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Abstract
A new method is developed for solving optimal control problems whose solutions
are nonsmooth. The method developed in this paper employs a modified form of
the Legendre–Gauss–Radau orthogonal direct collocation method. This modified
Legendre–Gauss–Radau method adds two variables and two constraints at the end
of a mesh interval when compared with a previously developed standard Legendre–
Gauss–Radau collocation method. The two additional variables are the time at the
interface between two mesh intervals and the control at the end of each mesh inter-
val. The two additional constraints are a collocation condition for those differential
equations that depend upon the control and an inequality constraint on the control
at the endpoint of each mesh interval. The additional constraints modify the search
space of the nonlinear programming problem such that an accurate approximation to
the location of the nonsmoothness is obtained. The transformed adjoint system of the
modified Legendre–Gauss–Radau method is then developed. Using this transformed
adjoint system, a method is developed to transform the Lagrange multipliers of the
nonlinear programming problem to the costate of the optimal control problem. Fur-
thermore, it is shown that the costate estimate satisfies one of theWeierstrass–Erdmann
optimality conditions. Finally, the method developed in this paper is demonstrated on
an example whose solution is nonsmooth.

Keywords Optimal control · Gaussian quadrature collocation · Lavrentiev
phenomenon · Nonsmooth optimal control

1 Introduction

Over the past two decades, direct collocation methods have become increasingly pop-
ular for computing the numerical solution of constrained optimal control problems. A
direct collocation method is an implicit simulation method where the state and control
are both parameterized and the constraints in the continuous optimal control problem
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are enforced at a specially chosen set of collocation points. This approximation of the
continuous optimal control problem leads to a finite-dimensional nonlinear program-
ming problem (NLP) [1], and the NLP is solved using well-known software [2,3].
Originally, direct collocation methods were developed as h methods (for example,
Euler or Runge–Kutta methods) where the time interval is divided into a mesh and
the state is approximated using the same fixed-degree polynomial in each mesh inter-
val. Convergence in an h method is then achieved by increasing the number of mesh
intervals [1,4,5]. More recently, a great deal of research as been done in the class of
direct Gaussian quadrature orthogonal collocation methods [6–13]. In a Gaussian
quadrature collocation method, the state is typically approximated using a Lagrange
polynomial where the support points of the Lagrange polynomial are chosen to be
points associated with a Gaussian quadrature. Originally, Gaussian quadrature collo-
cation methods were implemented as p methods using a single interval. Convergence
of the p method was then achieved by increasing the degree of the polynomial approx-
imation. For problems whose solutions are smooth and well-behaved, a Gaussian
quadrature collocation method has a simple structure and converges at an exponen-
tial rate [14–16]. The most well-developed Gaussian quadrature methods are those
that employ either Legendre–Gauss (LG) points [17,18], Legendre–Gauss–Radau
(LGR) points [19–22], or Legendre–Gauss–Lobatto (LGL) points [6]. In addition,
a convergence theory has recently been developed using Gaussian quadrature collo-
cation. Research on this theory had demonstrated that under certain assumptions of
the smoothness and coercivity, an hp Gaussian quadrature method that employs either
LG or LGR collocation points converges to a local minimizer of the optimal control
problem [23–28]. In particular, it is shown in Refs. [23–28] that the convergence rate is
exponentially fast as a function of the polynomial degree and is a polynomial function
of the mesh interval width.

While Gaussian quadrature orthogonal collocation methods are well-suited to solv-
ing optimal control problems whose solutions are smooth, it is often the case that the
solution of an optimal control problem has a nonsmooth optimal control [29]. The
difficulty in solving problems with nonsmooth control lies in determining when the
nonsmoothness occurs. For example, dynamical systemswhere the control appears lin-
early or problems that have state inequality path constraints often have solutions where
the control and state may be nonsmooth. One approach to handling nonsmoothness is
to employ a mesh refinement method where the optimal control problem is discretized
using a sequence of meshes such that the last mesh satisfies a specified solution accu-
racy tolerance. In the context of Gaussian quadrature collocation, hp mesh refinement
methods [9,11–13,19–22,30] have been developed in order to improve accuracy in a
wide variety of optimal control problems including those whose solutions are nons-
mooth. It is noted, however, thatmesh refinementmethods often place an unnecessarily
large number of collocation points and mesh intervals near points of nonsmoothness
in the solution. Thus, it is beneficial to develop techniques that take advantage of the
rapid convergence of a Gaussian quadrature collocation methods in segments where
the solution is smooth and only increase the size of the mesh when necessary. (thus,
maintaining a smaller mesh than might be possible with a standard mesh refinement
approach).
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For optimal control problems where the solution is nonsmooth, the convergence
theory developed in Refs. [23–27] is not applicable. Consequently, when the solution
of an optimal control problem is nonsmooth, an hp methodmay not converge to a local
minimizer of the optimal control problem. A well-studied class of problems where the
smoothness and coercivity conditions found in Ref. [24] are not met are those where
the control appears linearly in the problem formulation [29,31–33]. One approach for
estimating the location of nonsmoothness is to introduce a variable called a break point
or knot [34,35] that defines the location of nonsmoothness and to include this variable
in the NLP. The key problem that arises by introducing a break point is that the NLP
has an extra degree of freedom. As a result, the NLPmay converge to a solution where
this additional variable does not correspond to the location of the nonsmoothness. This
extra degree of freedom can be addressed by introducing additional constraints into the
problem. Research performed in Ref. [36–38] introduced a bilevel or nested approach
to solving nonsmooth optimal control problems. The bilevel approach formulates two
separate NLP problems referred to as an inner problem and an outer problem. The
inner problem is the transcribed optimal control problem, whereas the outer problem
determines the properties of the mesh which is used by the inner problem and insures
additional optimality conditions associated with nonsmooth optimal control problems
are satisfied. Similar to the method in Ref. [35], the inner problem places explicit
assumptions on the control functions. Reference [39] also developed the concept of a
knot using Legendre–Gauss–Lobatto collocation by introducing a variable that defines
the switch time and collocating the dynamics at both the end of a mesh interval and
the start of the subsequent mesh interval. A more detailed discussion that compares
the method developed in this paper with the methods of Refs. [34–39] is provided in
Sect. 8.

The objective of this research is to develop a new method that employs Gaussian
quadrature collocation and accurately approximates the solution of an optimal control
problem whose solution is nonsmooth by letting the location of the nonsmoothness be
a free variable in the problem. In this paper, an approach is developed to improve upon
the approach originally developed in Ref. [34] by gaining a better understanding why
an incorrect location of the nonsmoothness in the optimal control is obtained when
solving an optimal control problem using Legendre–Gauss–Radau collocation and
introducing a constraint that will satisfy the equations of motion at the nonsmoothness
but will not place explicit assumptions on the optimal control function. Specifically,
it is shown in this paper that the incorrect nonsmoothness location is obtained due to
Lavrentiev phenomenon [40]. Lavrentiev phenomenon occurs in a practical situation
when it is desired to minimize a numerical approximation of a continuous (functional)
optimization problem. In particular, a continuous optimization problem may be sub-
ject to Lavrentiev phenomenon whenever a numerical approximation of a functional
leads to an optimal objective value that is either strictly greater than or strictly less than
the optimal value of the functional [41–44]. Simple examples of optimization prob-
lems that possess Lavrentiev phenomenon are given in Ref. [45], and the concept of
Lavrentiev phenomenon has been extended to optimal control through the Lavrentiev
gap [31]. The reason that the approximation of the continuous optimization problem
has a higher or lower optimal objective arises from the possibility that the space over
which the numerical optimization is performed may be different from the space over
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which the optimization needs to be performed in order to converge to the optimal solu-
tion. Therefore, the existence and the behavior of Lavrentiev phenomenon depends
upon the choice of the approximation method. Moreover, any numerical scheme that
gives rise to Lavrentiev phenomenon must somehow be augmented to compensate
for any errors caused by the Lavrentiev phenomenon itself. Initial explorations of
Lavrentiev phenomenon using Gaussian quadrature collocation methods are provided
in Refs. [42–44]. In order to properly account for Lavrentiev phenomenon, it is first
necessary to understand the circumstances in which it occurs for any given numerical
scheme.

It is important to note that the approach developed in this paper is fundamentally
different from the approaches developed in Refs. [34,39], and [36–38]. The key differ-
ence between the approach of this paper and that of Ref. [34] is that the search space
is modified to include collocation constraints on the differential equations that are a
function of control, whereas the approach of Ref. [34] introduces no such additional
collocation constraints. Next, the key difference between the approach of this paper
and the work of Ref. [39] is that the work of Ref. [39] collocates all of the differential
equations at the end of a mesh interval where a solution may be nonsmooth, whereas
in this work, collocation constraints are included at the end of a mesh interval on
only those differential equations that are a function of control. Second, the method
of Ref. [39] uses Legendre–Gauss–Lobatto which employs a square and singular dif-
ferentiation matrix. On the other hand, the approach developed in this paper employs
Legendre–Gauss–Radau collocation where the differentiation matrix is rectangular.
Moreover, it has been shown previously that Legendre–Gauss–Radau is a Gaussian
quadrature integration method [22]. Finally, the key difference between the method of
this paper and themethods ofRefs. [36–38] is that themethods of [36–38] parameterize
the control as a function of time, and this parameterization is used to approximate the
control at the end of eachmesh interval. Themethod of this paper, however, introduces
a variable that defines the control at the end of a mesh interval and adds collocation
conditions at the end of the mesh interval using only those differential equations that
are a function of the control.

