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Stability and Bayesian Consistency in Two-Sided Markets†

By Qingmin Liu*

We propose a criterion of stability for two-sided markets with asym-
metric information. A central idea is to formulate off-path beliefs 
conditional on counterfactual pairwise deviations and on-path 
beliefs in the absence of such deviations. A matching-belief configu-
ration is stable if the matching is individually rational with respect 
to the system of on-path beliefs and is not blocked with respect to 
the system of off-path beliefs. The formulation provides a language 
for assessing matching outcomes with respect to their supporting 
beliefs and opens the door to further belief-based refinements. The 
main refinement analyzed in the paper requires the Bayesian con-
sistency of on-path and off-path beliefs with prior beliefs. We define 
concepts of Bayesian efficiency, the rational expectations competi-
tive equilibrium, and the core. Their contrast with pairwise stability 
manifests the role of information asymmetry in matching formation.  
(JEL C78, D40, D82, D83)

This paper develops a criterion of stability for two-sided markets with asym-
metric information. Specifically, we study a market where agents on one side of 
the market are privately informed of their payoff-relevant attributes. Such a theory 
of stability is required on two grounds. On the one hand, the solution concept of 
stability studied by Gale and Shapley (1962) and Shapley and Shubik (1971) has 
been successful in analyzing matching applications, but the assumption of complete 
information is often restrictive. On the other hand, the theory of asymmetric infor-
mation in two-sided markets is long standing and revolutionary (e.g., Wilson 1967, 
Akerlof 1970, Spence 1973, Rothschild and Stiglitz 1976, etc.), but the main analyt-
ical tools are the competitive equilibrium and noncooperative game theory, which 
differ from stability in fundamental respects.1

1 Two features distinguish equilibrium theories from stability. First, equilibrium theories are often developed on 
the premise of individual optimization while holding fixed the behavior of all other actors. In many two-sided mar-
kets with pairwise relationships, pairwise blocking or optimization that jointly involves two players from opposite 
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In a complete-information matching problem, two players from opposite sides of 
the market “block” a matching if both are better off by rematching with each other; 
a matching is called stable if it is individually rational and no such pairwise blocking 
opportunity exists. With asymmetric information, the players’ incentive to block 
depends on their private information; hence, the presence of a blocking opportunity 
reveals information that should lead to a reassessment of the viability of the block-
ing opportunity. Likewise, the lack of any viable blocking opportunity, a situation 
that stability describes, should also reveal information. Therefore, the uncertainty in 
a stable matching is endogenous. In a Bayesian theory of stability, a player’s uncer-
tainty at each contingency should be described by a probabilistic belief. However, 
the circular nature of the inference problem makes this task difficult.

We aim to develop a Bayesian theory of stability and to avoid, if at all possible, 
compromising cooperative models of matching with ad hoc noncooperative assump-
tions. Nevertheless, a comparison with the theory of dynamic noncooperative games 
of incomplete information elucidates aspects of beliefs that must be captured in a 
satisfactory Bayesian theory of stability. This comparison is warranted because it 
is a commonly held view that coalitional solution concepts are reduced-form ways 
of capturing equilibrium or steady-state outcomes of dynamic interactions.2 The 
starting point of this comparison is, naturally, sequential equilibrium, a leading solu-
tion concept for dynamic games. As Kreps and Wilson (1982, p. 886) explain, a 
central principle of their theory is to describe equilibrium as a belief-strategy pair, 
where equilibrium beliefs—both on and off the equilibrium path—are determined in 
concert with equilibrium strategies. This powerful insight of separating equilibrium 
beliefs from equilibrium strategies, so convenient as to be taken for granted today, 
is instrumental in wide-ranging applications of dynamic games, and it paved the 
way for subsequent development of belief-based equilibrium refinements. We may 
expect an analogous development in a cooperative theory of stability with incom-
plete information. Specifically, a notion of “on-path stable beliefs” that are consis-
tent with “stable matching outcomes” should be prescribed for a stability concept, 
and a notion of “off-path stable beliefs” at “off-path” blocking opportunities that 
deter blocking should be formulated, which would open the door for belief-based 
refinements. This idea seems natural, but, surprisingly, it has not been formally 
examined in matching problems in particular and cooperative games in general.

By explicitly formulating the on-path belief at each matching outcome and the 
off-path belief at each blocking opportunity, it is possible to define stability through 
the consistency of the matching-belief configuration: the putative matching is 
individually rational with respect to the system of on-path beliefs, and it is immune 
to pairwise blocking with respect to the system of off-path beliefs. Matchings and 

sides of the market is no less plausible than unilateral deviation or optimization. Secondly, noncooperative games 
can be used to model coalition formation, but they often require complete specifications of the strategic interactions 
including actions available to each player, orders of moves, rules of information revelation, etc. In reality, however, 
researchers may not know the exact nature of the interactions among players. Some assumptions on noncooperative 
game forms may seem reasonable in one context but may become unrealistic in another. The advantage of the 
cooperative concept of stability is that it focuses on payoff assumptions and abstracts away from details of strategic 
interactions.

2 See, for example, Gul (1989) and Perry and Reny (1994) for the exposition of this idea known as the “Nash 
program.” In fact, we may argue that many other solution concepts are shortcuts to capture some dynamic interac-
tions, including the fundamental noncooperative concept of Nash equilibrium.
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beliefs that pass the consistency test are referred to as stable matchings and sta-
ble beliefs. Although we have borrowed the terminology of “on path” and “off 
path” from noncooperative games, we do not impose a specific noncooperative 
interpretation on “off-path” events. In defining stability, we simply test a putative 
matching against all counterfactual blocking opportunities, as is consistent with the 
complete-information theory of stability.

If we agree that endogenous on-path and off-path stable beliefs are qualitatively 
different from a prior belief that is an exogenous primitive of our model, the imme-
diate next conceptual question is how to relate these three kinds of beliefs to each 
other. Since cooperative matching games do not specify strategies and game forms, 
we cannot apply Bayes’ rule as in noncooperative games. In particular, it would be a 
futile attempt to explicitly derive an on-path belief by updating the prior belief from 
a sequence of failed pairwise deviations. This direct approach does not cut through 
the Gordian knot of circular inference. Here is how we resolve this question. We 
make use of an idea of “outcome functions” similar to that in the literature on ratio-
nal expectations equilibrium: players understand the stable relationship between the 
underlying uncertainties (players’ types) and the observables (matching outcomes). 
Using Bayes’ rule, an on-path stable belief is “updated” from the prior conditional 
on an observable outcome that is an output of the outcome function; an off-path 
stable belief associated with an off-path blocking opportunity is further “updated” 
from the on-path stable belief conditional on the off-path event that the blocking 
opportunity is mutually acceptable. This Bayesian consistency property refines the 
notion of stability and closes the loop of the circular inference for defining on-path 
and off-path beliefs in a stable matching: there is no individual or pairwise deviation 
from a stable matching outcome given the supporting stable beliefs; stable beliefs 
and a prior belief are Bayesian consistent given the stability of the matching.

Although the concepts of stability and Bayesian consistency apply to both trans-
ferable utility and nontransferable utility problems, we study their implications in 
matching problems with transfers. With complete information, transfers and payoff 
distributions in a stable matching exhibit a large degree of flexibility, which, unsur-
prisingly, continues to hold under asymmetric information. However, it is known 
that a stable matching with transfers must maximize the total surpluses (Shapley 
and Shubik 1971). This efficiency is a simple yet remarkable structural property of 
stability, and extending it to an incomplete information environment is obviously 
worthwhile. The existence of stable beliefs allows us to evaluate match efficiency in 
the Bayesian sense. We define a criterion of Bayesian efficiency as maximization of 
the expected social surpluses with respect to on-path stable beliefs, the kind of beliefs 
that an uninformed planner would have. We give conditions under which all stable 
matchings that are supported by Bayesian-consistent beliefs must be Bayesian effi-
cient, and these conditions help to reexamine familiar models of adverse selection.

Incomplete information is qualitatively different from complete information in 
ways that go beyond efficiency. Motivated by two concepts that have occupied sig-
nificant places in economic theory, we define the competitive equilibrium and the 
core to further study the role of informational friction in matching formation. Our 
notion of rational expectations competitive equilibrium extends the notion of the 
complete-information competitive equilibrium (see, e.g., Koopmans and Beckmann 
1957, Shapley and Shubik 1971, and Becker 1973). A competitive equilibrium 
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specifies a price for any pair of players (including unmatched pairs) and postulates 
that the validity of a player’s unilateral deviation is independent of the other player’s 
willingness to match with the deviating player. By contrast, stability dispenses with 
both postulates of price-taking behavior and unilateral deviation. However, the two 
conceptually different notions are outcome equivalent under complete information. 
The equivalence breaks down under informational asymmetry. The set of competi-
tive equilibrium matchings and the set of stable matchings with Bayesian-consistent 
beliefs must overlap, but in general neither one contains the other. The reason is pre-
cisely that the two theories of market mechanisms, stability and competitive equilib-
rium, make different assumptions about how information is processed in deviations. 
But a competitive equilibrium is always Bayesian efficient conditional on the infor-
mation being revealed, because of the nature of unilateral optimization.

Under complete information, pairwise stability is the same as the concept of the 
core; that is, a matching is not blocked by any pair of players if and only if it is 
not blocked by any set of players. Under incomplete information, the set of sta-
ble matchings contains the core as a subset. The core can strictly refine stability 
even when (prior and posterior) type distributions across players are independent: 
a blocking cycle can be created using multiple pairs, where the formation of each 
blocking pair is conditional on the formation of other blocking pairs, and every 
player in this cycle makes an inference from the incentives of his respective partners 
both in the putative match and in the coalitional deviation.

The rest of the paper is organized as follows. Section I demonstrates several fea-
tures of beliefs and stability using two examples. Section II discusses the related 
literature. Section  III introduce the model, and Section  IV defines the notion of 
stability and its refinements. Section V studies the criterion of Bayesian efficiency. 
Section VI compares stability and competitive equilibrium. Section VII offers sev-
eral extensions: the core, the notion of correlated stability, and the incentive compat-
ibility. Section VIII concludes.

I.  Examples

The first example shows that beliefs associated with stability, the on-path beliefs, 
are qualitatively different from prior beliefs, and they cannot be determined a priori 
independently of the stability of a matching. The second example demonstrates nat-
ural restrictions on beliefs across players.

Example 1: There is one worker whose type is drawn from ​​{​t​1​​, ​t​ 1​ ′ ​}​​ according to 
a commonly known prior distribution that assigns probability ​q  ∈ ​ (0, 1)​​ to ​​t​1​​​ and ​
1 − q​ to ​​t​ 1​ ′ ​.​ There are two firms (firm 1 and firm 2). The matrix of matching values 
is given below:

firm 1 firm 2
​​t​1​​​ ​− 1, 2​ ​− 3, 5​

​​t​ 1​ ′ ​​ ​0, 2​ ​− 4, 5​

where, for instance, the vector ​​(− 1, 2)​​ in the matrix means that, before a transfer is 
made, the matching of the type-​​t​1​​​ worker and firm 1 gives the worker a payoff of ​− 1​ 
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(e.g., cost of effort) and the firm a payoff of ​2​ (e.g., output). Assume that the payoff 
of an unmatched player is ​0.​

Suppose a matching is formed. We claim that it is impossible that firm 2 is 
matched with the worker of type ​​t​ 1​ ′ ​​ for a reasonable notion of stability that captures 
an immunity to pairwise blocking. To see this, suppose to the contrary that the work-
er’s type happens to be ​​t​ 1​ ′ ​​ and this worker ends up matching with firm 2. Note that 
the salary that the worker of type ​​t​ 1​ ′ ​​ receives from firm 2 cannot exceed ​5​ (because 
firm 2’s matching value is 5), and hence the worker’s payoff is at most ​− 4 + p  ≤  1,​ 
where ​p​ is the salary. Since there is only one worker, firm 1 is unmatched. The 
worker of type ​​t​ 1​ ′ ​​ can block the above matching outcome with the unmatched firm ​1​ 
with a salary of ​p′  =  1.5​: the worker obtains a payoff of ​0 + p′  =  1.5  >  1​, and 
firm ​1​ obtains a payoff of ​2 − p′  =  0.5​ regardless of the worker’s type.

Similarly, it is impossible that firm 1 is matched with the worker of type ​​t​1​​​. 
Otherwise, this worker and the unmatched firm ​2​ could block the matching outcome 
with a salary of ​p′  =  4.5​: the worker would obtain a payoff of ​− 3 + p′  =  1.5,​ 
which is higher than the maximal payoff he could obtain in a match with firm 1, and 
firm 2 would make a payoff of ​5 − p′  =  0.5​ regardless of the worker’s type.

Thus we conclude that, in a stable matching, the type-​​t​1​​​ worker cannot be hired 
by firm 1 and the type-​​t​ 1​ ′ ​​ worker cannot be hired by firm 2: a firm’s posterior belief 
associated with any stable matching (i.e., the on-path stable belief) must assign 
probability ​1​ to ​​t​1​​​ when the worker is matched with firm ​2​ and must assign prob-
ability ​1​ to ​​t​ 1​ ′ ​​ when the worker is matched with firm ​1.​ Therefore, there is a full 
separation of workers’ types irrespective of the prior distribution.

The takeaway of the example is that beliefs in a stable matching should not sim-
ply be taken as prior beliefs and they cannot be fixed a priori. The on-path belief 
must always be determined together with the stability of the matching.

Example 2: Consider the following example with three firms and one worker 
whose type is either ​​t​1​​​ or ​​t​ 1​ ′ ​​:

firm 1 firm 2 firm 3
​​t​1​​​ ​0, 2​ ​0, 0​ ​0, 5​

​​t​ 1​ ′ ​​ ​0, 2​ ​0, 5​ ​0, 0​

Can it be stable for the worker to match with firm 1 with some transfer? Suppose 
that firms 2 and 3 start with a common prior over ​​{​t​1​​, ​t​ 1​ ′ ​}​​ and make identical obser-
vations (including the fact that firm 1 and the worker are matched); then the two 
firms should share the same posterior belief, say ​q  ∈ ​ [0, 1]​,​ on ​​t​1​​.​ It is clear from the 
matrix of matching values that no matter what ​q​ is, one of the two firms can form a 
blocking pair with the worker. Therefore, it is not a stable matching for firm 1 to hire 
the worker.	

The argument above is intuitive, and a natural notion of stability should not 
predict otherwise. But we shall raise an issue that has broader implications, and it 
should not be surprising for students of noncooperative game theory. If the putative 
matching of firm 1 and the worker is under consideration, a new pair formed by 
firm 2 (or firm 3) and the worker is “off path.” The above argument assumes that 
the off-path belief of the firm is the same as the on-path belief. This assumption is 
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appealing in the context of this example, as there does not seem to be a compelling 
reason for the two firms to change their beliefs about ​​t​1​​​ or ​​t​ 1​ ′ ​​ given that both types 
obtain a constant matching value of 0 and prefer to work for whichever firm for a 
higher wage. But we must be clear that this assumption is a refinement of off-path 
beliefs. If firm 2 and firm 3 are allowed to have heterogeneous posterior beliefs, and 
say, firm 2 thinks the worker’s type is ​​t​1​​​ and firm 3 thinks the worker’s type is ​​t​ 1​ ′ ​,​ that 
is, each firm looks at its respective worst-case scenario, then it would be stable for 
the worker to match with firm 1.

The takeaway of this example is that the specification of off-path beliefs should not 
be completely arbitrary. Additional restrictions on beliefs based on our intuition about 
the game will strengthen the predictive power of the solution concept, as is already well 
known from the equilibrium refinement literature. The principal refinement we propose 
in this paper, when applied to this example, will yield the intuitive prediction we started 
with.

II.  Related Literature

Given the wide range of applications of stable matching, attempts to relax the 
restriction on complete information are not new. Roth (1989) and Chakraborty, 
Citanna, and Ostrovsky (2010) study implementation of matching outcomes using 
existing noncooperative concepts. Their response to incomplete information is natu-
ral, but the choice of game forms matters for the equilibrium outcomes and beliefs. 
By contrast, we propose the notion of stability as a test of a putative matching against 
all potential pairwise blocking opportunities, as in complete-information theory of 
stability. Unlike this early work, no game form is imposed, and hence the oppor-
tunity of blocking is never restricted—this aspect is a central distinction between 
cooperative and noncooperative game theory as well as a main conceptual question 
for a cooperative theory of incomplete information. In the sequel, we explain how 
the present paper diverges from a broad literature in terms of problem formulation 
and methodology.

A. The Incomplete-Information Core

In his pathbreaking work, Wilson (1978) defines “coarse core” and “fine core” 
corresponding to two protocols of information aggregation within a blocking coa-
lition. See Forges, Minelli, and Vohra (2002) for a survey of subsequent develop-
ments. Two other concepts stand out. Holmström and Myerson (1983) propose a 
notion of durability based on a voting game. Dutta and Vohra (2005) define the 
credible core, where the information that a deviating coalition conditions on is the 
information that makes the deviation profitable, so the set of types that engage in a 
deviation is endogenously determined as a fixed point; Yenmez (2013) defines sta-
bility with a similar kind of fixed point.

As in the traditional formulation of adverse selection problems, this literature 
analyzes a situation in which the final outcomes are not observed, or at least the con-
tracts already in place must be carried out. By contrast, we study a situation in which 
the outcomes are observed and players consider deviating from an outcome based 
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on their updated information and inference.3 Our framework is suitable for decen-
tralized applications, such as marriage and labor markets, where players observe an 
actual market outcome and stability describes a situation in which there is no further 
coalitional deviation from this outcome. This critical distinction gives rise to the 
circular inference problem we previously summarized, which is absent from Wilson 
(1978) and the literature that follows. The new problem calls for a new approach to 
stability and beliefs. The following self-contained example illustrates the difference 
in approaches.

Example 3: Consider one seller whose cost is 0 and one buyer whose valuation is 
either ​1​ or ​ε  ∈ ​ (0, 1/2)​​, with equal prior probability. The following allocation rule 
is in the credible core of Dutta and Vohra (2005), a refinement of the coarse core: 
the price is ​1​, and only the high-type buyer trades with the seller. The reasoning 
is as follows. A potential coalition that involves the low-type buyer must have a 
price ​p  ≤  ε.​ This low price will attract the high-type buyer as well, so the seller’s 
belief about the worker is the same as prior belief, as required by Dutta and Vohra 
(2005), and the expected payoff from the deviation is ​p  ≤  ε​. But the seller has no 
incentive to deviate because he gets an expected payoff of ​1/2​ from selling only to 
the high type at price 1. So the allocation rule is not blocked. Accordingly, if the 
buyer is the low type, the allocation rule prescribes no trade, and nothing can be 
done when this is a realized outcome. This conclusion also conforms to the tradi-
tional analysis of adverse selection. This is not the situation we are considering in 
this paper. Observing a no-trade outcome, the seller would know the buyer’s type is 
low, and they would block the no-trade outcome at a price of ​ε/2​.

