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ABSTRACT: Food trade connects distant places of food production to places of consumption. Through traded food, associated
environmental impacts are also displaced as the consumer benefits from the product without incurring the externalities of
production. Taking U.S. rice as an example, we discuss the sustainability implications of rewiring U.S. rice production and trade for
reducing the impacts of irrigation (water and energy) and transportation greenhouse gas (GHG) emissions. We model a series of
robust optimization scenarios that re-arrange the origin of trade and therefore the production to target virtual water use and GHG
emission reductions. For the baseline case, virtual water trade amounts to 35 billion m® and embodied irrigation and transportation
GHG emissions amount to 6 billion kg CO,-equivalent and 0.7 billion kg CO,-equivalent, respectively. Rewiring consistently
achieves better results compared to the baseline even in the presence of uncertainty. However, our findings reveal strikingly sobering
national-level savings in optimizing the water use (2%) and GHG emissions (14%) with tradeoffs in other impacts. To achieve these
results, all rice-producing states undergo changes, with the state of Mississippi completely stopping production. California’s unique
ability to produce medium-grain rice at a large scale makes it indispensable for current rice production and hence a major constraint
for rewiring rice production. The findings of this work reveal the inflexibility of our food system in balancing the food—energy—water
nexus tradeoffs through restructuring trade.

KEYWORDS: food—energy—water nexus, optimization, food trade, crop re-distribution

B INTRODUCTION how identical crops are produced in different locations.
However, trade is not structured solely based on the suitability
of regional crops but as a result of environmental factors,
demographics, market demand, and policies. Therefore,
depending on the origin of production, food trade can
decrease or increase environmental impacts and associated
risks.’

A growing body of literature has discussed indirect trade of
resources and environmental consequences of physical food
trade.’”” Studies have shown that global trade of food has
resulted in overall water savings'”'" with exporting countries

Trade liberalization has played a major role in avoiding the
Malthusian catastrophe of over-population and insufficient
food."”” Availability of food does not solely depend on a
region’s capacity for agricultural production but also on access
to food. A nation’s inability to reach food self-sufficiency either
due to local crop failure, increasing population, or limited
agriculture potential can be met through food trade or
assistance. At present, 66 countries rely on agriculture imports
as they do not have access to sufficient land and water
resources to produce adequate food.” Additionally, a
substantial population depends on food trade for access to

diverse and out-of-season items available at competitive prices. Received: February 3, 2021 Sustainable
Proponents of trade for food security argue that trade Revised:  June 16, 2021 =
provides an opportunity for nations to improve agricultural Published: July 7, 2021 ee

efficiencies by focusing on suitable regional crops while 17
importing others.* Additionally, diversity in agricultural
practices, resource endowment, and local policies can impact
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being water-efficient in agriculture, particularly with large-
quantity exports of soybeans driving the savings.'’ Similarly,
studies have assessed embodied impacts in trade to assess
land,"”"? biodiversity,'* and nutrients displaced through
trade®'*"'® with the goal of promoting discourse on internal-
izing the environmental cost of externalities. Such comparison
of relative impacts of agriculture through traded food has
highlighted the role of trade in alleviating or acerbating
resource depletion. However, national and international trade
is not designed with the specific purpose of reducing
environmental impacts and may not always be environmentally
sustainable.” For example, %lobal demand of commodities such
as palm oil,"” soy,18 coffee,’’ shrimps,20 and so forth and their
increasing agricultural expansion in specific regions have
resulted in loss of biodiversity. Similarly, studies have reported
supply risk associated with reliance on depleted groundwater
aquifers’** and ecological risk of fish extinction due to
overreliance on freshwater rivers for U.S. domestic trade and
exports.”

Taking a step beyond quantification, studies have also
investigated the possibility of re-distributing crops to maximize
benefits such as nutritional gains and climate resilience while
reducing resource demand and greenhouse gas (GHG)
emissions at regionalz‘*’25 and global levels.”® For instance,
Davis et al. recommend adopting a multi-dimensional
approach for agriculture in India that moves away from
growing high-output crops (rice, wheat, and sugar) and plant
coarse grain crops such as millet and sorghum to increase
synergies in agriculture benefits.”” Despite the benefits of
conscious crop re-distribution and arguments against mono-
culture centric agriculture, there are complex cultural and
socio-economic implications associated with changing the
agriculture landscape and consequently diet that would require
a bigger systemic overhaul and a longer timeframe for
implementation.””