This paper presents a new method for Gaussian quadrature collocation. In this new
method, the standard LGR method is modified to include additional variables and
additional constraints at the end of a mesh interval when compared with a previously
developed standard Legendre–Gauss–Radau collocation method. The additional vari-
ables are the time associated with mesh interval boundaries and the corresponding
value of the control at the end of the mesh interval. The additional constraints are
collocation conditions on those differential equations that are a function of the control
and inequality constraints on the control at the endpoint of each mesh interval. It is
important to note that the additional constraints are added to only those collocation
constraints associated with the differential equations that are functions of the control
and are not added to all differential equations. The modified method results in a dif-
ferent control variable at the end of each mesh interval from the control variable at
the start of the next mesh interval. A costate estimation method is then developed that
transforms the Lagrange multipliers of the NLP to the costate of the optimal control
problem [20–22]. Using this costate estimation method, the transformed adjoint sys-
tem [20–22,46] of the modified LGR collocation method is developed. It is also shown
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that the state and control obtained from the modified LGR method along with the new
costate estimation scheme satisfies one of the necessary Weierstrass–Erdmann con-
ditions when the solution of the optimal control problem is nonsmooth and therefore
does not require additional constraints to enforce the Weierstrass–Erdmann condi-
tions. It is also noted that the method developed in this paper may be applicable in
a wide range of aerospace applications. Such applications include optimal spacecraft
orbital transfer, aircraft performance optimization, and hypersonic flight. Solutions to
optimal control problems in these aerospace application areas often have nonsmooth
solutions (for example, bang–bang thrust profiles or fast actuator dynamics in surface
controllers on board an aircraft).

The remainder of this paper is organized as follows. Section 2 provides the nota-
tions and conventions used in this paper. Section 3 presents the Bolza optimal control
problem. Section 4 presents the standard Legendre–Gauss–Radau (LGR) collocation
method for discretizing optimal control problems. Section 5 provides a description of
Lavrentiev phenomenon, a discussion of the Lavrentiev gap that arises when using
LGR collocation to solve an optimal control problem whose solution is nonsmooth,
and an analysis of the search space using LGR collocation. Section 6 presents themod-
ified LGR collocation method for solving optimal control problems with nonsmooth
solutions. Section 7 derives the transformed adjoint system alongwith theWeierstrass–
Erdmann conditions that arise from modified LGR collocation and demonstrates the
accuracy of the modified LGR collocation method costate estimate. Next, Sect. 8 pro-
vides a comparison of the method developed in this paper with the methods developed
in Refs. [34–39]. Finally, Sect. 9 provides conclusions on this research.

2 Notation and Conventions

In this paper, the following notation and conventions will be used. First, the inde-
pendent variable is denoted τ . Therefore, the notation x(τ ) denotes a dependence of
the quantity x on τ . Next, all vectors will be denoted as row vectors. Therefore, if
x(τ ) ∈ R

n is a vector function of τ , then x(τ ) is given as

x(τ ) = [x1(τ ), x2(τ ), . . . , xn(τ )] . (1)

Suppose now that x(τ ) is approximated using a basis of Lagrange polynomials
� j (τ ), ( j = 1, . . . , N + 1) as

x(τ ) ≈ x̂(τ ) =
N+1∑

j=1

X j� j (τ ), � j (τ ) =
N+1∏

l=1
l �= j

τ − τl

τ j − τl
, (2)

where (τ1, . . . , τN+1) are the support points of � j (τ ), ( j = 1, . . . , N +1). It is known
that the Lagrange polynomials � j (τ ), ( j = 1, . . . , N + 1) satisfy the property

� j (τi ) = δi j =
{
1 , i = j,
0 , i �= j .

(3)
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which implies that
X(τi ) = Xi , (i = 1, . . . , N + 1). (4)

Using aforementioned row vector conventions and function approximations, in this
paper, the notation Xi : j is a matrix whose rows are the values (Xi , . . . ,X j ), that is,

Xi : j =

⎡

⎢⎢⎢⎣

Xi

Xi+1
...

X j

⎤

⎥⎥⎥⎦ . (5)

Furthermore, the notation AT denotes the transpose of a matrix A. The inner product
between two matrices A and B of the same size is then denoted 〈A,B〉 and is defined
as

〈A,B〉 = trace ATB. (6)

Note that when A and B are row vectors, 〈A,B〉 is the standard inner product.
Next, differentiation matrices are used throughout this paper. The following con-

ventions will be adopted for the elements of a differentiation matrix D:

D(i, j) = element in row i and column j,
D(:,i) = elements in all rows and column i,
D(i,:) = elements all columns and row i,
D(i : j,k:l) = elements in rows i through j and columns k through l.

Finally, the following conventions are adopted for functions and their first derivatives
(gradients or Jacobians). First, if f : Rn → R

m is a function of the vector x ∈ R
n ,

then f(x) is given as
f(x) = [ f1(x), f2(x), . . . , fm(x)] . (7)

Furthermore, the notation ∇xf(x) is defined as

∇f(x) = ∂f
∂x

=

⎡

⎢⎢⎢⎢⎢⎣

∂ f1
∂x
∂ f2
∂x

...

∂ fm
∂x

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂x1

. . .
∂ f1
∂xn

∂ f2
∂x1

. . .
∂ f2
∂xn

...
. . .

...

∂ fm
∂x1

. . .
∂ fm
∂xn

⎤

⎥⎥⎥⎥⎥⎥⎦
. (8)
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Then, using the definitions provided in Eqs. (7) and (8), if g : Rn×m → R is a scalar
function of the m × n matrix X ∈ R

m×n , then the gradient of g(X) with respect to X,
denoted ∇X g(X), is defined as

∇X g(X) =

⎡

⎢⎢⎢⎢⎢⎢⎣

∂g
∂ X11

. . .
∂g

∂ X1n
∂g

∂ X21
. . .

∂g
∂ X2n

...
. . .

...

∂g
∂ Xm1

. . .
∂g

∂ Xmn

⎤

⎥⎥⎥⎥⎥⎥⎦
. (9)

3 Bolza Optimal Control Problem

Without loss of generality, consider the following optimal control problem in Bolza
form. Minimize the objective functional

J = M(x(−1), v(−1), x(+1), v(+1), t0, t f ) + t f − t0
2

∫ +1

−1
L(x(t), v(t),u(t))dt,

(10)
subject to the dynamic constraints

dx(t)
dt

= t f − t0
2

fx (x(t), v(t)),
dv(t)
dt

= t f − t0
2

fv(x(t), v(t),u(t)),
(11)

the control inequality path constraints

c(u(t)) ≤ 0, (12)

and the boundary conditions

b(x(−1), v(−1), x(+1), v(+1), t0, t f ) = 0. (13)

It is noted in Eqs. (10)–(13) that x(t) ∈ R
nx , v(t) ∈ R

nv , and, together, (x(t), v(t)) ∈
R

n is the state (where n = nx +nv), u(t) ∈ R
nu is the control, fx : Rnx ×R

nv → R
nx ,

fv : Rnx ×R
nv ×R

nu → R
nv , c : Rnx ×R

nv ×R
nu → R

nc , b : Rnx ×R
nv ×R

nx ×
R

nv → R
nb , M : Rnx × R

nv × R
nx × R

nv → R, and L : Rnx × R
nv × R

nu → R.
It is seen from from the optimal control problem in Eq. (10)–(13) that the dynamics
are decomposed into those differential equations that depend upon the control and
those differential equations that do not depend upon the control. This decomposition
is done deliberately because themodified Legendre–Gauss–Radau collocationmethod
developed in this paper exploits this separation. It is noted that no generality is lost
with such a decomposition because (nx , nv) = (0, n) is a special case of the dynamics
given in Eq. (11).
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Consider now the following partitioning of the independent variable t ∈ [−1,+1]
into a mesh consisting of K +1 mesh points −1 = T0 < T1 < T2 < . . . < TK = +1,
where Ik = [Tk−1, Tk] corresponds to mesh interval k ∈ [1, . . . , K ]. Then, the Bolza
optimal control problem of Sect. 3 can be expressed in multiple-interval form as
follows. Minimize the objective functional

J = M(x(1)(T0), v(1)(T0), x(K )(TK ), v(K )(TK ), t0, t f )

+ t f − t0
2

K∑

k=1

∫ Tk

Tk−1

L(x(k)(t), v(k)(t),u(k)(t))dt, (14)

subject to the dynamic constraints

dx(k)(t)

dt
= t f − t0

2
fx (x(k)(t), v(k)(t)),

dv(k)(t)

dt
= t f − t0

2
fv(x(k)(t), v(k)(t),u(k)(t)),

(15)

the control inequality path constraints

c(u(k)(t)) ≤ 0, (k = 1, . . . , K ), (16)

the boundary conditions

b(x(1)(T0), v(1)(T0), x(K )(TK ), v(K )(TK ), t0, t f ) = 0, (17)

and the state continuity constraint

(
x(k) (Tk) , v(k) (Tk)

)
=

(
x(k+1) (Tk) , v(k+1) (Tk)

)
, (k = 1, . . . , K − 1), (18)

at the boundaries of the interior mesh intervals. It is noted that Eq. (18) ensures
continuity in the constraint across the domain t ∈ [−1,+1] as is assumed in the
original formulation of the Bolza optimal control problem stated in Sect. 3.