In spite of the difference illustrated in this example, it is important to point out 
that our approach is similar to the seminal paper of Wilson (1978), and some of the 
work that follows it, in two critical respects: we define a solution concept for a class 
of coalitional incomplete-information games instead of implementing the solution 
concept (we shall discuss the issue of incentive compatibility in Section VIIC), and 
we avoid making noncooperative assumptions an indispensable component in the 
definition of a cooperative solution concept.

B. The Belief-Free Approach

As in the present paper, Liu et al. (2014) depart from the previous literature by 
assuming observability of matching outcomes, which makes inference from the 
nonexistence of pairwise blocking necessary. Without pinning down the beliefs that 
this inference induces, they take an approach that in spirit resembles the rationaliz-
ability concept of Bernheim (1984) and Pearce (1984), notwithstanding the issues 
created by incomplete information and the observability of matching outcomes. 
They observe that matching outcomes that can be blocked under any beliefs of the 

3 Forges (1994) proposes a notion of posterior efficiency that conditions on the information revealed by an 
outcome of a mechanism. Green and Laffont (1987) study “posterior implementability” that utilizes information 
revealed by observable outcomes.
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uninformed firm that are consistent with a worker’s incentive to deviate should never 
be considered as stable. Once these matching outcomes are removed from consid-
eration, the support of admissible beliefs shrinks, which enables further rounds of 
elimination. Liu et  al. (2014) define a concept based on this iterated elimination 
procedure. Since there is no randomization, blocking under “any beliefs” is math-
ematically equivalent to blocking under the “worst-case scenario.” The key of this 
definition is to make no exogenous restrictions on beliefs over the tentatively surviv-
ing outcomes in the elimination process, similar to the process of iterated elimination 
of never-best responses in noncooperative games. It would be logically inconsistent 
otherwise. Alston (2020) and Bikhchandani (2017) demonstrate the consequence of 
such exogenous restrictions on beliefs in the elimination process.

Notice that from the uniformed firms’ perspective, the set of workers’ type pro-
files is not necessarily a Cartesian product, and hence it is implicitly a partitional 
structure. This information is refined along the elimination process. Liu et al. (2014) 
show that this iterative elimination has an equivalent fixed-point characterization.4 
In subsequent papers that adopt their model, Chen and Hu (2020) explicitly formu-
late the partitional information in the fixed-point definition and construct an adap-
tive learning process leading to stability, and Pomatto (2018) provides an epistemic 
formulation of blocking by using a forward-induction logic.

The approach of Liu et al. (2014), although imposing strong restrictions in cer-
tain contexts, evades the central question of economic analysis of uncertainty: the 
Bayesian formulation of prior and posterior beliefs.5 We should not be content with 
a belief-free solution for Bayesian matching games that are parameterized by prior 
beliefs. It should be noted that one cannot obtain an on-path belief in the present 
paper by imposing a prior belief on a stable set obtained from Liu et  al. (2014) 
and subsequent reformulations; it is logically inconsistent: just as in equilibrium 
theory, the on-path beliefs and off-path beliefs are determined concurrently, and the 
belief-free notion is based on different assumptions on the off-path beliefs.

III.  The Model

The model is based on matching between firms and workers studied by Crawford 
and Knoer (1981). But “firms” and “workers” are just semantics, and the model 
applies more generally (e.g., men and women, sellers and buyers, etc.). In addition, 
the model reduces to a nontransferable utility model if transfers are restricted to be 

4 It should be pointed out that this fixed point is different from the fixed points in Dutta and Vohra (2005) and 
Yenmez (2013). The latter concerns the self-fulfilling set of types of a blocking coalition, and this set is irrelevant 
if incomplete information is one sided. The approach of Liu et  al. (2014) is also different from the coalitional 
rationalizability studied by Ambrus (2006), where there is neither inference from incomplete information nor the 
idea of blocking; in the special case of complete information, the notion of Liu et al. (2014) reduces to the familiar 
notion of the core.

5 In addition to payoff assumptions, Liu et al. (2014) make use of the assumption that private information is 
revealed within a matched pair in a putative matching. Thus, individual rationality becomes ex post, and a deviat-
ing player’s payoff is also compared to its ex post payoff in a putative matching. This assumption circumvents the 
difficulty of defining payoffs in a stable matching even though information in the stable matching should be endog-
enous, which gives considerable strength to their concept. The present paper does not make the assumption (but 
it can be added; see Section IVE), and the conceptual difficulty of defining expected payoffs in a stable matching 
with endogenous information is resolved by the notion of on-path belief and its joint determination with stability.
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zero, where the concepts we shall develop remain valid mutatis mutandis. We prove 
results under the assumption of quasi-linearity in transfers.

A. Asymmetric Information

Let ​I  = ​ {1, …, n}​​ be a set of workers and ​J  = ​ {n + 1, …, n + m}​​ be a set of 
firms. Let ​​T​i​​​ be a finite set of types for worker ​i​. Worker ​i​’s type ​​t​i​​  ∈ ​ T​i​​​ is his private 
information. Denote by ​t  = ​ (​t​1​​, …, ​t​n​​)​  ∈  T  = ​ ∏ i=1​ n ​​ ​T​i​​​ a profile of private types 
for the ​n​ workers. There is a common prior ​​β​​ 0​  ∈  Δ​(T)​​ on workers’ type profiles, 
and ​​β​​ 0​​ has a full support. Firm ​j​’s type is commonly known and denoted by its 
index ​j​. Similarly, each worker ​i​ can also have publicly observable, payoff-relevant 
attributes that are denoted by ​i​.

B. Match and Payoff

Let ​​a​ij​​​(​t​i​​)​  ∈  ℝ​ and ​​b​ij​​​(​t​i​​)​  ∈  ℝ​ be the matching values worker ​i​ (with type ​​t​i​​​) 
and firm ​j​ receive, respectively, when they match.6 To ease notation, for a profile 
of workers’ types ​t  = ​ (​t​i​​, ​t​−i​​)​  ∈  T​, we write ​​a​ij​​​(t)​  ≔ ​ a​ij​​​(​t​i​​)​​ and ​​b​ij​​​(t)​  ≔ ​ b​ij​​​(​t​i​​)​​  
whenever there is no confusion. We normalize the matching values of unmatched 
players ​i​ and ​j​ to ​0​ and, with a slight abuse of notation, write them as ​​a​ii​​​(t)​  = ​ b​jj​​​(t)​ 
=  0.​ A matching game is fully summarized by the matching value function  
​​(a, b)​  :  I × J × T  → ​ ℝ​​ 2​​ and the common prior ​​β​​ 0​  ∈  Δ​(T  )​.​

A match is a one-to-one function ​μ  :  I  ∪  J  →  I  ∪  J​ that pairs up workers and 
firms such that the following holds for all ​i  ∈  I​ and ​j  ∈  J​: (i) ​μ​(i)​  ∈  J  ∪ ​ {i}​​,  
(ii) ​μ​(  j)​  ∈  I  ∪ ​ {  j}​​, and (iii) ​μ​(i)​  =  j​ if and only if ​μ​(  j)​  =  i​. Here ​μ​(i)​  =  i  ∈  I​ 
means that worker ​i​ is unmatched; similarly for ​μ​(  j)​  =  j  ∈  J​.

Let ​​p​ij​​  ∈  ℝ​ be the transfer that worker ​i​ receives from firm ​j​. A transfer scheme 
associated with a match ​μ​ is a vector ​𝐩​ that specifies a transfer ​​p​iμ​(i)​​​  ∈  ℝ​ for 
each ​i  ∈  I​ and a transfer ​​p​μ​(j)​j​​  ∈  ℝ​ for each ​j  ∈  J,​ where ​​p​ii​​  = ​ p​jj​​  =  0.​ If 
worker ​i​ and firm ​j​ are matched together with a transfer ​​p​ij​​​ when the profile of work-
ers’ types is ​t,​ worker ​i​’s and firm ​j​’s ex post payoffs are ​​a​ij​​​(t)​ + ​p​ij​​​ and ​​b​ij​​​(t)​ − ​p​ij​​,​ 
respectively.

We shall refer to a match together with a transfer scheme ​​(μ, 𝐩)​​ as a matching 
outcome. We shall assume that a matching outcome is publicly observable.7

C. Matching Function

For every ​t  = ​ (​t​1​​, …, ​t​n​​)​  ∈  T,​ some matching outcome ​​(μ, 𝐩)​​ materializes. In 
a stable matching, players should correctly understand the relationship between the 
underlying uncertainties and the observable outcomes, which is described by a func-
tion ​M  :  t  ↦ ​ (μ, 𝐩)​.​ We shall call the function ​M​ a matching function or simply a 

6 The matching value is allowed to depend on players’ observable attributes denoted by ​i​ and ​j​. It thus includes 
as a special case ​​a​ij​​​(​t​i​​)​  =  u​(​t​i​​, ​w​i​​, ​f​j​​)​​ and ​​b​ij​​​(​t​i​​)​  =  v​(​t​i​​, ​w​i​​, ​f​j​​)​,​ where ​​w​i​​​ and ​​f​j​​​ are worker ​i​’s and firm ​j​’s observable 
characteristics, respectively.

7 The observability of matches and transfers are empirically relevant; see Salanié (2015) for a discussion of 
marriage models with transfers.
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matching for the matching game with asymmetric information. Three remarks are 
immediately needed.

Remark 1 (Rational Expectations): The function ​M  :  t  ↦ ​ (μ, 𝐩)​​ describes a stable 
relationship between underlying uncertainties and observables, and players agree 
on this relationship. This is similar to the classic rational expectations equilibrium 
approach to markets with incomplete information pioneered by Radner (1979), 
where an equilibrium relationship is described by a mapping from unobservable 
uncertainties to publicly observable price vectors. In our matching environment, it is 
natural to assume that the assignment ​μ​ is observable in addition to price vectors ​𝐩​.  
Economic theorists have utilized a similar approach in other contexts, such as the 
formulation of conjectural equilibria and self-confirming equilibria (e.g., Rubinstein 
and Wolinsky 1994; Dekel, Fudenberg, and Levine 2004).

Remark 2 (Correlation): The matching function describes a deterministic rela-
tionship between private types and matching outcomes. In Section VIIB, we incor-
porate stochasticity through ​M  :  ​(t, s)​  ↦ ​ (μ, 𝐩)​,​ where ​s  = ​ (​s​n+1​​, …, ​s​n+m​​)​​ is a 
profile of private signals observed by firms. The assumption of observable matching 
outcomes simplifies the analysis. If we are interested in the partial observability of 
matching outcomes, we can introduce a private signal profile ​ω  = ​ (​ω​1​​, … , ​ω​n+m​​)​​ 
regarding a matching outcome ​​(μ, 𝐩)​,​ and consider a mapping ​M  :  t  ↦  ω.​ It does 
not take sophisticated thinking to formalize this extension once we see the definition 
for the case of observable matching outcomes. The extension involves no additional 
conceptual innovation but necessitates more notation.

Remark 3 (Measurability): We may impose the following restriction on the 
matching function: ​M​ is measurable with respect to the privately informed players’ 
matching values, that is, if for some worker ​i  ∈  I​ and his two types ​​t​i​​, ​t​ i​ ′ ​  ∈ ​ T​i​​,​ ​​a​ij​​​(​t​i​​)​  
= ​ a​ij​​​(​t​ i​ ′ ​)​​ for all ​j  ∈  J,​ then ​M​(​t​i​​, ​t​−i​​)​  =  M​(​t​ i​ ′ ​, ​t​−i​​)​​ for all ​​t​−i​​  ∈ ​ T​−i​​.​ If this condi-
tion is satisfied, we say the matching ​M​ is measurable. Measurability reflects the 
idea that an uninformed player’s private information can be revealed only when it 
affects the player’s own payoff. This restriction is not without loss of generality, and 
our definitions and results do not hinge on it.

IV.  The Criterion of Stability

In this section, we first introduce the plain-vanilla version of stability that incor-
porates individual rationality under on-path beliefs and the absence of pairwise 
blocking under off-path beliefs. We then introduce a refinement based on Bayesian 
consistency between exogenous prior beliefs and endogenous on-path and off-path  
beliefs.

A. On-Path Beliefs and Individual Rationality

Consider any matching outcome ​​(μ, 𝐩)​​ that may appear according to the match-
ing function ​M,​ that is, ​​(μ, 𝐩)​  ∈  M​(T )​.​ Upon observing ​​(μ, 𝐩)​,​ each firm ​j  ∈  J​ 
forms a belief ​​β​ ​(μ,𝐩, j)​​ 

1  ​  ∈  Δ​(T)​​ over the types of all workers. This is firm ​j​’s on-path 
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belief associated with the matching outcome ​​(μ, 𝐩)​.​ Firm ​j​’s expected payoff from 
the matching outcome ​​(μ, 𝐩)​​ is

	​ ​피​​β​ ​(μ,𝐩, j)​​ 
1  ​​​​[​b​μ​( j)​j​​]​ − ​p​μ​( j)​j​​  = ​ ∑ 

t∈T
​ 

 
 ​​ ​ b​μ​( j)​j​​​(t)​ ​β​ ​(μ,𝐩, j)​​ 

1  ​​(t)​ − ​p​μ​( j)​j​​.​

As we explained in the introduction, the on-path belief is the endogenous belief 
formed when there is no longer an opportunity to deviate from a matching. Does the 
introduction of ​​β​ ​(μ,𝐩, j)​​ 

1  ​​ capture this endogeneity in a stable matching? Not yet, but it 
will. So far, ​​β​ ​(μ,𝐩, j)​​ 

1  ​​ describes firm ​j​’s posterior beliefs when the putative matching 
is in place. The to-be-defined stability of ​M​ will discipline the on-path belief, as 
demonstrated already by the first example in Section I. The stability of ​M​ and the 
on-path belief ​​β​​ 1​​ will be determined jointly rather than separately.

DEFINITION 1: A matching ​M​ is individually rational with respect to the system of 
on-path beliefs ​​β​​ 1​  = ​​ (​β​ ​(μ,𝐩, j)​​ 

1  ​)​​​(μ,𝐩)​∈M​(T)​, j∈J​​​ if

	 (i)	 ​​a​iμ​(i)​​​​(t)​ + ​p​iμ​(i)​​​  ≥  0​ for all ​i  ∈  I,​ ​t  ∈  T​, and ​​(μ, 𝐩)​  =  M​(t)​,​ and

	 (ii)	 ​​피​​β​ ​(μ,𝐩, j)​​ 
1  ​​​​[​b​μ​( j)​j​​]​ − ​p​μ​( j)​j​​  ≥  0​ for all ​j  ∈  J​ and ​​(μ, 𝐩)​  ∈  M​(T )​.​

B. Off-Path Beliefs and Pairwise Blocking

Stability requires that there be no pairwise blocking; that is, pairwise blocking is 
a counterfactual, off-path possibility if ​M​ is stable. A (pairwise) deviating coalition 
from a matching outcome ​​(μ, 𝐩)​  ∈  M​(T )​​ consists of a worker ​i  ∈  I,​ a firm ​j  ∈  J,​ 
and a transfer ​p  ∈  ℝ​ such that ​j  ≠  μ​(i)​.​ We shall refer to ​​(μ, 𝐩, i, j, p)​​ as a coali-
tional deviation, indicating that the coalition ​​(i, j, p)​​ is for the matching outcome ​​
(μ, 𝐩)​.​ Let ​​C​M​​​ be the set of coalitional deviations for ​M.​ Formally,

	​ ​C​M​​  = ​ {​(μ, 𝐩, i, j, p)​  :  ​(μ, 𝐩)​  ∈  M​(T )​, i  ∈  I, j  ∈  J, j  ≠  μ​(i)​, p  ∈  ℝ}​.​

We say ​​(μ, 𝐩, i, j, p)​  ∈ ​ C​M​​​ is a coalitional deviation at type profile ​t​ if ​​(μ, 𝐩)​  
=  M​(t)​​ for some ​t  ∈  T.​

We would like to formalize the following intuitive idea: a coalitional deviation ​​
(μ, 𝐩, i, j, p)​​ for ​M​ at some type profile ​t​ is viable if the deviation is mutually ben-
eficial to worker ​i​ and firm ​j​, that is, if they prefer, in the expected utility sense, a 
rematch with each other at the transfer ​p​ to their respective matches under ​​(μ, 𝐩)​​; a 
matching ​M​ is blocked if some coalitional deviation at some ​t​ is viable. To compare 
the firm’s expected payoffs, we need to specify players’ beliefs conditional on this 
coalitional deviation.

Consider a coalitional deviation ​​(μ, 𝐩, i, j, p)​​ at ​t  ∈  T.​ Worker ​i​ benefits from the 
deviation at ​t​ if and only if

(1)	​ ​a​ij​​​(t)​ + p  > ​ a​iμ​(i)​​​​(t)​ + ​p​iμ​(i)​​​.​
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Suppose firm ​j​’s off-path belief conditional on this deviation is ​​β​ ​(μ,𝐩,i, j, p)​​ 
2  ​  ∈  Δ​(T  )​​. 

Firm ​j​’s profit from participating in the coalitional deviation ​​(μ, 𝐩, i, j, p)​​ is

(2)	​ ​피​​β​ ​(μ,𝐩,i, j,p)​​ 
2  ​​​​[​b​ij​​]​ − p  = ​ ∑ 

t∈T
​ 

 
 ​​ ​ b​ij​​​(t)​​β​ ​(μ,𝐩,i, j,p)​​ 

2  ​​(t)​ − p.​

The firm will also revise its expected payoff from the putative matching, using the 
off-path belief, to

(3)	​ ​피​​β​ ​(μ,𝐩,i, j,p)​​ 
2  ​​​​[​b​μ​( j)​j​​]​ − ​p​μ​(  j)​j​​  = ​ ∑ 

t∈T
​ 

 
 ​​ ​ b​μ​( j)​j​​​(t)​​β​ ​(μ,𝐩,i, j,p)​​ 

2  ​​(t)​ − ​p​μ​( j)​j​​.​

Firm ​j​ benefits from the coalitional deviation ​​(μ, 𝐩, i, j, p)​​ if

(4)	​ ​피​​β​ ​(μ,𝐩,i, j,p)​​ 
2  ​​​​[​b​ij​​]​ − p  >  max​{0, ​피​​β​ ​(μ,𝐩,i, j,p)​​ 

2  ​​​​[​b​μ​( j)​j​​]​ − ​p​μ​(  j)​j​​}​;​

that is, the firm must anticipate a positive payoff that is larger than what it expects to 
obtain in the putative matching.

