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Abstract

This work aims to investigate scattering resonances and the field amplification at resonant
frequencies for a subwavelength hole of width e embedded in a sound hard slab. We apply
the integral equation approach and asymptotic analysis to derive the asymptotic expansions
of scattering resonances and quantitatively analyze the corresponding field amplifications.
It is shown that the complex-valued scattering resonances attain imaginary parts of order
0(&?). The field enhancement inside the hole and in the far field is of order O(1 / €2) at the
resonant frequencies, which is much stronger the enhancement order in the two-dimensional
subwavelengt hole of the same width.

Keywords Scattering resonances - Subwavelength holes - Acoustic wave - Helmholtz
equation
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1 Introduction

Wave scattering by subwavelength apertures and holes has attracted a lot of attention in recent
years due to its important applications in biological and chemical sensing [8,9,14,15,27,28].
The so-called extraordinary optical transmission (EOT) through the holes provides a
label-free and highly sensitive manner to detect biomolecular events efficiently. The EOT
transmission anomaly is related to a variety of resonances of the underlying subwavelength
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structures. Significant progress has been made in the last several years on the quantitative anal-
ysis of the resonances as well as the induced enhanced transmission for the two-dimensional
structures. The readers are referred to [7,11,12,18-25,29] for the detailed investigation of
different resonant phenomena for several typical subwavelength structures. Other related
mathematical studies on the subwavelength resonant wave scattering and their applications
can be found in [2-5] and references therein. In this work, we consider the three-dimensional
problem and present quantitative analysis of scattering resonances for the acoustic wave
scattering by a subwavelength hole embedded in a sound hard slab. We also study the wave
field amplification when the frequency of the incident wave coincides with the real part of
the complex-valued resonances. It is shown that the enhancement order O(1 /82) is much
stronger than the enhancement in the two-dimensional hole, which attains an order of O (1/¢)
[20].

The hole is bore through a sound hard material slab, and its geometry is shown in Fig. 1.
The slab occupied the domain {(x.x2, x3) | 0 < x3 < L}, and the hole is a cuboid given
by C; := {(x1.x2,x3) | 0 < x1 <60 < x3 <¢,0 < x3 < L}. We consider the case
when the length and width ¢ of the hole is much smaller than the thickness of the slab and
the wavelength of the incident wave A, i.e., ¢ < L ~ A. Without loss of generality, in what
follows we scale the geometry of the problem by assuming that the slab thickness L = 1.
Let us denote the upper and lower aperture of the hole by I'™ and '~ respectively, and semi-
infinite domains Q% and Q™ above and below the slab respectively. The exterior domain is
givenby Q. = QT UQ™ UC,.

We consider the scattering when the plane wave u! is incident upon the structure, where
ul = *d&=x0) ig the incident field. Here (d;, da, —d3) is the incident direction with
ds > 0, k is the wave number, and xo = (0, 0, L). In the absence of hole, the total field in
the domain Q, consists of the incident field u’ and reflected field u” = ¢’ k(d (x=x0)) where
d' = (dy, da, d3), while the field in the domain Q~ is zero. In the presence of hole C;, the
total field u, in the upper domain Q% consists of u’, u” and the scattered field u} radiating
from I'". In the domain €2, u, only consists of the transmitted field through the lower
aperture I'". In addition, the Neumann boundary condition d,u, = 0 is imposed on 9€2,
for the sound hard material, where v is the unit outward normal pointing to €2.. Finally, the
scattered field u} satisfies the Sommerfeld radiation condition at the semi-infinite domains
[13]. In summary, the total field u, satisfies the following scattering problem:

Aug + Kup = 0, in S, (1.1)
oug

=0, ondy, (1.2)
ov
ue = ud4u' +u", inQF, (1.3)
ug = u), inQ°, (1.4)
. uy
lim r —iku, ) =0, r=|x| (1.5)
r—00 or

For all complex wavenumbers k with /mk > 0, it can be shown that the above scattering
problem has a unique solution. By analytic continuation, the resolvent R (k) := (A + k3!
of the scattering problem (1.1)—(1.5) can be extended to the whole complex plane except
at a countable number of poles. These poles are called the scattering resonances of the
scattering problem. In this paper, we prove the existence of scattering resonances, derive the
asymptotic expansions of those resonances, and present the quantitative analysis of the field
amplification at the resonant frequencies. By reformulating the scattering problem (1.1)—(1.5)
as the equivalent integral equation system, the resonances reduce to the characteristic values
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Fig. 1 a Geometry of the problem. The hole C; has a cuboid shape with height L and width . The domains
above and below the hard sound slab are denoted as Q1 and Q™ respectively and the exterior domain
Qe = QT UQ™ UC; is denoted by Q2. The upper and lower aperture of the hole are denoted by 't and '~
respectively. b, ¢ Vertical and horizontal cross section of the subwavelenth structure

of the certain integral operators. We apply the asymptotic analysis of the integral operators
and the simplified Gohberg-Sigal theory to obtain scattering resonances. It is shown that
the complex-valued scattering resonances attain imaginary parts of order O(¢2). We also
analyze the field amplification at resonant frequencies and show that the enhancement is of
order 0(1/82).

The rest of the paper is organized as follows. In Sect. 2, we reformulate the scattering
problem (1.1)—(1.5) by the boundary integral equation. Section 3 presents the asymptotic
expansions of the boundary integral operators. Section 4 is devoted to the asymptotic expan-
sion of the scattering resonances. The quantitative analysis of the field enhancement at the
resonant frequencies is given in Sects. 5, and 6 proves the invertibility of the integral operator
K used in the quantitative analysis of resonances.
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2 Boundary integral equation formulation

The scattering problem (1.1)—(1.5) can be formulated equivalently as a system of boundary-
integral equations. The development in this section is standard, see for instance [5,6,17]. Let
g%Ck; x,y) and gf3 (k; x, y) be the Green’s functions for the Helmholtz equations with the
Neumann boundary condition in Q%, Q™ and C, respectively. They satisfy the following
equations:

Agtksx, y) + kg5 (ki x, y) = 8(x —y), x,y € QF,

Mgy (ki x, y) + K2gkix, y) =8(x =), 2,y € Ce.

m =0fory3=1andy; =0, andm 0 on dCs.
The Green’s functlon in Q% is given by

In addition

1 eik\xfyl 1 eik\x/fy\

Chix,y) = —— & T
e I 2 Py
where

X =

/ (x1,x2,2 —x3) if x,y € QF,
(x1,x2, —x3) ifx,ye Q.

