model structure, the
framework only needs to solve Eq. (2) to compute the model-level
derivatives in the most efficient way (e.g., the adjoint method for a
model with internal state variables).

MAUD is implemented in NASA’s OpenMDAO software frame-
work (shown in Fig. 3), through which it has enabled LSDO problems
in aircraft wing design [10,11,14,15], satellite design [8,16], airline
route allocation optimization [17-19], jet engine design [20—-24], and
wind turbine design [25-29], among others [9,30-32].

C. Optimization Formulations

In MDO, “architecture” or “problem formulation” refers to the
particular way in which a problem is defined and its solution is
reached. Given a design optimization problem [Eq. (1)], there are
multiple ways in which we can formulate it in order to find its
solution. In this paper, we consider two popular monolithic MDO
architectures (shown in Fig. 4): 1) the reduced-space (RS) architec-
ture, and 2) the full-space (FS) architecture. The full-space formu-
lation treats the model’s state variables as additional design variables,
and the reduced-space formulation solves for the state variables
within the model. The reduced-space architecture is also known as
the multidisciplinary feasible architecture or nested analysis and
design, and the full-space architecture is also known as the simulta-
neous analysis and design architecture.

In the reduced-space formulation, only x constitutes the optimiza-
tion design variables, and y is computed implicitly as))(x) by solving
R(x,Y(x)) = 0. In the full-space formulation, both x and y are
treated as design variables; instead of evaluating)(x), the respon-
sibility of enforcing R(x,y) = 0 is handed to the optimizer by
making these constraints. The two formulations are so named
because full space refers to the (n + r)-dimensional space of both
x and y, whereas reduced space refers to the n-dimensional space of
only x.

Reduced space:

mxin F(x, Y(x))
subjectto C(x, Y(x)) =0 3)
x>0

with R(x,Y(x) =0

Full space:
min F(x,y)
X,y
subjectto C(x,y) =0 4
R(x,y) =0
x>0

The tradeoff is that the model evaluation for reduced space is more
costly because it requires the nonlinear solution of R(x, y) = 0, but
the optimization problem is smaller and simpler. The model evalu-
ation for full space is simpler and less costly because it simply
evaluates F, C, and R without solving any nonlinear systems, but
the optimization problem is larger and more difficult with additional
constraints and design variables.

In general, full-space optimization has the potential to be more
efficient, but it is typically less robust. The larger problem may cause
optimization convergence issues or negate the benefits from the more
inexpensive model because of a greater increase in the number of
evaluations. Reduced-space optimization is more robust, but it is

A~

a ¥
Component 1 i
Ra(w,) =0 ‘ 1

5
UI g

A

5

5

: Component n _ _
o) =0
E Objective
[=F,y)
Constraints
“ (z,y)
7
iy, Component 1
r=Ri(z,y)
C)
Component n
[T}
T =Rau(@,y)
m Objective
f=F@y)
[cF

Fig. 4 Reduced-space versus full-space formulations given a complex
model with internal state variables.

inefficient because it wastes computation time, accurately solving
R(x,y) = 0to compute y in each optimization iteration even when x
is far from converged. Tight convergence is necessary, in reduced-
space methods, to ensure accurate computation of F(x, Y(x)) and
C(x, Y(x)) so that the objective and constraint values are consistent
with their derivatives with respect to x that are also provided by the
model to the optimizer.

Next, we provide the optimality conditions and Karush—Kuhn—
Tucker (KKT) systems for both formulations in the equality-
constrained setting.

1. Reduced-Space Equations

We start with Eq. (3) with the bounds on x dropped, and we
define the Lagrangian / = L(x, 1) where

L(x,) = F(x, Y(x)) + A"C(x, Y(x)) ®)

Applying the method of Lagrange multipliers, we obtain the first-
order necessary optimality conditions:

dx dy dy 0x

dl_ (0F 0FORTOR) (o dCIR™ IR
dx ox dydy Ox

di
= (V) ©)

Using p, to denote the search direction, it then follows that the KKT
system for reduced-space optimization is given by

lxx CZr- P l(f) _ - lx (7)
e 0| p¥ —C(xg, Y(xi))
where [, = d*1/dx?, c, = dc/dx, and I, = dl/dx.
2. Full-Space Equations
We start with Eq. (4) with the bounds on x dropped, and we define

the Lagrangian m = M(x, y,y, 1), where

M@y, 2) = Fxy) " R(x,y) +47Cx,y) (8)

JOSHY AND HWANG

Once again, applying the method of Lagrange multipliers, we obtain
the first-order necessary optimality conditions:

dm _oF oR oC dm

am _ 9~ o am _
dx ox tv 0x 4 ox’ dy R(x.) ©
dm _oF LoR .0C dm

—_ _ /‘LT— —_— = s
oottty w ey

It then follows that the KKT system for full-space optimization is
given by

me my RE | A —m,
my my, Ry Cyffop]((y) _ —my (10)
R, R, 0 0 p](:/’) —R(xp, Yi)

r ¢ 0 0 p¥ =C(x, yi)

where m,, = d’m/dx?, My = d*>m/dydx, my, = d*m/dxdy,
my, = d*m/dy*, R, = 0R/ox, R, = 0R/dy, C, = dC/ox, C, =
aC/dy, m, = dm/dx, and my, = dm/dy.