DEFINITION 2: A coalitional deviation ​​(μ, 𝐩, i, j, p)​  ∈ ​ C​M​​​ for the matching 
​M​ at ​t  ∈  T​ is viable with respect to an off-path belief ​​β​ ​(μ,𝐩,i, j, p)​​ 

2  ​  ∈  Δ​(T )​​ if both ​​
(1)​​ and ​​(4)​​ hold. A matching ​M​ is blocked with respect to a system of off-path 
beliefs ​​β​​ 2​  = ​​ (​β​ ​(μ,𝐩,i, j, p)​​ 

2  ​)​​​(μ,𝐩,i, j, p)​∈​C​M​​​​​ if there exists some coalitional deviation ​​
(μ, 𝐩, i, j, p)​​ at some ​t  ∈  T​ that is viable with respect to ​​β​ ​(μ,𝐩,i, j, p)​​ 

2  ​.​

We make three further remarks to facilitate the reader’s understanding.

Remark 4: Definition 2 describes when a coalitional deviation is mutually prof-
itable for both parties involved. It is silent about how two players find each other 
and how they negotiate a transfer between them, a detail that is abstracted away in 
the cooperative model. The definition proposes a test for a putative matching against 
arbitrary counterfactual coalitional deviations.

Remark 5: The “max” operator in ​​(4)​​ is required for the definition of a viable 
coalitional deviation because the firm’s expected payoff in the putative matching 
computed using the off-path belief ​​β​ ​(μ,𝐩,i, j, p)​​ 

2  ​​ may be negative, in which case firm ​j​’s 
payoff from the coalitional deviation being negative does not ensure firm ​j​’s partic-
ipation in the deviation. It is tempting to argue that viability is too strong a require-
ment and that the putative matching ​M​ should be viewed as defeated as long as

(5)	​ ​피​​β​ ​(μ,𝐩,i, j, p)​​ 
2  ​​​​[​b​ij​​]​ − p  > ​ 피​ ​β​​(μ,𝐩,i, j, p)​​​​ 

2  ​​[​b​μ​(  j)​j​​]​ − ​p​μ​(  j)​j​​,​

because firm ​j​ would reject its assignment ​μ​( j)​​ under ​​(μ, p)​​ if its updated on-path 
payoff ​​(3)​​ were strictly negative, regardless of whether or not firm ​j​ and worker ​i​ 
rematch with each other. This argument is flawed. Note that ​​(5)​​ and ​​(4)​​ differ only 
when firm ​j​’s off-path payoff, ​​(2)​,​ is negative (i.e., firm ​j​ will not hire the deviating 
worker ​i​). In this case, worker ​i​’s incentive to work for firm ​j​ reveals to firm ​j​ that 
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it should reject the match outcome ​​(μ, 𝐩)​​, but worker ​i​ also understands that he will 
not be hired by firm ​j​ because, being more informed, he can replicate firm ​j​’s com-
putation. Therefore, worker ​i​ will not benefit from the coalitional deviation, thus 
violating mutual profitability required for a valid coalitional deviation. One might 
still argue that firm ​j​ can still pay worker ​i​ for the purpose of soliciting information 
from him but will not hire him. If that is the case, all types of worker ​i​ would want 
to obtain the payment without actually switching to firm ​j​, and consequently no 
information would be revealed, thus defeating the purpose of making the payment 
in the first place.

We should carry this logic even further: in a viable coalitional deviation, firm ​j​ 
should assign positive probability only to those types of worker ​i​ who know they 
will be accepted by firm ​j.​ This is a refinement of firm ​j​’s off-path belief. It is not 
captured by Definition 2 but will be captured by the refinement in Section IVD.

Remark 6: We consider all counterfactual coalitional deviations for the putative 
matching ​M.​ But we do not consider further rounds of counterfactual deviations from 
the counterfactual coalitional deviations. This “farsighted blocking” makes block-
ing even harder (and hence leads to a coarser concept of stability); see, for example, 
Mauleon, Vannetelbosch, and Vergote (2011) and Ray and Vohra (2015) for related 
discussions of von Neumann–Morgenstern stable sets in complete-information 
problems. Incomplete information opens a new venue of research on farsightedness. 
Another issue is coalitions that jointly involve multiple pairs of workers and firms, 
which opens up more blocking opportunities. This will lead to the concept of the 
core in Section VIIA.

C. Stability

A matching-belief configuration ​​(M, ​β​​ 1​, ​β​​ 2​)​​ consists of a matching function ​M​, 
a system of on-path beliefs ​​β​​ 1​  = ​​ (​β​ ​(μ,𝐩, j)​​ 

1  ​)​​​(μ,𝐩)​∈M​(T)​, j∈J​​,​ and a system of off-path 

beliefs ​​β​​ 2​  = ​​ (​β​ ​(μ,𝐩,i, j,p)​​ 
2  ​)​​​(μ,𝐩,i, j,p)​∈​C​M​​​​.​ We have all the ingredients needed for the 

plain-vanilla version of stability.

DEFINITION 3: A matching-belief configuration ​​(M, ​β​​ 1​, ​β​​ 2​)​​ is stable if ​M​ is individ-
ually rational with respect to ​​β​​ 1​​ and is not blocked with respect to ​​β​​ 2​​. If ​​(M, ​β​​ 1​, ​β​​ 2​)​​ 
is stable, we say ​M​ is a stable matching and ​​β​​ 1​​ and ​​β​​ 2​​ are, respectively, on-path 
stable beliefs and off-path stable beliefs that support ​M.​

Definition 3 formulates the consistency of matching-belief configuration.8 If ​T​ 
is a singleton, the stability notion coincides with the familiar complete-information 
notion of stability. Example 1 in Section I illustrates the implication of stability with-
out appealing to any belief refinement. The example belongs to the class of games 
defined below, a generalization of assignment problems studied by Koopmans and 
Beckmann (1957) and Shapley and Shubik (1971).

8 Although we only study one-sided incomplete information, it is clear that extending this plain-vanilla defini-
tion of stability to two-sided incomplete information and more general environments is straightforward.
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ASSUMPTION 1: ​​b​ij​​​(​t​i​​)​  = ​ b​ij​​​(​t​ i​ ′ ​)​​ for all ​​t​i​​, ​t​ i​ ′ ​  ∈ ​ T​i​​,​​ i  ∈  I​, and ​j  ∈  J.​

Assumption 1 says that the uninformed player ​j​’s matching value ​​b​ij​​​ is independent 
of the informed player ​i​’s private types, although it can vary with their observable 
types that are denoted by ​i​ and ​j.​ One application of this setting is multiple-object 
auctions in which privately informed bidders (workers) acquire heterogeneous 
objects (jobs) and the object owners can have heterogeneous reservation values. A 
special case is ​​b​ij​​  ≡  0​, where the uninformed players care only about the transfers. 
We do not make any restrictions on ​​a​ij​​​.

DEFINITION 4: A matching ​M​ is full-information efficient if for all ​t  ∈  T​ 
and ​​(μ, 𝐩)​  =  M​(t)​, ​the match ​μ​ maximizes ​​∑ i=1​ n ​​ ​(​a​iμ′​(i)​​​​(t)​ + ​b​iμ′​(i)​​​​(t)​)​​ over all 
matches ​μ′  :  I  ∪  J  →  I  ∪  J.​

The following result is a basic test of the notion of stability, which conforms to 
our understanding from auction theory (e.g., the Vickrey-Clarke-Groves allocation 
mechanism).

PROPOSITION 1: Suppose that Assumption 1 holds. Then ​​(M, ​β​​ 1​, ​β​​ 2​)​​ is stable if 
and only if for any ​t  ∈  T,​ ​M​(t)​​ is complete-information stable when ​t​ is common 
knowledge; consequently, a stable matching ​M​ is full-information efficient.

D. A Refinement: Bayesian Consistency

The notion of stability can be permissive if no further restriction on beliefs is 
imposed.9 Although there is no invincible argument for any refinement of beliefs, 
and off-path beliefs in particular, some restrictions are arguably “desirable” or “intu-
itive.” We propose the following two principles and derive their implications:

	 (i)	 A firm’s belief should be updated using Bayes’ rule from the prior belief con-
ditional on what the firm observes and knows;

	 (ii)	 In a viable coalitional deviation, the deviating firm knows that the deviating 
worker benefits from the deviation.

Since firms know the function ​M​ (by the rational expectations assumption), upon 
observing the matching outcome ​​(μ, 𝐩)​,​ firms think the possible profiles of types lie 
in the set ​​M​​ −1​​(μ, 𝐩)​  = ​ {t  ∈  T  :  M​(t)​  = ​ (μ, 𝐩)​}​.​ Therefore, by the first principle, 
firm ​j​’s on-path belief is

(6)	​ ​β​ ​(μ,𝐩, j)​​ 
1  ​​( · )​  = ​ β​​ 0​​( · | ​M​​ −1​​(μ, 𝐩)​)​.​

9 For instance, an on-path belief assigns very small probability to a “disastrous” worker type, but all off-path 
beliefs assign probability 1 to the disastrous type without taking into account the type’s willingness to deviate, 
which makes coalitional deviation unlikely and hence supports many possible matching outcomes.



2639LIU: STABILITY AND BAYESIAN CONSISTENCY IN TWO-SIDED MARKETSVOL. 110 NO. 8

As a result, firms share the same on-path belief because they have a common prior ​​β​​ 0​​, 
a common observation ​​(μ, 𝐩)​,​ and a common understanding of ​M.​

Consider a coalitional deviation ​​(μ, 𝐩, i, j, p)​​ at ​t.​ Worker ​i​ (strictly) benefits from 
the deviation if and only if the type profile is in the following set:

	​ ​D​​(μ,𝐩,i, j, p)​​​  = ​ {t′  ∈  T  :  ​a​ij​​​(t′)​ + p  > ​ a​iμ​(i)​​​​(t′)​ + ​p​iμ​(i)​​​}​.​

By the second principle, for ​​(μ, 𝐩, i, j, p)​​ to be viable, firm ​j​ knows that worker ​i​’s 
type is in ​​D​​(μ,𝐩,i, j, p)​​​.​ Then, by the first principle, firm ​j​’s off-path belief ​​β​ ​(μ,𝐩,i, j, p)​​ 

2  ​​ is 
derived from the prior according to Bayes’ rule conditional on what it observes and 
knows

(7)	​ ​β​ ​(μ,𝐩,i, j, p)​​ 
2  ​​( · )​  = ​ β​​ 0​​( · | ​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​​(μ,𝐩,i, j, p)​​​)​  = ​ β​ ​(μ,𝐩, j)​​ 

1  ​​( · |​D​​(μ,𝐩,i, j, p)​​​)​.​

When ​​M​​ −1​​(μ, 𝐩)​  ∩  ​D​​(μ,𝐩,i, j, p)​​​​ is empty, Bayes’ rule in ​​(7)​​ has no restriction and the 
off-path belief is arbitrary.

DEFINITION 5: A system of on-path and off-path beliefs ​​(​β​​ 1​, ​β​​ 2​)​​ associated with 
a matching function ​M​ is Bayesian consistent with the prior belief ​​β​​ 0​​ if ​​(6)​​ is sat-
isfied for all ​​(μ, 𝐩)​  ∈  M​(T )​​ and ​​(7)​​ is satisfied for all ​​(μ, 𝐩, i, j, p)​  ∈ ​ C​M​​.​ If a 
matching-belief configuration ​​(M, ​β​​ 1​, ​β​​ 2​)​​ is stable and ​​(​β​​ 1​, ​β​​ 2​)​​ is Bayesian consis-
tent with the prior ​​β​​ 0​,​ we say that ​​(M, ​β​​ 1​, ​β​​ 2​)​​ is stable with Bayesian-consistent 
beliefs ​​(​β​​ 1​, ​β​​ 2​)​​.

Given a matching function ​M​ and a prior ​​β​​ 0​,​ the system of Bayesian-consistent 
beliefs ​​(​β​​ 1​, ​β​​ 2​)​​ is pinned down by Bayes’ rule except when ​​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​​(μ,𝐩,i, j, p)​​​​ 
in ​(​7​)​ is empty, in which case the coalitional deviation ​​(μ, 𝐩, i, j, p)​​ is not viable due 
to worker ​i​’s lack of incentive to participate, and hence the arbitrariness is incon-
sequential for the definition of blocking and stability. Under Bayesian-consistent 
beliefs, the individual rationality of firm ​j​ amounts to

	​ 피​[​b​μ​( j)​j​​ | ​M​​ −1​​(μ, 𝐩)​]​ − ​p​μ​( j)​j​​  ≥  0,​

and firm ​j​ benefits from the coalitional deviation ​​(μ, 𝐩, i, j, p)​​ if

	​ 피​[​b​ij​​ | ​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​c​​]​ − p  >  max​{0, 피​[​b​μ​( j)​j​​ | ​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​c​​]​ − ​p​μ​( j)​j​​}​.​

The Bayesian consistency of on-path beliefs with prior beliefs is familiar in 
the literature on rational expectations equilibrium pioneered by Radner (1979). 
The Bayesian consistency of off-path beliefs with prior beliefs is also natural.10 A 
similar idea appears in Rothschild and Stiglitz (1976), where the off-equilibrium 
belief associated with an off-equilibrium contract is derived from the prior belief 

10 The second principle we use to motivate off-path beliefs should remind us of Milgrom and Stokey (1982), 
where trade is assumed to occur if and only if there is common knowledge of gains from it. In the context of an 
exchange economy, no trade is the same as no blocking. Therefore, it is immediate that the second principle is 
readily generalizable beyond our setup.
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by conditioning on the set of types that find the contract attractive; this idea reap-
pears in refinements of the sequential equilibrium such as the notion of the “credible 
updating rule” by Grossman and Perry (1986); Dutta and Vohra (2005) use a similar 
idea in their concept of the credible core.

The refinement of Bayesian consistency does not utilize the information on how 
much different types of a worker benefit from the deviation. Section  IVE offers 
refinements to incorporate this consideration. We can also impose additional restric-
tions on on-path beliefs; see Section IVE. Section VIIB studies correlated private 
on-path beliefs.

The following is an existence result that respects all the properties we have intro-
duced so far.

PROPOSITION 2: For any matching game ​​(a, b, ​β​​ 0​)​,​ there exists a stable 
matching-belief configuration ​​(M, ​β​​ 1​, ​β​​ 2​)​​ with Bayesian-consistent beliefs ​​(​β​​ 1​, ​β​​ 2​)​​ 
and a measurable11 matching function ​M.​

As a first step of the proof, we merge all types of worker ​i  ∈  I​ that are payoff 
equivalent for him and redefine each firm’s matching value to respect measurabil-
ity by taking the average of the firm’s original matching values over these types 
weighted by their prior probabilities. The rest of the proof is similar to the existence 
proof of a rational expectations equilibrium: in the redefined matching game, take 
the matching ​M​ such that ​M​(t)​  = ​ (μ, 𝐩)​​ is stable when ​t​ is commonly known. The 
matching ​M​ so defined satisfies Definition 3 even though it is not invertible. In 
contrast to a standard rational expectations equilibrium where general existence is 
difficult (see, e.g., Kreps 1977), the proof of Proposition 2 is straightforward. The 
key difference is not that between equilibrium and stability or the special structure 
of two-sided markets but that the match ​μ​ (or “allocation”) is publicly observable.12

As in the rational expectations equilibrium, a special class of stable matchings is 
fully revealing. We are naturally interested in the relationship between fully reveal-
ing incomplete-information stability and complete-information stability.

DEFINITION 6: A matching function ​M​ is fully revealing if ​M​ is invertible.

The following result shows that a matching outcome of a fully revealing stable 
matching supported by Bayesian-consistent beliefs must be stable when there is 
complete information about the type profile. This desirable result, however, relies 
on the refinement of both on-path and off-path beliefs.

PROPOSITION 3: If ​M​ is a fully revealing stable matching supported by consistent 
beliefs ​​(​β​​ 1​, ​β​​ 2​)​​, then, for each ​t  ∈  T,​​ M​(t)​​ is a complete-information stable match-
ing when ​t​ is commonly known. Conversely, if ​M​(t)​​ is a complete-information stable 
matching when ​t​ is commonly known for all ​t  ∈  T,​ then ​M​ is a stable matching 
supported by Bayesian-consistent beliefs; if in addition ​M​ is invertible, then ​M​ is a 
fully revealing stable matching.

11 See Remark 3 for the definition of measurability.
12 Jordan (1983) considers observable net trades in his formulation of rational expectations.
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The intuition for the result is as follows. First, the Bayesian consistency of the 
on-path belief with the prior belief implies that firms’ on-path beliefs in a fully reveal-
ing matching assign probability 1 to the true types. Hence, the individual rationality 
of incomplete-information stability is the same as that of complete-information sta-
bility. Secondly, unlike a complete-information problem where the type of a devi-
ating worker is observed, here Bayesian consistency does not pin down the firm’s 
off-path belief ​​β​ ​(μ,𝐩,i, j, p)​​ 

2  ​​ when ​​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​​(μ,𝐩,i, j, p)​​​​ is empty. Nevertheless, the 
arbitrariness of the off-path belief does not support more stable outcomes than 
in the case of complete information, because it follows from the emptiness of  
​​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​​(μ,𝐩,i, j, p)​​​​ that worker ​i​ does not benefit from the coalitional deviation 
that is therefore not viable. Thirdly, when ​​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​​(μ,𝐩,i, j, p)​​​​ is not empty, the 
fully revealing property of ​M​ implies that the set is a singleton, and hence it follows 
from the Bayesian consistency that the off-path belief ​​β​ ​(μ,𝐩,i, j, p)​​ 

2  ​​ is correct (indeed, 
what is needed is that ​​β​ ​(μ,𝐩,i, j, p)​​ 

2  ​​ assigns positive probability only to types in this set). 
Hence the blocking condition is the same as in the complete-information case.