The interior Green function g; (x,y) in the hole C, with the Neumann boundary condition
is

ghkix. )= > Comt@ount ()bt (),

m,n, =0

= 1 — Xmnl muxy nmwxy
wherecmn;_kz_(mn/e)z_(m/e)z_(ln)z,qu,,l_ /=2t cos(—,) cos(=2) cos(Imx3) and

1 mnl € Z,
2mnl € 7>,
4 mnl € Z3,
8 mnl € Z4.

Amnl =

Intheabove Z) ={mnl |m=n=1=0}, Zy={mnl | m=n=0,l>1 or n=1[1=
Oom>1 or m=1=0,n>1},Zzs={mnl |m=0n=>1,1>1 or n=0,m >
1,l>1 or l:O,mzl,nz1}andZ4:{mnl|m21,n_Zl,lZ1}.

ou'  ou”
Using the second Green’s identity in Q7 and noting that 3 + 8u =0onx3 =1, we
v v
obtain
ue(x) :/ g%(x, y) dsy +u (x) +u'(x), x e Q. 2.1)
r+
By the continuity of single layer potential [17], we have
b eyl gy,
g (X) =/ - —— —fdsy +ul(x) +u'(x), xelT. (22)
r+ |x —y| dv
Similarly,
1 lklx vl A,
— N s, r—. 2.3
ue (x) /_ (27‘[)|x— 1y dsn X € (2.3)
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The solution inside the hole can be expressed as
; oug
Ug(x) = — ge(x,y)——dsy, x€C,.
r+ur- av
Taking the limit when x approaches the hole apertures I't and I'", there holds
ug(x) = —/ g(x, y) dsy, xeltur-. (2.4)
r+ur-

By imposing continuity of the solution along the hole apertures, we obtain the boundary
integral equations as follows

1 iklx—y| g
/ _(7)67£dsy+/ gg(x y) dsy—|—u(x)+u(x)—0 on F+
r+ 2 r+ur-

l[x —yl 9v
2.5)
1\ e =1 gy,
—— ) ————ds, + X, ds—OonF
/— <2n> v /mr & y) ’
It is clear that |r+ = 8” £(y1, y2, 1), %h«— Byz £(y1, v2,0), @ +u)|p+ =
2eik(dixi+dyxa)
We rescale the functions by introducing X1 = %, Xp = 2 and ¥y = 3, ¥> = 2, and

define the following quantities:

p1(Y) :=—

()=

FX) =0 +u")(eX, 1) = 2ekeX (ditd),
1 eikelx—Y]|
o X T

GL(X,Y) :=gl(k; eX1,eX2, 1;6Y1,eY2, 1) = gl(k; £ X1, X2,0; £Y1, Y2, 0)

G(X,Y)=—

oo

Crnnl®,

= Z Mcos(mﬂXl)cos(nan)cos(mnYl)cos(nnYz);
m,n,[=0 €

~is(x,y) =gl (k; eX1,eXa, 1; €Y1, 6Y2,0) = gl (k; eX1, X2, 0; €Yy, e¥a, 1)

o0
Cnnl®,
Z (—l)lMcos(mnXl)cos(nnxz) cos(mmYy)cos(nmYsr).
£

2
m,n, =0

Let Ry :=(0,1) x (0,1), X = (X1, Xp) and Y = (Yy, Y3). For X € R;, we define the
integral operators:

(Q°p)(X) =¢ /R G4(X, Y)p(Y)dY; (2.6)

(Qp)(X) = ¢ /R GL(X, Y)p(Y)dY; (2.7)
1

(Q'p)(X) =¢ /R GL(X, V)p(Y)dY. 2.8)
1

By the change of variables, the following proposition follows.
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Proposition 2.1 The system of integral equations (2.5) is equivalent to the system Q¢ = f,

in which
_[ee+0 ¢ _[er] _ ;‘]
Q_[ o Qe+Qi]’ "’_[wz] f_[o ' @9

3 Asymptotic expansion of the integral operators

First we introduce several notations below:

ick cotk
Bk, &) = ——— + ——,
ek
Bk, ) = ——,
plk.e) ek sink
1
KiX, V) =————,
1(X, ¥) 271£|X Yl
Ky)(X,Y) = Z cos(mnXl)cos(nan) cos(mmYy)cos(nmwYs),
m>0 n>0 TN m2
where j=1 for m=0 or n=0 and j=2 for m,n>1.
K(X,Y) =¢e(Ki(X,Y)+ K2(X, Y)). 3.D

The asymptotic expansions of the kernels G¢, G, Gi are presented in the following lemma.

Lemma3.1 If|ke| < 1and X,Y € Ry, then

G4(X,Y) ! ik +K1:(X,Y)
’ = T 5 v A K ’ ’
£ 2em|X — Y| 27 MF

; cotk
G (X,Y) = F_Kz(xv Y)+uk26(X,Y)
Gi(X,Y X, Y

(XY= 2 ksink koo X. 1),

where i1 o(X,Y) ~ O(k%e), k2.o(X,Y) ~ O(k%€), and oo (X, Y) ~ O(exp(—1/e)).

Proof The asymptotic expansion of GS(X, ) is straightforward from the Taylor expansion:

oikelX=Y|
GX, V)= ————
€ 2melX = Y|
1
=—— |1 +4ike|]X — Y|+ =(ke)*(X — Y)? ke)3
287T|X—Y||:+l8| |+2(8)( )"+ O(ke)
1 ik

- " iow
denlXx —v] an T O%E):

Recall that

; 1 o o
G, (X,Y) = ) Z Z Cnnl®mnl | cos(mm X1) cos(nm X7) cos(mm Y1) cos(nmY203.2)
1=0

m,n=0
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Let C,pn = Z?io Cmnl®mni, then using the formulas in [16], we have

> 1 cotk
Coolk) = Z (ln)2 Tk

> 4 2
; —mrfe? — (xR | K= (mje)?