III. Methodology
A. Corrected Full-Space Method

Before introducing the hybrid algorithm, we define a new optimi-
zation method, based on the full-space formulation that we call the
corrected full-space (CFS) method. This method, as the name sug-
gests, is a modified version of the full-space method and has the
ability to generate the same sequence of x and A iterates as the
reduced-space method, in an equality-constrained optimization set-
ting. The feature that differentiates this method from the FS method is
that it modifies the state variable vector y and the vector of Lagrange
multipliers y, associated with the residual equations before solving
the full-space KKT system. If [x;, v, wi, 4] are the values at the end
of the kth iteration, this method corrects y; to y; by solving R(x, y) =
0 and then v, to y; by setting dm/dy = 0. The FS KKT system [Eq.
(10)] is then solved at the updated point [x;, ¥/, w}, 4]" to obtain the
new set of values for the next iteration.

We now prove that the sequence of iterates generated by the
corrected full-space method and the reduced-space method are
the same.

Theorem 1: Assume (xp,4,) are given. Then, the sequence of
iterates {(x;, 4;)} generated by the reduced-space method and the
corrected full-space method are identical in an equality-constrained
optimization setting.

Proof: We prove this theorem by induction.

At k = 0, the theorem holds trivially. Assuming that the theorem
holds true at k, we prove that it holds true at k + 1. Let the kth iterate
be [x;, A¢]" in the RS method and [x;, y;, wy, A,]” in the corrected FS
method.

In the (k + 1)th iteration of the corrected FS method, we start at
[Y Wi, 4] and solve R(x;, y;) = O to get an updated y;. We
note that y; = Y(x;) as R(xy, y;) = 0. Functions and gradients are
now evaluated at [x;, y/]”.

Setting dm /dy = 0, we solve for y; from Eq. (9):

dm oF ;IR ac
i A ARy |)
dy ~ oy VR oy THGy
oRTorT orTac”
=yl = ! an

I I

This gives us the corrected values [x;, y/, w(, 4]7. We insert the
expression for y/ into the expression for dm/dx in Eq. (9) to obtain

-1 -1
%_(6]—‘ oF oR @) /17(56 dC IR @) (12)

a_diyay ox ka_@z)y ox

Comparing with Eq. (6), we can see that dm/dx = dl/dx.

JOSHY AND HWANG 5

We now solve the FS KKT system [Eq. (10)] at the corrected point
e i wi AT, where R(xy, y;) =0, m, =0, and m, = [,. This
gives us the following system:

My Myy RZ CZ; p 1(<X) - lx

my my, Ry OCy||p l(cy) _ 0 (13)
R, R, 0 0 [|,» 0

cc ¢ 0 0 p,(f) —C(xg, Y(xy))

Solving the third row for p®" and then the second row for p*’, we

get
P = —’R;lep,(f) and

pil//) R;T((myx IR)p(X) (/1)) (]4)

Substituting p,((” and pg”) from the preceding equations, the first and
fourth rows become the following system:

0 cr —RIR;TC || p
¢, -CRy'R, 0 *)

Dy
— _lx
| g V()

mo Ry R, — RIR"my, + RIRT 'my Ry R,

15)

where Q = m,, —

(16)
Using dy/dx = —R;'R, and ¢, = C, — C,R;' R, gives us
dy | dy' dy” dy (x)
mxx+mxyd7+a }x+a a CI pkt
2
Cy 0 Pl(< :
-1,
- [| } a7
—Clxr, Y(x))
Whenever m,, = 0, we can prove that
dy &yt - AT dy
(18)
using the identity
Optimizer

Component 1
Ri(z,y') =0 @

-

)
5

&’f PF PF dy dy? FPF dyr *Fdy i oF d%y,
dx® ~ 0x> | dyoxdx ' dx dxdy dx 0y* dx & dy; di’
19

on functions F, C;, and R,.
Substituting Eq. (18) into Eq. (17), we get

lxx C;C p;:) _lx
o= e (20)
e 0] pl (e, Y(xi))

This is exactly the RS KKT system [Eq. (7)], which means that
(Xg11, Agy1) from the (k + 1)th iteration of reduced-space and cor-
rected full-space methods are identical. O

The corrected full-space method shown in Fig. 5 is, in a way, a
hybrid of the FS and RS methods and requires an intrusive paradigm
as the optimizer updates the state variable vector y, to y; with the help
of solvers inside the model. However, the CFS method does not offer
us much advantage in terms of computational efficiency because we
still need to solve the nonlinear system R(x,y) = 0, the same
number of times as in the reduced-space method, before we reach
the solution.

The CFS method is still a useful tool since it has the characteristics
of both the full-space and reduced-space formulations. In the next
subsection, we use the CFS method to formulate a novel algorithm
that has the ability to vary the extent to which it can exhibit the
properties of FS and RS algorithms. The new algorithm provides a
complete unification of the full-space and reduced-space formula-
tions for equality-constrained optimization problems.

B. Comparison of the Reduced-Space, Full-Space, and Corrected
Full-Space Methods

Algorithm 1: RS method
1: loop
2: Run the model at x; solving

R, Y(x) =0
3: Assemble Ay, by,
: Solve Ay py = by

X
5: Update]‘+1j| = [:| +
P [Akﬂ P

6: end loop

— IXX CX
A= |:CX 0

— _l,\'
b= [—cm,y(xk))}

=t

Component n
Rn(@,y') =0

Objective
f=F=y)

Fig. 5 Corrected full-space architecture.