E. Alternative Specifications of Beliefs

Off-Path Beliefs.—Stability with Bayesian-consistent beliefs is a refinement that 
we use for the rest of the paper. The literature on belief-based equilibrium refine-
ments for noncooperative games offers many ideas for refining off-path beliefs ​​β​​ 2​​. 
In spite of this connection, we reiterate that the cooperative notion of stability tests a 
matching against pairwise deviations and is agnostic about how pairwise coalitions 
are formed and transfers are determined, as in the case of complete-information 
theory of stability. The refinements we offer below serve as intuitive qualifications 
for viable coalitional deviations and do not suggest specific ways of noncooperative 
implementations.13

Support Restriction: The most obvious specification is to restrict the off-path 
belief to be ​​β​ ​(μ,𝐩,i, j, p)​​ 

2  ​  ∈  Δ​(​M​​ −1​​(μ, 𝐩)​  ∩  ​D​​(μ,𝐩,i, j, p)​​​)​.​ This support restriction is 
natural, but it is more permissive than Bayesian consistency, which is a special case.

Pessimistic Belief: In addition to the support restriction, we can define ​​β​​ 2​​ to be 
the belief under which a coalitional deviation appears to be the least favorable to 
the firm. That is, for a coalitional deviation ​​(μ, 𝐩, i, j, p)​,​ the corresponding off-path 
belief is such that ​​β​ ​(μ,𝐩,i, j, p)​​ 

2  ​​ minimizes

(8)	​ ​피​π​​​[​b​ij​​]​ − p − max​{0, ​피​π​​​[​b​μ​( j)​j​​]​ − ​p​μ​( j)​j​​}​​

over all ​π  ∈  Δ​(​M​​ −1​​(μ, 𝐩)​ ∩ ​D​​(μ,𝐩,i, j, p)​​​)​​. This off-path belief makes blocking more 
difficult than the Bayesian-consistent belief, and consequently, it supports more sta-
ble matching outcomes.

13 Many belief-based refinements of sequential equilibria do not suggest how restrictions on beliefs arise in 
larger games, but instead they capture our intuition about how these games are expected to be played.
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Optimistic Belief: We can define ​​β​​ 2​​ to be the optimistic belief of the firm. That is, 
the off-path belief maximizes (8). This off-path belief makes blocking easier and, 
consequently, leads to a strict refinement.

Dominance: We can consider the set of worker types that benefit the most from 
a coalitional deviation and require that the off-path belief assign positive proba-
bility only to these types.14 Formally, consider a coalitional deviation ​​(μ, 𝐩, i, j, p)​​ 
and ​t  ∈  T​ with ​M​(t)​  = ​ (μ, 𝐩)​​ such that ​​a​ij​​​(t)​ + p  > ​ a​iμ​(i)​​​​(t)​ + ​p​iμ​(i)​​​.​ Define

	​ ​B​​(μ,𝐩,i, j, p)​​​  = ​ arg max​ 
t′∈T

​ ​​ (​a​ij​​​(t′)​ + p)​ − ​(​a​iμ​(i)​​​​(t′)​ + ​p​iμ​(i)​​​)​.​

Thus ​​B​​(μ,𝐩,i, j, p)​​​​ is the set of type profiles under which worker ​i​ benefits the most from 
deviating. The off-path belief assigns positive probability only to types in ​​B​​(μ,𝐩,i, j, p)​​​​:

	​ ​β​ ​(μ,𝐩,i, j, p)​​ 
2  ​​( · )​  = ​ β​​ 0​​( · | ​M​​ −1​​(μ, 𝐩)​  ∩ ​ B​​(μ,𝐩,i, j, p)​​​)​.​

Whether these restrictions make blocking easier or more difficult depends on 
whether the firm’s preference is aligned with the worker’s.15 If the matching value 
is such that a deviation is more attractive to the firm whenever it is more attractive 
to the worker, this off-path belief will make blocking easy.

Tremble-Based Refinement: We can make all off-path events on-path using trem-
bles and then consider their limits, as in sequential equilibrium. This approach can 
also be used to model beliefs implicitly through the likelihood of trembles across 
different types, as in proper equilibrium.

Further Ideas: There are still many ways to refine the notion of stability. For 
instance, one plausible scenario is that to decide whether to join a coalitional devi-
ation ​​(μ, 𝐩, i, j, p)​,​ firm ​j​ makes the assumption that any other coalitional deviation  
​​(μ, 𝐩,  i, j′, p′ )​​ with ​j′  ≠  j​ is less attractive to worker ​i​. The refinement literature 
teaches us that it would be a Sisyphean task to capture all reasonable ideas of refine-
ments in a single definition, and selections of these different notions depend on 
the economic applications, which is better left for future research. What is essen-
tial is that the separation of on-path and off-path beliefs provides a framework for 
model refinements and enables a coherent discussion of the (im)plausibility of sta-
ble matching in a purely cooperative framework without mixing cooperative and 
noncooperative elements together.

On-Path Beliefs.—In our refinement, firms share a common on-path belief. In  
some applications, a worker’s employer observes more about the worker’s 

14 This is in spirit related to the refinement idea of dominance. For example, the idea behind D1 (Cho and Kreps 
1987) is to compare the sets of responses of the uninformed players upon deviating. In a matching game, a firm’s 
“response” is simply the decision of whether to join the coalition, and hence we cannot directly apply the existing 
formulation of dominance. One approach is to consider the maximal set of prices ​p′​ that induce blocking by certain 
worker types. This leads us to the formulation presented here, because, due to transferability, the types that benefit 
the most from deviating have the maximal set of prices ​p′​ under which ​​(i, j, p′)​​ may block.

15 Traditional dominance-based refinements are developed for signaling games with aligned preferences.
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payoff-relevant attributes than other firms do.16 It is plausible that firms observe 
more about their workers in the continuation of the employment relationship, lead-
ing to further market movements, even though this information is not known before 
the finalization of the initial job matches (and hence cannot be used to define the sta-
bility of the initial job allocations). This additional information can be used to define 
the stability of the market at this later stage. Our framework can accommodate this, 
which merely amounts to an additional restriction on the on-path beliefs.

Formally, for each ​i  ∈  I,​ let ​​T​i​​  = ​ T​ i​ 1​ × ​T​ i​ 2​​, where the set ​​T​ i​ 1​​ denotes the set of 
attributes directly observable to worker ​i​’s employer, and ​​T​ i​ 2​​ denotes types only 
observable to worker ​i​. A type of worker ​i​ is ​​t​i​​  = ​ (​t​ i​ 1​, ​t​ i​ 2​)​,​ and a profile of workers’ 
types is ​t  = ​ (​t​i​​, ​t​−i​​)​.​ Consider a putative matching ​M  :  t  → ​ (μ, 𝐩)​.​ After observing ​​
(μ, 𝐩)​​ and the observable attribute ​​t​ μ​( j)​​ 

2  ​​ of its assigned worker ​μ​(  j)​,​ firm ​j​’s private 
on-path belief at ​t  ∈  T​ is

	​ ​β​ ​(μ,𝐩, j,t)​​ 
1  ​​( · )​  ≔ ​ β​​ 0​​( · | ​M​​ −1​​(μ, 𝐩)​  ∩ ​ (​T​ μ​(  j)​​ 

1  ​ × ​{​t​ μ​(  j)​​ 
2  ​}​ × ​T​−μ​(  j)​​​)​)​  ∈  Δ​(T  )​.​

Firm ​j​’s private off-path belief at ​t  ∈  T​ at a coalitional deviation ​​(μ, 𝐩, i, j, p)​​ is

	​ ​β​ ​(μ,𝐩,i, j, p,t)​​ 
2  ​​( · )​  ≔ ​ β​​ 0​​( · | ​M​​ −1​​(μ, 𝐩)​  ∩ ​ (​T​ μ​( j )​​ 

1  ​ × ​{​t​ μ​( j)​​ 
2  ​}​ × ​T​−μ​( j)​​​)​  ∩ ​ D​​(μ,𝐩,i, j, p)​​​)​,​

where ​​D​​(μ,𝐩,i, j, p)​​​  = ​ {t′  ∈  T  :  ​a​ij​​​(t′)​ + p  > ​ a​iμ​(i)​​​​(t′)​ + ​p​iμ​(i)​​​}​.​
By definition, ​​β​ ​(μ,𝐩, j,t)​​ 

1  ​​ and ​​β​ ​(μ,𝐩,i, j, p,t)​​ 
2  ​​ depend on ​t​ only through ​​t​ μ​( j)​​ 

2  ​.​ Individual 
rationality, blocking, and stability can be defined with respect to ​​β​​ 1​  = ​ (​β​ ​(μ,𝐩, j,t)​​ 

1  ​)​​ 
and ​​β​​ 2​  = ​ (​β​ ​(μ,𝐩,i,j, p,t)​​ 

2  ​)​​ in the same way as in Definitions 1, 2, and 3, respectively.
For applications, the right assumption on what an uninformed firm can observe 

depends ultimately on the market situation we want to analyze. For instance, in 
the market for junior economists, matches are formed and the market clears before 
employers know perfectly the actual types of job candidates. If we are interested 
in the stability of markets at this stage, it is not reasonable for us to assume full 
information revelation within a matched pair because this extra information is not 
used to stabilize the market in the first place; instead, the relevant stability notion 
should be defined without the uninformed players’ uncertainties about their ex post 
payoffs being exogenously assumed away, although belief updating through indirect 
inference must be a component of stability. The same is true for assignment prob-
lems where sellers do not directly observe the buyers’ types when the market clears, 
although indirect inference can be made.

V.  Structural Properties of Stability and Bayesian Consistency

We are interested in the (in)efficiency of matchings for the following reasons. 
First, under complete information, all stable matching outcomes maximize the sum 
of individual payoffs, although indeterminacy of transfers and payoff distributions 
is generally inevitable (Shapley and Shubik 1971). The full-information efficiency 

16 For instance, Liu et al. (2014) and the literature that follows make the assumption that firms know perfectly 
their own workers’ types in a putative match.



2644 THE AMERICAN ECONOMIC REVIEW AUGUST 2020

criterion introduced in Definition 4 is too demanding for incomplete-information 
problems. It is thus worthwhile to explore how and to what extent this robust alloc-
ative efficiency property extends to incomplete information. Secondly, our defini-
tion of stability with incomplete information is a joint requirement for beliefs and 
matching outcomes; hence, efficiency is a joint prediction of endogenous matches 
and information in addition to being a welfare property. Indeed, we shall see that 
stability and competitive equilibrium, two outcome-equivalent concepts under com-
plete information, impose very different restrictions.

We must clarify the environments in which the efficiency criterion applies. Take 
as an example the market for lemons. In traditional models of adverse selection, 
the market opens only once and further interactions are excluded by the exogenous 
restriction of an end game, whereas in our model of stability, the option of trade 
(rematch) is always available although players may choose not to exercise it (see 
Example 3). Thus stability and the prior literature examine different scenarios of 
adverse selection. More concretely, if there is partial trade in a traditional model of 
a market for lemons, beliefs will be updated after partial trade. An updated belief 
is irrelevant in traditional models of adverse selection because the market will not 
reopen. If market interactions continue, the updated belief will open up further trad-
ing opportunities. An analysis of a discounted dynamic lemon market with unlimited 
trading opportunities is provided by Deneckere and Liang (2006), who show that 
gains from trade are eventually realized with probability 1, albeit slowly. That is, 
although allocative efficiency is achieved in the long run, inefficiency takes the form 
of delay over time. We propose stability as a shortcut to the limiting case in dynamic 
games, and efficiency of stable matchings concerns only the allocative efficiency of 
this limit. This does not mean that efficiency is easy to achieve. If there is a com-
plete breakdown of trade as in Akerlof’s (1970) original model, there will be no 
belief revision, and the inefficient no-trade outcome will be stable according to our  
definition.

A. Criterion of Bayesian Efficiency

The full-information efficiency introduced in Definition 4 is obviously too 
demanding for incomplete-information problems. We propose the following notion.

DEFINITION 7: A matching ​M​ is Bayesian efficient if for all ​​(μ, 𝐩)​  ∈  M​(T  )​,​ the 
match ​μ​ maximizes

	​ 피​[​ ∑ 
i=1

​ 
n

  ​​​(​a​iμ′​(i)​​​ + ​b​iμ′​(i)​​​)​ | ​M​​ −1​​(μ, 𝐩)​]​​

over all matches ​μ′  :  I  ∪  J  →  I  ∪  J.​
Bayesian efficiency differs from full-information efficiency in only one respect: 

it concerns surplus maximization conditional on each ​M​(t)​​ instead of each ​t  ∈  T.​ It 
then follows immediately that a full-information efficient matching ​M​ is Bayesian 
efficient.

In Definition 7, ​피​[​∑ i=1​ n  ​​​a​iμ′​(i)​​​ | ​M​​ −1​​(μ, 𝐩)​]​​ should not be interpreted as the 
workers’ expected  total surplus conditional on the information revealed by the 
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matching outcome, because the workers know their own types and ex post payoffs. 
This expectation is from the viewpoint of an outside observer whose probability 
distribution over ​T​ is the prior ​​β​​ 0​​ conditional on the publicly observable outcome ​​
(μ, 𝐩)​​. It is, of course, also the workers’ surplus computed from the firms’ perspec-
tive, because firms’ consistent on-path beliefs about the workers are correct in stable 
matching with Bayesian-consistent beliefs.

Bayesian efficiency is motivated by a the following question: when we econ-
omists observe matching outcomes in the data, and correctly update the distribu-
tion over the underlying types (assuming that we are as uninformed as the firms 
in the model and the data are generated by a stable matching), can we conclude 
that the observed match must maximize, among all possible matches, the expected 
social surplus computed using the updated distribution? This question is precisely 
about the criterion of Bayesian efficiency. Similar notions of efficiency are pro-
posed by Forges (1994) to take into account information revealed by outcomes of a 
mechanism.

Bayesian inefficiency can persist, and no pairwise recontracting arrangement 
can correct it (this is in contrast to the competitive equilibrium notion studied in 
Section VI where inefficiency can be corrected if deviation is unilaterally). The fol-
lowing is an example of Bayesian-inefficient stable matching.

Example 4: There are two workers and one firm. Worker ​1​’s type is ​​t​1​​​ or ​​t​ 1​ ′ ​​ with 
equal probability. Worker ​2​’s type is known to be ​​t​2​​.​ Suppose that the matching 
values are as follows:

​​t​1​​​ ​​t​ 1​ ′ ​​ ​​t​2​​​

​​(− 1, 5)​​ ​​(1, − 2)​​ ​​(0, 1)​​

Here ​​(− 1, 5)​​ means that by matching with the firm, worker ​1​ of type ​​t​1​​​ obtains a 
payoff of ​− 1​, and the firm obtains a payoff of ​5.​

Consider the matching ​M​ in which the firm hires worker ​2​ at a price of ​0,​ regard-
less of worker 1’s type. The total surplus is ​1​. This matching is stable (even with 
Bayesian-consistent beliefs) for the following reason. Any coalitional deviation 
acceptable to the firm must involve worker ​1​ of type ​​t​1​​,​ and thus the price ​p​ must be 
at least ​1​ to satisfy the individual rationality of type ​​t​1​​​. But this price will attract both 
types of worker ​1​. So the firm’s expected payoff from the blocking with worker ​1​ 
will be ​(1/2) × 5 + (1/2) × ​(− 2)​ − p  ≤  0.5,​ which is less than its payoff in the 
matching with worker ​2​.

This matching is not Bayesian efficient. It is dominated by a match ​μ′​ in which the 
firm is matched with worker ​1​, which yields an expected total surplus of ​1.5.​ But ​μ′​ 
cannot be part of a Bayesian stable matching with consistent beliefs for any price: 
the firm must pay at least ​1​ to worker ​1​ (by the individual rationality of type ​​t​1​​​), and 
thus its expected payoff is at most ​0.5;​ but the firm can block the matching with the 
unmatched worker ​2​ to obtain a larger payoff.

In this example, the firm needs to pay a high price to recruit worker ​1​ of type ​​t​1​​​ 
(who is more productive for the firm), but transfers between players are not counted 
toward the social surplus. Thus the source of social inefficiency is the usual conflict 
with individual incentives.
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B. Bayesian Efficiency and Stability

We are interested in conditions under which all stable matchings of a given 
matching game ​​(a, b, ​β​​ 0​)​​ are Bayesian efficient. In particular, we shall make no 
assumptions on ​​b​ij​​​ in order to include adverse selection problems as special cases.

ASSUMPTION 2: ​​a​ij​​​(​t​i​​)​  = ​ a​ij​​​(​t​ i​ ′ ​)​​ for any ​​t​i​​, ​t​ i​ ′ ​  ∈ ​ T​i​​,​ ​i  ∈  I,​ and ​j  ∈  J.​

Assumption 2 says that the privately informed players do not directly care about 
their own types, which are payoff-relevant for the uninformed players (the informed 
players care about their types indirectly because they affect the matching outcomes). 
A special case that is of applied interest is when ​​a​ij​​  ≡  0.​ This case captures a situ-
ation in which workers care only about the salaries they receive.

A weaker assumption is that all public and private attributes are directly payoff 
relevant for the informed players, but ​​a​ij​​​(​t​i​​)​​ is separable in ​​t​i​​​ and ​j​.

ASSUMPTION 3: ​​a​ij​​​(​t​i​​)​  =  g​(i, ​t​i​​)​ + h​(i, j)​​ for some functions ​g  :  I × ​T​i​​  →  핉​ 
and ​h  :  I × J  →  핉​.

A special case of Assumption 3 is familiar in many classic adverse-selection 
models such as signaling and screening: ​​a​ij​​​(​t​i​​)​  =  g​(i, ​t​i​​)​.​ This is to say, a worker 
does not value which firm he works for, but his own types may affect his reserva-
tion utilities or costs of effort, etc. This assumption allows ​​a​ij​​​(​t​i​​)​​ to vary with the 
worker’s private type ​​t​i​​​ and the worker’s identity ​i​, which summarizes all of his 
observable attributes, but the value is not allowed to vary with the firm’s type, which 
is summarized in ​j.​

The following result concerns Bayesian efficiency of stable matchings. Its proof 
is based on the duality theorem of linear programming. Unlike the case of complete 
information (e.g., Shapley and Shubik 1971), the proof is not immediate because 
surplus maximization and its dual are defined by on-path beliefs, but stability and 
blocking utilize off-path beliefs. We say workers are fully matched under ​M​ if  
​μ​(i)​  ≠  i​ for all ​i  ∈  I​ and ​​(μ, 𝐩)​  ∈ ​ M​​ −1​​(T  )​.​

PROPOSITION 4: A stable matching ​M​ supported by Bayesian-consistent beliefs is 
Bayesian efficient if one of the following properties is satisfied:

	 (i)	 Assumption 2 holds;

	 (ii)	 Assumption 3 holds and workers are fully matched.