We present an optimization-based approach to explore the
feasibility of re-distributing currently grown crops for reducing
environmental impact with U.S rice production as a case study.
Rice is a staple food to more than half of the global population
with significant cultural and economic importance.”® The
United States exports 45% of its total rice production and
ranks in the top five largest exporters.”” Additionally, U.S. rice
is completely irrigated, making an excellent case study to assess
(i) current food—energy—water (FEW) tradeoffs and synergies
existing between rice irrigation systems (ii) whether re-
structuring alleviates or exacerbates energy—water tradeoffs.
Here, we employ trade restructuring as a lever to identify the
crop re-distribution potential of regions. We refer to rewiring
or restructuring as altering the trade connections between two
regions by either reducing, forming new, or eliminating trade
links. Re-distribution refers to displacing a portion or entirety
of crop production from one place to another. We use U.S.
shipment data to create a domestic rice trade network
consisting of 6 major rice-producing states and 51 receiving
states. Combining the U.S. agriculture census data on
irrigation, energy prices, and life-cycle assessment (LCA)
methods, we create four distinct layered networks of (i)
physical rice trade, (i) irrigation water (referred to as virtual
water in this article), (iii) transportation GHG emissions
associated with shipment of food, and (iv) GHG emissions
embodied in irrigation (referred to as irrigation GHG
emissions). Finally, we use an optimization-based approach
to assess the extent to which irrigation water, transportation

9189

GHG emissions, and irrigation emissions can be reduced by
rewiring rice trade. The details of the layered networks,
underlying data, and optimization model are described next.
To capture uncertainty in our data calibration, in addition to
deterministic optimization models, we also implement a robust
optimization routine.*’

B DATA AND METHODS

Trade and Production Data. The U.S. food trade network
model was built leveraging existing freight shipment data from the
Freight Analysis Framework (FAF).”" FAF is jointly published by the
Bureau of Transportation Statistics (BTS) and U.S. Federal Highway
Administration and provides estimates for tonnage, value, mode of
transport, and distance of freight transported across the United States.
We use data for year 2012 in our analysis. The FAF shipment data are
provided for aggregated commodity groups represented by Standard
Classification of Transported Goods (SCTG) classes. This study used
commodity group of cereal grains (SCTG code 02) and applied
production data from the United States Department of Agriculture
(USDA) to disaggregate into raw grain rice shipments. For example, if
rice accounted for 97% of total grain production in Arkansas, then
97% of grains shipped from Arkansas were assumed to be rice
transfers. As approximately 30—40% of rice exports contain rough
grain rice, we included domestic shipments as well as shipments
intended for exports.”® For international shipments, FAF includes the
domestic origin—destination pair as well as their international
counterpart (e.g, for exports, the data include origin of the shipment
and the port of exit). However, since the analysis is limited to the
United States, only the domestic leg of the exports is analyzed. FAF
reports trade directly from farms as well as manufacturing/
distribution centers without making a distinction regarding place of
origin. For the optimization exercise, it is imperative to link the origin
of trade with the origin of crop production as we further optimize for
resource use and emissions. Therefore, we do not select trade of
milled grains (SCTG 06) to actively eliminate any distribution
centers/rice mills from the networks. However, for exports, we may
still inadvertently account for them as trade may be reported from
distribution centers to the point of destination. We hedge against this
by coupling production data with trade data for disaggregation and
ensure that the origin of trade aligns with rice-producing states. For
example, rice produced in California may travel to Pennsylvania
through Colorado. The challenge is to identify California as the origin
to accurately account for local water and energy use. By using
production-based disaggregation, we do not apportion any trade from
Colorado to Pennsylvania as raw grain rice trade. The drawback of
this method is that we do not trace the final point of consumption and
therefore we cannot trace the entire supply chain. However, we argue
that the analysis and discussion still remain relevant as often the
supply chain decisions regarding raw grains are on rice mills and large
food companies as opposed to the final consumer. Another
shortcoming of the FAF data set is related to their accounting of
farm-based shipments. These shipments are traced using 2002 BTS
vehicle inventory and use survey. It is likely that farm movements may
have changed within 10 years but are not reflected in FAF. Despite
the shortcomings, FAF remains the best available data on sub-national
trade.

Based on the 2012 survey data from USDA, there were six states
that accounted for 99% of the total U.S. rice production: Arkansas,
California, Louisiana, Missouri, Texas, and Mississippi. However, not
all states produce the same type of rice. To represent a more realistic
scenario for crop re-distribution, we differentiated between distinct
classes of rice grown across the United States, namely, long grain,
medium grain, and short grain. Due to favorable soil and climate
conditions, majority of medium grain rice is produced in California,
while the rest of the states mostly produce long-grain rice. Short grain
rice production is limited to California and to a smaller extent
Arkansas. Therefore, the trade rewiring occurs keeping in mind the
growing potential of each class in a specific state. Due to a lack of
class-specific demand data, the demand composition is kept consistent
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with the production composition of rice. All production-related data
are obtained from USDA’s agriculture survey. As FAF data were the
year-limiting data set at the time of conducting this study, all the
production, water, and energy data are for 2012 or the nearest year
available unless stated otherwise. In order to model the rice-associated
FEW nexus as an applied network optimization problem, we define
the set N as the nodes of the network, where each node i € N
represents a state. Let N, € N be the set of rice-producing states.
Then, the set A of directed links (i, j) between node pairs i and j
represents trade of rice between rice-producing states i € N, and the
other states, including self-loops for a state’s production sent to itself.
Each rice-producing state N, produces one or several types of rice,
designated k € K, where K is long-, medium-, and short-grain rice.