Themultiple-interval form of the Bolza optimal control problem given in Eqs. (14)–
(18) is now transformed to the independent variable τ ∈ [−1,+1] on each mesh
interval Ik, (k = 1, . . . , K ). First, it is seen that t ∈ [Tk−1, Tk] can be related to
τ ∈ [−1,+1] as

t = Tk − Tk−1

2
τ + Tk + Tk−1

2
(19)

which further implies that

dt

dτ
= Tk − Tk−1

2
≡ αk, (k = 1, . . . , K ). (20)

Consequently, the multiple-interval Bolza optimal control problem given in Eqs. (14)–
(18) can be written in terms of the variable τ as follows. Minimize the objective
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functional

J = M(x(1)(−1), v(1)(−1), x(K )(+1), v(K )(+1), t0, t f )

+ t f − t0
2

K∑

k=1

∫ +1

−1
αkL(x(k)(τ ), v(k)(τ ),u(k)(τ ))dτ, (21)

subject to the dynamic constraints

dx(k)(τ )

dτ
≡ ẋ(k)(τ ) = t f − t0

2
αkfx (x(k)(τ ), v(k)(τ )),

dv(k)(τ )

dτ
≡ v̇(k)(τ ) = t f − t0

2
αkfv(x(k)(τ ), v(k)(τ ),u(k)(τ )),

, (k = 1, . . . , K ),

(22)
the control inequality path constraints

c(u(k)(τ )) ≤ 0, (k = 1, . . . , K ), (23)

the boundary conditions

b(x(1)(−1), v(1)(−1), x(K )(+1), v(K )(+1), t0, t f ) = 0, (24)

and the state continuity constraint

(
x(k)(+1), x(k)(+1)

)
=

(
x(k+1)(−1), x(k+1)(−1)

)
, (k = 1, . . . , K − 1). (25)

4 Legendre–Gauss–Radau Collocation

The Legendre–Gauss–Radau (LGR) collocation method approximates the multiple-
interval form of the Bolza optimal control problem defined in Sect. 3. First, it is
assumed that the number of collocation points is the same in each mesh interval
and is denoted N . Next, let τi , (i = 1, . . . , N ) be the N Legendre–Gauss–Radau
collocation points [47] on the interval [−1,+1) and that τN+1 = +1 is a noncollocated
point. Then, in every mesh interval k ∈ [1, . . . , K ], the state (x(k)(τ ), v(k)(τ )) is
approximated as

x(k)(τ ) ≈ x̂(k)(τ ) = ∑N+1
j=1 X(k)

j � j (τ ),

v(k)(τ ) ≈ v̂(k)(τ ) = ∑N+1
j=1 V(k)

j � j (τ ),
(26)

where � j (τ ) are the Lagrange polynomials

� j (τ ) =
N+1∏

l=1
j �=l

τ − τl

τ j − τl
, ( j = 1, . . . , N + 1) (27)
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whose support points are (τ1, . . . , τN+1).Differentiatingx(k)(τ ) andv(k)(τ ) inEq. (26)
gives

ẋ(k)(τ ) ≈ ˙̂x(k)(τ ) = ∑N+1
j=1 X(k)

j �̇ j (τ ),

v̇(k)(τ ) ≈ ˙̂v(k)(τ ) = ∑N+1
j=1 V(k)

j �̇ j (τ ).
(28)

Evaluating the functions ẋ(k)(τ ) and v̇(k)(τ ) at τ = τi gives

ẋ(k)(τi ) ≈ ˙̂x(k)(τi ) = ∑N+1
j=1 X(k)

j �̇ j (τi ) = ∑N+1
j=1 D(i, j)X

(k)
j ,

v̇(k)(τi ) ≈ ˙̂v(k)(τi ) = ∑N+1
j=1 V(k)

j �̇ j (τi ) = ∑N+1
j=1 D(i, j)V

(k)
j ,

(29)

where the coefficients D(i, j), (i = 1, . . . , N ; j = 1, . . . , N + 1) form the N ×
(N + 1) LGR differentiation matrix D. Next, the matrices X(k) ∈ R

(N+1)×nx and
V(k) ∈ R

(N+1)×nv correspond row-wise to the state approximations at (τ1, . . . , τN+1),
while the matrix U(k) ∈ R

N×nu corresponds row-wise to the approximations of the
control at (τ1, . . . , τN ). The LGR approximation of the state leads to the following
nonlinear programming problem (NLP) that approximates the optimal control problem
given in Eqs. (10)–(13). Minimize the objective function

J = M(X(1)
1 ,V(1)

1 ,X(K )
N+1,V

(K )
N+1, t0, t f ) + t f − t0

2

K∑

k=1

N∑

i=1

αkwiL(X(k)
i ,V(k)

i ,U(k)
i ),

(30)
subject to

D(i,:)X(k) − t f −t0
2 αkfx

(
X(k)

i ,V(k)
i

)
= 0,

D(i,:)V(k) − t f −t0
2 αkfv(X

(k)
i ,V(k)

i ,U(k)
i ) = 0, (k = 1, . . . , K ),

c(X(k)
i ,V(k)

i ,U(k)
i ) ≤ 0,

b(X(1)
1 ,V(1)

1 ,X(K )
N+1,V

(K )
N+1, t0, t f ) ≤ 0,(

X(k)
N+1,V

(k)
N+1

)
=

(
X(k+1)
1 ,V(k+1)

1

)
, (k = 1, . . . , K − 1),

(31)
where i ∈ (1, . . . , N ). It is noted in Eq. (30) that wi , (i = 1, . . . , N ) are the
LGR quadrature weights. Equations (30) and (31) will be referred to as the Legendre–
Gauss–Radau collocation method.

5 LGR Collocation and Lavrentiev Phenomenon

This section provides an overview of Lavrentiev phenomenon. First, Sect. 5.1 pro-
vides a discussion of the concept of Lavrentiev phenomenon and how Lavrentiev
phenomenon manifests itself when using LGR collocation. Next, Sect. 5.2 provides a
discussion of the Lavrentiev gap that arises when solving an optimal control problem
whose solution is nonsmooth using LGR collocation. Finally, Sect. 5.3 provides an
analysis of the search space using LGR collocation on an example optimal control
problem whose solution is nonsmooth.
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5.1 Lavrentiev Phenomenon

The LGR collocation method described in Sect. 4 is a finite element method
that approximates the optimal control problem described in Sect. 3 with a finite-
dimensional nonlinear programming problem (NLP). Reference [41] described cases
where the optimal solution of the finite-dimensional approximation produces a pseudo-
minimizer that differs from the true optimal solution. The behavior described in Ref.
[41] is called Lavrentiev phenomenon [40,41] and is important to understand and
address when solving an optimal control problem using LGR collocation. To gain an
understanding of Lavrentiev phenomenon, consider the classical least action calculus
of variations problem of the form

min J (x) =
∫ b

a
L(x(t), ẋ(t), t)dt subject to (x(a), x(b)) = (x0, x f ). (32)

Suppose now that A(a, b) and W(a, b) are, respectively, the space of absolutely
continuous functions and Lipschitz continuous functions on the interval t ∈ [a, b].
Furthermore, consider particular instances where the minimizer x∗(t) lies in A(a, b)

[41]. For such cases, the minimizer x∗(t) of J (x) has an unbounded derivative at
certain points [41], and these singularities may prevent the minimizer from satisfying
the classical first-order Euler–Lagrange necessary optimality conditions

∂L

∂x
− d

dt

∂L

∂ ẋ
= 0, (33)

where in general, the weak form of the Euler–Lagrange equations that is usually
satisfied.