6 JOSHY AND HWANG

Algorithm 2: FS method

1: loop
2: Run the model at (xy, y;)
3: Assemble Ay, by
4: Solve Ay p; = by
Xht1 Xk
. Yi+t | — | Yk
S: Update = +
P Vit1 Yk Pr
At A
6: end loop
[me my RTCT
Ao | My RT T
IR, R, 0 0
¢t ¢ 0 0
© o,
—m
by = Y
k —R(xs yi)
L —C(xk, yi)
Algorithm 3: CFS method
1: loop
2: Run the model at (x;, y;) solving

Rxi.yi) =0
3: Compute y;, by solving
Rly, = —FI -l

4: Assemble Ay, by
5: Solve Ay p; = by
Xi+1 Xk
. Yisl | _ | vk
6: Update = S|+
P Yi+1 Vi P
P 2
7: end loop
mXX m.’é)‘ R{ CZ-
A, = | Mo My Ry ¢
k R, R, 0 0
r ¢ 0 0
—m,
0
bk = 0
L —Cx. y)

C. [Unification for the Equality-Constrained Optimization Setting

To demonstrate the feasibility of unifying the reduced-space and
full-space algorithms, we present the unification for an equality-
constrained optimization setting. We call the basic algorithm that
achieves the unification SURF, which stands for strong unification of
reduced space and full space, where “strong” references the fact that
LNKS only links the linear systems in the RS and FS methods,
whereas SURF provides a complete unification of both the methods.
SUREF is presented in Algorithm 4. The loop that begins in line 1
marks the start of each outer iteration. Line 4 updates the approxi-
mation to the Hessian of the full-space Lagrangian, and lines 5 and 6
represent the assembly and solution of the KKT system for full-space
optimization with a preconditioner. Lines 7 and 8 are standard steps
for computing the step size and applying the step, respectively. Note
that we assume iterative solution of the KKT system; to consider the
SQP setting, we can simply ignore the preconditioner.

Without lines 2 and 3, Algorithm 4 is the Lagrange-Newton—
Krylov—Schur algorithm [3,4] developed for PDE-constrained
optimization. LNKS is so called because the method of Lagrange
multipliers yields the KKT optimality conditions, which are solved
with Newton’s method, which in turn constructs linear systems
solved using a Krylov subspace method with a Schur complement
preconditioner. The defining characteristic of LNKS is the Schur

complement preconditioner that amounts to an inexact version of the
reduced-space linear system, but LNKS is still full space.

Lines 2 and 3 are what enable SURF to unify the reduced- and full-
space formulations. Before solving the full-space KKT system in
lines 4, 5, and 6, we inexactly solve the nonlinear system representing
the model to update y, to y; at x;. Subsequently, we compute
using an equation that comes from setting dm /dy to zero in Eq. (9). If
lines 2 and 3 are skipped, SURF becomes a full-space algorithm; if
the two systems in lines 2 and 3 are exactly solved, SURF becomes a
reduced-space algorithm; and if lines 2 and 3 use inexact solvers,
SURF becomes a hybrid. We know that SURF (Algorithm 4) without
lines 2 and 3 is just the full-space algorithm. We can also see that
SURF with lines 2 and 3 performed with exact solvers is the corrected
full-space algorithm; it produces the same (x;, ;) iterates as the
reduced-space algorithm. This follows directly from the property of
the corrected full-space method discussed in the previous section.
A similar algorithm where a subset of variables is inexactly solved
within a Newton iteration was proposed previously by Yang et al.
[33]. However, they apply this approach to field variables in a PDE,
whereas we apply it to the state and adjoint variables.

The preconditioner M, in Algorithm 4 corresponds to a Schur
complement decomposition of the full-space matrix, following the
LNKS approach [3]. In M;, M; and M, are permutation matrices,
and they are easily inverted. The Schur complement is the (3, 3) block
of M5, and the lower-right 2 X 2 block of M3 is exactly the KKT
matrix of the reduced-space algorithm when we set m,, = 0 in the full-
space algorithm. A single matrix-vector product of this 2 X 2 block can
be computed with two model Jacobian linear solutions: one of R, and
one of RT.

The significance of this unification is twofold. First, switching
between reduced-space and full-space is simple; we only have to
change the inexact solver tolerances. Second, the SURF algorithm
allows easy access to a continuous spectrum of hybrid methods. We
note that the choice on this spectrum can be made on a variable-by-
variable basis. Since the model is implemented as a collection of
modular components as shown in Fig. 6, certain components can be
more tightly converged than others.

In summary, SURF unifies the reduced-space and full-space
algorithms, and it enables effortlessly selecting one of the two or a
hybrid, simply by changing the solver tolerances in lines 2 and 3 of
Algorithm 4.

D. Some Implementation Details

In practice, equality-constrained optimization problems are solved
using sequential quadratic programming (SQP) where the search
directions are obtained from a sequence of quadratic programming
(QP) subproblems. Each QP subproblem minimizes a quadratic
problem subject to linearized constraints, and under certain condi-
tions, it is equivalent to solving the KKT system. The directions
derived from the QP subproblem are then used in a line search to find
the step toward the next iterate.

Implementation of a general-purpose optimizer requires address-
ing some practical aspects of an optimization algorithm: 1) Hessian
approximations, and 2) a line search that guarantees global conver-
gence. The following subsections give recommendations on using
the Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm for
Hessian approximation and using a line search method that ensures
global convergence, in the purview of SURF. These are suggestions
by the authors based on the literature available on practical optimiz-
ers, and they are not validated on any test problem.

1. Positive-Definite BEFGS Approximation of the Hessian of the Full-Space
Lagrangian

Within a single iteration of SURF, we take two steps as opposed to
a single step taken in any conventional algorithm. The first step
updates just y and y, which we call the “correction step” because it
corrects the value of y and y from the previous iteration. The second
step is the solution of the KKT system, which we call the “QP step”
because itis the conventional step taken in a direction given by the QP
subproblem.