Virtual Water Transfers. Virtual water transfers were obtained by
combining physical trade data (i.e., tons of rice traded) with water
application intensities (m?/ton) for the type of rice in a specific
region. State- and crop-specific water applied per acre (m>/acre) was
obtained from the Farm and Ranch Irrigation Survey 2013.** The
water applied per acre was combined with yield data (ton/acre) to
arrive at water application intensities. The yields for specific rice type
(i.e., long, medium, and short grains) were obtained from the USDA.
To account for yield anomalies (i.e, 2012 drought in Texas) for
specific years, we selected a S year timeframe (2010—2014) to
minimize yield trend effects (e.g,, increase in yields due to technology
improvement) over time.>* The yield values were assumed to follow a
uniform distribution. Based on the minimum and maximum values of
yields, we simulated 10,000 samples to incorporate sensitivity analysis
in our estimates.

w = Z Cixz ti k

keK  jeN (1)
i€EN, jEN, k€K

Np = rice-producing states (6 states), N = exporting states (51 states),

K = set of rice types. w; = virtual water used in producing the

commodity at the origin state i in (m?). tjx = trade of commodity k

from origin state i to destination state j (U.S. ton). cj = water applied

per unit crop type (k) produced (m®/ton)

Transportation Emissions. The FAF data labels transportation
modes in six categories: truck, rail, water, air, multiple modes, and
mail, and other or unknown. Shipments tagged with the other and
unknown category were assigned a transportation mode following the
FAF mode reassignment method: if a shipment was greater than
80,000 pounds (40 tons), then it was assumed to be transported
through rail or else truck. Multiple modes and mail category may
include travel by a combination of truck—rail, truck—water, and rail—
water or though parcel delivery services, for any of which specific data
were not available.>* Additionally, depending on the type of
transportation mode, vehicle freight capacity, and any combination
of distance traveled by sgeciﬁc modes, the associated GHG emissions
could vary significantly.*>*® Considering that multiple mode shipment
routes carried less than 5% of tonnage for the six rice-producing states
(Figure S1), we replaced the category with the dominant shipment
mode for that route. The life-cycle GHG emissions associated with
each of the four type of modes considered are obtained from the
Ecoinvent’” database and listed in the Supporting Information.

— 8t
& = mics' 2o bk

kek

@)

g; = life-cycle transportation emissions in kg CO,-equivalent. m; =
mean distance from i to j as total ton miles per ton to get a weighted
average distance by tonnage. ¢ = GHG emissions associated with
shipping from i to j weighted based on transportation mode (kg CO,-
equivalent/ ton-mile)

Irrigation GHG Emissions. The irrigation GHG emissions were
derived from Vora et al.>*® and included GHG emissions associated
with on-farm irrigation pumping. The primary data source for
pumping energy expenses was the Farm and Ranch Irrigation Survey
(FRIS) 2013.”* Specifically, we use data from Table 12 from FRIS-
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2013 that details energy expenses for pumping by water source type
(surface water vs ground water) and type of energy (electricity, diesel,
gasoline, natural gas, LP gas, propane, and butane). These reported
expenses were converted into energy quantities by obtainin)g energy
prices from the U.S. Energy Information Administration.”” Energy
prices and the electricity grid mix are for year 2012. The pumping
energy expenses account for varying pumping requirements from both
groundwater and surface water sources and type of irrigation system
employed. Life-cycle GHG emissions were calculated based on the
IPCC 100 year global warming potential*® using Ecoinvent®” and the
U.S. Life Cycle Inventory Database.*' The irrigation GHG emissions
were combined with estimates of virtual water to arrive at embodied
GHG emissions.

g =, (3)
g; = embodied irrigation GHG emissions trade in kg CO,-equivalent.
® = embodied GHG emissions per unit water applied (kg CO,-
equivalent/ m?)

Deterministic Optimization Model. The optimization model
was formulated with linear programming techniques and implemented
in C++ using the IBM CPLEX concert technology solver.”” The
decision variables for the model encompass both production and
transportation decisions. Thus, we feed into the model quantity of
each type of rice produced as well as the amount shipped to/from
each state along the link (i, j). We explored four scenarios: (i)
minimize overall virtual water usage, (ii) minimize irrigation GHG
emissions, (iii) minimize transport emissions, and (iv) reduce all three
impacts simultaneously. We present three models to explore all four
scenarios.

In model 1, the overarching objective was to minimize virtual water
usage; we also defined input parameters o (for transport) and f
(irrigation), which represented the factor by which irrigation and
transportation GHGs were allowed to increase over their present
values or permitted to decrease. That is, let g8 be the initial amount of
total transportation GHG emissions produced by the system; then, we
constrain Z(i.j)e 48 < dgs for some factor a > 0. Similarly, let g8 be
the initial amount of total irrigation GHG emissions, and then we
constrain Y ey & < Pg8" for some factor f > 0. Through tuning of

values of a and f3, we explored the case of minimizing virtual water as
well as a case where we simultaneously reduced all impacts.