2
———————coth (mm/e)? — k2)
et (v

Cino(k, &)

(mm/e)?

2¢e k23 P ke -1
mr mi3 md> )’ "=t
o0
4 2
Crolk, &) =
ok, &) ; = (nrje) — (x| K2 = (nm/e)?

= _(]T/j)ka coth (\/ (nT(/S)z - k2>
/(n —

2¢e kg3 kel
- +o0(—=). n=1L
nwr n3n3 nd

Form>1,n>1,

Conk,€) = i " + :
e — k* — (mm/e)? — (nm/e)* — (m)> ~ k* — (mm/e)* — (n7/e)?

4 i 2 N 1
p (mm/e)? + (nm/e)? + (n)2 — k% (mm/e)? + (nm/e)? — k2

—4
N T coth (\/ (m2 + n?)m?/e? — k2>
1

_ 1202 -2 _

4de k“e de 23

- 1+ - L 003,
avm? + n? v m? 4+ n? w/m? 4+ n?

Substituting these into (3.2),we obtain

i 1 cotk 5
G.(X,Y) = 8—27+K2(X,Y)+0(k g).

Similarly,

G;(X, Y)= giz Z (Z(_l)lcmnlamnl>

m,n=0 \[=0
cos(mm X1) cos(nm Xp) cos(mmYy) cos(nmwYs). 3.3)
Let émn = Z?io(_l)lcmnlamnl’ then
o0

- 2(=1)! 1 1
Coo=) — 2 + _—_
00 ; 2 m? T2 T sink

@ Springer



56  Page8of 25 Partial Differential Equations and Applications (2021) 2:56

sy 41 )
o= lgl: k* — (mm/e)? — (Im)* Tz (mm/e)?
2
Vom /o) = K sinh (Von/e)2 = 2)

& mi
0 (— exp(——)) L om>1.
mim I

L 41 2
o= ; 2= (nje) — (m)? 2= (amfe)?
2
\/msinh (\/(”77/5)—2—/(2)

o (% exp(—nn/s)) , n>1.

8(—1) 4
k2 — (mm/e)? — (nm/e)? — (Im)? + k2 — (mm/e)? — (nm/e)?
~ 4
JmZ + n)n2/e2 — k2 sinh (\/(m2 Fndn2/e? — k2> '

gz
N
[Nk

Substituting into (3.3), we obtain

GL(X,Y) = + O (exp(—1/¢)).

(k sin k)e?

Define the function spaces
Vi=H 2Ry = {u=Ulg, |U e H'2R) and suppU C Ry} and V, = HZ(R)),

where H 3 (R}) and H~Y/2(R) are the standard Sobolev spaces [1]. We define a projection
operator P : Vi — V5 such that

Po(X) = (¢, D1,

where 1 is a function defined on R; and is equal to one therein. We denote by K, Ko, Koo
the integral operators corresponding to the kernels « (X, Y), koo(X,Y) and eko(X, Y),
respectively,where « (X, Y) is defined in (3.1), koo (X, Y) is defined in Lemma 3.1, and
Koo (X, Y) = e(k1,(X,Y) +Kk2.(X,Y)).

Lemma 3.2 The operators Q° + 0' and Qi admit the decompositions
0°+0'=BP+K +Ko, and O' =P+ Kno.

Moreover,the operator K H’% (Ry)) — H% (Ry) is inverfible, Koo and 1200 are bounded
Sfrom Vi to V, with the operator norms | K| < €2 and | Koo || < exp(—1/¢) uniformly for
bounded k’s respectively.
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Proof By using the definition of operators in (2.6)—(2.8), and the decomposition in Lemma
3.1, we have

; ik
(0° + QHe(X) = 8/ [—;71 + Ki(X,Y) +x1(X,Y)

cotk
+ T KXY k(X Y) (Y.
= BPy+ Ko+ Koop.

The decomposition for éi follows by similar calculations. The proof of the invertibility of
K is postponed to Section 6. O

4 Asymptotic expansion of resonances

Note that the scattering problem (1.1)—(1.5) and the system (2.9) are equivalent. Thus the
resonances of the scattering problem, which are the set of complex-valued frequencies for
the homogeneous problem with zero incident field, are the characteristic frequencies k such
that Q(k) ¢ = 0 attains non-trivial solutions in (V2.

Lemma 4.1 Let Q1 = Q°+ Q'+ Q' and O = Q° + Q' — O, then
7(Q) =0(0+) Ua(Q-).

where o (Q), 0(Q+) and o (Q_) denote the sets of characteristic frequencies k of Q, Q4
and Q_, respectively.

Proof Decomposing function space (V)2 as (V1)? = Veyen ® Vodd» Where Veyen =
{lo+, U ¢+ € Vitand Vogg = {[o—, —¢_1T; ¢_ € V;} are invariant subspaces for Q.
Thus 0 (Q) = 0 (Qlv,e) Y 0(Qlv,y,)- By observing that

[Qe:iji o' '][GM]:[QMM]
Qo' 0°+ 0 ||e+ Oro+ |’
it follows that o (Q|v,,.,) = 0(Q+), and similarly o (Qlv,,,) = J(Q,). O
By the virtue of Lemma 3.2, we have
0r=0°+0'+ 0
=(BEPP+K + Koot Koo =t Ps+ Ly,

where P+ = (B+£ ,3~ JPand Ly = K+ Ky £ K ~o- Furthermore, the following lemma holds.

Lemma 4.2 L is invertible for sufficiently small ¢, and there holds

Ly =K+ Koo £ Koo,
L' = K71+ 0@,
(LI'L 1) =y + 0@, .1

where y = (K1, D r2ryy-
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We first solve

Q+¢p=(P++Li)p =0,

which is equivalent to

LI'Pip+¢=0. (4.2)

1 cotk ike
P = + Py

Note that

eksink ek 27w

_ 1 +cotk ike (. 1)1
~ \eksink ek 2 )\

it follows that

1 cotk ike

- — ) Ly e 1).
aksink+ ek 27r> + e )

LT'Pio = (

Substituting it into (4.2) and taking inner product with the constant function 1 yields

( 1 cotk ike

— — @M, 1) (e, 1 1) =0.
5ksink+ ek 271')< + Lo D)+ e 1)

We obtain the corresponding resonance condition

1 cotk ike 4
—— (L7 1, 1) =0.