Now, in general, it is not possible to solve a calculus of variations problem analyt-
ically. Consequently, the integral in Eq. (32) must be approximated numerically via
quadrature using a finite-element method, and this quadrature approximation leads to
a finite-dimensional nonlinear programming problem (NLP) that must be solved using
nonlinear optimization solvers [2,3]. As it turns out, when the minimizer x∗(t) lies in
A(a, b) collocation methods typically fail in computing both the correct minimizer
x∗(t) and the correct minimizing value of the integral I (x). To illustrate the failure
of the finite element method, consider the following problem [41] of minimizing over
A(0, 1) the integral

J (x) =
∫ 1

0
(x3(t) − t)2 ẋ6(t)dt, (x(0), x(+1)) = (0,+1), (34)

where x∗(t) = t1/3 ∈ A(0, 1) is the unique minimizer and I (x∗) = 0. This last fact,
namely that x∗(t) lies inA(0, 1), can be connected to the following result fromManiá
[45]:

inf
x∈W(0,1)

J (x) > inf
x∈A(0,1)

J (x) = 0. (35)
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Fig. 1 Minimizer x∗(t) = t1/3 of Eq. (36) alongside hp LGR (N = 4) collocation pseudo-minimizer x̄(t)

The property defined by Eq. (35) is called Lavrentiev phenomenon and shows that
the minimizer over A(0, 1) differs from the minimizer over W(0, 1). Thus, if the
minimizer is absolutely continuous, while the optimization search is performed over
the space of Lipschitz continuous functions, the result of the optimization will be a
pseudo-minimizer x̄ �= x∗ [41].

The preceding discussion leads into the fact that Lavrentiev phenomenon can cre-
ate misleading results when employing numerical optimization with a finite-element
method. To see the effect that Lavrentiev phenomenon can havewhen using a finite ele-
ment method, consider the following equivalent formulation of the problem in Eq. (34)
as the Lagrange optimal control problem

min J (x, u) =
∫ +1

0
(x3(t) − t)2u6(t)dt subject to

{
ẋ(t) = u(t),
(x(0), x(+1)) = (0, 1).

(36)
Figure 1 shows the exact solution x∗(t) alongside the solution obtained using the
multiple-interval LGR collocation method [9–13,19–22] described in Sect. 4 using
N = 4 LGR collocation points in each mesh interval and the NLP solver IPOPT
[3]. Similar to the result obtained in Ref. [41] using midpoint rule integration, Fig. 1
shows that the LGR approximation does not match the optimal solution x∗(t). In
fact, consistent with the discussion in Ref. [41], the LGR approximation converges to
pseudo-minimizer that differs from x∗(t). Over the years, the concept of Lavrentiev
phenomenon has been expanded beyond those that involve the space of absolutely con-
tinuous and Lipschitz continuous functions [48]. For instance, Guerra [31] examined
the space of a singular arc optimal control problem against the space of the optimal
control problem created when the singular problem is regularized.

The modification of the LGR collocation method described in Sect. 4 developed
in this paper is motivated by the preceding discussion of Lavrentiev phenomenon. In
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particular, it was shown in this section that it is essential to perform the optimization
over the appropriate search space. The method developed in this paper focuses on
identifying the correct search space when solving an optimal control problem whose
solution is nonsmooth. The remainder of this paper focuses on the aforementioned
modification of the LGR collocation method [9–13,19–22] described in Sect. 4.

5.2 Lavrentiev Gap

The main point of Sect. 5.1 is that the search space of the optimization problem affects
the solution obtained. If an incorrect search space is used, an incorrect solution may
be obtained and the corresponding objective may be either smaller or larger than the
optimal objective. The difference between the incorrect and correct search spaces
is called the Lavrentiev gap. If the incorrect search space is strictly larger than the
correct search space, then the Lavrentiev gap is said to be negative. On the other hand,
if the incorrect search space is strictly smaller than the correct search space, then the
Lavrentiev gap is said to be positive.

This research focuses on the solution of optimal control problems with nonsmooth
solutions. For such problems, it is desired to improve the accuracy in the numerical
solution by adjusting the mesh points to coincide with the locations of nonsmoothness
in the solution. In particular, if the mesh points are positioned at the exact locations of
nonsmoothness and the solution is smooth on the interior of each mesh interval, then
the numerical approximation of the optimal control problem would be smooth.

Typically, the locations of nonsmoothness in the solution of an optimal control
problem are not known a priori. One strategy for computing a numerical approximation
of the solution to the optimal control problem is introduce variables in the optimization
that correspond to the locations of nonsmoothness and then adjust the values of these
variables to improve the accuracy of the approximation. As shown in Sect. 5.3, the
idea of adding variables that correspond to the locations of nonsmoothness may lead
to an incorrect result because the search space may be larger than the correct search
space. In such a case, the Lavrentiev gap is negative and convergence to an objective
value smaller than the optimal value occurs. To close the gap, additional constraints
are required to reduce the size of the search space. In this paper, it is shown that adding
a new collocation constraint closes the Lavrentiev gap.

5.3 Analysis of Search Space Using LGR Collocation

To show the occurrence of Lavrentiev phenomenon [41,45] as described in Sect. 5.1
and the Lavrentiev gap as described in Sect. 5.2, in this section, the search space
associated with the LGR collocation method developed in Sect. 4 is analyzed using an
example whose solution contains a bang–bang optimal control. The results obtained
studying this bang-bang optimal control problem then sets the stage for the modified
LGR collocation method developed in Sect. 6.
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5.4 Motivating Example

Consider the following optimal control problem:

min t f subject to

⎧
⎪⎨

⎪⎩

(ẋ(t), v̇(t)) = t f

2
(v(t), u(t)) ,

u(t) ∈ (umin, umax) = (−1,+1),
(x(−1), x(+1), v(−1), v(+1)) = (x0, v0, x f , v f ) = (10, 0, 0, 0).

(37)
The optimal solution to the optimal control problem given in Eq. (37) is

(x∗(t), v∗(t), u∗(t)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
−x0

(t + 1)2

2
+ x0,−√

x0(t + 1),−1

)
, t ≤ ts,

(
+x0

(t − 1)2

2
,+√

x0(t − 1),+1

)
, t > ts,

(38)

where t∗s = 0 and t∗f = 2
√

x0 ≈ 6.32456. It is seen that the x∗(t) is piecewise
quadratic while u∗(t) is bang–bang with a single switch at t = t∗s = 0. Given that the
state is piecewise quadratic, it should be possible to obtain the exact solution to this
example using two intervals.

5.5 Two-Interval Reformulation of Example: Lavrentiev Gap

Consider now the following two-interval reformulation of the example given in Sect.
5.4:

min t f subject to

⎧
⎪⎨

⎪⎩

(
ẋ (k)(τ ), v̇(k)(τ )

) = t f

2
αk

(
v(k)(τ ), u(k)(τ )

)
,

u(k)(τ ) ∈ (umin, umax) = (−1, +1),
(x (1)(−1), x (2)(+1), v(1)(−1), v(2)(+1)) = (10, 0, 0, 0).

(k = 1, 2) (39)

where αk = (Tk − Tk−1)/2, (k = 1, 2) as given in Eq. (20) and T1 is a variable in the
problem formulation of Eq. (39) and represents the time at the boundary between the
twomesh intervals I1 and I2. Suppose now that the LGR collocationmethod is used to
approximate the two-interval optimal control problem of Eq. (39). Because the optimal
trajectory is piecewise quadratic and the LGR quadrature is exact for polynomials of
degree at most 2N − 2, it should be possible to obtain the exact solution using N = 2
collocation points in each subinterval with T1 included as an optimization variable.

Now define the approximate control as

û(k)(τ ) = 2

t f

1

αk

˙̂v(k)(τ ), (k = 1, 2), (40)
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Fig. 2 Control obtained for two-interval formulation of example given in Eq. (39)

where v̂(k)(τ ) is the N = 2 Lagrange polynomial approximation of the state v(k)(τ ).
Figure 2 shows the NLP control values U (k)

i , (i, k = 1, 2) obtained from solving
the NLP using N = 2 LGR points in each of the two mesh intervals alongside the
approximate control given in Eq. (40). It is seen that the approximate control bears little
resemblance to the known bang–bang structure of the optimal control. Next, the NLP
solver returns a value T1 ≈ −0.3 which is in significant error from the known optimal
value T ∗

1 = 0. Furthermore, in the second mesh interval, the approximate control
U (2)(τ ) exceeds the upper limit umax = +1 given in the continuous optimal control
problem of Eq. (37). Finally, the NLP objective is approximately 6.0 which is less than
the optimal objective 2

√
x0 ≈ 6.32456 of the continuous optimal control problem.

Consequently, including the variable T1 as part of the two-interval formulation results
in a misleading solution with regard to the control structure, the objective, and the
value of T1. As a result, the Lavrentiev gap in the formulation of Eq. (39) is positive
which implies that the search space is too large. The reason that the search space is too
large is because in the discrete problem the control constraint is imposed only at the
LGR collocation points (τ1, . . . , τN ). As a result, at the final point τN+1 = +1, the
approximate control given in Eq. (40) can violate the constraint as shown in Fig. 3.