Model 2 describes minimizing irrigation GHG emissions and
model 3 describes transportation GHG emissions. The constraints
represented by eqs 4 and S remain consistent for all the models. The
constraint in eq 4 enforces that each state should continue to receive
the same amount of type of rice it receives. The constraint in eq 5
ensures that yields do not exceed the defined upper bound yields
(described in detail next).

min Z w; (model 1)

iENp

min z g, (model 2)

iENp

min Z & (model 3)

iEN,,jEN

subject to: 2 ti = di

i€N,

(4)
©)

Land Constraints and Potential Yields. There has been a
decrease in land allocated for rice production in recent years with the
national rice acreage declining by 20% in 2018 compared to 2010.*
Therefore, the model was constricted to only consider the current
acreage (year 2012) when re-distributing trade. Instead, we allowed
the yield values to increase up to its yield potential. The potential
yields, also known as yield ceilings, represent maximum achievable

UB
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Figure 1. Network-wide rewiring results for virtual water and embodied GHG emission estimates for scenarios: (i) baseline, (ii) optimizing virtual
water, (iii) embodied irrigation GHG emissions, (iv) embodied transportation GHG emissions, and (v) simultaneous reductions in all three
impacts. The solid bars in GHG emissions represent the contribution of transportation GHG emissions and the cross-hatched bar represents the
irrigation GHG emissions. Baseline represents status quo estimates of virtual water and embodied GHG emissions for the rice production.

yields for the given crop in a given location without constraints from
water, nutrients, pests, and diseases.** The data for potential yields for
rice were obtained from the global yield gap atlas.”> The potential
yields were calculated for 14 weather stations spanning six major rice-
producing states. Based on the modeled acreage, we scaled up data at
the state level. Due to diminishing economic returns on investment
for yields, farmers may not target achieving 100% of the yield
potential. Therefore, based on literature, we assume 85% of the
reported yield potential can be exploited and use it as our yield
ceiling.®® The exploitable yields are provided as the upper bound in eq
5. The potential yields are estimated without differentiating between
rice classes and represent values for the dominant rice systems in a
given region. A dominant system for a given state is determined based
on maximum acreage dedicated to a particular rice class (e.g,
California’s dominant system is medium-grain rice). To estimate yield
potentials for secondary systems (i.e., long-grain rice production in
CA), we assumed the same percentage increase in yield can be
achieved as the dominant system. For example, if current yields have
reached 70% of their yield potential for the dominant system, a similar
efficiency is assumed to be possible to achieve for the secondary
system. Table S1 shows exploitable yields for all states and rice types.
The yield values reported by the optimization model indicate a
minimum yield that would be required (on the existing land) to
support the desired level of production. The minimum yields were
based on the current yield data. Hence, it is possible that lower yields
could be reported by the model, but the interpretation is that, since
production would have decreased, a smaller yield would be required.
This is interpreted as decrease in the land usage.

Capturing Uncertainty through Robust Optimization. Any
systems-level analysis as well as the underlying data are subject to
uncertainties. We address this by using methods of robust
optimization in order to maintain the computational tractability of
optimi221ti0n.30’46 We assumed that c}f, c&*, c8" are unknown quantities,
but the bounds on their ranges could be established. We use Monte
Carlo simulations to account for uncertainty and propagation of
uncertainty in the model. For cjj, we combined uncertainty in yields
with water applied per unit land. We simulated 10,000 samples for
yields (long, medium, and short) assuming a uniform distribution to
arrive at 10,000 values of ¢ for each state. Here, we assumed water
applied per unit land to be constant. The uncertainty values for life-
cycle GHG emissions of transportation were obtained from the LCA
database ecoinvent®’ using SimaPro.*” We used the simulated 10,000
values for each mode and combined it with m;; to estimate bounds for
transportation emissions associated with a specific route. For
irrigation emissions, we followed a similar procedure as transportation
for estimating uncertainty. These values were propagated with energy
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pricing data and virtual water estimates to arrive at 10,000 simulated
values for embodied irrigation emissions from i to j. The average and
95% confidence bounds were estimated for each simulation.

For the robust optimization model, we follow the approach of
Bertsimas and Sim® and introduce a parameter I" that controls the
level of uncertainty a decision-maker is willing to tolerate—higher
values ensure that the optimal solution to the robust model will
remain feasible given increasingly worse-case realizations of the data.
Conversely, values of I' = 0 would imply that the decision-maker is
absolutely certain of the data, and the problem reduces to the
deterministic optimization discussed here. We use I' = (1, 10, 1, 0.05)
as being reasonably confident in data and I' = (4, 40, 4, 0.20) as a
higher guarantee of feasibility but less confident. There are 14 state-
rice-type combinations and approximately 10 times as many links
between them for trade. Therefore, I' = (1, 10, 1, 0.05) refers to
changing one state-rice-type combination for virtual water, 10 links for
associated transportation uncertainty, one state-rice-type for irrigation
emissions, and 0.05 for mileage range. Similarly, for I" = (4, 40, 4, and
0.20), we change four states, 40 links, and 0.20 for mileage range.
These number of parameters are changed to the top of their allowed
ranges (upper bound on the confidence interval). Depending on the
objective (i.e., minimizing virtual water), the robust optimization
selects the solution in a way that considers all possible worst-case
scenarios by changing I' number of parameters and still obtain a
feasible solution. The Supporting Information contains detailed
equations and derivations for the deterministic and robust
optimization models.