We leave the  full-match condition in the statement because (ii) can be reinter-
preted as follows: if Assumption 3 holds, then constrained Bayesian efficiency 
obtains for all stable matching outcomes if it is restricted to matched agents. This 
condition excludes the no-trade outcome in Akerlof (1970). The full-match con-
dition is ensured, for example, if workers are on the short side of the market and 
matching values are positive (or more generally there exists a price ​p​ such that  
​​a​ij​​​(​t​i​​)​ + p  >  0​ and ​​b​ij​​​(​t​i​​)​ − p  >  0​ for all ​​t​i​​  ∈ ​ T​i​​,​​ i  ∈  I​, and ​j  ∈  J​ ). Assumptions 
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on the short side of the market being fully matched are easy to find. Example 4 
shows that the full-match restriction in condition (ii) is tight. It is easy to construct 
examples where Assumptions 2 and 3 cannot be dispensed with.

A natural question is what happens when firms are on the short side of the mar-
ket, and hence workers cannot be fully matched—in which case condition (ii) of 
Proposition 4 does not apply. Proposition 4 makes assumptions only on the pay-
offs ​​(a, b)​​, and Bayesian efficiency is obtained regardless of prior belief ​​β​​ 0​​. Since 
on-path beliefs play an important role in the definition of Bayesian efficiency, 
it is natural to think of restrictions on beliefs. If ​​β​​ 0​​(t)​  = ​ ∏ i=1​ n ​​  ​β​ i​ 0​​(​t​i​​)​​ for all  
​t  = ​ (​t​1​​, …, ​t​n​​)​  ∈  T​, where ​​β​ i​ 0​​ is the marginal of ​​β​​ 0​​ on ​​T​i​​,​ we say that workers’ 
types are independent under the prior ​​β​​ 0​​. In dynamic noncooperative games in which 
types are independent under prior beliefs, it is common to assume that types remain 
independent after any history (see Fudenberg and Tirole 1991, p. 237). Naturally, 
we shall consider independent on-path beliefs after any observables; that is, work-
ers’ types are independent under ​​β​​ 0​​( · | ​M​​ −1​​(μ, 𝐩)​)​​ for all ​​(μ, 𝐩)​  ∈  M​(T)​​.

PROPOSITION 5: A stable matching ​M​ with Bayesian-consistent beliefs is Bayesian 
efficient if Assumption 3 holds, ​​a​ij​​​ and ​​b​ij​​​ are comonotonic17 for all ​i  ∈  I​ and ​j  ∈  J,​ 
and the on-path beliefs are independent.

The order over ​​T​i​​​ with respect to which ​​a​ij​​​ and ​​b​ij​​​ are comonotonic may vary ​​(i, j)​​. 
Thus this condition is weak. Comonotonicity is an intuitive property in the special 
case where ​​t​i​​​ is a real variable that ranks the worker’s ability according to the total 
order of “greater than or equal to,” ​​a​ij​​​ can be interpreted as worker ​i​’s disutility from 
work, and ​​b​ij​​​ can be interpreted as the output. The monotonicity of ​​a​ij​​​ and ​​b​ij​​​ says 
that the worker’s disutility is decreasing in his ability and his output is increasing 
in his ability. Note, however, that comonotonicity is not satisfied in a lemon market 
(Akerlof 1970). The independence assumption in Proposition 5 cannot be relaxed, 
as the following example illustrates.

Example 5: Consider a market with two workers and one firm. The matching 
values of each worker and the firm are comonotonic and are as follows:

​​t​1​​​ ​​t​ 1​ ′ ​​ ​​t​2​​​ ​​t​ 2​ ′ ​​

​​(0.5, 5)​​ ​​(1, 6)​​ ​​(− 2, 4)​​ ​​(− 1.9, 12)​​

Suppose that ​​β​​ 0​​(​t​1​​, ​t​2​​)​  = ​ β​​ 0​​(​t​ 1​ ′ ​, ​t​ 2​ ′ ​)​  =  1/2.​ Thus, the workers’ types are not 
independent.

Consider a matching ​M​ in which the firm hires worker ​2​ at a price of ​2​ regardless 
of the workers’ types. In this case, the Bayesian-consistent on-path belief is the 
same as the prior belief ​​β​​ 0​​. This matching is not Bayesian efficient: it generates an 
expected total surplus of ​(1/2) × ​(− 2 + 4)​ + (1/2) × ​(− 1.9 + 12)​  =  6.05,​ while 
the matching in which the firm hires worker 1 generates an expected total surplus of  
​(1/2) × ​(0.5 + 5)​ + (1/2) × ​(1 + 6)​  =  6.25.​

17  Two functions ​​a​ij​​​ and ​​b​ij​​​ are comonotonic if ​​(​a​ij​​​(​t​i​​)​ − ​a​ij​​​(​t​ i​ ′ ​)​)​​(​b​ij​​​(​t​i​​)​ − ​b​ij​​​(​t​ i​ ′ ​)​)​  ≥  0​ for any ​​t​i​​, ​t​ i​ ′ ​  ∈  ​T​i​​.​
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But the matching ​M​ is stable with Bayesian-consistent beliefs. The firm’s expected 
payoff in this matching is ​(1/2) × 4 + (1/2) × 12 − 2  =  6.​ Consider a deviating 
coalition that involves the firm and worker ​1​ with a price ​p.​ No price ​p​ is such that 
only the type ​​t​1​​​ of worker ​1​ joins the coalition. If the price ​p​ is such that both types 
of worker ​1​ join the coalition, that is, ​p  >  − 0.5,​ then the firm’s expected payoff 
is ​(1/2) × 5 + (1/2) × 6 − p  <  6.​ In this case the firm rejects the coalition. If the 
price ​p​ is such that only the type ​​t​ 1​ ′ ​​ of worker ​1​ joins the coalition, then the firm’s 
payoff cannot be higher than ​7,​ the total surplus produced by the pair. But because 
the two workers’ types are correlated, when worker ​1​’s type is ​​t​ 1​ ′ ​,​ worker 2’s type 
must be ​​t​ 2​ ′ ​,​ and the firm infers that its payoff from ​M​ by matching with worker ​2​ 
is ​12 − 2  =  10.​ Therefore, the firm rejects the coalition with worker ​1​ in this case 
as well.

VI.  Competitive Equilibrium

A. Motivation and Definition

For complete-information matching and assignment problems, Koopmans and 
Beckmann (1957) and Shapley and Shubik (1971) construct the following notion 
of competitive equilibrium. Each partnership ​​(i, j)​  ∈  I × J​ is viewed as one unit of 
an indivisible commodity, and there is a price ​​p​ij​​​ associated with each commodity, 
irrespective of whether ​i​ and ​j​ are matched or not in equilibrium. Let ​𝐩  = ​​ (​p​ij​​)​​i∈I, j∈J​​​ 
denote the price matrix. We also define ​​p​ii​​  = ​ p​jj​​  =  0​ for all ​i  ∈  I​ and ​j  ∈  J.​ In 
a competitive equilibrium ​​(μ, 𝐩)​,​ each individual player is maximizing in the sense 
that he does not profit from staying alone or from switching to any other player on 
the opposite side of the market at the competitive price specified by ​𝐩​.

The matching mechanism described by a competitive equilibrium has two crit-
ical differences from stable matching. First, a player’s acceptability to the other 
player is not taken into account in defining a profitable deviation; that is, devia-
tion is unilateral. Second, if a player deviates to another player, the price between 
them is determined by the competitive equilibrium price ​𝐩​; that is, players are price 
takers. In spite of these disparities, Shapley and Shubik (1971, pp. 114–18) point 
out that competitive equilibrium and stability are equivalent in their model of com-
plete information. We shall study how the assumptions of unilateral deviation and 
price-taking behavior manifest under incomplete information.

A natural notion of a competitive equilibrium in an economy with uncertainty 
and without state-contingent contracts is the rational expectations equilibrium of 
Radner (1979).18 We now construct such a notion for two-sided matching markets.

A competitive matching is a function ​M  :  t  ↦ ​ (μ, 𝐩)​,​ where ​𝐩  = ​​ (​p​ij​​)​​i∈I, j∈J​​.​  
We may impose the same measurability condition on ​M​ as in Remark 3. Both the 
match ​μ​ and the commodity prices ​𝐩​ are publicly observable. Upon observing ​​
(μ, 𝐩)​,​ players will update their prior belief to the on-path belief ​​β​​ 0​​( · | ​M​​ −1​​(μ, 𝐩)​)​,​ 
where ​​M​​ −1​​(μ, 𝐩)​  = ​ {t  ∈  T  :  M​(t)​  = ​ (μ, 𝐩)​}​.​

18 Complete state-contingent contracts bring the problem back to complete information. The Arrow–Debreu 
formulation of competitive equilibrium under uncertainty is not a suitable solution concept for our purposes.
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DEFINITION 8: A matching ​M  :  t  ↦ ​ (μ, 𝐩)​​ is a (rational expectations) competitive 
equilibrium if the following conditions hold for all ​t  ∈  T​ and ​​(μ, 𝐩)​  =  M​(t)​:​

	 (i)	 ​​a​iμ​(i)​​​​(t)​ + ​p​iμ​(i)​​​  ≥ ​ a​ij​​​(t)​ + ​p​ij​​​ for all ​i  ∈  I​ and ​j  ∈  J  ∪  ​{i}​;​

	 (ii)	 ​피​[​b​μ​( j)​j​​ | ​M​​ −1​​(μ, 𝐩)​]​ − ​p​μ​( j)​j​​  ≥  피​[​b​ij​​ | ​M​​ −1​​(μ, 𝐩)​]​ − ​p​ij​​​ for all ​j  ∈  J​ and 

​i  ∈  I  ∪ ​ { j}​.​

A competitive equilibrium satisfies individual rationality: take ​j  =  i​ in (i) 
and ​i  =  j​ in (ii). Notice also that only the on-path belief ​​β​​ 0​​( · | ​M​​ −1​​(μ, 𝐩)​)​​ is uti-
lized in the definition, because only unilateral deviation is involved. When ​T​ is a 
singleton, this definition reduces to the familiar notion of competitive equilibrium 
under complete information.

PROPOSITION 6: A ​(​measurable​)​ competitive equilibrium matching exists for each 
matching game ​​(a, b, ​β​​ 0​)​.​

As in Proposition 2, general existence is straightforward because the match-
ing outcomes are publicly observable. In a two-sided market, the assump-
tions behind stability look more appealing than those behind competitive 
equilibrium. We should emphasize that, despite its previous usage, we define 
competitive equilibrium for the purpose of comparison rather than as a competing 
concept.

B. Stability and Competitive Equilibrium

Stability and competitive equilibrium are two different ways of looking at a 
matching problem. A stable matching outcome ​​(μ, ​𝐩​​ s​)​​ does not specify a price for 
an unmatched pair ​​(i, j)​​, where ​μ​(i)​  ≠  j,​ while the price matrix ​​𝐩​​ c​​ for a competi-
tive matching outcome does specify a price for every pair ​​(i, j)​​. The observability 
of the price matrix ​​𝐩​​ c​​ may seem to suggest that prices in a competitive equilibrium 
matching ​t  ↦ ​ (μ, ​𝐩​​ c​)​​ reveal more information than prices in a stable matching ​t  ↦ ​
(μ, ​𝐩​​ s​)​​ do. This intuition is incorrect, because it focuses literally on on-path beliefs 
but ignores the fact that stability makes restrictions directly on off-path beliefs and 
hence indirectly on on-path beliefs. The difference between stability and competi-
tive equilibrium thus has to stem from the incentives and information embedded in 
their definitions.

DEFINITION 9: A stable matching ​​M​​ s​​ extends to a competitive matching ​​M​​ c​​ if for 
each ​t  ∈  T,​ the matching outcomes ​​M​​ s​​(t)​  =  (​μ​​ s​, 𝐩 ​​s​ )​​​​ and ​​M​​ c​​(t)​  = ​ (​μ​​ c​, ​𝐩​​ c​)​​ share 
the same match, ​​μ​​ s​  = ​ μ​​ c​  =  μ,​ and ​​𝐩​​ s​​ and ​​𝐩​​ c​​ agree on the matched pair ​​(i, μ​(i)​)​​ 
for all ​i  ∈  I​. In this case, we say that ​​M​​ c​​ is an extension of ​​M​​ s​.​

We present an example in which a competitive equilibrium matching cannot be 
an extension of a stable matching supported by Bayesian-consistent beliefs.
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Example 6: Consider a market with two workers and one firm. Worker 1’s type 
is known to be ​​t​1​​.​ Worker 2’s type is ​​t​2​​​ or ​​t​ 2​ ′ ​​ with equal probability. The matching 
values are as follows:

​​t​1​​​ ​​t​2​​​ ​​t​ 2​ ′ ​​

​​(1, 5)​​ ​​(1, − 4)​​ ​​(2, 4)​​

The following matching is a competitive equilibrium: the firm hires worker 1 
with a price of ​​p​11​​  =  0,​ and worker ​2​ is unmatched regardless of his type; the price 
for the firm to hire worker ​2​ is ​​p​21​​  =  − 3.​ By deviating to worker ​2​, the firm’s 
expected payoff is ​(1/2) × ​(− 4)​ + (1/2) × 4 − ​(− 3)​  =  3.​ Hence the firm does 
not deviate. By working for the firm, type ​​t​2​​​ obtains a payoff of ​1 − 3  =  − 2​ and 
type ​​t​ 2​ ′ ​​ obtains a payoff of ​2 − 3  =  − 1.​ Hence neither type of worker ​2​ deviates. 
Therefore, this matching is a competitive equilibrium.

The matching outcome of this competitive equilibrium cannot be stable with 
Bayesian-consistent beliefs. Worker ​2​ with type ​​t​ 2​ ′ ​​ and the firm could block with a 
price of ​− 1.5.​ Type ​​t​2​​​ will earn a negative payoff from this match, and type ​​t​ 2​ ′ ​​ will 
earn a positive payoff. The firm will infer the worker’s type correctly and hire him 
to obtain a payoff of ​5.5​.

The above example demonstrates that flexible off-path prices allow for more 
information revelation, so one would conjecture that stability refines competitive 
equilibrium. This is again incorrect. The key is that having more information does 
not necessarily facilitate blocking when the rematch is ex post undesirable; unilat-
eral deviation may still be possible in a competitive environment with less infor-
mation revelation. We confirm this point by providing an example where a stable 
matching cannot be extended to a competitive equilibrium.

Example 7: Consider a market with two workers and one firm, where worker ​1​’s 
type is known to be ​​t​1​​,​ and worker 2’s type is ​​t​2​​​ or ​​t​ 2​ ′ ​​ with equal probability. The 
matching values are as follows:

​​t​1​​​ ​​t​2​​​ ​​t​ 2​ ′ ​​

​​(1, 5)​​ ​​(2, 1)​​ ​​(1, 6)​​

The following is a stable matching supported by Bayesian-consistent beliefs: the 
firm hires worker 1 for a price of  ​0,​ and worker ​2​ is unmatched regardless of his 
type (with a payoff of ​0​). The firm’s payoff is ​5.​ We now argue that the firm can-
not block the matching with worker 2 for any price ​p​. If ​p  ≤  − 2,​ neither type of 
worker 2 deviates; if ​p  ∈ ​ (− 2, − 1]​,​ only type ​​t​2​​​ deviates, and the firm’s payoff from 
rematching with ​​t​2​​​ is ​1 − p  ≤  3;​ if ​p  >  − 1,​ both types of worker 2 deviate, and 
the firm’s expected payoff from the deviation is ​(1/2) × 1 + (1/2) × 6 − p  <  4.5.​ 
Therefore, the firm does not deviate.

This stable matching cannot be extended to a competitive equilibrium for any 
pre-specified price between the firm and worker 2. If ​p  >  − 2,​ one or both types of 
worker 2 deviate. If ​p  ≤  − 2,​ the firm’s expected payoff from deviating to worker 2 
is ​(1/2) × 1 + (1/2) × 6 − p  ≥  5.5;​ hence the firm deviates.
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Although stable matchings and competitive matchings are generally not the same, 
they must overlap. We summarize our finding in the following result.

PROPOSITION 7: (i) For any matching game ​​(a, b, ​β​​ 0​)​,​ there exists a stable match-
ing ​​M​​ s​​ with Bayesian-consistent beliefs that can be extended to a competitive 
matching. There exists a matching game ​​(a, b, ​β​​ 0​)​​ with a stable matching ​​M​​ s​​ with 
Bayesian-consistent beliefs that cannot be extended to a competitive matching. (ii) 
For any matching game ​​(a, b, ​β​​ 0​)​,​ there exists a competitive matching ​​M​​ c​​ that is 
an extension of a stable matching with Bayesian-consistent beliefs. There exists a 
matching game ​​(a, b, ​β​​ 0​)​​ with a competitive matching ​​M​​ c​​ that is not an extension of 
a stable matching with Bayesian-consistent beliefs.

C. Bayesian Efficiency of Competitive Equilibrium

Given a competitive equilibrium matching ​M  :  t  ↦ ​ (μ, 𝐩)​,​ the notions of 
full-information efficiency and Bayesian efficiency can be reproduced verbatim from 
Definition 4 and Definition 7, respectively, by taking into account ​𝐩  = ​​ (​p​ij​​)​​i∈I, j∈J​​​.

Recall that a stable matching is not guaranteed to be Bayesian efficient. By con-
trast, a competitive equilibrium matching is always Bayesian efficient. This result is 
reminiscent of the first fundamental theorem of welfare economics. The logic is as 
follows: if there is overall inefficiency conditional on the information revealed in a 
matching, at least some player is inefficiently matched, and this player can correct 
this inefficiency by a unilateral rematch, under the same information. The contrast 
with stability is notable: the new information generated from a blocking pair can 
prevent the inefficiency from being corrected. We would like to reiterate that the 
efficiency is about allocative efficiency, but it does not take into account what it 
takes to achieve it, as is similar to Bayesian efficiency of stable matching.

PROPOSITION 8: A competitive equilibrium matching ​M  :  t  ↦ ​ (μ, 𝐩)​​ is Bayesian 
efficient. If Assumption 1 holds, then a competitive equilibrium matching ​M​ is 
full-information efficient and ​M​(t)​​ is a complete-information competitive equilib-
rium matching when ​t​ is common knowledge for all ​t  ∈  T.​

We should emphasize that the result does not imply that a competitive equilib-
rium has a better welfare property than a stable matching, because the amount of 
information that is revealed may be different and Bayesian efficiency is defined 
relative to information.