0pk, ) =1
k) +(sksink+ ek 271

Similar calculations for the equation
O-9X)=(P-+L)pX)=0
yields the second resonance condition

1 n cotk ike
ek sink ek 2

0_(k, &) ::1+<— )(L:‘1,1>:0.

Lemma 4.3 The resonances of the scattering problem are the roots of the functions 0+ (k, ) =
0.

Theorem 4.4 The scattering resonances of (1.1) attain the following resonance expansions:

2
ky =nm + 2 e —inr? 4 03, n=1,2.3,... and ne <1,  (43)
y

where y = (K11, 1) is defined in Lemma 4.2.

Proof We solve for the roots of

0rtke) =1+~ (o + ) Y o 1y =0
PO e \ksink Tk ) T2 ) T

or equivalently

k sin k + k

1 cotk ike?
2w

prk,e) =eby = ¢+ [( - —] (y +rk,e) =0, rk e~ O0®K*e?).

@ Springer
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Let
1 cotk
ksin k + k-
The leading order term b(k) of 6, (k, &) attains roots kg = nm for odd integers n. To this
end, we consider the domain for some fixed number C > 0

bk) =

Ws,.6,,c =f{z |1zl =6}U{z: |z] <C,—(r —6,) <argz < (wm —6,)}, &>0.

To derive the leading order asymptotic term of k,,, define

. 2k
paa(k, &) =+ (b(k) — %) v. (4.4)

Then

+ o2
’ L&
priak,e) =¢e+ [b (ko) (k — ko) + O (k — ko)* — Eko] V. 4.5)
By a straightforward calculation, it is seen that b (ko) = —ﬁ. We see that p4 1 has simple
roots in W, ¢, c which are close to ko’s. By expanding the roots k, 1 of p4 | in terms of ¢,

we obtain

2
kny =nm + ﬂe —in’me? + 0(83).
Y

To prove that k,, 1 is the leading order term of the asymptotic expansion of k,, note that
Pk, &) = pratk.e) = (pra(k.e) = €%) - O(e).
One can find a constant M > 0 such that
Ip+(k, &) = pratk, o) < [pa(k, &)l

for all k such that |k — k11| = M 3. Hence we obtain the expansion (4.3) for odd integers
n by the Rouches’s theorem. By similar calculations for
1 cotk ike
— + - —
ek sink ek 2

9_(k,s):1+<— )(L:H,l):().

we obtain (4.3) for even n. O

5 Quantitative analysis of the field enhancement at the resonant
frequencies

5.1 Solution of the system (2.9)

Decompose the system Q@ = f as

Q‘peven = feven and @‘podd = fodd,

where ¢ = @eyen + @oqq and £ = foyen + foda, with

f f
P+ Y- 2 br3
= N = a]’]d f = 2 s f = 2¢ .
Peven |:(/3+ ] Podd |:_¢_ ] even |: % i| odd |: _2% j|

Springer
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f

, where Q. =0°+ Q' + 0.

Q@eyen = feven implies that

[err_Qi 0 .][m]:}
0 040 Jles]| &

which is equivalent to solving

1

N[~

Qrpr =6

Q@ oqq = foqa implies that

74 2o [ )-1[
o' Q¢+ 0! —¢p— el —5 ’

which is equivalent to solving Q_¢_ = ! %, where O_ = Q¢+ Qi — Qi. Recall that

[~

1 cotk ike?
2

pi(k,s):86’+=8+|:(:l: — + ——] (v +rk,e), rk &)~ 0®k*e?).
ksink k

Lemma 5.1 The following asymptotic expansion holds for the solutions ¢ and ¢_ in Vy:

(d1 + d2) (d1 + d2)

=K1
P+ < > >

O(k)> + pi [K_ll + O (ke) + O(ke)z] + 0(K%e),
+

where d = (dy, d», —d3) is the incident direction. In addition,

1 dy +d
7()/_{_(12 2)

(px, 1) = O (ke) + O(k8)2> . 5.1
P+

Proof Let us consider Q ¢, = ¢~ ! % By the same calculations in Section 4, we have

_ o f
Li'Prgy +o4 = L1 5, (5.2)
or equivalently,
P o f
BRLI gy, 1) + 94 = L' 5, (5.3)

where b(k) = é (ﬁ + %) — ’Zk—;f Thus by taking inner product with 1 on both sides of
(5.3), we get

(@ 1) +BRLIL, Dy, 1) = <L;‘2—’;, 1),
and it follows that
IRl E ) (5.4)

Note that

s é <1 + @0(1«;)) (K~'1+ 0ke)?).

@ Springer
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Substituting it into (5.4) yields

<y N (d1 + do)

5 O(ke) + 0(kg)2) i

1
<(/7+7 1) =
P+

By substituting the above into (5.3), we have

1,1 1 -6y S -1
= L, —+——F——(L  —,1)- L1, 5.5
Yy =€ + 5 (Ljrll, 1>9+< + g ) + (5.5)

where
L7 ' = K" 4 O(ke)?,
1 dy +d
i:,.l_i_MO(k) in Vo x V,.
2¢e & 2
Therefore,

epr = (1 + w . O(ks)) K"+ 0%

1—064 (di +dy)
+w+0ww%m[ T

O (ke) + O(ks)z} [K~'1 4+ O(ke)?]