6 Modified Legendre–Gauss–Radau Collocation

Using the results of Sect. 5, additional constraints are now augmented to the standard
collocation method presented in Sect. 4 in order to improve the approximation of the
location of the nonsmoothness in the solution to the optimal control problem (thereby
improving the accuracy of the solution itself). In particular, collocation constraints
are added at the end of each mesh interval, but such constraints are added to only
those differential equations that are a function of control. In this manner, and as stated
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Fig. 3 Possible approximate control functions for the two-interval LGR approximation given in Eq. (39)
of the continuous optimal control problem given in Eq. (37)

in Sect. 1, the approach developed in this research differs fundamentally from the
approaches developed in Refs. [34] and [39]. To simplify the following discussion, it
will be assumed that each mesh interval for any given state discretization contains the
same number of collocation points. Therefore, the differentiation matrix for any given
state approximation is identical in each mesh interval.

6.1 New Decision Variables

The modified LGRmethod introduces the following two new decision variables at the
end of each mesh interval Ik, k = (1, . . . , K ). The first new variables are the interior
mesh points Tk, (k = 1, . . . , K − 1). The second new variable is the approximation
of the control at the end of each mesh interval. The value of this control approximation
is denoted U(k)

N+1, (k = 1, . . . , K ). The portion of the decision vector associated with
the control in the modified LGR collocation method is then defined as

Ũ(k) =
[

U(k)

U(k)
N+1

]
.

It is important to note that U(k)
N+1 and U

(k+1)
1 correspond to the same time point Tk . In

other words, U(k)
N+1 and U

(k+1)
1 correspond to the control at T −

k and T +
k , respectively.

This last point highlights the fact that the control need not be continuous at a mesh
point. Reiterating, the two new variables in the modified LGR collocation method are
the time at the end of each mesh interval, Tk, (k = 1, . . . , K − 1), and the control at
the end of each mesh interval, U(k)

N+1, (k = 1, . . . , K − 1).
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6.2 New Constraints

Given that variables have been added at the end of every mesh interval as described in
Sect. 6.1, additional constraints must also be included in order to make the appropriate
modifications to the search space. In particular, collocation constraints are added at the
end of each mesh interval using those differential equations that are a function of the
control. To understandwhy these newcollocation constraints are included, consider the
second differential equation v̇(τ ) = t f

2 αku(τ ) in the two-interval formulation of the
example given in Eq. (39) of Sect. 5.5. Furthermore, suppose that v̂(τ ) is the Lagrange
polynomial approximation of v(τ) and is a polynomial of degree N in each of the
two mesh intervals of the problem formulation given in Sect. 5.4. Finally, suppose
that the constraint v̇(τ ) = t f

2 αku(τ ) is enforced at the N LGR points plus the final
point of every mesh interval. Because v̂(τ ) is a polynomial of degree N in each mesh
interval and the differential equation depends upon the control, it is possible to satisfy
the N + 1 conditions

˙̂v(k)(τi ) − αk
t f

2
U (k)

i = 0, (i = 1, . . . , N + 1; k = 1, 2) (41)

in eachmesh interval because the control is a variable in Eq. (41). In otherwords,U (k)
N+1

can be varied in order to satisfy Eq. (41) at the endpoint of the first interval. Moreover,
when adding this collocation condition, it is also necessary to add the constraint that
umin ≤ U (k)

N+1 ≤ umax in order to ensure that the control at the end of every mesh
interval satisfies the limits on the control.

The preceding argument leads to a modification of the LGR collocation method for
the case where the solution may be nonsmooth. A collocation condition similar to that
given in Eq. (41) is included along with a constraint that enforces all control bounds
at the end of the mesh interval. Adding a collocation condition at the end of a mesh
interval results in a modified LGR differentiation matrix of the form

D̃ =
[

D[
�̇1(τN+1), . . . , �̇N+1(τN+1)

]
]

∈ R
(N+1)×(N+1), (42)

where noted that D̃ is a matrix of size (N + 1) × (N + 1) and the last row of D̃ is
given as

D̃(N+1,1:N+1) = [
�̇1(τN+1), . . . , �̇N+1(τN+1)

] ∈ R
N+1. (43)

It is important to note that the matrix D̃ is used to collocate those differential equations
that depend upon the control. Furthermore, it is noted that the matrix D in Eq. (42)
is the standard LGR differentiation matrix as given in Sect. 4 [20–22]. Including the
new collocation constraint, Eq. (31) is replaced with

D(i,:)X(k) − αk
t f −t0
2 fx

(
X(k)

i ,V(k)
i

)
= 0, (i = 1, . . . , N ),

D̃(i,:)V(k) − αk
t f −t0
2 fv

(
X(k)

i ,V(k)
i , Ũ(k)

i

)
= 0, (i = 1, . . . , N + 1).

(44)
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Fig. 4 Admissible controls and optimal control for modified LGR collocation and comparison of optimal
objective, J∗ versus switch time T1 for standard and modified LGR collocation

Observe that consistent with the explanation provided earlier in this section, the first
constraint in Eq. (44) is not a function of control and, as a result, is identical to the
first constraint given in Eq. (31).

Additional constraints are added for the new αk decision variable. These additional
constraints are

αk > 0, (k = 1, . . . , K ) , (45)
K∑

k=1

αk − 1 = 0. (46)

These twoconstraints ensure that each elementαk , (k = 1, . . . , K ) , is always positive
and that the sum is equal to unity. The objective function given in Eq. (30), together
with the constraints in Eqs. (44)–(46), is referred to as the modified Legendre–Gauss–
Radau collocation method.

6.3 Search Space of Modified LGRMethod

The example of Sect. 5.4 is now revisited using the modified LGR collocation
method. Figure 4 exhibits the impact of the additional collocation constraint from
Eq. (44) has on the search space of the example problem. Figure 4a demonstrates
that each admissible set for control now falls between the allowable control limits
(umin, umax) = (−1,+1). Next to examine the effect that the modified LGR method
has on the solution of the NLP for the example in Sect. 5.4, Fig. 4b shows the objective
of the modified LGR NLP as a function of the switch time, T1, where it is assumed
that the switch time is fixed. At the optimal switch time T ∗

1 , the objective of both
the original and modified LGR methods is identical. Note, however, that when for
T1 < T ∗

1 , the optimal objective of the standard LGR method is smaller than the mod-
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Fig. 5 Optimal control for the example defined by Eq. (37) using the modified LGR method

ified LGR method. In fact, Fig. 4b shows that the optimal objective for the modified
LGR method occurs when T1 < T ∗

1 . This last result indicates that the modified LGR
method reduces the allowable search space such that the solution of the NLP leads to
a state approximation that is closer to the solution of the continuous optimal control
problem. Figure 5 shows the control solution obtained by solving for the control as a
function of time using the Lagrange polynomial approximation of the state obtained
using the modified LGR collocation method.

It is seen that not only does the control function lie within its allowable limits
(umin, umax) = (−1,+1), but the switch time obtained using the modified LGR col-
location method matches the switch time of the solution of the continuous optimal
control problem.

7 Transformed Adjoint System andWeierstrass–Erdmann Conditions

This section derives the adjoint system of the modified LGR collocation method based
on the optimal control problem given in Eqs. (10), (11), and (13). In order to sim-
plify the derivation, the state and control inequality path constraint given in Eq. (16)
is dropped. The first-order optimality conditions for the continuous optimal control
problem are given as

λ̇x = −∂L
∂x

− λx

[
∂fx
∂x

]T

− λv

[
∂fv
∂x

]T

, (47)

λ̇v = −∂L
∂v

− λx

[
∂fx
∂v

]T

− λv

[
∂fv
∂v

]T

, (48)
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0 = ∂L
∂u

+ λv

[
∂fv
∂u

]T

, (49)

λx (−1) = − ∂M
∂x(−1)

+ ψ

[
∂b

∂x(−1)

]T

, (50)

λv(−1) = − ∂M
∂v(−1)

+ ψ

[
∂b

∂v(−1)

]T

, (51)

λx (+1) = ∂M
∂x(+1)

− ψ

[
∂b

∂x(+1)

]T

, (52)

λv(+1) = ∂M
∂v(+1)

− ψ

[
∂b

∂v(+1)

]T

, (53)

whereλx (τ ) ∈ R
nx andλv(τ ) ∈ R

nv . The goal of this section is to derive the first-order
optimality conditions, also known as the Karush–Kuhn–Tucker (KKT) conditions,
of the modified LGR collocation method. Then, using these first-order optimality
conditions, a transformation is derived that relates the dual variables of the modified
LGR collocation method to the costates of the continuous optimal control problem.