JOSHY AND HWANG 7

Algorithm 4: SUREF (strong unification of reduced-space and full-space)

SUREF unifies the reduced- and full-space methods for an equality-constrained optimization setting.
loop
Run the model at (x;, y;) inexactly solving R(xy,y;) =0

1

2

3 Compute y; by inexactly solving RIy| = —F7 —CT 1

4: Update the approximation to the Lagrangian Hessian, H, at [x;, y/, [,]"
5: Assemble A, by, and My

6 Solve Mi'Aypr = M7' b,

7 Compute a;, via a line search

8 Update [X1, Vet W1 At 7 = (%6 i wis AT+ awpy

9

end loop
Note:
HH, = [Z” My] is the Hessian of the Lagrangian, p; is the search direction, and a; is the step size.
yx Yy
2) Ay py = by is the FS KKT system [Eq. (8)], and MZI and /\7l;l are exact and approximate preconditioners for A such that M, = MM, ;M5 M, and
My My RI T —m, 0 0 Z 0 R, 0 0 0
my, m,, RI CT —m 0O Z 0 0 my,, RI 0 0
A, = yx vy ¥ y by ¥ M, = ’ My, = »y y
Ry R, O 0 —R(xk, ¥1) Z 0 0 O My R 7 0
¢, ¢ 0 0 —Cx y)) 000 I ¢, 0 01T
[z 0 R;'R, 0 0 Z 00
0 7 Ry 'my, — Ry Tmy, Ry'R, RyTCr 00 I 0
M = . y o . M, =
M0 0 my = myRYR = RIR;Tm + RIRTmy, Ry 1R, CT — RIR;TCS! Tl o0 0 0
_O 0 CX—C},R;'R)C 0 0 0 0 Z

We can define the different points in iteration (k + 1) as & =
[x, i Wi,)7 (at the start of the iteration), & = [x. v, wy, 47 (at
the corrected point), and &, | = [Xy 1, Yiq1» Wis1> Aks1]” (atthe end
of the iteration). This gives us the correction step p; and the QP step
o py as follows:

We can denote the design variable vector as v, which includes both x and
y such that v, = [, il v = [x, 717, and vey = Py, il

General-purpose optimization algorithms based on SQP use a
positive-definite BFGS approximation for the Lagrangian Hessian
when solving a QP subproblem. In SURF, we can approximate the
Hessian of the Lagrangian:

Hy = [’" m>] (22)

my, My,

at the corrected point £; using a modified BFGS algorithm. Let us
denote the positive-definite BFGS approximation of H, (generally
indefinite, at a solution) as H - We note that H « 18 a positive-definite
approximation of the Lagrangian Hessian rather than the projected
Lagrangian Hessian (Hessian projected onto the null space of the
Jacobian of the constraints) that is, in general, positive-definite near a
solution. H « can be estimated from ﬁk_l using the BFGS update
formula

B X — Xk 0
C | view p”
Pr = = and
k / 1(y)
Vi~ Vi Py
L A — A 0
r _ (x)
X1 — Xk APy
)
Vi1 — Vi APy
o pr = = @ 21
Yir1 — ¥ APy
L Ayt — Ak (xkp,(f)
Optimi

Y,

Component 1

Y1, 71 r = Ri(z,y')
~0
YT

B

]

=

Component n
Tn = Ru(,y')

&o

—5
=

~0

Constraints

c=C(z,y)

Fig. 6 SUREF architecture. Optimizer computes tolerances ¢, to which the residuals are solved within the model.

8 JOSHY AND HWANG

~ ~ 1 ~ ~ 1
Hk = Hk—l - A4Hk_1ddeHk_1 + —wkwT (23)
diHy_1dy ‘ widy

where

dy =v,—v;_; and wy = VMg, wp 4) = VM@ i &)

The gradients of M are taken with respect to v, and we note here that
w; and A are our best available estimates for the Lagrange multi-
pliers.

Given H,_, is positive definite, the updated BFGS approximation
H « Temains positive definite if and only if w? d; > 0. The approxi-
mate curvature w! d; may not be positive always since we are trying
to approximate a Hessian that is, in general, indefinite. With SQP
using quasi-Newton methods, Powell [34] states that the iterates
converge toward a solution along a path that lies in the null space
of the constraint Jacobian. Since H), is positive definite along the
constraint surface near the solution, the approximate curvature w! d;,
becomes positive as the iterates converge closer to a minimizer of the
problem.

When the iterates are far from the solution, this generally does not
hold. However, in cases where w,{dk is negative but the curvature
along the constraint surface is positive, we can use a new scheme to
find a positive approximate curvature. We compute a new step d; that
lies in the null space of the Jacobian of the constraints J; at v;. We
note that the constraints now refer to both the constraints and the
residuals, and the constraint Jacobian J; is the lower-left 2 X 2 block
of the matrix A; in the SURF KKT system in Algorithm 4.

Under the assumption that J; has full row rank, we find d} =
(I = J{T[JJ {7171 J})d, as the projection of dj, on the null space of J;.
With the new step, we define a new point v;" | = v; — d}, which is
the projection of v;_, on the null space of J;. We also define a new
update pair (d}}, w}) with respect to the points v;”; and v; as

P=v -yt and wy = VM(u, wi,) — VMR Ly A
(24)

When (w)Td? is positive, we update the Hessian using the new
update pair (d}, w}). However, when the curvature along the con-
straint surface is negative, (wZ)ng is also negative; in such cases, we
skip the update and set H = H k1~

In practice, we might encounter situations where inverting [JJ;
is computationally expensive. In such situations, an alternative to the
aforementioned scheme could be used, but the downside is that this
alternate scheme is always well-defined and would be applied even in
cases where it is unnecessary, i.e., even when (w/)”d” is negative.
Let o;(> 0) be the minimum allowable approximate curvature.
When w!d, < o, we can define a Awy such that W, = w; + Awy,
and W! d; = 6. We can now compute W, from Aw, given by

]

O — wgdk

Awk =
w,{dk - lek—ldk

(wk - ﬁk—ldk> (25)

The modified update pair (d;, w;) can then be used to compute the
new Hessian approximation.