_ ditd) ;d” Oke)K~ "1+ ei [K‘ll + i +d) ;‘b) O (ke) + O(ks)z] + O(ke)>.
+
or = K11 (@0(@) + pi [K*‘l + @0(1«;) + O(ks)z] + O(K%).
+

Similarly,

o- =K1 (“‘hzﬂoa@) + pi [K‘ll + @0(1@) + O(ke)z} + 0(k%e).

m}

Corollary 5.2 Let ¢ = [¢1, 9217 be the solution of the system Qg = f, then ¢ = [¢; +
o, o1 —@_1T, where i are defined in Lemma 5.1. Furthermore,

whnzmuwﬂnz(L+i)p+gﬁjﬁmmwom#]
P+ pP— 2
11 di +d
(2. 1) = (@ —p—, 1) = (— - —) [y LDt d) b O(ke)z] .
P+  DP- 2

Lemma5.3 Ifne < 1, then

patkoe) ="V 4 0, mwwz(gil$y+mw

2 ksink
and
cosk +1 in
prtee) = () y 4 0(), p-(ke) = — 2L+ 0(),
ksink 2

at the odd and even resonant frequencies k = Rek,, respectively.
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Proof Let us consider py (k, ). First assume that |k — Rek, | < ¢ with odd integers n. From
the definition of p | and its expansion, it follows that

pi(k, &) = piri(k, &) + O()
= pl (k) (k — kp) + Ok — ky)> + O(£3)
= yb' (ko) - (k — ky) + O (&%)

= Y (k — Rek, — ilmk,) + O(3).
2nmw

Since
Imk, = Imk, | + O(*) = —n®ine* + 0(?),

we obtain

s o2
ne
pilk,e) = —Ty + 0(e%).

To derive the expression for p_ (k, €) at k = Rek,, for odd n, recall that

2 ike? 2
p—(k,e) =p_1(k,e) + O(e") =¢+ (c(k) - ﬁ) y + O(e7).

c(k) = % — L is well defined for k = Rek,, hence

*.¢) cosk — 1 40

_(k,e) = ——F— €).

P ksink v

The calculations for p (k, €) at the even resonant frequencies follow similarly. O

Proposition 5.4 There hold @1, g2 ~ O(1/€?) in Vi, and (@1, 1), (p2, 1) ~ O(1/&) at the
even and odd resonant frequencies k = Rek,,.

5.2 Field enhancement in the hole

To investigate the field inside the hole, note that u, satisfies the following boundary value
problem

Aug +kPu; =0 in Cg,

ug

a—i‘; =0, on x;=0,x =e¢,
dug __ _ —
W_O’ on x3 =0,x =e&.
Then u.(x) can be expanded as

mimxi nimwxy
COS

us(x) = agpo cos(kxz) + bgo cos k(1 — x3) + Z (am,, cos exp (—kmnx3)

m,n>0
mixg niTxo
Cos

+byyy COS exp (—kmn (1 — X3))>, (5.6)

where k,;, = \/(an)z _ (%)2 — k2
Lemma 5.5 The following hold for the expansion coefficients in (5.6):

1 (dy + da)
~ ksink [ + 2

ano

O (ke) + O(ks)z] (i + i) ,
P+ P—
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1 d d 1 1
boo = — [y + DD ey + O(ks)z] (— - —) ,
ksink 2 P+ P—

ev/mlamol < C, ex/mlbyol <C for m>1,
ev/nlaon| < C, e/nlbosl <C for n>1
vm+nlag,| < C, mA+nlby,| <C for m,n>1,

where C is a positive constant independent of €, k, m and n.

Proof Taking the derivative of the expansion (5.6) with respect to x3 and evaluating at 't
gives

) mmx nITx
(x1, x2, 1) = —agok sin(k) + Z (—amn €xp (=kimn) 4 bin) kyn cos B ! cos B 2 s

m,n>0

ol

0x3

(5.7)

mmx nwx;
cos .

ou .
——5(x1, %2, 0) = book sin(k) + Y (—amn + byun exp (—kinn)) kimn cOs
3)63 m,n>0

(5.8)

Integrating over the hole apertures and using Corollary 5.2 leads to

1 [ 9
—agok sink 7/ e (1, xa, Ddxyday = —/ 01 (X)dx
82 r+ 8)(3 Ry

_ (L n L) <y 4 DED) ) 4 0(k8)2> :
P+ P- 2

1 oug
— —(x1, x2, 0)dx dxs = @2 (X)dx
82 - 8)(3 R

(L _ L) <y 4 DED) ey 4 0(k8)2> :
P+ P- 2

We obtain the desired formulas for agg and bgg. For coefficients a,,0, b0, taking inner product
of egs (5.7) and (5.8) with cos "%~ and integrating over aperture yields

book sin k

-2

amokmo = m

(e—kmO/ @1(X) cos (mﬂX)dX-i-/ @2(X) cos (mﬂX)dX>,
Ry Ry

bnokmo = ————
'm0OKm0O l _ efzkmo

( / @1(X) cos (mm X)dx + ¢ Fmo / ©2(X) cos (mnX)dx) .
Ry Ry
Note that k,,0 = 0(%) form > 1, and

1 1
leillv, < =, lle2llv, < =, llcos (ma X)|ly, < /m.
g2 g2

The estimate for a,,0 and b, follows. A parallel calculation can also be applied for ap, and
bon.
For coefficients a,,, by, taking inner product of (5.7) and (5.8) with cos @ cos
and integrating over the aperture yields
—4

nknn = (™ | 91(X) cosm X1) cos(nr X2)dxida
1 —_ e mn RI

nwx
&

4 / 02(X) cos(mm X1) cos(mer)dxldxg),
Ry
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—4
bunkmn = W</ @1(X) cos(mm X1) cos(nm Xp)dxy
[— ‘mn Rl
+e_k’"”/ <p2(X)cos(mnXl)cos(mer)dxldxg).
Ry
Since ky,, = O( #) and [lo1lly, < giz, loallv, < Eiz, the desired formulas for a,,,
and b,,,, follow. ]

Theorem 5.6 The wave field in the hole CI"' := {x € C, | x3 > &, 1 — x3 > &} is given by

) = (siz L) (1) . 0(1)> 2i cos(k(x3 — 1/2))

2 & nk sin(k/2)
W + O(exp(~1/¢%),
ue(x) = — (8% L ED, (é) + 0(1)> ey
%(k_/;)/z)) + O(exp(—1/€%))

at the odd and even resonant frequencies k = Rek,, respectively.