7.1 Derivation of Transformed Adjoint System

The derivation of the transformed adjoint system for the modified LGR collocation
method proceeds as follows. First, the Lagrangian associated with the modified LGR
collocation constraints of Eq. (44) is given as

Ja = M(X(1)
1 ,V(1)

1 ,X(K )
N+1,V

(K )
N+1, t0, t f ) +

K∑

k=1

αk
t f − t0

2

N∑

i=1

wiL(X(k)
i ,V(k)

i ,U(k)
i )

−
K∑

k=1

N∑

i=1

〈
�(k)

xi
,D(i,1:N+1)X(k) − αk

t f − t0
2

fx (X
(k)
i ,V(k)

i )

〉

−
K∑

k=1

N+1∑

i=1

〈
�(k)

vi
, D̃(i,1:N+1)V(k) − αk

t f − t0
2

fv(X
(k)
i ,V(k)

i ,U(k)
i )

〉

− �bT (X(1)
1 ,V(1)

1 ,X(K )
N+1,V

(K )
N+1, t0, t f ) − β

(
K∑

k=1

αk − 1

)
,

(54)
where �

(k)
x ∈ R

N×nx , �(k)
v ∈ R

(N+1)×nv , � ∈ R
b, β ∈ R and 〈·, ·〉 denotes the

standard inner product between two vectors. Furthermore, �(k)
xi and �(k)

vi
denoted the

i th rows of �
(k)
x and �(k)

v , respectively. Rewriting Eq. (54) so that the final row of the
state matrix is separated from the first N rows gives
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Ja = M(X(1)
1 ,V(1)

1 ,X(K )
N+1,V

(K )
N+1, t0, t f ) +

K∑

k=1

αk
t f − t0

2

N∑

i=1

wiL(X(k)
i ,V(k)

i ,U(k)
i )

−
K∑

k=1

N∑

i=1

〈
�(k)

xi
,D(i,1:N+1)X

(k)
1:N + D(i,N+1)X

(k)
N+1 − αk

t f − t0
2

fx (X
(k)
i ,V(k)

i )

〉

−
K∑

k=1

N∑

i=1

〈
�(k)

vi
,D(i,1:N )V

(k)
1:N + D(i,N+1)V

(k)
N+1 − αk

t f − t0
2

fv(X
(k)
i ,V(k)

i ,U(k)
i )

〉

−
K∑

k=1

〈
�(k)

vN+1
, D̃(N+1,1:N )V

(k)
1:N + D̃(N+1,N+1)V

(k)
N+1

〉

+
K∑

k=1

〈
�(k)

vN+1
, αk

t f − t0
2

fv(X
(k)
N+1,V

(k)
N+1,U

(k)
N+1)

〉

− �bT (X(1)
1 ,V(1)

1 ,X(K )
N+1,V

(K )
N+1, t0, t f )

− β

(
K∑

k=1

αk − 1

)
,

(55)
Next, the following theorem is introduced that will allow the terms involving fv(X

(k)
N+1,

V(k)
N+1,U

(k)
N+1), and D̃(N+1,:) in Eq. (55) to be written as functions ofX(k)

1:N ,V
(k)
1:N ,U

(k)
1:N ,

and D(:,N+1).

Theorem 1 Let f (τ ) be a polynomial of degree at most N − 1 on the interval τ ∈
[−1, 1]. Furthermore, let (τ1, . . . , τN ) be the Legendre–Gauss–Radau points on the
interval [−1, 1) and let τN+1 = +1. Then, if � j (τ ) are the Lagrange polynomials
given in Eq. (27), it is the case that

∫ +1

−1
f (τ )�̇N+1(τ )dτ = f (+1). (56)

Proof From Eq. (27), the Lagrange polynomial �N+1(τ ) is given as

�N+1(τ ) =
N∏

l=1

τ − τl

τN+1 − τl
. (57)

Then, the left-hand side of Eq. (56) can be integrated by parts as

∫ +1

−1
f (τ )�̇N+1(τ )dτ = f (τ )�N+1(τ )

∣∣∣
+1

−1
−

∫ +1

−1
ḟ (τ )�N+1(τ )dτ. (58)

Because f (τ ) is a polynomial of degree at most N − 1, it follows that ḟ (τ ) is a
polynomial of degree at most N − 2. Furthermore, because �N+1(τ ) is a polynomial
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of at most degree N , then the integrand in Eq. (58) is at most degree 2N − 2 and the
integral can be evaluated exactly using LGR quadrature as

∫ +1

−1
ḟ (τ )�N+1(τ )dτ =

N∑

i=1

wi ḟ (τi )�N+1(τi ), (59)

wherewi is the i th LGRquadratureweight. Then, fromEq. (3), every term �N+1(τi ) =
0, (i �= N + 1) is zero which implies that

∫ +1

−1
f (τ )�̇N+1(τ )dτ = f (τ )�N+1(τ )

∣∣∣
+1

−1
(60)

Consequently, Eq. (58) reduces to

∫ +1

−1
f (τ )�̇N+1(τ )dτ = f (τ )�N+1(τ )

∣∣∣
+1

−1
= f (+1)�N+1(+1) − f (−1)�N+1(−1) = f (+1).

(61)
�

The result of Theorem 1 enables expressing the elements D̃(N+1, j), ( j = 1, . . . , N )

in Eq. (42) in terms of D(:,N+1) and D(:,1:N ). First, the N elements of D̃(N+1, j), ( j =
1, . . . , N ) are defined as

D̃(N+1, j) = �̇ j (+1), ( j = 1, . . . , N ) . (62)

Then, replacing f (τ ) in Eq. (56) with �̇ j (τ ), ( j = 1, . . . , N ), the quantities
D̃(N+1, j), ( j = 1, . . . , N ) are given as

D̃(N+1, j) =
∫ +1

−1
�̇ j (τ )�̇N+1(τ )dτ, ( j = 1, . . . , N ) . (63)

Because �̇ j (τ )�̇N+1(τ ) is a polynomial of degreemost 2N −2, Eq. (63) can be replaced
exactly with an LGR quadrature as

D̃(N+1, j) =
N∑

i=1

wi �̇ j (τi )�̇N+1(τi ), ( j = 1, . . . , N ) . (64)

Noting that D(i,N+1) = �̇N+1(τi ) and that D(i, j) = �̇ j (τi ), Eq. (64) can be written as

D̃(N+1, j) =
N∑

i=1

wiD(i, j)D(i,N+1) = DT
(:,N+1)WD(:, j), ( j = 1, . . . , N ), (65)

where W = diag(w1, . . . , wN ) is a diagonal matrix of LGR quadrature weights
(w1, . . . , wN ). The N quantities D̃(N+1,1:N ) given in Eq. (65) can be written in a
single equation as
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D̃(N+1,1:N ) = DT
(:,N+1)WD(:,1:N ). (66)

Now suppose that (X(k)
i ,V(k)

i ,U(k)
i ), (i = 1, . . . , N + 1) satisfy the constraints

given in Eq. (44). Then, in the case i = N + 1

αk
t f − t0

2
fv

(
X(k)

N+1,V
(k)
N+1,U

(k)
N+1

)
=

N+1∑

j=1

�̇ j (τN+1)V
(k)
j , (67)

where τN+1 = +1. Now, let f (τ ) in Theorem 1 be chosen as the vector function

F(τ ) =
N+1∑

j=1

�̇ j (τ )V(k)
J , (68)

where it is noted in Eq. (68) that F(τ ) is a polynomial of degree at most N − 1. Then,
the result Eq. (59) gives

F(+1) =
∫ +1

−1
�̇N+1(τ )F(τ )dτ =

N+1∑

j=1

� j (+1)V(k)
j . (69)

Next, LGR quadrature is exact for a polynomial of degree at most 2N −2 and because
(X(k)

i ,V(k)
i ,U(k)

i ), (i = 1, . . . , N + 1) satisfy the constraints in Eq. (44). Therefore,
the integral in Eq. (69) can be replaced with

∫ +1

−1
�̇N+1(τ )F(τ )dτ =

N∑

i=1

wi �̇N+1(τi )F(τi ), (70)

which implies that

N+1∑

j=1

� j (+1)V(k)
j =

N∑

i=1

wi �̇N+1(τi )F(τi ) = αk
t f − t0

2

N∑

i=1

wi �̇N+1(τi )fv
(
X(k)

i ,V(k)
i ,U(k)

i

)
.