We should note the following about the original modification
[Eq. (24)] for the Hessian approximation. Whenever the approximate
curvature is not positive, we need to make an additional model
evaluation at the new point v;" ,, but this evaluation is not expensive
because it does not invoke the nonlinear solvers for R(x,y) = 0.
Also, similar modifications are rarely needed more than a few times in
conventional SQP algorithms [34], and therefore we assume the same
applies for SURF. In essence, with our new scheme, positive-definite
Hessian updates can be made without incurring significant computa-
tional costs.

2. Line Search Guaranteeing Global Convergence

Line searches use merit functions as tools to measure the progress
of the algorithm. Any standard merit function, such as the /; or /-
penalty function, can be used in a line search to find the step length
ay € (0, 1] that satisfies the sufficient decrease condition. However,
in order to make use of fast line search methods that enforce the strong
Wolfe conditions and are not susceptible to the Maratos effect, we
need smooth merit functions. The augmented Lagrangian merit
function is one such smooth merit function used in state-of-the-art
gradient-based optimizers. We provide an outline on using an aug-
mented Lagrangian merit function in a line search algorithm within
SUREF that enforces the strong Wolfe conditions.

The augmented Lagrangian for SURF can be written as

La(x,y.w.2:p) = F(x,y) + w R(x,y) + A7C(x, y)

1
+30(Cr e) + R R)
(26)

where p is the penalty parameter that penalizes the constraint viola-
tions and the residuals. The merit function for the (k + 1)th iteration
of SURF based on the augmented Lagrangian is

: A ’
Gilap) = La (xk +apvi+ ap i+ ap dy + aplsp)
@n

For a given p, G, (a; p) represents the augmented Lagrangian as a
function of the step length a. To guarantee a sufficient decrease along
the direction py, p is updated, if required, before starting the line
search in each iteration. With

d ;
s = 50

the step length o is found by enforcing the strong Wolfe conditions,

Gi(a;p) < Gi(0;p) + 1,0G(0; p) and |G (a; p)| < 1,51 (0;)|
(28)

where 7, and 7, are preassigned constants such that 0 <7, <#, <1
and #, <0.5. Practical implementations use 7, = 107* and
1, = 0.5.

Fast line search algorithms use safeguarded polynomial interpo-
lation to find a Wolfe step ¢, that satisfies both of the preceding
conditions in Eq. (28). Such algorithms are implemented in two
stages: the first stage locates an interval (@j,,,, @igh) that contains a
Wolfe step, and the second stage explores this interval using safe-
guarded polynomial interpolation to find the Wolfe step a;.

IV. Numerical Results

The basic SURF algorithm was applied to a notional engineering
optimization problem. We optimize the thickness distribution of a bar
modeled with a variable number of elements with nonlinear stress—
strain behavior. The nonlinear equality-constrained optimization
problem is

min FTd .
X with K(x,d)d—F =0 (29)
subjectto V(x) =V,
where d is the displacement vector, F is the force vector, V is the
volume function, V|, is the allowable volume, and K is the function
that computes the stiffness matrix.

The problem is solved using reduced-space, full-space, and
SURF optimizers. All algorithms use a backtracking line search
enforcing the strong Wolfe conditions and a direct solver for the
KKT system. For SURF, we use pre-selected inexact solver toler-
ances. All the preliminary results discussed in this section use
a positive-definite BFGS approximation of the Hessian of the

JOSHY AND HWANG

Lagrangian, without any of the modifications presented earlier in
Sec. III. Including the modifications would give a more robust and
efficient algorithm.

Figure 7a shows that SURF with a hybrid formulation is, on
average, roughly an order of magnitude more efficient than the RS
and FS formulations in time and number of model Jacobian linear

o] /
O
1
= 0
2100 4
=
107" -
T T T
50 100 150 200
Number of design variables
a)
0.6

Thickness
o
"~
\

e
[N
L

&
o
L

solutions across various numbers of bar elements. The full-space
formulation for this problem converges only with 10 and 50 bar
elements, and it fails for models with 20, 100, and 200 bar elements.
This underlines the unreliability of full-space methods, and why
reduced space is still considered the state of the art in LSDO. The
full-space formulation can be very efficient for some problems;

."/./'7

50 100 150 200
Number of design variables

Num. of linear solutions

0 10 20

30 40 50

Lengthwise position

b)

10! _\
>
= o10-1
E 107" 1
g
& 1072 1
@)
1 -0
10° 10! 10% 108 10*
Number of model evaluations
©)
10] o
>
= 10-1
= 1071
g
& 1072 1
o
1075 1
T T T i T
10° 10! 102 103 10%
Number of linear solutions
d)

—_ =

9 9
N -
L !

Feasibility
S
I8

100 10! 102 108 10*
Number of model evaluations

Feasibility

T L § T T T
10° 10! 10? 103 10*
Number of linear solutions

—o— Reduced space
—e— SURF
—e— Full space

Fig. 7 Bar optimization: a) optimization time across varying number of bar elements, b) optimized thickness distribution, ¢) convergence with model
evaluations, and d) convergence with linear solutions. Note that Figs. 7b—7d show results for a bar modeled with 50 elements.