B RESULTS

Rewiring Rice Trade. Figure 1 represents network-wide
optimization results for virtual water and embodied GHG
emissions. The solid bars in GHG emissions represent
contribution of GHG emissions from rice shipment trans-
portation and the hatched bar represents irrigation GHG
emissions. For the baseline case, embodied irrigation GHG
emissions amount to 5.8 billion kg CO,-equivalent and
transportation GHG emissions 0.7 billion kg CO,-equivalent.
The higher contribution from irrigation emissions can be
attributed to the large quantities of irrigation water used in rice
production and associated GHG emissions resulting from
irrigation pumping. Scenario ii (optimizing virtual water)
results in modest reductions in virtual water (2%) compared to
the baseline case. Further, these reductions come at the
expense of increase in transportation-related GHG emissions
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Figure 2. State-level changes in (a) virtual water and (b) embodied emissions for scenarios: (i) baseline, (ii) optimizing virtual water, (iii)
optimizing irrigation GHG emissions, and (iv) simultaneous reductions compared to baseline state-level exports. The cross-hatched bars represent
emissions from irrigation and solid bars represent emissions from transport. AR = Arkansas, CA = California, LA = Louisiana, MS = Mississippi,

MO = Missouri, TX = Texas.

(26% increase), thus highlighting the tradeoff between water
consumption and GHG emissions. Irrigation-related emissions
remain unchanged and are an order of magnitude higher than
that of transportation, resulting in a 3% increase in net GHG
emissions.

Scenario (iii) (optimizing irrigation GHG emissions) results
in irrigation GHG emission reduction by 17% with 1%
reduction in virtual water and 7% increase in transportation-
related GHG emissions. Scenario (iv) (optimizing trans-
portation emissions) results in transportation GHG emission
reduction by 25% with no reduction in irrigation emissions and
half percent reduction in virtual water. Scenario (v) explores
maximum virtual water reduction while also simultaneously
reducing GHG emissions from transportation and irrigation.
The outcome of this strategy is 5% reduction in net GHG
emissions (both transportation and irrigation) with a
corresponding 1% reduction in virtual water. While the results
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show that there is potential for improvements with respect to
virtual water and GHG emissions, they also point to the
inflexibility of the U.S. rice production system due to
biophysical constraints and overall inability to cope with a
marked reduction in certain areas.

The present study focuses on GHG emissions from
transport and on-farm irrigation of rice. Other major sources
of emissions include GHG emissions from submerged rice
fields due to methanogenesis*® and post-harvest crop burning
to clear rice stubble.”” Specifically, GHG emissions from
methanogenesis are an order of magnitude greater than
irrigation-associated emissions estimated here. However, they
depend on many factors including soil characteristics, climate,
on-farm water management such as aeration, and continuous
flooding practices.”® These emissions can be managed with
better on-farm practices despite crop re-distribution and
therefore not considered in the study. Additionally, prior
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LCA work has found emissions due to irrigation being the
second largest contributor to total life-cycle GHG emissions
after direct methane emissions from paddy fields.”

Changes at the State Level. Next, we assess changes in
state-level rice production and impacts resulting from rewiring.
Figure 2 represents state-level changes in virtual water (2A)
and net GHG emissions (2B) under various scenarios. In
Figure 2B, the solid bars represent transportation emissions
and hatched bars represent irrigation emissions. For all
scenarios, the total number of trade links are reduced with a
corresponding increase in number of shipments carrying a
large volume, concentrating the trade. The states that increase
production do so by increasing the yield up to maximum
exploitable yield specified in the optimization model. This
strategy of both increasing yield up to a maximum physical
limit in some states while reducing production in other states
results in 12% reduction in total land use for optimizing the
virtual water scenario. The model results in land use decrease
by 11% for optimizing irrigation GHG emissions and 8% for
simultaneous reductions.

Across the modeled scenarios, California’s rice production is
reduced by 5% (optimizing GHG emissions)—14% (optimiz-
ing virtual water) with corresponding reductions of S—14% in
virtual water and 11—-21% in total GHG emissions. CA has the
highest water footprint (m*/ton) across all three rice types,
prompting the model to reduce production and shift it to states
with a comparatively lower water footprint. It is to be noted
that the model takes into account the suitability of rice
produced in each state when adjusting production and rewiring
trade links. For example, majority of medium- and short-grain
rice is produced in California. Therefore, despite high water
intensity for CA rice, the model does not shift large production
from CA to other states due to their inability to produce
medium-/short-grain rice at a competitive scale. On the other
hand, CA has the lowest irrigation emission intensity (kg CO,-
equivalent/m® water applied), prompting the model to not
penalize CA by slashing production at a large scale when
emissions are considered. The embodied irrigation GHG
emissions are a function of the energy type used in pumping.
According to 2013 FRIS data, 85% of the total pumps were
powered by electricity in California (with 60% grid generation
from natural gas in 2012). Electricity-based pumps combined
with gravity systems for irrigation results in lower GHG
emissions per cubic meter of water withdrawn. Figure S2
visualizes state-level changes in transfers by rice type for all
scenarios including transport.