Proof From Lemma 5.5,

mixi nmwxy
Ccos

ug(x) = agpo cos(kxz) + boo cos k(1 — x3) + Z (amn cos exp (—kmnx3)

m,n>0

mmxy nTx;
cos

by cOs exp (—kmn (1 = x3)) ).
Fore « 1,
e () = [y L D) 6y 0(s>2] [(i + i) coskxs | (i - i) M]
2 p+ p—) ksink P+ D-— ksin k
+0(exp(—1/6%))
_» [)/ N (d1 + do) 0@ + 0(8)2] [L cos(k/2) cos Fk(m —1/2))
2 D+ ksink
1 sin (k/2) sin (k(x3 — 1 /2))]
p— ksink
+0(exp(—1/%)).
At the odd resonant frequencies k = Rek,, it follows from Lemma 5.3 that ﬁ = yiigz (1+
0O(¢)) and p% = %(1 + O(¢)). Therefore,
_ (di1 +dy) 2, [( 1 2icos(k(xs —1/2))
ue () = [1+ =220() + 06 (5 dntia) (0@
sin(k(x3 — 1/2)) 2
TR 0(5))] +exp(—1/¢2)
(1 | Wit+dy) 1 2i cos(k(xz — 1/2))
N (82 Ty 0T 0(1)) nk sin(k/2)
sin(k(x3 — 1/2)) 2
a2 + O(exp(—1/¢7)).
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Similarly, at the even resonant frequencies, pl—+ = %(14-0(8)) and p‘—_ = yiiﬁ 1+
O(¢g)). We obtain
1 di+d) 1 2i sin(k(x3 — 1/2))
=—|5+——0(-)+001
e () (82 + 2 (8) +om) nk cos(k/2)

cos(k(x3 — 1/2)) 2

— X+ 0 -1 .
ksinkjzy T O/

5.3 Scattering enhancement in the far field

Consider the domain Q‘*\Hl+ above the hole, where H1+ = {x]x — (0,0, 1) < 1}. Recall
that

d
ut(x) = /r+ g%(x, y)%dsy, xeQt,

and
17 X1 X2
7(x17x25 1) = _(p1(77 7)'
av e ¢
Therefore,
yr oy
ug (x) = —/ g (x, 1, y2. D@1 (—, =)dyidy>
r+ & &
1,1
= —52/ / g°(x, eY1, eYa, D1 (Y1, Y2)dY dY,.
0o Jo
Note that
go(x, eYy,eYa, 1) = g°(x, (0,0, D)(1 + O(e)), x € QT\H.
and

1 1 di+d
(1, Dp2g)y = (E + IT—> (7/ + (IZLZ)O(E) + 0(8)2> .

It follows that

1 1
U (x) = —°¢°(x, (0,0, D)(1 + O(e)) <— + —) (y D) o) 0(8>2> :
p+  D- 2
From Lemma 5.3,
1 2i 1 2i
— = (1+0()) and — = (14 0(e))
p+  yne? p-  yne?

when n is even and odd respectively. The corresponding scattered field is
2i 2i
up(x) = ——-g%x, (0,0, 1) + 0(e), ui(x) =——"-g°,(0,0,1)+ O(e).
n n

Similarly, the scattered field in the domain H| := {x|x — (0,0,0) < 1} is

ut (x) = —&2g%(x, (0,0,0))(1 + O(e)) (i - i) <y + MO(S) + 0(8)2> .
P+ P 2
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It follows that
R 2, . 2,
uy(x):—;g (xs (05 070)+0(8)7 MY(X):—;g (X, (0705 O)+0(8)a

at the odd and even resonant frequencies, respectively.

6 The invertibility of the operator K
Recall the integral operator
Ko(X) :/ k(X,Y)pX)dY, for Xe R ¢¢€ H’%(Rl). (6.1)
R

Where « (X, Y) is given by (3.1).

We consider the integral equation K¢ = f where f € H 2 (R1). We extend the argument
in [11] to show that K is invertible from H‘i(Rl) to Hé (Ry).

Let us consider the domain = €, U ;, where ., = R+, and €; = (0, D2 x R_
Let Q. = (0, 1)? x (0, €) be the bounded domain inside the hole with the upper and lower
boundary given by = 0, D? x {0} and fs = (0, 1)2 x {—e&}, respectively. Let ut(X) =
lim,— +o u(X + (,0,0)) for x € [, and uT(X) = lim;1ou(X + (#,0,0)) on X € [,.
[u];- represents the jump ut(X) —u—(X) for X e I". The solution of the integral equation
K¢ = f isrelated to the following transmission problem:

Au(X) = 0, in$,
M0 — o0 onaf [wCodsy = 0. Wl = fo0. |

8u(X)] -0
axz Ir

ou(X) .
u(X) — X3 dsx = o(1), X3 —> —o0 in $£;,
f X3

(A)

|A(u(X)—X3/: g(X)d Ol = o(l), X3 — —oco in O
T

u(X) — /BM(X)dsX = 0( ! ) |X| = o0 in Qe
”'X' r 90X3 X '

Aux) - X4 1 [0 o( L) x in
| M( ) 7+7‘[|X\2 f‘m Sx (|X|3) | |—>OO n e-

(A) can be reformulated in the bounded domain Qg. To this end, we introduce the Green’s
function for the exterior domain £2,:

AG(X,Y)=8(X —Y), in Qe,

3GeX) ) on 3%,

v
Ge(X. V) + 7z = O(gp). 1X] — o0,
|AxGe(X, Y)‘%ﬂz&p = O(ﬁ), 1X| — oo.
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The method of images shows that Ge(X, Y) = —ﬁ‘xlf),l — ﬁ‘x_liy"v where Y =

(Y1, Y2, —Y3). The Green’s function in fZ,- satisfies

AG(X,Y) = §(X —Y) inS,

G (X.Y) _ =
5y = 0, on an,

f Gi(X,Y)dsx =0,
r

Gi(X,Y) = o(l), |[AxGi(X,Y)| = o(1) as X3 — oo.
It can be shown that

Gi(X,Y) = Z ( —FVmnt X3+ s| o =3 Vmi et Xs—Ts)y
m=0,n>0 7TV m* +n?

.cos (mm X 1) cos (mmYy) cos (nmw X7) cos (nwYs),

where j=0 for m=0 or n=0 and j=1 for m,n>1.