10 JOSHY AND HWANG

however, for the bar problem considered here, it is not competitive
with the reduced-space method.

Figure 7b shows the optimized thickness distribution for a bar
modeled with 50 elements. Although all three methods converge to
the same solution, SURF has a clear edge over the others in terms of
the computation time, and the number of linear systems solved, as
seen from Fig. 7a.

Figures 7c and 7d compare the three methods with regard to
convergence. Figure 7c shows the progress in optimality and fea-
sibility as model evaluations proceed, whereas Fig. 7d characterizes
the convergence with respect to the number of linear systems solved.

In Fig. 7c, we see that the number of model evaluations is the
lowest for the reduced-space approach since we have exact values for
the state variables at each iteration. We should note that the theoretical
minimum number of model evaluations needed for convergence is
achieved using a RS formulation. However, this can be a misleading
metric to assess the computational efficiency of different optimiza-
tion formulations since the computational cost of each model evalu-
ation depends on the model used in the formulation. A more accurate
metric for comparison would be the number of equations or linear
systems of similar size solved during an optimization. Figure 7a
reinforces this argument by showing that the computation times,
and the number of linear solutions are closely related.

In our problem, each nonlinear system is solved iteratively using
solutions from a sequence of linear systems. Exact models in the RS
method require more linear system solutions to converge, whereas
inexact models in SURF need a lower number of linear solutions
depending on the tolerances imposed on the solver. We see from
Fig. 7d that the number of linear solutions required to reach the
optimized design is minimum for SURF compared to the other two
methods. Therefore, according to this performance metric, we
observe that SURF is an order of magnitude more efficient than both
its parent methods.

Although it seems that the RS approach is very efficient compared
to the FS, Fig. 7d shows that both the methods solve almost the same
number of linear systems before reaching a solution. This can also be
seen from Fig. 7a because both RS and FS take almost the same
amount of time and linear solutions to solve the problem. The slight
increase in computation time for the FS approach compared to RS can
be attributed to the fact that the linear systems solved in FS are larger
than the systems solved in RS. We also see from Figs. 7c and 7d that
the number of model evaluations and the number of linear solutions
are the same for an FS formulation because no nonlinear systems are
solved during a model evaluation and the only linear system solved is
the FS KKT system.

V. Conclusions

This paper presented a new, hybrid architecture for formulating
large-scale system design optimization problems. The primary objec-
tive is to overcome the limits on computational efficiency that can be
realized in conventional architectures. The best optimization algo-
rithms implemented in popular architectures take hundreds of model
evaluations to converge to a solution. The algorithm presented in this
paper uses an intrusive paradigm to break the barriers on efficiency
set by conventional architectures.

A review of the state of the art in LSDO is presented in Sec. II,
which includes details on the unified derivatives equation and popu-
lar architectures for large-scale system design optimization: the
reduced-space architecture and the full-space architecture. The
reduced-space approach is inefficient but robust, whereas the full-
space approach has the potential to be efficient but is not always
robust.

In Sec. 111, the corrected full-space method is introduced, which is
the first step toward the unification of the full-space and reduced-
space (RS) methods in an equality-constrained optimization setting.
Although the underlying KKT system in the corrected full-space
method is the same as that in the full-space method, the corrected full-
space method generates the same iterates as the reduced-space
method. SURF is a hybrid algorithm based on the corrected full-
space method that can generate all possible hybrids of the full-space

and the reduced-space methods. Depending on the tolerances on the
inexact solvers, SURF can exhibit the behavior of its parent algo-
rithms to varying degrees. This property of SURF can be exploited,
by deriving the best from both the parent methods, to obtain the
maximum computational efficiency without compromising on the
robustness of the algorithm. Some implementation-specific details of
SUREF are discussed at the end of Sec. III, which includes a scheme
for the BFGS approximation of the Lagrangian Hessian and a line
search method based on an augmented Lagrangian merit function.

Section IV provided the results of SURF applied to a bar optimi-
zation problem. The numerical results suggest that SURF has the
potential to improve the efficiency of the current LSDO algorithms by
up to an order of magnitude. It is worth noting that these results were
based on pre-selected constant solver tolerances, and an even better
efficiency could be achieved if we can compute optimal tolerances for
each iteration.

SUREF provides a way to generate any hybrid of the full-space and
reduced-space methods, but currently, there is no mechanism for
identifying the precise hybrid that offers the best computational
efficiency. Strategies to compute optimal tolerances are needed,
and these tolerances must be selected adaptively from one iteration
to the next for extracting the maximum efficiency. Although the
unification is complete for an equality-constrained setting, most
problems in LSDO are inequality-constrained problems. Extending
the present algorithm for general inequality-constrained optimization
problems and formulating a strategy for adaptive hybrid selection are
potential areas for further research.

Acknowledgments

This material is based upon work supported by the National
Science Foundation under grant no. 1917142. The first author was
also supported by the Mechanical and Aerospace Engineering First
Year Fellowship from the Department of Aerospace and Mechanical
Engineering at the University of California San Diego. The authors
would like to thank Philip E. Gill for his valuable suggestions on
implementation with sequential quadratic programming.