When rewiring for minimizing virtual water, Texas increases
its production and associated virtual water and irrigation
impacts by 8%. For simultaneous reductions, Texas reduces
production and irrigation impacts by 26% and for optimizing
irrigation GHG emissions 98%. In all scenarios, individual
changes in impacts (water and irrigation GHG) follow
identical percent changes to the production. As seen from
Figure 2B, Texas has relatively large overall GHG emissions
(1.3 billion kg CO,-equivalent) compared to other states
despite not having a large virtual water footprint (2 billion m?).
This is primarily due to Texas’s high irrigation emission
intensity per m* of water applied (Table S2). However, more
than half of Texas’s pumping fuel mix is powered by natural gas
including pumps dependent on grid electricity. Natural gas has
one of the lowest life-cycle GHG emissions compared to other
fuels used for irrigation pumps. Over 90% of the acres irrigated
in Texas use ground water from wells as the only source of
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irrigation.”” Additionally, Texas had the largest number of
wells (46,948) across the considered states with a reported S-yr
decrease in well depth to water.”” Therefore, the large GHG
emissions intensity may reflect the situation of low ground-
water levels requiring greater depths for lifting water. Texas is
one of the interesting cases where FEW goals are in apparent
synergy with respect to virtual water use and use of irrigation
pumping fuel but in an attempt to reduce emissions due to
declining water depth, the model slashes production.

As Mississippi has the second largest water footprint after
California, the model manages to eliminate the production
completely to gain modest national water savings. In fact, in all
of the scenarios, Mississippi stops producing rice entirely, as it
also has the second largest irrigation emission intensity after
Texas. This is one of the most drastic results where the model
recommends completely stopping production in all scenarios
considered. One of the disadvantages of rice production
shifting is the inability to produce other crops/rotations in
place of rice. Rice can only be grown in soil with ability to
retain water, which makes it unsuitable for growing a host of
other crops. Mississippi is one of the few states that grows
other crops for rotation along with rice and therefore
demonstrates land suitability for alternative cropping.”
Currently, Mississippi farmers do not purchase irrigation
water and rely on groundwater from the underlying aquifer
system.29 Therefore, unlike other states, irrigation costs are not
prohibitive to continued production. However, declining
groundwater levels have prompted the state government to
stipulate farm level water conservation efforts and install
meters for the continued access to groundwater for irrigation.

Arkansas is the only state that increases production in all
scenarios ranging from 12% for simultaneous reductions to
23% for optimizing virtual water. Accordingly, similar %
changes are observed in both virtual water and irrigation GHG
emissions. Arkansas has the lowest water footprint among all
states and the second lowest irrigation GHG emission
intensity. Additionally, it has the ability to produce all three
types of rice, although not at the scale of California. Therefore,
the model maximizes on benefits by increasing production.
Currently, Arkansas farmers do not purchase water and
primarily rely on groundwater for irrigation.”” However,
declining groundwater levels could make future expansion
expensive. From the irrigation GHG emission perspective,
Arkansas primarily relies on electricity and diesel-based pumps,
with grid electricity primarily consisting of coal (44%), natural
gas (26%), and nuclear (24%). Thus, there is room for
improvement in switching away from diesel-based pumps and
reducing emissions. State-level optimization results observed
for Missouri and Louisiana are a result of a combination of
high emission intensities and model’s adjustments for inability
to reduce California’s water-intensive rice production.

Rewiring for Optimizing Transportation Emissions.
While the GHG emissions from transportation are an order of
magnitude less than irrigation GHG emissions, they are direct
emissions compared to the latter being a second-order impact
in the food supply chain.’’ As such, they could be used as a
separate and more apparent lever in managing GHG emissions
related to food trade. In this case, reducing transportation
emissions does not result in a marked change in either
irrigation GHG emissions or virtual water (Figure 1).
However, in optimizing the other two, transportation
emissions increase by 26% in optimizing for virtual water
scenario and 7% in irrigation GHG emissions scenario. This
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Optimizing virtual water

Optimoizing transportation GHG
emissions

Figure 3. Rewiring resulting from baseline, optimizing virtual water, and transportation GHG emissions. The figures portray embodied GHG
emissions for rice transportation. The size of each segment representing a state inside the diagram is based on the relative contribution to embodied
GHG emissions for that network. The similar colored segments and links represent export links and different colored links represent imports. The

size of the segment represents the total incoming and outgoing links.

occurs due to states transitioning from within-state flows (i.e.,
local transportation) to sourcing from states with lower water
and irrigation GHG emission intensities. In the virtual water
scenario, Arkansas and Missouri increase their rice production
and supply it to other states, reducing other state’s own within-
state flows.

In Figure 3, we compare transportation emissions from the
baseline scenario with emissions from virtual water reduction
(largest transportation emissions amongst all cases considered)
and with the scenario of minimizing transportation emissions.
The size of each segment representing a state is based on
relative contribution to transportation GHG emissions.
Compared to the baseline, both scenarios have fewer but
larger links. For example, in the baseline scenario, Texas
imports rice from four other states (Louisiana, Arkansas,
Missouri, and California) and has a within-state flow. For
virtual water and transportation emissions scenario, Texas
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reduces its number of import partners and satisfies the same
demand with comparatively larger flow from Arkansas and a
larger within-state flow (the California supply remains
consistent due to specific rice type demand). For optimizing
transportation emissions, the model manages to satisfy a
majority of demand though directing within-state flows as seen
from larger self-loops for Louisiana, California, and Arkansas.
Optimizing transportation is the only case where production
from Mississippi is not significantly reduced. However, the
rewiring routes all the flows from Mississippi to within-itself to
partially satisfy demand and the rest is sourced from Louisiana.