We define two integral operators © : H_%(f‘) — H%(f‘) and O, : H‘%(f‘g) — H%(f‘g):
Op(X) = / Geo(X, V)p(Y)dsy,
r
0000 = [ GiX +(0.6.0. ¥ + 0.5, 0)p(V)dsy.
Le

Here ®, does notdependon e and ®,1(X) = ff Gi (X, Y)dsy. The bounded value problem
in Qg is formulated as follows:

Au(X) = 0, in Q,,
[u(X)dsX = 0,
r

(B) wX) _ 0, on X;={0,1}, X, ={0,1},

BEDE

ou(X) ~
O, (2 / dsy = u(X), I,
e X3 ) +e & 9X, SX u(X), on I

—0(% &) = u(X)+ f(X), onT.
As shown below, (A) and (B) are equivalent.
6.1 Equivalence of the well-posedness of (A) and the invertibility of K

Lemma 6.1 The following two statements are equivalent:

(1) K is invertible from H_% (f‘) — H% (f‘) ,
(2) For any function f € H%(l:), there exists a unique solution to (A).
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Proof If (1) holds, given f € H%(l:), let pr(X) € H_%(f‘) be a unique solution to
Kg¢(X) = f(x). Define u s in Q by

- / Go(X,Y)gs(Y)dsy, X €Q,,
r

up(X) = B ~
X / 07 (X)dsy + / Gi(X, Vg (N)dsy, X € .
r I

(6.2)

The function u s (X) is the solution to (A). To prove the uniqueness of the solution, let w s
be a solution to (A), with [w ] = f on r. Applying the Green’s formula in 2, we have

dw(Y)

wp(X) = —/ Ge(X,Y) dsy, X e Q.. (6.3)
' f aY3
- dw(Y) dw r(X) -
wrX) = | Gi(X, V) —L—dsy + X3 [ —L—dsx XeQ. (6.4)
P Y3 r 0X3

Taking trace of w s (X) on both sides of the boundary I forX = (X1, X2,0) € I", we obtain

dwy (Y, Y2,0)

dY,\dY:
oY 1dY2

1 rl
700 = [ [ (61001 X200 11, 12,00 + GulX1. X2, 0: 41,12, 0)
0 Jo

_ K[aﬂ]
X3

We infer from (1) that gLXf = ¢r(Y). By (6.3) and (6.4), it follows that u y = w in Q,
which proves the uniqueness of the solution to (A).

Assume that (2) holds. Then from the above, we see that the solution w7 to (A) satisfies
(6.3) and (6.4), and consequently

Ko=f (6.5)

has at least one solution ¢(Y) = 21;,; € H’% (I). For f =0, let ¢ be the corresponding

solution of (6.5) and construct a solution ug to (A) by (6.2). Hence by (2), up = 0 implies

©) = Baiv‘) = 0. Thus the solution to (6.5) is unique.

6.2 The equivalence of (A) and (B)

Lemma 6.2 (A) attains unique solution iff (B) has a unique solution.

Proof Let uy be the solution to (A). Applying the Green’s formula in Q = (0,12 x
(—e, —00), we obtain

- du f(Y) du s (Y) .
ur(X)= [ Gi(X+(0,¢0),Y + (0,¢,0)) dsy + X3 dsy, XeQ.
~s 8Y3 f‘ 8X3

(6.6)

Taking the trace of (6.3) and (6.4) on [ and f’g respectively yields

X) = —0" y(x) —um(x
f(X) = (@)( ) —up(X)

ou our(Y)
+ S f
uf( ) 63X3( ) E/T; 0X3 X

Thus u ¢ is also a solution to (B).
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Letu(X) be t[le solution to (B), using Green’s formula, (6.2) and (6.6), u can be extended
continuously to €2. We claim that such extension is unique. Assume that there are two solutions
u1 and uy of (A) that coincides in Q. Let w = u; — uy be the solution of the following
system

Aw(X) =0, in Q\Q,,

w0 — 0, 9%, U X1 = {0, 1}, X2 = {0, 1}} x (=&, —00),
w(X)=0, on I‘UFE,

w(X) = o(D) IVw(X)I—O(l) X3—> —00,

w(X) = 0(37), [Vw(X)|- 57 = O( |X| — oo.

\XP)

Let C;,lr be the upper half sphere of radius R and center (0, 0, 0) in Q.. let S;,lr = BS;,lr N ..
We multiply Aw by w(X) and integrate by parts over C IJg to obtain

X 1
/ |Vw|2dx:/ Vw(X) - —dsy = 0(—) as R — +oo.
fors st |X| R3

R R

Hence w(X) is constant in C7; therefore w(X) is constant on €2,. Since w(X) = 0 on . we
conclude that w(X) = 0 on Qe. Let P > ¢ be a positive constant. We multiply Aw(X) by
w(X) and integrating by parts over (0, D2 x (—e,—P) =Qp to acquire

/~ |Vw|2dx = f ox,w(X1, X2, —P)w(X1, X2, —P)dx1dxz = o(1), as P — oo.
Qp I'p

Thus w(X) is constant in €. Since w(X) = 0 on Iy, we deduce that w(X) = 0 on €2 which
proves the uniqueness. O

6.3 Well-possedness of (B)

Define the function spaces:
%%ﬁrzwwnurhﬁ:ﬁwamW=0L
mﬂhzﬂmmeﬂhﬁzﬁ¢me=m.

Lemma 6.3 The operator ® has a bounded inverse from H? (') to H™? (T). In addition, the
following inequality holds

Re({®p, )1 1) =0, Vg e H ().