References

[1] Hwang, J. T., and Martins, J. R., “A Computational Architecture for
Coupling Heterogeneous Numerical Models and Computing Coupled
Derivatives,” ACM Transactions on Mathematical Software (TOMS),
Vol. 44, No. 4, 2018, Paper 37.

https://doi.org/10.1145/3182393

Gray, J. S., Hwang, J. T., Martins, J. R., Moore, K. T., and Naylor, B. A.,
“OpenMDAO: An Open-Source Framework for Multidisciplinary
Design, Analysis, and Optimization,” Structural and Multidisciplinary
Optimization, Vol. 59, No. 4, 2019, pp. 1075-1104.
https://doi.org/10.1007/s00158-019-02211-z

Biros, G., and Ghattas, O., “Parallel Lagrange-Newton—Krylov—Schur
Methods for PDE-Constrained Optimization. Part I: The Krylov—Schur
Solver,” SIAM Journal on Scientific Computing, Vol. 27, No. 2, 2005,
pp. 687-713.

https://doi.org/10.1137/S106482750241565X

Biros, G., and Ghattas, O., “Parallel Lagrange-Newton—Krylov—Schur
Methods for PDE-Constrained Optimization. Part II: The Lagrange—
Newton Solver and Its Application to Optimal Control of Steady Vis-
cous Flows,” SIAM Journal on Scientific Computing, Vol. 27, No. 2,
2005, pp. 714-739.

https://doi.org/10.1137/S1064827502415661

Hwang, J. T., Jain, A. V., and Ha, T. H., “Large-Scale Multidisciplinary
Design Optimization—Review and Recommendations,” AIAA Aviation
2019 Forum, ATIAA Paper 2019-3106, 2019.
https://doi.org/10.2514/6.2019-3106

Hwang, J., and Martins, J., “Allocation-Mission-Design Optimization
of Next-Generation Aircraft Using a Parallel Computational Frame-
work,” 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, AIAA Paper 2016-1662, 2016.
https://doi.org/10.2514/6.2016-1662

Hwang, J. T., and Ning, A., “Large-Scale Multidisciplinary Optimiza-
tion of an Electric Aircraft for On-Demand Mobility,” 2018 AIAA/
ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, AIAA Paper 2018-1384, 2018.
https://doi.org/10.2514/6.2018-1384

[2

—

3

[t

[4

[l

[5

=

[6

=

[7

—

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

JOSHY AND HWANG 11

Hwang, J. T., Lee, D. Y., Cutler, J. W., and Martins, J. R., “Large-Scale
Multidisciplinary Optimization of a Small Satellite’s Design and Oper-
ation,” Journal of Spacecraft and Rockets, Vol. 51, No. 5, 2014,
pp. 1648-1663.

https://doi.org/10.2514/1.A32751

Chung, H.,Hwang, J. T., Gray, J. S., and Kim, H. A., “Implementation of
Topology Optimization Using OpenMDAO,” 2018 AIAA/ASCE/AHS/
ASC Structures, Structural Dynamics, and Materials Conference,
AIAA Paper 2018-0653, 2018.

https://doi.org/10.2514/6.2018-0653

Jasa, J. P., Hwang, J. T., and Martins, J., “Design and Trajectory
Optimization of a Morphing Wing Aircraft,” 2018 AIAA/ASCE/AHS/
ASC Structures, Structural Dynamics, and Materials Conference,
AIAA Paper 2018-1382, 2018.

https://doi.org/10.2514/6.2018-1382

Jasa, J. P, Hwang, J. T., and Martins, J. R., “Open-Source Coupled
Aerostructural Optimization Using Python,” Structural and Multidisci-
plinary Optimization, Vol. 57, No. 4, 2018, pp. 1815-1827.
https://doi.org/10.1007/s00158-018-1912-8

Ha, T. H., Lee, K., and Hwang, J. T., “Large-Scale Design-Economics
Optimization of eVTOL Concepts for Urban Air Mobility,” AIAA
SciTech 2019 Forum, AIAA Paper 2019-1218, 2019.
https://doi.org/10.2514/6.2019-1218

Martins, J. R., and Hwang, J. T., “Review and Unification of Methods
for Computing Derivatives of Multidisciplinary Computational Mod-
els,” AIAA Journal, Vol. 51, No. 11, 2013, pp. 2582-2599.
https://doi.org/10.2514/1.J052184

Jasa, J. P., Mader, C. A., and Matrtins, J., “Trajectory Optimization of a
Supersonic Aircraft with a Thermal Fuel Management System,” 2018
Multidisciplinary Analysis and Optimization Conference, AIAA Paper
2018-3884, 2018.

https://doi.org/10.2514/6.2018-3884

Friedman, S., Ghoreishi, S. F., and Allaire, D. L., “Quantifying the
Impact of Different Model Discrepancy Formulations in Coupled Multi-
disciplinary Systems,” 19th AIAA Non-Deterministic Approaches
Conference, AIAA Paper 2017-1950, 2017.
https://doi.org/10.2514/6.2017-1950

Gray, J. S., Hearn, T. A., Moore, K. T., Hwang, J., Martins, J., and Ning,
A., “Automatic Evaluation of Multidisciplinary Derivatives Using a
Graph-Based Problem Formulation in OpenMDAO,” 15th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, AIAA Paper
2014-2042, 2014.

https://doi.org/10.2514/6.2014-2042

Roy, S., Moore, K., Hwang, J. T., Gray, J. S., Crossley, W. A., and
Martins, J., “A Mixed Integer Efficient Global Optimization Algorithm
for the Simultaneous Aircraft Allocation-Mission-Design Problem,”
58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, AIAA Paper 2017-1305, 2017.
https://doi.org/10.2514/6.2017-1305

Roy, S., Crossley, W. A., Moore, K. T., Gray, J. S., and Martins, J.,
“Next Generation Aircraft Design Considering Airline Operations
and Economics,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, AIAA Paper 2018-1647,
2018.

https://doi.org/10.2514/6.2018-1647

Hwang, J. T, Jasa, J. P,, and Martins, J. R., “High-Fidelity Design-
Allocation Optimization of a Commercial Aircraft Maximizing
Airline Profit,” Journal of Aircraft, Vol. 56, No. 3, 2019, pp. 1164—
1178.