Generally, rice mills are located in or nearby states with rice
production,52 contributing to large within-state demands for
coarse grain rice. The United States also exports raw grain rice
directly to international destinations;”’ therefore, some of the
flow actually goes to international shipping hubs. For rice
trade, the largest mode of shipment carrying significant
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Figure 4. Comparison of virtual water savings from achieving maximum exploitable yields for all rice types in each state.

tonnage is trucks, followed by rail and water-based shipments
(Figure S1). Water-based shipping has the lowest life-cycle
GHG emissions followed by rail and truck. Specifically,
Louisiana and Mississippi have on average higher water-
based shipments, reducing their transportation emission
intensity, while California, Texas, and Arkansas ship signifi-
cantly through trucks. A clear alternative is to move away from
truck-based shipments, specifically for longer distances travel
where rail or multiple-mode transportation might be available.
However, previous studies have discussed the limited
opportunities for shifting modes to reduce emissions and
have called for the more aggressive penetration of zero
emission vehicles.>®

Relaxing the Rice-Type Constraint on the Rewiring
Scheme. A priori, we find that we do not obtain significant
reduction for virtual water in the network through
optimization. The biophysical constraints for rice type impose
very stringent requirements on the rewiring scheme. As a
theoretical exercise, we remove the constraint for rice type and
assume all types can be grown in the production states
analyzed in our work. The findings reveal reduction in virtual
water up to 5% from the baseline scenario. The modest results
despite relaxation of the rice type constraint are not surprising
and corroborate previous findings.”*

Robust Optimization. Figures S3 and S4 in the
Supporting Information show solutions for robust optimiza-
tion. For robust modeling, we minimized virtual water subject
to emission constraints (controlled through a and f§) that were
Pareto optimal. As embodied irrigation emissions are derived
from virtual water values, we focused on virtual water alone as
the irrigation emissions would follow a similar trend. However,
to prevent from getting a suboptimal solution than the
baseline, we constrained the model to not increase irrigation
emissions compared to the status quo.

In minimizing virtual water, we increase transportation
emissions by 22—25% with no changes in irrigation emissions.
For the next strategy, we attempted to minimize water while
asking the model to minimize transportation GHG emissions
as much as possible. As a result, the model managed to reduce
transportation emissions by 25-28% but provided minor
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reductions in water use (0.09—0.36%). Finally, we imple-
mented a simultaneous reduction strategy where virtual water
was reduced by 0.8—1.2%, irrigation GHG emissions by 5—6%,
and transportation emissions by 6—8%. In examining results
for both deterministic and robust optimization, the models
managed to achieve reductions in GHG emissions but yielded
only a marginal reduction in virtual water. Rice fields need to
be flooded up to a certain level, which drives up water use as
well as energy requirements.”” However, there is a limit to
implementing on-farm water conservation strategies as crop
water requirements have to be met. Conversely, large-scale
energy decisions are easier to implement including investment
in renewable energy transitions.

Closing the Yield Gap. Apart from implementing on-farm
best management practices through improvements in water use
and irrigation efficiencies, focusing on improving yields™* is
another strategy for sustainable agriculture. As such, we explore
an alternative to rewiring for reducing virtual water and GHG
emission impacts: namely, targeting maximum exploitable
yields to achieve resource savings. Here, we make an important
assumption that exploitable yields are not water-limited and
therefore no additional water is applied to increase the yield.
We justify this assumption as for all states and rice types, at
least 70—75% of exploitable yields have already been achieved.
We assume the small yield gap can be closed with the help of
proper nutrient and agriculture management practices.55
Figure 4 compares baseline virtual water use for exports with
yield intensification values. Our estimate suggests that by
reaching maximum exploitable yields, production increases by
7%. The resulting network-level water savings are 15% with
corresponding similar percentage reductions in irrigation GHG
emissions. The reduction for virtual water is significantly larger
than all the optimization scenarios considered here. Although
rewiring for optimizing irrigation GHG emissions results in a
larger reduction in irrigation GHG emissions, it also increases
transport emissions. Since there is no rewiring for yield
intensification, transport emissions remain the same.

Discussion and Conclusions. Sustainable intensification
of agriculture involves increasing yields while minimizing
environmental impacts. In this study, we explore the potential
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of selective sustainable intensification where we recommend
intensifying systems that are efficient at producing a crop with
respect to water and energy and shifting away production from
more resource-intensive locations. This strategy recommends
growing more with current resources by penalizing locations
that are using excessive resources. We compare these results to
a yield intensification strategy by keeping all other agricultural
inputs unchanged. For producing rice in the United States, this
appears to be a better strategy than re-distributing production
as it yields large network-level savings for virtual water and
irrigation GHG emissions. However, the utility of widespread
intensification is case-specific as other studies have reported a
large increase in water and fertilizer use.”® The optimization
scenarios we explore for singular objectives (i.e., optimizing for
virtual water, irrigation, and transport emissions) represent
extreme cases. While network-level savings are modest for all
analyzed scenarios, the rewiring results in drastic changes at the
state level. This also poses a question on the usefulness of
assessing national savings for virtual resource studies as water
use and emissions resulting from inefficient water and
irrigation systems have a larger impact on the local environ-
ment.