2

=

Proof First we show that Re({O¢, <p)% 7%) > Oforany ¢ € H_%(l:).Assume(p € H_%(f“)
such that (G, (p)% 1 # 0. The function wy (X) := fl: Ge(X, Y)p(Y)dsy is a solution to

Awy(X) =0, in Q,

awgle) =0, on 9Q\T
QuelX) _ go(X) on T,
wy(X) = O () Wmané: Op).  I1X|— oo
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Let C;g be the upper half sphere of radius R and centered at (0, 0, 0) in Qe, and S;tlr =
aC ;'g N Qe. Multiplying Aw, with w, and integrating by parts over C ; yields

X
2 —] 0 J—
/C+ [Vwy|“dx = /;; Vg (X) |X|w¢(X)dsX + (O, (/J)%,_%

R
1
= (©¢.¢)1 _1 + o(ﬁ), R — +oo. 6.7)
Hence Re((®¢p, (p)%’f%) > 0. Since © : H_%(f‘) — H%(f‘) is a compact operator, to

1.
show invertibility it is sufficient to prove the injectivity of ®. Let ¢ € H, 2(I") such that
(B, go)% 1= 0 and by substituting it in (6.7), we see that w, (X) is constant in fZ . Since

wy(X) = (le) large | X, so wy(X) = O on Qe. By taking its normal derivative on I, we

conclude that ¢ = 0, which proves the claim and hence ® is injective in HO_ : (@I). O

_1 1
Lemma 6.4 The operator O, is invertible from H, *(T¢) to Hy (I'¢). In addition, the fol-
lowing inequality holds :

L
Re({©:0,9); 1) =0, Vo e Hy (I,
Proof Since @S is a compact operator, to prove the invertibility of the operator ®, :

Ho (FE) — H0 (I"¢) amounts to proving its injectivity. Recall that

G)g(p(X)zf Gi(Y +(0,¢,0), X + (0, &,0)g(Y)dsy :féi(Y, X)p(Y)dsy.
r

&

Define the single layer potential

u(X)=/~ Gi(Y,X)p(Y)dsy X € $4\TI,.

[

Let us define fll+ = (0, 1)> x R to be an extension of Q; to +-00. We then multiply Aii by
u and integrate over Qf and €; respectively to obtain

f IVu)?(X)dx =/ auﬁ+(X)u(X)dsX=—/ x, it (X)u(X)dsy.
o on P

/ |Vu|>dx :/ i+ (X)u(X)dsy :/8x3ﬁ_(X)u(X)dsx.
of A<y r
Combining these results, we get
f~ i |w|2dx:/~ (Ox31—(X) — Ox;i4 (X)) u(X)dsx.
QU r

Since
8X3"_‘—(X) - 8X,%”_‘+(X) =¢(X),
there holds

/Q |Vu|?dx = f Op0(X)@(X)dsx > 0.
i r
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If (©,¢, §) = 0, it follows that Vi = 0in €; and R3\S:2i respectively. Hence ¢ = 9,u_(X)—
duy(X)=0. O

To derive the variational formulation, we introduce the function space V = {w €
HY Q) / w(X)dsy = 0} for any test function w € V, we multiply it by (B) and
I
integrate by parts over €2 to obtain
ou(X ou(X
/ Vu(X)Vib(X)dx :/ 1) 5 (X)dsx —/ “(X)
ol r 90X3 r. 90X3

Ju(X)
X3

w(X)dsy. (6.8)

The integral |- T){))l

w(X)dsy in (6.8) can be understood as the dual product (w, 39X

|-
—2

Vw|p € H% (f’), (@‘l w)(X) is well defined in H_% (f‘). Since the Green’s function Ge is
symmetric, we can write (w, 35‘)(5)) . = (@(%), O~ lw) 1 Let u be the solution to

271 2
(B), then

wX)dsy = — | u(X)(O w)(X)dsx + [ u(X)(O " f)(X)dsx. (6.9)
r 0X3 r r

ag)((f) w(X)dsx in (6.8), we observe that the solution to (B) satisfies

@6(53—}?3)(X) + &(1, 337”3) =u(X)onI. Integrating over T, yields

For the integral [7

L _/ (X)d (6.10)
&( ’8X3>_ fgu X. .

Let#(w) = j [, wdsx, then

u(X ou(X 0
f g; )lZ}(X)dSXZ/ﬁS i )(lb—f(lb))dSX-f-l(ﬁ))(l,éX

T, 3 0X3

We deduce by the invertibility of @, : H -3 (') > H -2 (T',), and the symmetry that

ux) — [ o Vo1 — 1@ 5y, 2
/F X3 w(X))dsx—/ﬁg ®8<ax3)®€ (w t(w)dsx+t(w)(l,ax3),

= | (u—1w)O; W —1(w))dsx + ét(u)t(w). 6.11)
re

Therefore, by virtue of (6.8)-(6.11), we define the bilinear form a(u, w) and the functional
F (w) as follows:

a(u,w) :[ wvwdx—[u(@*luv)dsx
Qe

I
+ | - t(u))@;l(w —t(w))dsx + s_lt(u)t(ﬁ)), (6.12)
Te
and
F(w) = /~(®_1f)u_1dsx, (6.13)
I

so that (6.8) reduces to

a(u, w) = F(w).
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Theorem 6.5 (1) F(w) is a bounded linear functional from V to C. The bilinear form a(u, w)
is bounded and coercive on V x V : There exists constants C; > 0 and C > 0, such that

la(u, w) < Cillullilwl, Yu,weV,

Re(a(u,u)) > Collul?, VueV.
(2) Forany f € H% (D), there exists a unique solution to (B).

Proof First to show that F(w) is bounded from V to C. It follows from Lemma 6.3 that
o' H %(l:) — H _%(1:) is bounded operator. Since the operator on I" is continuous

operator from V to H 3 (f‘), F (w) is continuous linear form from V to C. The bilinear form
a(u, w) can easily seen to be bounded by using the trace theorem and the boundedness of
©; ! and ©. Finally, for a fixed u € V as

a(u, u) =/ |Vu2|dx+/: u(@‘lﬁ)dsx—i—/A (u — t(w)O; ' (@ — t(i))dsx + & e (u)|.
. P f.

The coercivity of the bilinear form is a direct result of Poincare-Friedrichs inequality. Finally,
from the Lax-Milgram theorem, (B) attains a unique solution u € H 3 (525). ]

Remark During the submission of the paper, the work [26] was brought to our attention,
which uses a Fourier mode matching method to obtain the resonances of a sound hard slab
with subwavelenth holes. The studies does not restrict the cross sectional shape of the hole.

Data availability Not applicable. No supporting data is used for the results reported in the article.
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