VII.  Extensions

A. The Core

Pairwise deviations are natural in two-sided markets. Conceptually, it is useful 
to consider deviations by a coalition of multiple pairs of firms and workers. Given 
a matching ​M  :  t  ↦ ​ (μ, 𝐩)​​, suppose that ​​(μ, 𝐩)​  =  M​(t)​​ is a matching outcome 
at ​t  ∈  T.​ Each firm ​j​ should have an on-path belief ​​β​ ​(μ,𝐩, j)​​ 

1  ​​ associated with this 
outcome. Consider the following blocking possibility: a subset of workers ​I′  ⊂  I​ 
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and a subset of firms ​J′  ⊂  J​ walk away from ​​(μ, 𝐩)​​ and rematch among themselves 
according to ​μ′  :  I′  ∪  J′  →  I′  ∪  J​′ and a transfer scheme ​​𝐩 ′ ​  = ​​ (​p​ 

iμ′​(i)​​ ′ ​ )​​
i∈I′

​​​ associ-

ated with the match ​μ′,​ where ​μ′​ is not the same as ​μ​ restricted to ​I′  ∪  J′.​19 We call ​μ′​ 
a rematch relative to ​μ​. We write this coalitional deviation by ​c  = ​ (μ, 𝐩, I′, J′, μ′, 𝐩′)​.​ 
Each firm ​j  ∈  J′​ should have an off-path belief ​​β​ ​(c, j)​​ 

1  ​​ associated with this deviating 
coalition. Let us denote a matching-belief configuration by ​​(M, ​β​​ 1​, ​β​​ 2​)​​, where ​​β​​ 1​​ is 
the system of on-path beliefs and ​​β​​ 2​​ is the system of off-path beliefs.

Individual rationality of a matching ​M​ with respect to the system of on-path 
belief ​​β​​ 1​​ is defined as in Definition 1. The blocking condition is defined below.

DEFINITION 10: A matching ​M​ is blocked with respect to a system of off-path 
beliefs ​​β​​ 2​​ if there does exist a coalitional deviation ​c  = ​ (μ, 𝐩, I′, J′, μ′, 𝐩′)​,​ where ​​
(μ, 𝐩)​  =  M​(t)​​ for some ​t  ∈  T,​ ​I′  ⊂  I​, ​J′  ⊂  J​, ​μ′  :  I′  ∪  J′  →  I′  ∪  J′​ is a rematch, 
and ​𝐩′  = ​​ (​p​ 

iμ′​(i)​​ ′ ​ )​​
i∈I′

​​​ is a transfer scheme associated with the rematch ​μ′​, such that

	 (i)	 ​​a​iμ′​(i)​​​​(t)​ + ​p​ iμ′​(i)​​ ′ ​   > ​ a​iμ​(i)​​​​(t)​ + ​p​iμ​(i)​​​​ for all ​i  ∈  I′,​ and

	 (ii)	 ​​피​​β​ ​(c, j)​​ 
2  ​​​​[​b​μ′​( j)​j​​]​ − ​p​ μ′​( j)​j​ ′ ​   >  max​{0, ​피​​β​ ​(c, j)​​ 

2  ​​​​[​b​μ​( j)​j​​]​ − ​p​μ​( j)​j​​}​​ for all ​j  ∈  J′.​

Condition (ii) needs a remark. The formulation implicitly excludes the possibil-
ity that ​μ′​( j)​  =  j​ for some ​j  ∈  J′;​ that is, ​j​ joins the coalitional deviation but stays 
unmatched in ​μ′,​ because otherwise the left-hand side of condition (ii) becomes ​0,​ 
thus violating the condition. This exclusion is without loss of generality because 
an unmatched firm ​j​ does not contribute any information or value to the coalitional 
deviation.

DEFINITION 11: A matching-belief configuration ​​(M, ​β​​ 1​, ​β​​ 2​)​​ is in the core if ​M​ 
is individually rational with respect to the system of on-path beliefs ​​β​​ 1​​ and is not 
blocked with respect to the system of off-path beliefs ​​β​​ 2​.​ We also say ​M​ is a core 
matching supported by ​​(​β​​ 1​, ​β​​ 2​)​​ if ​​(M, ​β​​ 1​, ​β​​ 2​)​​ is a stable configuration.

The refinement of Bayesian-consistent beliefs also has a counterpart: beliefs are 
updated from the prior conditional on players’ observations and the information 
revealed by their incentive to participate in the coalitional deviation.

DEFINITION 12: A system of on-path and off-path beliefs ​​(​β​​ 1​, ​β​​ 2​)​​ associ-
ated with a matching function ​M​ is Bayesian consistent with the prior belief  
​​β​​ 0​​ if ​​β​ ​(μ,𝐩, j)​​ 

1  ​  = ​ β​​ 0​​( · | ​M​​ −1​​(μ, 𝐩)​)​​ for each ​j  ∈  J​ and ​​(μ, 𝐩)​  ∈  M​(T )​,​ and  

​​β​ ​(c, j)​​ 
2  ​  = ​ β​​ 0​​( · | ​M​​ −1​​(μ, 𝐩)​  ∩  ​D​c​​)​​ for each deviating coalition ​c  = ​ (μ, 𝐩, I′, J′, μ′, 𝐩′)​​ 

and ​j  ∈  J′,​ where

	​ ​D​c​​  = ​ {t′  ∈  T  :  ​a​iμ′​(i)​​​​(t′)​ + ​p​ 
iμ′​(i)​​ ′ ​   > ​ a​iμ​(i)​​​​(t′)​ + ​p​iμ​(i)​​​ for all i  ∈  I′}​.​

19 We have assumed that a player receives transfers only from his matched partner. A relaxation is straightforward.
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If ​​(M, ​β​​ 1​, ​β​​ 2​)​​ is in the core and ​​(​β​​ 1​, ​β​​ 2​)​​ is Bayesian consistent with the prior ​​β​​ 0​,​ we 
say that ​M​ is a core matching supported by Bayesian-consistent beliefs.

It should be noted that ​​D​c​​​ is the set of workers’ types ​​(​t​1​​, …, ​t​n​​)​​ with which all 
workers in ​I′​ find the rematch profitable. It does not take into account the incentives 
of firms in the set ​J′ \​{  j}​​ because these firms are uninformed and their incentives to 
block reveal no information unknown to firm ​j​ (firm ​j​ can replicate their calculation).

In complete-information matching games, the core and stability coincide, but 
they differ under incomplete information.

PROPOSITION 9: If ​M​ is a core matching supported by Bayesian-consistent beliefs, 
then it is a stable matching supported by Bayesian-consistent beliefs; however, a 
stable matching ​M​ supported by consistent beliefs is not necessarily a core match-
ing supported by consistent beliefs.

One direction is straightforward. Individual rationality is the same for stability 
and the core. A pairwise coalition ​​(μ, 𝐩, i, j, p)​​ is a special coalition ​​(μ, 𝐩, I′, J′, μ′, 𝐩′)​​ 
with ​I′  = ​ {i}​, J′  = ​ { j}​, μ′​(i)​  =  j,​ and ​​p​ ij​ ′ ​  =  p.​ Specifically, if ​​(M, ​β​​ 1​, ​β​​ 2​)​​ is in the 
core, then it is not blocked by any coalition including a pairwise coalition; hence, ​​
(M, ​β​​ 1​, ​​β – ​​​ 2​)​​ is stable, where ​​​β – ​​​ 2​​ is a restriction of ​​β​​ 2​​ to pairwise coalitions. This  
property does not rely on belief refinements. Example 8 below demonstrates the 
subtle reason that the core is a strict refinement of stability even when ​​β​​ 0​​ is indepen-
dent: a blocking by a larger coalition can be found when a pairwise blocking does 
not exist. The example has a pair of a firm and a worker who are matched together in 
the given matching, but both deviate to rematch with other players. It is precisely its 
own worker’s incentive to join the coalitional deviation that reveals to the firm that 
its payoff from the putative matching is actually lower than it has thought, which 
incentivizes the firm to rematch with the other worker; meanwhile, the deviation of 
the firm’s own worker is made possible precisely for the same reason: the other firm 
accepts him because the other worker’s deviation reveals information. This exis-
tence of this four-player cycle refines stability.

Example 8: Consider two workers and two firms. Suppose that ​​β​​ 0​  = ​ β​ 1​ 0​ × ​β​ 2​ 0​​, 
where ​​β​ 1​ 0​​(​t​1​​)​  = ​ β​ 1​ 0​​(​t​ 1​ ′ ​)​  = ​ β​ 2​ 0​​(​t​2​​)​  = ​ β​ 2​ 0​​(​t​ 2​ ′ ​)​  =  1/2​. The matrix of matching values 
is as follows:

firm 1 firm 2

​​t​1​​​ ​0, −1​ ​1, 1​

​​t​ 1​ ′ ​​ ​1, 7​ ​− 2, 0​
​​t​2​​​ ​1, 1​ ​0, − 1​

​​t​ 2​ ′ ​​ ​− 2, 0​ ​1, 7​

It is readily verified that ​​a​ij​​​ and ​​b​ij​​​ are comonotonic.
Consider the following matching ​M​: regardless of their types, worker ​i​ is assigned 

to firm ​j  =  i​, and the salaries of both workers are ​0​. In this matching, the expected 
payoffs for both firms are ​(1/2) × ​(− 1)​ + (1/2) × 7  =  3.​ The matching ​M​ is 
stable with Bayesian-consistent beliefs for the following reason. Let us consider 
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pairwise deviation by worker ​i​ and firm ​j  =  3 − i.​ For the firm to join the deviation, 
its expected payoff from the deviation must be more than ​3,​ but the total surplus 
from a match with worker ​i​ cannot exceed ​2​ regardless of the worker’s type.

But ​M​ is not in the core with Bayesian-consistent beliefs. A viable coalitional 
deviation involves a rematch of both firms and both workers when their types are ​​t​i​​​ 
with a transfer of ​0.​ Given that each worker ​i  =  1, 2​ finds it profitable to deviate 
to firm ​j  =  3 − i​ with a price of ​0,​ both firms infer that worker ​i  =  1, 2​ must have 
type ​​t​i​​​ instead of ​​t​ i​ ′ ​.​ With this information, firm ​j  =  i​ knows that its payoff in the 
matching ​M​ is actually ​− 1.​ For this reason, firm ​i​ is willing to accept worker ​3 − i.​

The refinement of the off-path beliefs is used in this example only in that its sup-
port should be the set of types that benefit from the deviations.

The following is an immediate corollary of Propositions 1, 4, and 9.

COROLLARY 1: Suppose that ​​(M, ​β​​ 1​, ​β​​ 2​)​​ is in the core. Then ​M​ is full-information 
efficient if Assumption 1 holds. Suppose further that ​​(​β​​ 1​, ​β​​ 2​)​​ is Bayesian consistent. 
Then ​M​ is Bayesian efficient if one of the following properties is satisfied:

	 (i)	 Assumption 2 holds.

	 (ii)	 Assumption 3 holds and workers are fully matched.

	 (iii)	 Assumption 3 holds, ​​a​ij​​​ and ​​b​ij​​​ are comonotonic in ​​t​i​​​ for all ​i  ∈  I​ and ​j  ∈  J,​ 
and on-path beliefs are independent.

B. Correlated Stability and Stochastic Matching Functions

Modeling the firms’ private observations and their private beliefs is a natural 
question. We have considered deterministic matching functions so far. Naturally, 
we are interested in stochastic matching functions. The two tasks can be accom-
plished together. The formulation combines the ideas developed earlier in this paper 
with Aumann’s (1974) correlated equilibrium or Cass and Shell’s (1983) sunspot 
equilibrium.

For each ​j  ∈  J,​ let ​​S​j​​​ be the finite set of payoff-irrelevant signals. We denote 
by ​s  = ​ (​s​n+1​​, …, ​s​n+m​​)​​ the profile of signals of the ​m​ firms and write ​S  = ​ ∏ j∈J​   ​​ ​ S​j​​​. 
We do not need to introduce private signals for workers, because this amounts to a 
reinterpretation of workers’ types ​t  = ​ (​t​1​​, …, ​t​n​​)​.​ For convenience, assume that 
there is a common prior belief ​​β​​ 0​  ∈  Δ​(T × S)​​ (modeling heterogeneous pri-
ors is straightforward). A correlated matching (with private signals) is a function  
​M  :  ​(t, s)​  ↦ ​ (μ, 𝐩)​​. It is readily seen that the formulation proposed here includes a 
stochastic mapping as a special case where ​s​ is a public signal. In what follows, we 
will skip the plain-vanilla version of stability and sketch the formulation of stability 
with Bayesian-consistent beliefs.

Each firm ​j​ observes its own signal ​​s​j​​  ∈ ​ S​j​​,​ but is uncertain about workers’ 
types ​t  = ​ (​t​1​​, …, ​t​n​​)​​ and other firms’ signals ​​s​−j​​  = ​ (​s​n+1​​, …, ​s​j−1​​, ​s​j+1​​, …, ​s​n+m​​)​​. 
Similarly, each worker ​i  ∈  I​ observes its type ​​t​i​​​ but is unaware of ​​t​−i​​​ and ​s.​ Each 
firm ​j  ∈  J,​ upon observing ​​s​j​​  ∈ ​ S​j​​,​ updates its belief to the conditional probability 
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measure ​​β​​ 0​​( · | T × ​{​s​j​​}​ × ​S​−j​​)​  ∈  Δ​(T × S)​,​ which we shall denote simply 
by ​​β​ ​s​j​​​ 

0 ​​( · )​.​ To further ease notation, we adopt the following harmless convention: 
for a nonempty subset ​E  ⊂  T × S,​ we write ​​β​ ​s​j​​​ 

0 ​​(t | E)​  ≔ ​ β​ ​s​j​​​ 
0 ​​(​{t}​ × S | E)​​, and for a 

function ​f   :   T  →  ℝ​, we write ​​피​​β​ ​s​j​​​ 
0 ​​​​[ f  | E]​  ≔ ​ ∑ t∈T​   ​​  f ​(t)​​β​ ​s​j​​​ 

0 ​​(t | E)​.​
Each firm ​j  ∈  J,​ after observing its private signal ​​s​j​​​ and the matching outcome ​​

(μ, 𝐩)​,​ holds a Bayesian-consistent private on-path belief over workers’ types  
​​β​ ​s​j​​​ 

0 ​​( · | ​M​​ −1​​(μ, 𝐩)​)​  ∈  Δ​(T )​.​ In a deviating coalition ​​(μ, 𝐩, i, j, p)​,​ firm ​j,​ which 
receives a private signal ​​s​j​​,​ holds a Bayesian-consistent private off-path belief  
​​β​ ​s​j​​​ 

0 ​​( · | ​M​​ −1​​(μ, 𝐩)​ ∩ ​(​D​​(μ,𝐩,i, j,p)​​​ × S)​)​​, where ​​D​​(μ,𝐩,i, j,p)​​​  = ​ {t′  :  ​a​ij​​​(t′)​ + p  > ​ a​iμ​(i)​​​​(t′)​ 
+ ​p​iμ​(i)​​​}​​ is the set of types such that worker ​i​ benefits from the coalitional deviation.

With the on-path and off-path beliefs in place, notions of individual rationality, 
blocking, and stability of the correlated matching ​M  :  ​(t, s)​  ↦ ​ (μ, 𝐩)​​ can be defined 
in the same way as in Definitions 1, 2, and 3, respectively.

C. Incentive Compatibility

Although we have argued that stability is a reduced-form way of capturing the 
outcome of dynamic decentralized interactions, Bayesian incentive compatibility 
of a stable matching function ​M  :  t  ↦ ​ (μ, 𝐩)​​ implies a one-shot implementation 
of a stable matching and serves as a desirable selection among stable matchings. 
However, in general, Bayesian incentive compatibility cannot be achieved.

Example 9: Consider a one-worker and one-firm problem. The worker privately 
knows the cost of his production (i.e., the negative of the worker’s matching value), 
which takes the value of either ​0​ or ​1​ with equal prior probability. The firm’s match-
ing value is ​L  ∈ ​ (0, 1)​​ if the worker’s cost is ​0​ and ​H  >  1​ if the worker’s cost 
is ​1.​ We assume that ​(1/2)​(L + H)​  <  1;​ that is, the firm’s prior average matching 
value is less than the high cost. We claim that, in all stable matchings, the low-cost 
worker must be employed. This is true because, otherwise, the worker and the firm 
can block the matching with a salary of, say ​(1/2)L​, whereby the low-cost worker 
is better off and the firm is better off regardless of its belief about the worker’s type. 
Given that the low-cost worker must be matched, the high-cost worker cannot stay 
unmatched in a stable matching with Bayesian-consistent beliefs; otherwise, the 
firm will assign probability ​1​ to the unmatched worker’s cost being high, and the 
worker and the firm can block the matching with a salary of, say ​(1/2)​(1 + H)​  >  1​, 
whereby the high-cost worker is better off and the firm, knowing the worker’s type, 
is also better off.

We have established the claim that, in a stable matching ​M​ that is supported by 
Bayesian-consistent beliefs, both types of the worker must be hired. Given this, 
Bayesian incentive compatibility of ​M​ requires that the salaries for both worker types 
be the same. However, the highest price the firm is willing to offer is ​(1/2)​(L + H)​,​  
which the high-cost worker will reject. Thus, no stable matching can be  
Bayesian incentive compatible in this example.

The conflict between Bayesian incentive compatibility and stability is not sur-
prising. The direct-revelation game associated with incentive compatibility is 
sometimes too restrictive for our purposes. For instance, we could allow for more 
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general dynamic mechanisms, which is consistent with our motivation that stabil-
ity is a reduced-form way of capturing the equilibrium outcome of decentralized 
interactions.20 Indeed, Deneckere and Liang (2006, Proposition 2) cover this exam-
ple and show that allocative efficiency is achieved in a sequential equilibrium of a 
firm-offer bargaining game with two separating prices and delayed trading for the 
high-cost type. This fully revealing outcome is stable by Proposition 3.

Characterizing the joint implications of Bayesian incentive compatibility 
and stability needs to remain an open question for now, but we do have a posi-
tive result under Assumption 1. In fact, dominant-strategy incentive compatibility 
can be obtained. The argument proceeds in two steps. First, under Assumption 1, 
the preferences of firms are independent of workers’ private types, the matching 
function ​M​ that specifies a worker-optimal stable matching for each type profile ​t​ 
is dominant-strategy incentive compatible for workers. This claim follows from a 
result for complete-information problems: when the firms’ preference is fixed, 
the worker-optimal complete-information stable matching is strategyproof for the 
workers (e.g., Demange 1982 and Leonard 1983) and can be implemented by the 
Vickrey-Clarke-Groves mechanism. Secondly, it follows from Proposition 1 that ​M​ 
so defined is incomplete-information stable.