(71)
Combining Eqs. (67) and (71) gives

fv
(
X(k)

N+1,V
(k)
N+1,U

(k)
N+1

)
= DT

(:,N+1)Wfv
(
X(k)
1:N ,V(k)

1:N ,U(k)
1:N

)
, (72)

where

fv(X
(k)
1:N ,V(k)

1:N ,U(k)
1:N ) ≡

⎡

⎢⎣
fv(X

(k)
1 ,V(k)

1 ,U(k)
1 )

...

fv(X
(k)
N ,V(k)

N ,U(k)
N )

⎤

⎥⎦ .
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Then, subsituting the identities given in Eqs. (66) and (72) into the Lagrangian of
Eq. (55) gives

Ja = M(X(1)
1 ,V(1)

1 ,X(K )
N+1,V

(K )
N+1, t0, t f ) +

K∑

k=1

αk
t f − t0

2

N∑

i=1

wiL(X(k)
i ,V(k)

i ,U(k)
i )

−
K∑

k=1

N∑

i=1

〈
�(k)

xi
,D(i,1:N )X

(k)
1:N + D(i,N+1)X

(k)
N+1 − α

(k)
i

t f − t0
2

fx (X
(k)
i ,V(k)

i )

〉

−
K∑

k=1

N∑

i=1

〈
�(k)

vi
,D(i,1:N )V

(k)
1:N − αk

t f − t0
2

fv(X
(k)
i ,V(k)

i ,U(k)
i )

〉

−
K∑

k=1

N∑

i=1

〈
�(k)

vi
,D(i,N+1)f (k)

vN+1

〉

−
K∑

k=1

〈
�(k)

vN+1
,DT

(:,N+1)WD(1:N ,:)V(k)
1:N + D̃(N+1,N+1)V

(k)
N+1

〉

+
K∑

k=1

〈
�vN+1 , α

(k)
i

t f − t0
2

(
DT

(:,N+1)Wfv(X
(k)
1:N ,V(k)

1:N ,U(k)
1:N )

)〉

− �bT (X(1)
1 ,V(1)

1 ,X(K )
N+1,V

(K )
N+1, t0, t f )

− β

(
K∑

k=1

αk − 1

)
.

(73)
Now, to simplify the derivations that follow, the following substitutions will be

made:
L(k)

i = L(X(k)
i ,V(k)

i ,U(k)
i ),

f (k)
xi = fx (X

(k)
i ,V(k)

i ),

f (k)
vi = fv(X

(k)
i ,V(k)

i ,U(k)
i ).

(74)

The KKT conditions are then derived by taking the partial derivatives Ja with respect
toX(k),V(k),U(k),�(k)

x ,�(k)
v ,�(k), t0, t f and αk and setting them equal to zero. These

derivatives are given as follows:

D(i,:)X(k) − αk
t f − t0

2
fx

(
X(k)

i ,V(k)
i

)
= 0, (i = 1, . . . , N ), (75)

D̃(i,:)V(k) − α(k) t f − t0
2

fv
(
X(k)

i ,V(k)
i , Ũ(k)

i

)
= 0, (k = 1, . . . , N + 1), (76)

b(X(1)
1 ,V(1)

1 ,X(K )
N+1,V

(K )
N+1, t0, t f ) = 0, (77)

K∑

k=1

αk − 1 = 0, (78)

DT
(i,:)�

(k)
x = αk

t f − t0
2
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∇X

(
wiL(k)

i +
〈
�(k)

xi
, f (k)

xi

〉
+

〈
�(k)

vi
+ �(k)

vN+1
D(i,N+1)wi , f (k)

vi

〉)

− δ1i (−∇XM + ∇X�bT ), (79)

DT
(:,N+1)�x = ∇XM − ∇X�bT , (80)

DT
(i,:)

(
�(k)

v1:N + �(k)
vN+1

D(i,N+1)wi

)
= αk

t f − t0
2

∇V

(
wiL(k)

i +
〈
�(k)

xi
, f (k)

xi

〉)

+ αk
t f − t0

2
∇V

(〈
�(k)

vi
+ �(k)

vN+1
D(i,N+1)wi , f (k)

vi

〉)

+ �
(k)
i − δ1i (−∇VM + ∇V�bT ), (81)

DT
(:,N+1)�v1:N + D̃(N+1,N+1)�

(K )
vN+1

= ∇VM − ∇V�bT , (82)

0 = αk
t f − t0

2
∇U

(
wiL(k)

i −
〈
�(k)

v1:N + �(k)
vN+1

D(i,N+1)wi , f (k)
v1:N

〉)
,

(k = 1, . . . , K ; i = 1, . . . , N ), (83)

0 =
K∑

k=1

−αk

2

N∑

i=1

wiL(k)
i +

N∑

i=1

〈
�(k)

xi
,
−αk

2
f (k)
xi

〉
+

N∑

i=1

〈
�(k)

vi
,
−αk

2
f (k)
vi

〉

+
〈
�(k)

vN+1
,
−αk

2

(
DT

N+1Wf (k)
)〉

+ ∇t0

(
M − �bT

)
, (84)

0 =
K∑

k=1

αk

2

N∑

i=1

wiL(k)
i +

N∑

i=1

〈
�(k)

xi
,
αk

2
f (k)
xi

〉
+

N∑

i=1

〈
�(k)

vi
,
αk

2
f (k)
vi

〉

+
〈
�(k)

vN+1
,
αk

2

(
DT

N+1Wf (k)
v

)〉
+ ∇t f

(
M − �bT

)
, (85)

0 = t f − t0
2

N∑

i=1

wiL(k)
i +

N∑

i=1

〈
�(k)

xi
,

t f − t0
2

f (k)
xi

〉
+

N∑

i=1

〈
�(k)

vi
,

t f − t0
2

f (k)
vi

〉

+
〈
�(k)

vN+1
,

t f − t0
2

(
DT

N+1Wf (k)
v

)〉
− β (k = 1, . . . , K ), (86)

where δi j is the Kronecker delta function defined as

δi j =
{
1, i = j

0, i �= j .
(87)

The KKT conditions given in equation (86) are unique to the modified LGR method
and is not required for an extremal solution of the standard LGR NLP transcription.
Now, consider the change of variables

λ(k)
xi

= �
(k)
xi

wi
, (88)

λ(k)
xN+1

= DT
(:,N+1)�

(K )
x1:N , (89)

ψ i = � i , (90)
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λ(k)
vi

= �(k)
vi

wi
+ �(k)

vN+1
D(i,N+1), (91)

λ(K )
vN+1

= DT
(:,N+1)�

(K )
v1:N + �vN+1D̃(N+1,N+1). (92)

Note that Eqs. (88)–(90) are the same transformations used for the standard LGR
method. Finally, define D† ∈ RN×N such that

D†
(1,1) = −D(1,1) − 1

w1
(93)

D†
(i, j) = −w j

wi
D( j,i) otherwise, (94)

for i = j = 1, 2, . . . , N . Note that D† is the same matrix derived by Refs. [20,21]
where it was shown that D† is the differentiation matrix for the space of polynomials
of degree at most N − 1. Now, the KKT conditions can be rewritten as

D†
i λ

(k)
x1:N = −αk

t f − t0
2

∇X

(〈
λ(k)

xi
, f (k)

xi

〉
+

〈
λ(k)

vi
, f (k)

vi

〉
+ L(k)

i

)

+ δ1i

w
(1)
1

(
−∇X

(
M − ψbT

)
− λ(1)

x1

)
, (95)

D†
i λ

(k)
v1:N = −αk

t f − t0
2

∇V

(〈
λ(k)

xi
, f (k)

xi

〉
+

〈
λ(k)

vi
, f (k)

vi

〉
+ L(k)

i

)

+ δ1i

w1

(
−∇V

(
M − ψbT

)
− λ(1)

v1

)
, (96)

0 = αk
t f − t0

2
∇U

(
L(k)

i −
〈
λ(k)

vi
, f (k)

vi

〉)
,

(i = 1, . . . , N , k = 1, . . . , K ), (97)

λ(K )
xN+1

= ∇X

(
M − ψbT

)
, (98)

λ(K )
vN+1

= ∇V

(
M − ψbT

)
, (99)

−∇t0

(
M − �bT

)
=

K∑

k=1

−αk

N∑

i=1

H (k)
i wi , (100)

−∇t f

(
M − �bT

)
=

K∑

k=1

αk

N∑

i=1

H (k)
i wi , (101)

where H (k)
i = L(k)

i +λ
(k)
xi f

(k)T

xi +λ
(k)
vi f

(k)T

vi is the approximation the Hamiltonian,H in
interval k. Equations (50)–(51) allow the terms in the second lines of Eqs. (95)–(96)
to vanish which results in Eqs. (95)–(101) becoming discrete representations of the
continuous time first-order optimality conditions from Eqs. (47)–(53).
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7.2 Weierstrass–Erdmann Conditions

If the optimal control is discontinuous, additional optimality conditions called the
Weierstrass–Erdmann conditions [29] must be satisfied. One of the Weierstrass–
Erdmann conditions states that the Hamiltonian must be continuous at the location
of a control discontinuity. The Hamiltonian for the optimal control problem can be
approximated as

H(k)(τ
(k)
i ) ≈ H (k)

i = Li + λ(k)
xi
f (k)T

xi
+ λ(k)

vi
fTvi

, (102)

where τ
(k)
i ∈ [Tk−1, Tk], i = 1, . . . , N and k = 1, . . . , K are the N LGR points in

the kth mesh interval. The Weierstrass–Erdmann condition on the Hamiltonian can be
written as [29]

H(T −
k ) = H(T +

k ), (103)

whereH(T −
k ) andH(T +

k ) are the left and right limits ofH at a point Tk of discontinuity
in the control.