https://doi.org/10.2514/1.C035082

Hearn, T. A., Hendricks, E., Chin, J., and Gray, J. S., “Optimization of
Turbine Engine Cycle Analysis with Analytic Derivatives,” 17th AIAA/
ISSMO Multidisciplinary Analysis and Optimization Conference,
AIAA Paper 2016-4297, 2016.

https://doi.org/10.2514/6.2016-4297

Gray, J., Chin, J., Hearn, T., Hendricks, E., Lavelle, T., and Martins,
J. R., “Chemical-Equilibrium Analysis with Adjoint Derivatives for
Propulsion Cycle Analysis,” Journal of Propulsion and Power, Vol. 33,
No. 5, 2017, pp. 1041-1052.

https://doi.org/10.2514/1.B36215

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Gray, J. S., Kenway, G. K., Mader, C. A., and Martins, J., “Aero-
Propulsive Design Optimization of a Turboelectric Boundary Layer
Ingestion Propulsion System,” 2018 Aviation Technology, Integration,
and Operations Conference, AIAA Paper 2018-3976, 2018.
https://doi.org/10.2514/6.2018-3976

Gray, J., “Design Optimization of a Boundary Layer Ingestion Propulsor
Using a Coupled Aeropropulsive Model,” Ph.D. Thesis, Univ. of
Michigan, Ann Arbor, MI, 2018, http://hdl.handle.net/2027.42/147625
[retrieved 2020].

Gray, J. S., and Martins, J. R., “Coupled Aeropropulsive Design Opti-
misation of a Boundary-Layer Ingestion Propulsor,” Aeronautical Jour-
nal, Vol. 123, No. 1259, 2019, pp. 121-137.
https://doi.org/10.1017/aer.2018.120

Barrett, R., and Ning, A., “Integrated Free-Form Method for Aerostruc-
tural Optimization of Wind Turbine Blades,” Wind Energy, Vol. 21,
No. 8, 2018, pp. 663-675.

https://doi.org/10.1002/we.2186

Zahle, F., Tibaldi, C., Pavese, C., McWilliam, M. K., Blasques, J. P., and
Hansen, M. H., “Design of an Aeroelastically Tailored 10 MW Wind
Turbine Rotor,” Journal of Physics: Conference Series, Vol. 753, No. 6,
2016, Paper 062008.

https://doi.org/10.1088/1742-6596/753/6/062008

Zahle, F., Sgrensen, N. N., McWilliam, M. K., and Barlas, A., “Com-
putational Fluid Dynamics-Based Surrogate Optimization of a Wind
Turbine Blade Tip Extension for Maximising Energy Production,”
Journal of Physics: Conference Series, Vol. 1037, No. 4, 2018, Paper
042013.

https://doi.org/10.1088/1742-6596/1037/4/042013

McWilliam, M. K., Zahle, F., Dicholkar, A., Verelst, D., and Kim, T.,
“Optimal Aero-Elastic Design of a Rotor with Bend-Twist Coupling,”
Journal of Physics: Conference Series, Vol. 1037, No. 4, 2018, Paper
042009.

https://doi.org/10.1088/1742-6596/1037/4/042009

Graf, P, Dykes, K., Damiani, R., Jonkman, J., and Veers, P., “Adaptive
Stratified Importance Sampling: Hybridization of Extrapolation and
Importance Sampling Monte Carlo Methods for Estimation of Wind
Turbine Extreme Loads,” Wind Energy Science, Vol. 3, July 2018,
pp. 475-487.

https://doi.org/10.5194/wes-3-475-2018

Falck, R. D., Chin, J., Schnulo, S. L., Burt, J. M., and Gray, J. S.,
“Trajectory Optimization of Electric Aircraft Subject to Subsystem
Thermal Constraints,” 18th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, AIAA Paper 2017-4002, 2017.
https://doi.org/10.2514/6.2017-4002

Schnulo, S. L., Chin, J., Falck, R. D., Gray, J. S., Papathakis, K. V.,
Clarke, S. C., Reid, N., and Borer, N. K., “Development of a Multi-
Segment Mission Planning Tool for SCEPTOR X-57,” 2018 Multi-
disciplinary Analysis and Optimization Conference, AIAA Paper
2018-3738, 2018.

https://doi.org/10.2514/6.2018-3738

Hendricks, E. S., Falck, R. D., and Gray, J. S., “Simultaneous Propulsion
System and Trajectory Optimization,” /8th AIAA/ISSMO Multidiscipli-
nary Analysis and Optimization Conference, AIAA Paper 2017-4435,
2017.

https://doi.org/10.2514/6.2017-4435

Yang, H., Hwang, F.-N., and Cai, X.-C., “Nonlinear Preconditioning
Techniques for Full-Space Lagrange-Newton Solution of PDE-
Constrained Optimization Problems,” SIAM Journal on Scientific
Computing, Vol. 38, No. 5, 2016, pp. A2756-A2778.
https://doi.org/10.1137/15M104075X

Powell, M. J. D., “The Convergence of Variable Metric Methods for
Nonlinearly Constrained Optimization Calculations,” Nonlinear Pro-
gramming 3 (Proceedings of the Special Interest Group on Mathemati-
cal Programming Symposium Conducted by the Computer Sciences
Department at the University of Wisconsin-Madison, July 11-13,
1977), Academic Press, New York, 1978, pp. 27-63.
https://doi.org/10.1016/B978-0-12-468660-1.50007-4

K. E. Willcox
Associate Editor