Another special case where Bayesian incentive compatibility is easy to satisfy 
is “fully nonrevealing” matching. If there exists an outcome ​​(μ, 𝐩)​​ such that it is 
complete-information stable matching for all ​t  ∈  T,​ then ​M  ≡ ​ (μ, 𝐩)​​ is stable by 
Proposition 3. The existence of such ​​(μ, 𝐩)​​ is not generally ensured, and it depends 
on the value function ​​(a, b)​​.

VIII.  Conclusion

The main conceptual contribution of the paper is to propose a criterion of stability 
for two-sided markets with asymmetric information, with a formulation of Bayesian 
consistency of prior beliefs, on-path stable beliefs, and off-path stable beliefs. This 
criterion lays the foundation for further developments. It has immediate implications 
for empirical analysis of matching; see, for example, Chiappori (2017). Although 
existing empirical work allows certain characteristics of players to be unobservable 
to the analysts, players themselves are assumed to have complete information, and 
hence the solution concept is complete-information stability.

We do not pretend that the results developed in this paper are immediately 
applicable to practical market design questions. However, providing a logically 
coherent Bayesian theory of stability is a necessary step toward understanding 
how players respond to information and incentives in both decentralized and cen-
tralized matching environments. The idea developed in this paper can easily be 
extended to markets with networked structures, more general coalitional games, 
or incomplete-information modeled by Harsanyi type spaces. The research agenda 
we propose here, which we can call the “Kreps–Wilson program,” aims to develop 
cooperative concepts and their refinements under incomplete information using the 
insights from noncooperative games.

20 The literature of frictional search may offer useful insights in this direction; see, for example, Lauermann 
(2013) and the references therein.
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Appendix A

A. Proof of Proposition 1

It follows from a similar construction as in Proposition 2 that if ​M​(t)​​ is a 
complete-information stable matching when ​t​ is common knowledge, then ​M​ is sta-
ble. We now show the converse under Assumption 1. By the individual rationality 
of ​M,​ for any ​t  ∈  T​ with ​M​(t)​  = ​ (μ, 𝐩)​,​ we have

(A1)	​ ​a​iμ​(i)​​​​(t)​ + ​p​iμ​(i)​​​  ≥  0    for all i  ∈  I​

and ​​피​​β​ ​(μ,𝐩, j)​​ 
1  ​​​​[​b​μ​( j)​j​​]​ − ​p​μ​( j)​j​​  ≥  0​ for all ​j  ∈  J.​ By Assumption 1, ​​b​μ​( j)​j​​​(t)​​ is indepen-

dent of ​t,​ and hence ​​피​​β​ ​(μ,𝐩, j)​​ 
1  ​​​​[​b​μ​( j)​j​​]​  = ​ b​μ​( j)​j​​​(t)​​. Thus,

(A2)	​ ​b​μ​( j)​j​​​(t)​ − ​p​μ​(  j)​j​​  ≥  0    for all j  ∈  J.​

Hence, ​(​A1​)​ and ​(​A2​)​ imply that ​​(μ, 𝐩)​​ is individually rational when there is com-
plete information about ​t.​

Consider any coalitional deviation ​c  = ​ (μ, 𝐩, i, j, p)​​ to ​M​ at ​t.​ Since ​M​ is stable,  
​c​ is not viable. If ​​a​ij​​​(t)​ + p  ≤ ​ a​iμ​(i)​​​​(t)​ + ​p​iμ​(i)​​​,​ then ​c​ is not viable even if ​t​ is com-
mon knowledge. If ​​a​ij​​​(t)​ + p  > ​ a​iμ​(i)​​​​(t)​ + ​p​iμ​(i)​​​,​ then

(A3)	​ ​피​​β​ c​ 2​​​​[​b​ij​​]​ − p  ≤  max​{0, ​피​​β​ c​ 2​​​​[​b​μ​( j)​j​​]​ − ​p​μ​( j)​j​​}​.​

By Assumption 1, ​​피​​β​ c​ 2​​​​[​b​ij​​]​  = ​ b​ij​​​(t)​​ and ​​피​​β​ c​ 2​​​​[​b​μ​( j)​j​​]​  = ​ b​μ​( j)​j​​​(t)​.​ Inequality ​​(A3)​​ can 
be rewritten as

	​ ​b​ij​​​(t)​ − p  ≤  max​{0, ​b​μ​( j)​j​​​(t)​ − ​p​μ​(j)​j​​}​  = ​ b​μ​( j)​j​​​(t)​ − ​p​μ​( j)​j​​,​

where the last equality follows from ​(​A2​).​ Therefore, ​c​ is not a viable coali-
tional deviation if there is complete information about ​t.​ We have thus proved that  
​M​(t)​  = ​ (μ, 𝐩)​​ is complete-information stable at ​t  ∈  T.​ A stable matching under 
complete information maximizes the sum of surpluses, and hence the stable match-
ing ​M​ is full-information efficient. ∎

B. Proof of Proposition 2

Consider a matching game ​​(a, b, ​β​​ 0​)​.​ If two types ​​t​i​​​ and ​​t​ i​ ′ ​​ of worker ​i​ are indis-
tinguishable, we write ​​t​i​​  ∼ ​ t​ i​ ′ ​.​ We write ​t  ∼  t′​ if ​​t​i​​  ∼ ​ t​ i​ ′ ​​ for each ​i  ∈  I.​ For 
each ​t  ∈  T,​ let ​E​(t)​  = ​ {t′  :  t′  ∼  t}​​ be the type profiles in the same equivalent class 
of ​t,​ and let ​​T​​ ∗​  = ​ {E​(t)​  :  t  ∈  T}​​ be the collection of indistinguishable classes. For 
each ​t  ∈  T,​ ​i  ∈  I,​ and ​j  ∈  J,​ define

(A4)	​ ​a​ ij​ ∗ ​​(E​(t)​)​  = ​ a​ij​​​(t)​;​

(A5)	​ ​b​ ij​ ∗ ​​(E​(t)​)​  = ​   1 _ 
​β​​ 0​​(E​(t)​)​ ​ ​ ∑ 

t′∈E​(t)​
​ 

 
 ​​​ b​ij​​​(t′)​ ​β​​ 0​​(t′)​.​
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For each ​t  ∈  T,​ pick any stable matching ​​(μ, 𝐩)​​ for the complete-information 
matching game where the matching values are defined by ​​​(​a​ ij​ ∗ ​​(E​(t)​)​, ​b​ ij​ ∗ ​​(E​(t)​)​)​​i∈I, j∈J​​.​ 
If ​t′  ∈  E​(t)​,​ we pick the same ​​(μ, 𝐩)​​ for ​t′.​ The existence of ​​(μ, 𝐩)​​ is ensured by 
Shapley and Shubik (1971) and Crawford and Knoer (1981). We claim that the 
matching function ​M  :  t  ↦ ​ (μ, 𝐩)​​ defined in this way is stable with Bayesian-
consistent beliefs.

Individual Rationality.—For each ​t  ∈  T​ and ​​(μ, 𝐩)​  =  M​(t)​,​

	​ ​a​iμ​(i)​​​​(t)​ + ​p​iμ​(i)​​​  = ​ a​ iμ​(i)​​ ∗ ​​ (E​(t)​)​ + ​p​iμ​(i)​​​  ≥  0,​

where the first equality follows from (A4) and the inequality follows from the indi-
vidual rationality of ​​(μ, 𝐩)​.​ In addition, ​​M​​ −1​​(μ, 𝐩)​​ can be written as the union of 
disjoint equivalent classes ​​E​1​​, ​E​2​​, …, ​E​k​​.​ Therefore,

(A6)	​ 피​[​b​μ​( j)​j​​ | ​M​​ −1​​(μ, 𝐩)​]​  = ​   1 ___________  
​β​​ 0​​(​M​​ −1​​(μ, 𝐩)​)​

 ​​  ∑ 
t′∈​M​​ −1​​(μ,𝐩)​

​​​​b​ij​​​(t′)​​β​​ 0​​(t′)​​

(A7)	​ = ​   1 _________  
​β​​ 0​​(​∪​ ℓ=1​ k

 ​  ​E​ℓ​​)​
 ​​ ∑ 
ℓ=1

​ 
k

  ​​​β​​ 0​​(​E​ℓ​​)​​(
​  1 _ 
​β​​ 0​​(​E​ℓ​​)​

 ​​ ∑ 
t′∈​E​ℓ​​

​​​​b​ij​​​(t′)​ ​β​​ 0​​(t′)​
)

​​

(A8)	​ = ​   1 _________  
​β​​ 0​​(​∪​ ℓ=1​ k

 ​  ​E​ℓ​​)​
 ​​ ∑ 
ℓ=1

​ 
k

  ​​​β​​ 0​​(​E​ℓ​​)​ ​b​ ij​ ∗ ​​(​E​ℓ​​)​,​

where the last equality follows from (A5). Hence,

	​ 피​[​b​μ​( j)​j​​ | ​M​​ −1​​(μ, 𝐩)​]​ − ​p​μ​( j)​j​​  ≥ ​   1 _________  
​β​​ 0​​(​∪​ ℓ=1​ k

 ​  ​E​ℓ​​)​
 ​​ ∑ 
ℓ=1

​ 
k

  ​​​β​​ 0​​(​E​ℓ​​)​​(​b​ μ​( j)​j​ ∗ ​​ (​E​ℓ​​)​ − ​p​μ​( j)​j​​)​​ ​ ≥  0,​

where the last inequality follows from firm ​j​’s individual rationality in ​​(μ, 𝐩)​.​

No Blocking.—Consider a coalitional deviation ​c  = ​ (μ, 𝐩, i, j, p)​​ at ​t  ∈  T​ such 
that ​​(μ, 𝐩)​  =  M​(t)​.​ Suppose ​​a​ij​​​(t)​ + p  > ​ a​iμ​(i)​​​​(t)​ + ​p​iμ​(i)​​​​ (otherwise, the devia-
tion is not viable). Let ​​D​c​​  = ​ {t′  ∈  T  :  ​a​ij​​​(t′)​ + p  > ​ a​iμ​(i)​​​​(t′)​ + ​p​iμ​(i)​​​}​.​ If ​t′  ∈ ​ D​c​​,​ 
then ​E​(t′)​  ⊂ ​ D​c​​.​ Therefore, ​​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​c​​​ can be written as a union of equiva-
lent classes ​​F​1​​, …, ​F​h​​.​ Following the same arguments as in (A6), (A7), and (A8), 
we have

	​ 피​[​b​ij​​ | ​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​c​​]​ − p  = ​   1 _________  
​β​​ 0​​(​∪​ ℓ=1​ h

 ​  ​F​ℓ​​)​
 ​​ ∑ 
ℓ=1

​ 
h

  ​​​β​​ 0​​(​F​ℓ​​)​​(​b​ ij​ ∗ ​​(​F​ℓ​​)​ − p)​;​

	​ 피​[​b​μ​( j)​j​​ | ​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​c​​]​ − ​p​μ​( j)​j​​  = ​   1 _________  
​β​​ 0​​(​∪​ ℓ=1​ h

 ​  ​F​ℓ​​)​
 ​​ ∑ 
ℓ=1

​ 
h

  ​​​β​​ 0​​(​F​ℓ​​)​​(​b​ μ​( j)​j​ ∗ ​​ (​F​ℓ​​)​ − ​p​μ​( j)​j​​)​.​

It follows from the complete-information stability of ​​(μ, 𝐩)​​ that

	​ ​b​ ij​ ∗ ​​(​F​ℓ​​)​ − p  ≤ ​ b​ μ​( j)​j​ ∗ ​​ (​F​ℓ​​)​ − ​p​μ​( j)​j​​,​
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where the right-hand side is positive by worker ​j​’s individual rationality. Hence,

	​ 피​[​b​ij​​ | ​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​c​​]​ − p  ≤  피​[​b​μ​( j)​j​​ | ​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​c​​]​ − ​p​μ​( j)​j​​.​

This implies that firm ​j​ will not join the coalitional deviation ​c​ under impartial 
beliefs. Hence ​c​ is not a viable coalitional deviation for ​M.​ ∎

C. Proof of Proposition 3

To show the first claim, take any ​t  ∈  T​ and let ​​(μ, 𝐩)​  =  M​(t)​.​ Since ​M​ is fully 
revealing, ​​β​ ​(μ,𝐩, j)​​ 

1  ​​(t)​  = ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​  =  1,​ and hence the individual rationality of  
​​(μ, 𝐩)​​ follows from the stability of ​M.​ Suppose to the contrary that ​​(μ, 𝐩)​​ is not stable 
when there is complete information about ​t.​ Then there exists ​​(i, j, p)​  ∈  I × J × ℝ​ 
such that ​​a​ij​​​(t)​ + p  > ​ a​iμ​(i)​​​​(t)​ + ​p​iμ​(i)​​​​ and ​​b​ij​​​(t)​ − p  > ​ b​μ​( j)​j​​​(t)​ − ​p​jμ​( j)​​​.​ Consider  
​​D​​(μ,𝐩,i, j,p)​​​  = ​ {t′  :  ​a​ij​​​(t′)​ + p  > ​ a​iμ​(i)​​​​(t′)​ + ​p​iμ​(i)​​​}​.​ Since ​​β​ ​(μ,𝐩, j)​​ 

1  ​​(t)​  =  1​ and  

​t  ∈ ​ D​​(μ,𝐩,i, j,p)​​​,​ it follows that ​​β​ ​(μ,𝐩,i, j,p)​​ 
2  ​​(t)​  =  1.​ Thus ​​피​​β​ ​(μ,𝐩,i, j,p)​​ 

2  ​​​​[​b​ij​​​(t)​]​ − p  > 
​피​​β​ ​(μ,𝐩,i, j,p)​​ 

2  ​​​​[​b​μ​( j)​j​​​(t)​]​ − ​p​jμ​( j)​​​.​ Therefore, the coalitional deviation ​​(μ, 𝐩, i, j, p)​​ for ​M​ 
is viable, a contradiction. It should be noted that the power of Bayesian consis-
tency of ​​(​β​​ 1​, ​β​​ 2​)​​ is not fully used in the argument; it is sufficient that the support of  
​​β​ ​(μ,𝐩,i, j,p)​​ 

2  ​​ is restricted to ​​M​​ −1​​(μ, 𝐩)​.​
The proof of the second claim proceeds exactly the same way as the proof of 

Proposition 2 by working with an equivalence relation ​​E ̃ ​​(t)​  = ​ {t}​.​ ∎

D. Proof of Propositions 4 and 5

Duality of Bayesian Efficiency.—Consider a stable matching ​M​, and any match-
ing outcome ​​(μ, 𝐩)​  ∈  M​(T)​.​ Since ​​β​ ​(μ,𝐩, j)​​ 

1  ​  = ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​ is independent of ​j,​  
we abuse the notation to write ​​β​ ​(μ,𝐩)​​ 

1  ​  = ​ β​​ 0​​( ⋅ | ​M​​ −1​​(μ, 𝐩)​)​.​ To show that ​M​ is 
Bayesian efficient, it is equivalent to show that ​μ​ maximizes

(A9)	​​ ∑ 
i∈I

​ 
 
 ​​​ (​∑ 

t∈T
​ 

 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​a​iμ′​(i)​​​​(t)​ + ​∑ 

t∈T
​ 

 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​ ​b​iμ′​(i)​​​​(t)​)​​

over all matches ​μ′  :  I  ∪  J  →  I  ∪  J,​ where ​​b​ii​​  ≔  0.​

Primal: We introduce a vector of nonnegative real variables ​x  = ​​ (​x​ij​​)​​i∈I, j∈J​​.​ 
Consider a problem that maximizes

	​ V​(x)​  ≔ ​ ∑ 
i∈I

​ 
 
 ​​​ ∑ 

j∈J
​ 

 
 ​​ ​ x​ij​​​(​∑ 

t∈T
​ 

 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​(t)​ ​a​ij​​​(t)​ + ​∑ 

t∈T
​ 

 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​b​ij​​​(t)​)​​,

subject to

​​∑ 
j∈J

​ 
 
 ​​ ​ x​ij​​  ≤  1​;

​​∑ 
i∈I

​ 
 
 ​​ ​ x​ij​​  ≤  1​;

	​ ​x​ij​​  ≥  0,​ ​ i  ∈  I,​ ​ j  ∈  J​.
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It is well known that this linear programming problem has an optimal solu-
tion ​​x​​ ∗​​ with all ​​x​ ij​ ∗ ​  =  0​ or ​1.​ Such ​​(​x​ ij​ ∗ ​)​​ can be equivalently written as a match  
​​μ​​ ∗​​: ​​μ​​ ∗​​(i)​  =  j​ if and only if ​​x​ ij​ ∗ ​  =  1,​ and the objective function of the linear pro-
gram can be viewed as the sum of surpluses weighted by the probability measure  
​​β​ ​(μ,𝐩)​​ 

1  ​​. Therefore, Bayesian efficiency of ​M​ is ensured if the match ​μ​ is an optimal 
solution to the linear programming problem.

Dual: The dual of this linear programming problem is to choose real vari-
ables ​u  = ​​ (​u​i​​)​​i∈I​​​ and ​v  = ​​ (​v​j​​)​​j∈J​​​ to minimize

	​ U​(u, v)​  ≔ ​ ∑ 
i∈I

​ 
 
 ​​ ​ u​i​​ + ​∑ 

j∈J
​ 

 
 ​​ ​ v​j​​​,

such that, for all ​i  ∈  I​ and ​j  ∈  J,​

(A10)	​ ​u​i​​ + ​v​j​​  ≥ ​ ∑ 
t∈T

​ 
 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​a​ij​​​(t)​ + ​∑ 

t∈T
​ 

 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​b​ij​​​(t)​;​

	​ ​u​i​​  ≥  0;​

	​ ​v​j​​  ≥  0.​

Denote the optimal value of the dual by ​​U​min​​​ and the optimal value of the primal 
by ​​V​max​​.​ By the strong duality theorem, ​​V​max​​  = ​ U​min​​​.

If there is complete information, the duality analysis is well known: the dual 
problem links the stable matching, and the strong duality theorem says that a stable 
matching is (full-information) efficient. With asymmetric information, the linkage 
of the dual to a stable matching is not immediate because the system of off-path 
beliefs ​​β​​ 2​​ is used to define stability whereas the system of the on-path beliefs ​​β​​ 1​​ 
appears in the dual problem. The impartial belief that links ​​β​​ 2​​ with ​​β​​ 1​​ through con-
ditionality is critical here.