While there are no national estimates published on the
proportion of rice irrigated through surface water or ground
water, based on total acreage under each source, we can
estimate that majority of rice in Arkansas, Mississippi, Texas,
Louisiana, and Missouri is irrigated using groundwater and
California’s from surface water, although there may be
exceptions at county or farm level. If economics of irrigation
are considered, then, the states such as Missouri that use
groundwater would benefit over states such as California that
purchase irrigation water at a significant price.29

Although there is increased attention to issues associated
with overdrawing groundwater, penalizing a state for using
more groundwater may not work as the hydrology between the
surface and groundwater is complex and connected, and
overuse of one may pose a deleterious effect on another. A
significant improvement going forward would be to integrate
basin-level water scarcity risks to contextualize water savings,
keeping in mind data assimilation issues across spatial scales. It
is important to note that the values reported here are for water
applied for irrigation and not consumptive water use; as such, a
portion of the water applied could be collected back. In such
cases, the resulting water savings would be larger.

Finally, a majority of rice is irrigated through gravity systems.
Therefore, it is important to consider improving resource use
efficiency using water management and conservation practices
such as using tail water pipes, dikes, precision-leveling, and
alternative row irrigation along with gravity irrigation.
Implementing advanced irrigation technologies may result in
more water savings as well as energy savings. However, studies
have reported that declining water levels coupled with Jevon’s
paradox (more irrigation resulting from water savings) have
increased GHG and the carbon footprint of irrigated
agriculture.””® California, followed by Texas and Missouri
have the most acreage under some kind of water management
systems while Mississippi, Louisiana, and Arkansas have less,
indicating scope for improvement.59 However, our model’s
attempt to reduce production in California and Texas signals
that these conventional practices may not be sufficient. At the
same time, improving water efficiency of rice irrigation in
Arkansas and Louisiana indicates that more water savings can
be achieved while intensifying production in these areas.
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Another area of promise in rice irrigation research is exploring
the potential of an alternative wet and dry technique for rice
irrigation where the fields are only periodically flooded and
then flushed out to dry in-between. Apart from saving water,
the technique has the added benefit of also reducing
atmospheric methane emissions associated with methano-
genesis in rice fields. The disadvantage with the method is
reported loss of yields in rice due to low water stress
tolerance™ and increase in nitrous oxide emissions,éo and
therefore such methods require more analysis and region-
specific field trials before widespread adoption. Finally,
improper management of rice residues is an important source
of GHG emissions as disposal through incineration causes
GHG emissions, while incorporating residues back into the
field causes decomposition and ultimately emissions. Solutions
ranging from applying biochar to increase soil carbon
sequestration to tillage practices can reduce adverse effects.
However, rather than depending on universal solutions, site-
specific management may be more appropriate for reducing
GHG emissions.®’

The scenarios modeled in this work result in net land
savings, but production reductions also mean loss of livelihood.
Any scenario that reduces or eliminates production requires a
careful evaluation on socio-economic implications. Richter et
al.”® discuss rotational land fallowing practices in California
and its success. Generally, crops with a lower selling price are
fallowed and rice may not fall into the category unless a
competitive renumeration is provided or market demand for
U.S. rice reduces. However, there is some incentive to farmers
on choosing to receive continuous payment through fallowing
programs as opposed to fluctuating revenue dependent on
market demand and success of crop. A complementary strategy
would be to encourage farmers to plant alternative suitable
crops, which may result in less resource savings (as opposed to
completely fallowing the land), although land suitable for rice
may not be suitable for a variety of other crops that yield
similar or more revenue. Another drawback to reduction would
be loss of biodiversity and other ecosystem services as
submerged rice fields provide a habitat for diverse living
organisms.62 The message from this work should not be
interpreted as suggesting that closing the yield gap is a panacea
for sustainable intensification. Strategies such as boosting
yields will require integrating diverse feedback, stakeholder
engagement encompassing all levels from policymakers to
farmers, being conscious of dissenting opinions, and
recognizing tradeoffs resulting from crop intensification. The
goal should be creating equitable and fair strategies to reduce
impact and boost production®® while recognizing that reducing
one impact may exacerbate others.

Our work focuses on two environmental sustainability
metrics: water use and GHG emissions. Other impacts such
biodiversity loss, eutrophication, and land use should be
evaluated in future studies to avoid unintended consequences.
The optimization framework presented in this work is general
enough to include other environmental impacts. Finally, we
recognize that national trade cannot be realistically optimized
to save embodied resources; however, many farmers make
production decisions keeping water supply in mind, specifically
in times of drought or in water-scarce areas.”* The results also
indicate that for water-intensive crops such as rice that are
produced in very limited areas, regional crop replacement
shifting may reduce overall production as the limited areas may
not have capacity to grow sufficient quantity to meet the
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demand. This would affect the downstream supply chain
including loss in national revenue and such effects should be
analyzed in future studies.
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