The analysis that follows will demonstrate that the transformed adjoint system
of the modified LGR collocation method satisfies a discrete representation of the
Weierstrass–Erdmann condition given in Eq. (103). First, the transformations given
in Eqs. (88)–(92) together with the definition of the Hamiltonian given in Eq. (102),
Eq. (86) simplifies to

β = t f − t0
2

N∑

i=1

wi H (k)
i , (k = 1, . . . , K ) . (104)

where β is the Lagrange multiplier defined in Eq. (54) associated with the constraint
given in Eq. (46). Next, the right-hand side of Eq. (104) is the LGR quadrature approx-
imation to the integral of the Hamiltonian over the interval [Tk−1, Tk].

The costate mapping associated with the transformed adjoint system of the standard
LGR collocation method requires only that the Hamiltonian is constant within a mesh
interval, but does not require that the Hamiltonian be constant across the entire time
interval. On the other hand, the modified LGR collocation mesh ensures that the
Hamiltonian is constant across the entire time interval. The following section provides
an example that demonstrates the accuracy of the costate estimationmethod developed
in Sect. 7 and compares the results of the modified LGR collocation method with the
results obtained using the standard LGR collocation method.

7.3 Example of Costate Estimate

In this section, the costate estimate arising from the modified LGR collocation method
is demonstrated on the example problem given in Eq. (37) of Sect. 5.4. For compari-
son, the exact switch point was hard coded into the standard LGR method. The dual
variables returned by the NLP solver are shown in Fig. 6a and b. Figure 6a shows that
the dual variables returned for the ẋ approximation are exactly the same. Figure 6b
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Fig. 6 Dual variables 	x and 	v for the example problem using both the standard and modified LGR
collocation methods

Fig. 7 Costate estimates λx and λv for the example problem using both the standard and modified LGR
collocation methods

shows a difference in the dual variables associated with the approximation V̇ of v̇, with
the two dual variables of the modified LGRmethod located at the switch time (τ = 0)
arising from the additional collocation conditions associated with those differential
equations that are a function of the control.

Figure 7a and b shows the costate approximations obtained using the standard
LGR method and the modified LGR method. Both methods return the correct value
for λ(t). Note, however, that the estimate for λv(t) is not correct when the standard
LGR method is implemented with the switch time fixed at its exact value. The fact
that the approximation of λv(t) is incorrect when using the exact switch time in the
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Fig. 8 Hamiltonian for both the standard and modified LGR collocation method

standard LGR method implies that the location of the switch time computed by the
standard LGR method will also be incorrect.

Figure 8a and b demonstrates further the problem when using the standard LGR
method when the switch time fixed at its exact value. While the integral from −1 to
+1 in Fig. 8a is correct and each interval has a continuous and constant Hamiltonian,
the integral from −1 to T1 and from T1 to +1 is incorrect. The clear discontinuity in
the Hamiltonian from Fig. 8a shows that the Weierstrass–Erdmann conditions from
Eq. (103) are not satisfied by the standard LGRmethod. Furthermore, the discontinuity
in Fig. 8a is a result of the incorrect costate that is returned from the standard LGR
method as shown in Fig. 7. Figure 7b shows that the λv(T1) �= 0 for the standard
LGR method, so not only are the Weierstrass–Erdmann conditions not satisfied, but
neither are the standard necessary conditions for optimality. Finally, different from
the discontinuous Hamiltonian shown Fig. 8a, b shows that the Hamiltonian obtained
using the costate mapping developed in this paper is continuous.

8 Comparison with Methods of References [34–39]

In this section, the modified LGRmethod developed in this paper is compared against
the methods developed in Refs. [34–39]. In particular, Sect. 8.1 provides a comparison
of the method of this paper with the work of Ref. [34–38], while Sect. 8.2 provides a
comparison of the method of this paper with the work of Ref. [39].

8.1 Comparison with Method of Refs. [34–38]

Reference [34] presents a method that employs collocation at Legendre–Gauss (LG)
points. Specifically, the method of Ref. [34] divides the time interval into multiple
domains called super-elements where each super-element is a collocation of mesh
intervals. Then, a variable that defines the time point at the junction between two
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adjacent super-elements is introduced. The new variable is then treated as an additional
optimization parameter and is determined in the process of solving the NLP on the
given super-element mesh. The idea behind this approach is that the new variable
provides an estimate of the location of any nonsmoothness in the solution. Reference
[35] introduced an inequality constraint at the break point location which bounded the
value of each control at the break point. Moreover, in order to estimate the value of
the control at the breakpoint, the control was parameterized as a polynomial using the
information from the interior control points. Next, Refs. [36–38] utilizes LG and LGR
direct collocationmethods inwhat is called a nested direct transcriptionmethod. In this
nested collocation method, the optimal control problem is decomposed into an inner
NLP and an outer NLP. The inner NLP is a transcription of the continuous optimal
problem using either LG or LGR collocation with fixed mesh interval lengths. The
outer NLP problem determines the widths of the mesh interval and satisfies additional
optimality conditions (for example, the Weierstrass–Erdmann conditions or higher
order optimality conditions if the solution contains a singular arc).

Similar to the methods of Ref. [34] and [35], the method presented in this paper also
introduces a new variable that is designed to identify the location of nonsmoothness in
the solution. It is noted, however, that the method of this paper is fundamentally differ-
ent from the methods of Refs. [34] and [35] because the method of this paper not only
introduces a variable that defines the time at the junction between two adjacent mesh
intervals, but also introduces a new control variable at the end of a mesh interval. Next,
in the methods of Refs. [36–38], the control is parameterized as a function of time and
this parameterization is used to approximate the control at the end of each mesh inter-
val. On the other hand, in themethod of this paper theWeierstrass–Erdmann conditions
are satisfied implicitly without requiring that additional constraints be imposed.

8.2 Comparison with Method of Ref. [39]

Reference [39] presents a method that employs collocation at Legendre–Gauss–
Lobatto (LGL) points, where the LGL points include both the initial and terminal
point of a mesh interval. Then, in a manner similar to that of Ref. [34], the method
of Ref. [39] divides the time interval into segments, performs LGL collocation within
each segment, and introduces a variable that defines the location of a possible discon-
tinuity in the control. Similar to the method of Ref. [39], the modified LGRmethod of
this paper also collocates the dynamics at both the initial and terminal points of a mesh
interval. The approach of this paper, however, differs fundamentally in several aspects
from the method of Ref. [39]. In particular, in the method of Ref. [39], the collocation
point at the end of a mesh interval is one of the LGL quadrature points. On the other
hand, in the method of this paper the collocation point at the end of a mesh interval
is not a quadrature point. Next, in the method of Ref. [39] collocation is performed
on all of the differential equations. In the method of this paper, however, collocation
is performed at the end of a mesh interval only on those differential equations that
depend upon the control. Next, because the method of Ref. [39] employs collocation
at LGL points using a square and singular differentiation matrix, the method of Ref.
[39] is not a Gauss quadrature integrator. In the method of this paper, however, the
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matrix formed from the first Nk rows and columns 2, . . . , Nk + 1 of the matrix D̃ [see
Eq. (44)] can be inverted to produce the Legendre–Gauss–Radau integration matrix
[20]. As a result, similar to the standard LGR method [20], the method of this paper
is also a Gauss quadrature integrator [22]. Second, the singular differentiation matrix
employed in Ref. [39] leads to a transformed adjoint system that contains a nonzero
null space with an oscillatory behavior [22], and it was shown that this nonzero null
space leads to a costate estimate itself that may be inaccurate (see the example at the
end of Ref. [22]). On the other hand, as derived in Sect. 7, the method of this paper
leads to a transformed adjoint system that does not have a null space and produces an
accurate costate estimate when the solution is nonsmooth. Finally, it is shown in Sect.
7.2 that the method of this paper satisfies the Weierstrass–Erdmann conditions.

9 Conclusions

A new method has been developed for solving optimal control problems whose solu-
tions are nonsmooth. The standard LGR collocation method has been modified to
include two variables and two constraints at the end of a mesh interval. These new
variables are the time associated with the intersection of mesh intervals and the value
of the control at the end of the each mesh interval. The two additional constraints are
a collocation condition on each differential equation that is a function of control and
an inequality constraint on the control at the endpoint of each mesh interval. These
additional constraints modify the search space of the nonlinear programming problem
such that an accurate approximation to the location of the nonsmoothness is obtained.
A transformation of the Lagrange multipliers of the NLP to the costate of the optimal
control problem has then been developed and the resulting transformed adjoint system
of the modified Legendre–Gauss–Radau method has then been derived. Furthermore,
it has been shown that the costate estimate satisfies theWeierstrass–Erdmann optimal-
ity conditions. Also, an example has been used throughout the paper to motivate the
development of themethod. Finally, it has been discussed that themethod developed in
this paper may be applicable in a wide range of aerospace applications where solutions
may be nonsmooth including optimal spacecraft orbital transfer, aircraft performance
optimization, and hypersonic flight.
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