Proof of Propositions 4 and 5.—Define ​​u​​ ∗​  = ​ (​u​ 1​ ∗​, …, ​u​ n​ ∗​)​​, ​​v​​ ∗​  = ​ (​v​ 1​ ∗​, …, ​v​ m​ ∗ ​)​​, 
and ​​x​​ ∗​  = ​​ (​x​ ij​ ∗ ​)​​i∈I, j∈J​​​ as follows:

	​ ​u​ i​ ∗​  = ​ ∑ 
t∈T

​ 
 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​a​iμ​(i)​​​​(t)​ + ​p​iμ​(i)​​​;​

	​ ​v​ j​ ∗​  = ​ ∑ 
t∈T

​ 
 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​b​μ​( j)​j​​​(t)​ − ​p​μ​( j)​j​​;​

	​ ​x​ ij​ ∗ ​  = ​ {​1​  if μ(i)  =  j​  
0
​ 

otherwise.
 ​​​

By definition, ​​x​​ ∗​​ is feasible for the primal problem. We need to show that ​​x​​ ∗​​ is the 
optimal solution to the primal problem under certain conditions. We proceed in two 
steps.
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Step 1: We shall establish the following claim: if ​​(​u​​ ∗​, ​v​​ ∗​)​​ is a feasible solution to 
the dual problem, then ​​x​​ ∗​​ is an optimal solution to the primal problem, and conse-
quently the match ​μ​ maximizes ​(​A9​).​

To prove this claim, note that ​U​(​u​​ ∗​, ​v​​ ∗​)​  ≥ ​ U​min​​  = ​ V​max​​  ≥  V​(​x​​ ∗​)​,​ where the 
first relation follows from the assumption that ​​(​u​​ ∗​, ​v​​ ∗​)​​ is a feasible solution to the 
dual problem, the second relation follows from the strong duality theorem, and the 
third relation follows because ​​x​​ ∗​​ is a feasible solution to the primal problem.

Note also that ​V​(​x​​ ∗​)​  =  U​(​u​​ ∗​, ​v​​ ∗​)​​ because each of them is the total expected pay-
off from ​​(μ, 𝐩)​​ with belief ​​β​ ​(μ,𝐩)​​ 

1  ​.​ Therefore, ​U​(​u​​ ∗​, ​v​​ ∗​)​  = ​ U​min​​  = ​ V​max​​  =  V​(​x​​ ∗​)​.​ 
This proves that ​​x​​ ∗​​ is an optimal solution to the primal problem.

Step 2: We shall show that ​​(​u​​ ∗​, ​v​​ ∗​)​​ is a feasible solution to the dual problem, if the 
conditions in Propositions 4 and 5 are satisfied.

By definition, ​​(​u​​ ∗​, ​v​​ ∗​)​​ is nonnegative. It remains to show that ​​(​u​​ ∗​, ​v​​ ∗​)​​ satisfies 
the constraint ​(​A10​)​ in the dual problem. We claim that for any ​t​ in the support of  
​​β​​ 0​​( · |​M​​ −1​​(μ, 𝐩)​)​​, and any ​i  ∈  I​ and ​j  ∈  J,​

(A11)	​ ​a​iμ​(i)​​​​(t)​ + ​p​iμ​(i)​​​ + ​∑ 
t∈T

​ 
 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​b​μ​( j)​j​​​(t)​ − ​p​μ​( j)​j​​​

	  ​   ≥ ​ a​ij​​​(t)​ + ​∑ 
t∈T

​ 
 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​b​ij​​​(t)​.​

The claim is trivially true if ​μ​(i)​  =  j.​ To prove this claim, suppose by way of con-
tradiction that ​(​A11​)​ does not hold for some ​​t –​​ in the support of ​​β​​ 0​​( · | ​M​​ −1​​(μ, 𝐩)​)​​ 
and some pair ​​(i, j)​  ∈  I × J,​ ​μ​(i)​  ≠  j​. Then, there exists ​p  ∈  ℝ​ such that

(A12)	​ ​a​iμ​(i)​​​​(​t –​)​ + ​p​iμ​(i)​​​  < ​ a​ij​​​(​t –​)​ + p,

and​

(A13) ​ ​∑ 
t∈T

​ ​​ ​β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​b​μ​( j)​j​​​(t)​ − ​p​μ​( j)​j​​  < ​ ∑ 
t∈T

​ ​​ ​β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​b​ij​​​(t)​ − p.​

Inequality ​(​A12​)​ captures worker ​i​’s incentive to form a coalitional deviation with 
firm ​j.​ Consider the coalitional deviation ​c  = ​ (μ, 𝐩, i, j, p)​,​ and the set

	​ ​D​c​​  ≔ ​ {t  ∈  T  :  ​a​iμ​(i)​​​​(t)​ + ​p​iμ​(i)​​​  < ​ a​ij​​​(t)​ + p}​.​

By ​(​A12​)​, ​​D​c​​​ is a nonempty set that contains ​​t –​​. Firms’ common off-path belief is 
given by ​​β​​ 0​​( · |​M​​ −1​​(μ, 𝐩)​  ∩  ​D​c​​)​.​

Under condition (i) of Proposition 4, that is, Assumption 2, ​​a​iμ​(i)​​​​(t)​​ and ​​a​ij​​​(t)​​ 
are independent of ​t.​ Therefore, ​​D​c​​  = ​ {t  ∈  T  :  ​p​iμ​(i)​​​  <  p}​​ if ​μ​(i)​  ∈  J,​ and 
​​D​c​​  = ​ {t  ∈  T  :  ​p​iμ​(i)​​​  <  h​(i, j)​ + p}​​ if ​μ(i)  =  i,​ where ​h​(i, j)​  = ​ a​ij​​​(t)​​ and  
​​a​ii​​​(t)​  =  0.​ In either case, ​​D​c​​  =  T​ since ​​t –​  ∈ ​ D​c​​​.

Under condition (ii) of Proposition 4, ​μ​(i)​  ≠  i,​ and by Assumption 3,  
​​a​iμ​(i)​​​​(t)​  = ​ a​ij​​​(t)​  =  g​(i, t)​ + h​(i, j)​​. Hence,

	​ ​D​c​​  = ​ {t  ∈  T  :  h​(i, μ​(i)​)​ + ​p​iμ​(i)​​​  <  h​(i, j)​ + p}​.​
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Again, ​​D​c​​  =  T​ since ​​t –​  ∈ ​ D​c​​​.
Under either condition (i) or condition (ii) of Proposition 4, ​​β​​ 0​​(​D​c​​ | ​M​​ −1​​(μ, 𝐩)​)​  

=  1.​ If we replace the on-path belief ​​β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​ by the off-path belief  
​​β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​c​​)​​ in ​(​A13​),​ the inequality is unchanged. Therefore, ​(A13​​)​ 
implies that firm ​j​ is willing to deviate with worker ​i.​ That is, ​​(μ, 𝐩, i, j, p)​​ is a suc-
cessful blocking, a contradiction.

Suppose that the conditions of Proposition 5 hold and that ​μ​(i)​  =  i​ (the case 
of ​μ​(i)​  ≠  i​ has already been covered by the proof of Proposition 4 under condition 
(ii)). Then

	​ ​D​c​​  = ​ {t  ∈  T  :  ​p​iμ​(i)​​​  < ​ a​ij​​​(t)​ + p}​.​

Since ​​a​ij​​​( · )​​ and ​​b​ij​​​( · )​​ are comonotonic, there exists some linear order on ​​T​i​​​ that is 
specific to the pair ​​(i, j)​,​ such that both ​​a​ij​​​(​t​i​​)​​ and ​​b​ij​​​(​t​i​​)​​ are nondecreasing in ​​t​i​​​ (note 
that since ​​a​ij​​​ and ​​b​ij​​​ depend only on ​​t​i​​,​ the linear order naturally extends to an order 
on ​T​ ). Therefore, ​​D​c​​​ contains all ​t​ s such that ​​t​i​​​ is larger than a cutoff according to 
the linear order. It follows from the monotonicity of ​​b​ij​​​(t)​​ in ​​t​i​​​ that

(A14) ​​ ∑ 
t∈T

​ 
 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​b​ij​​​(t)​ − p  ≤ ​ ∑ 

t∈T
​ 

 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​c​​)​​b​ij​​​(t)​ − p.​

Since ​μ​(i)​  =  i  ≠  j,​ we have ​μ​( j)​  ≠  i.​ It follows from the independence of  
​​β​​ 0​​( · |  ​M​​ −1​​(μ, 𝐩)​)​​ that

	​ ​β​​ 0​​(​{​t​μ​( j)​​​}​ × ​T​−μ​( j)​​​ | ​M​​ −1​​(μ, 𝐩)​)​  = ​ β​​ 0​​(​{​t​μ​( j)​​​}​ × ​T​−μ​( j)​​​ | ​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​c​​)​.​

Hence,

(A15)	​​ ∑ 
t∈T

​ 
 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​b​μ​( j)​j​​​(t)​  = ​ ∑ 

t∈T
​ 

 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​c​​)​​b​μ​( j)​j​​​(t)​.​

It follows from (A15) and (A13) that

(A16)�​​ ∑ 
t∈T

​ 
 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​c​​)​​b​μ​(j)​j​​​(t)​ − ​p​μ​( j)​j​​  < ​ ∑ 

t∈T
​ 

 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​b​ij​​​(t)​ − p.​

By (A14) and (A16),

	​​∑ 
t∈T

​ 
 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​c​​)​​b​μ​( j)​j​​​(t)​ − ​p​μ​( j)​j​​  < ​ ∑ 

t∈T
​ 

 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​  ∩ ​ D​c​​)​​b​ij​​​(t)​ − p.​

That is, firm ​j​ is willing to deviate with worker ​i.​ Thus, the coalitional deviation ​​
(μ, 𝐩, i, j, p)​​ is not viable, a contradiction. This establishes the claim that ​(​A11​)​ holds.

Multiplying both sides of ​(​A11​)​ by ​​β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​ and summing over ​t​, we 
obtain

	​ ​u​ i​ ∗​ + ​v​ j​ ∗​  ≥ ​ ∑ 
t∈T

​ 
 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​a​ij​​​(t)​ + ​∑ 

t∈T
​ 

 
 ​​ ​ β​​ 0​​(t | ​M​​ −1​​(μ, 𝐩)​)​​b​ij​​​(t)​.​

That is, ​​(​u​​ ∗​, ​v​​ ∗​)​​ satisfies ​(​A10​)​. Thus, ​​(​u​​ ∗​, ​v​​ ∗​)​​ is a feasible solution to the dual 
problem. ∎
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E. Proof of Proposition 6

For each ​t  ∈  T,​ pick any complete-information competitive equilibrium match-
ing ​​(μ, 𝐩)​​ associated with the complete-information matching game defined by (A4) 
and (A5). We claim that the matching ​M  :  t  ↦ ​ (μ, 𝐩)​​ is a (rational expectations) 
competitive equilibrium. Since ​​(μ, 𝐩)​​ is a competitive equilibrium of the 
complete-information matching game,

	​ ​a​ iμ​(i)​​ ∗ ​​ (E​(t)​)​ + ​p​iμ​(i)​​​  ≥ ​ a​ ij​ ∗ ​​(E​(t)​)​ + ​p​ij​​.​

Thus, by (A4),

	​ ​a​iμ​(i)​​​​(t)​ + ​p​iμ​(i)​​​  ≥ ​ a​ij​​​(t)​ + ​p​ij​​.​

That is, condition (i) of Definition 8 is satisfied. In addition, ​​M​​ −1​​(μ, 𝐩)​​ can be writ-
ten as the union of equivalent classes ​​G​1​​, …, ​G​c​​.​ Following the argument as in 
(A6)–(A8), for all ​j  ∈  J​ and ​i  ∈  I  ∪  ​{ j}​,​ we have

	​ 피​[​b​μ​( j)​j​​ | ​M​​ −1​​(μ, 𝐩)​]​ − ​p​μ​( j)​j​​  = ​   1 __________  
​β​​ 0​​(​∪​ ℓ=1​ k

 ​  ​G​ℓ​​)​
 ​​ ∑ 
ℓ=1

​ 
k

  ​​​β​​ 0​​(​G​ℓ​​)​​(​b​ μ​( j)​j​ ∗ ​​ (​G​ℓ​​)​ − ​p​μ​( j)​j​​)​;​

	​ 피​[​b​ij​​ | ​M​​ −1​​(μ, 𝐩)​]​ − ​p​ij​​  = ​   1 __________  
​β​​ 0​​(​∪​ ℓ=1​ k

 ​  ​G​ℓ​​)​
 ​​ ∑ 
ℓ=1

​ 
k

  ​​​β​​ 0​​(​G​ℓ​​)​​(​b​ ij​ ∗ ​​(​G​ℓ​​)​ − ​p​ij​​)​.​

By the definition of ​​(μ, 𝐩)​,​ ​​b​ μ​( j)​j​ ∗ ​​ (​G​ℓ​​)​ − ​p​μ​( j)​j​​  ≥ ​ b​ ij​ ∗ ​​(​G​ℓ​​)​ − ​p​ij​​.​ Therefore,

	​ 피​[​b​μ​( j)​j​​ | ​M​​ −1​​(μ, 𝐩)​]​ − ​p​μ​( j)​j​​  ≥  피​[​b​ij​​ | ​M​​ −1​​(μ, 𝐩)​]​ − ​p​ij​​.​

That is, condition (ii) in Definition 8 is satisfied. ∎

F. Proof of Proposition 7

By the proofs of Propositions 2 and 6, ​​M​​ s​  :  t  ↦ ​ (μ, ​𝐩​​ s​)​​ and ​​M​​ c​  :  t  ↦ ​ (μ, ​𝐩​​ c​)​​ 
are stable and competitive equilibrium respectively, when ​​(μ, ​𝐩​​ s​)​​ is a  
complete-information stable matching at ​t​ and ​​(μ, ​𝐩​​ c​)​​ is a complete-information 
competitive equilibrium extension of ​​(μ, ​𝐩​​ s​)​.​ This proves the first halves of (i) and 
(ii). The second halves are shown by Examples 6 and 7, respectively. ∎

G. Proof of Proposition 8

Suppose to the contrary that a competitive equilibrium matching ​M​ is not Bayesian 
efficient. Then for some ​​(μ, 𝐩)​  ∈  M​(T)​​ there exists a match ​μ′  :  I  ∪  J  →  I  ∪  J​ 
such that

(A17) ​ 피​[​ ∑ 
i=1

​ 
n

  ​​​(​a​iμ​(i)​​​ + ​b​iμ​(i)​​​)​ | ​M​​ −1​​(μ, 𝐩)​]​  <  피​[​ ∑ 
i=1

​ 
n

  ​​​(​a​iμ′​(i)​​​ + ​b​iμ′​(i)​​​)​ | ​M​​ −1​​(μ, 𝐩)​]​.​
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Since ​M​ is a competitive equilibrium,

(A18)	​ 피​[​a​iμ​(i)​​​ + ​p​iμ​(i)​​​ | ​M​​ −1​​(μ, 𝐩)​]​  ≥  피​[​a​iμ′​(i)​​​ + ​p​iμ′​(i)​​​ | ​M​​ −1​​(μ, 𝐩)​]​​

for all ​i  ∈  I,​ and

(A19)	​ 피​[​b​μ​( j)​j​​ − ​p​μ​( j)​j​​ | ​M​​ −1​​(μ, 𝐩)​]​  ≥  피​[​b​μ′​( j)​j​​ − ​p​μ′​( j)​j​​ | ​M​​ −1​​(μ, 𝐩)​]​​

for all ​j  ∈  J.​ Since ​​p​ii​​  = ​ p​jj​​  =  0,​

	​​  ∑ 
i=1

​ 
n

  ​​ ​p​iμ​(i)​​​  = ​  ∑ 
j=1

​ 
m

 ​​ ​p​μ​( j)​j​​  and ​  ∑ 
i=1

​ 
n

  ​​ ​p​iμ′​(i)​​​  = ​  ∑ 
j=1

​ 
m

 ​​ ​p​μ′​( j)​j​​.​

Hence, summing (A18) over ​i  ∈  I​ and (A19) over ​j  ∈  J,​ we have

	​ 피​[​ ∑ 
i=1

​ 
n

  ​​ ​a​iμ​(i)​​​ + ​ ∑ 
j=1

​ 
m

 ​​ ​b​μ​( j)​j​​ | ​M​​ −1​​(μ, 𝐩)​]​  ≥  피​[​ ∑ 
i=1

​ 
n

  ​​ ​a​iμ′​(i)​​​ + ​ ∑ 
j=1

​ 
m

 ​​ ​b​μ′​( j)​j​​ | ​M​​ −1​​(μ, 𝐩)​]​,​

which, since ​​a​ii​​  ≡  0  ≡ ​ b​jj​​​, is equivalent to

(A20)	​ ​피​​β​ ​(μ,𝐩)​​ 
1  ​​​​[​ ∑ 

i=1
​ 

n

  ​​​(​a​iμ​(i)​​​ + ​b​iμ​(i)​​​)​]​  ≥ ​ 피​​β​ ​(μ,𝐩)​​ 
1  ​​​​[​ ∑ 

i=1
​ 

n

  ​​​(​a​iμ′​(i)​​​ + ​b​iμ′​(i)​​​)​]​.​

But (A20) and (A17) contradict each other.
We now prove the claim about full-information efficiency. It follows from the 

construction of Proposition 6 that if ​M​(t)​​ is a competitive equilibrium match-
ing when ​t​ is common knowledge, then ​M​ is a competitive equilibrium. Suppose 
that ​M​ is a competitive equilibrium. Then, by definition, for all ​t  ∈  T​ and ​​
(μ, 𝐩)​  =  M​(t)​​, ​​a​iμ​(i)​​​​(t)​ + ​p​iμ​(i)​​​  ≥ ​ a​ij​​​(t)​ + ​p​ij​​​ for all ​i  ∈  I​ and ​j  ∈  J  ∪ ​ {i}​,​ and  
​피​[​b​μ​( j)​j​​ | ​M​​ −1​​(μ, 𝐩)​]​ − ​p​μ​( j)​j​​  ≥  피​[​b​ij​​ | ​M​​ −1​​(μ, 𝐩)​]​ − ​p​ij​​​ for all ​j  ∈  J​ and  
​i  ∈  I  ∪  ​{ j}​.​ By Assumption 1, the last inequality is equivalent to 
​​b​μ​( j)​j​​ − ​p​μ​( j)​j​​  ≥ ​ b​ij​​ − ​p​ij​​​ for all ​j  ∈  J​ and ​i  ∈  I  ∪ ​ { j}​.​ Thus, ​​(μ, 𝐩)​​ is a 
complete-information competitive equilibrium (and maximizes the sum of  
surpluses) when the type profile is ​t​. Hence ​M​ is full-information efficient. ∎
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