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a b s t r a c t 

We consider the maximum 2-club problem, which aims at finding an induced subgraph of maximum 

cardinality with the diameter at most two. Such subgraphs arise from a popular diameter-based clique 

relaxation concept, as a subgraph is a clique if and only if its diameter is one. In a 2-club every pair of 

non-adjacent vertices has a common neighbor; this “2-hop” property naturally arises in a variety of appli- 

cations. In this paper, by exploiting a somewhat different interpretation of the problem, we provide two 

new mixed-integer programming (MIP) models for finding maximum 2-clubs. Our MIPs provide much 

tighter linear programming (LP) relaxations for sufficiently sparse graphs and have fewer constraints 

than the standard integer programming (IP) model at the expense of having slightly more continuous 

variables. We also consider feasibility versions of our MIPs that verify whether there exists a 2-club of 

some specified size. Then we incorporate them into a simple-to-implement “feasibility-check” algorithm 

that iteratively solves one of the feasibility MIPs for each possible 2-club size within some known lower 

and upper bounds. The upper bound is obtained from an LP relaxation of our new MIPs and is shown 

to be sharp. Furthermore, we show how to extend our approaches for solving some “robust” (attack- and 

failure-tolerant) generalizations of the maximum 2-club problem. Finally, we perform an extensive com- 

putational study with randomly generated and real-life graphs to support our theoretical results and to 

provide some empirical observations and insights. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Let G = (V, E) be a simple undirected graph with the sets of 

ertices (nodes) V and edges E, where | V | = n and | E| = m . Graph

 is called complete if it has all possible edges, i.e., (i, j) ∈ E for

ll i, j ∈ V , i � = j . A path between i and j in G is a shortest path if

t contains the least number of edges among all paths between i 

nd j in G ; the length (i.e., number of edges) of a shortest path

etween two vertices i and j in G is also referred to as the dis- 

ance between i and j in G and denoted by d G (i, j) . We assume

hat d G (i, j) = + ∞ if there is no path between i and j. The max-

mum distance between any two vertices in G is referred to as 

he diameter of G , i.e., diam (G ) = max { d G (i, j) | i, j ∈ V } . In the re-
ainder of the paper, without loss of generality, we assume that 

iam (G ) < + ∞ , i.e., graph G is connected . 
∗ Corresponding author. 
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For any subset of vertices S ⊆ V , let G [ S] = (S, E ′ ) , where E ′ =
 (i, j) ∈ E | i, j ∈ S} ⊆ E, denote the subgraph induced by S in G . A

lique C is a subset of V such that G [ C] is a complete graph; the

roblem of finding a clique of maximum cardinality in a given 

raph is referred to as the maximum clique problem ( Pardalos & 

ue, 1994 ). This problem is one of the classical NP -hard combi- 

atorial optimization problems with numerous applications; see, 

.g., surveys in Butenko and Wilhelm (2006) ; Garey and Johnson 

2002) ; Pardalos and Xue (1994) . 

It has been observed in a number of related studies, 

.g., Komusiewicz (2016) and Pattillo, Youssef, and Butenko 

2013b) , that the clique concept is somewhat idealized and too 

estrictive in many application contexts as it requires all pair- 

ise connections in an induced subgraph. Thus, multiple clique 

elaxation models have been introduced in the network analy- 

is and optimization literature to capture more realistic consid- 

rations arising in various practical settings; see, for example, a 

eneral framework outlined in Pattillo et al. (2013b) . Perhaps one 

f the most popular clique relaxation models is the concept of a 

 -club , which is defined as a subset of vertices S ⊆ V such that
n integer programming models for the maximum 2-club problem 
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he subgraph G [ S] induced by S in G has diameter at most k ,

.e., diam (G [ S]) ≤ k , where k is a fixed positive integer. Clearly,

 = 1 corresponds to a clique, while having k ≥ 2 defines a graph

ith somewhat less restrictive diameter requirements. In the max- 

mum k -club problem one seeks to identify a k -club with the max- 

mum cardinality; this problem is known to be NP -hard for any 

xed strictly positive integer k ; see Balasundaram, Butenko, and 

rukhanov (2005) and Pajouh, Balasundaram, and Hicks (2016) . 

For 2-clubs every pair of non-adjacent vertices has a common 

eighbor. This property, often referred as the “2-hop” property, is 

mportant in many transportation and communication settings. For 

xample, a star graph, i.e., a graph with one designated vertex as a 

hub” connected to all other vertices with no additional connec- 

ions between them, is a well-known example of a 2-club aris- 

ng in a variety of real-life applications ( Pajouh et al., 2016 ). This

bservation provides a straightforward motivation for an efficient 

reedy heuristic for finding large 2-clubs (and general k -clubs, as 

ny 2-club is also a k -club, k ≥ 3 ); specifically, the heuristic sim- 

ly selects a maximum degree vertex and its neighborhood, see, 

.g., Bourjolly, Laporte, and Pesant (20 0 0) . Such an approach is ex- 

remely effective in sparse real-life graphs as it is likely to return 

n optimal solution (see our further discussion in Section 4 ). How- 

ver, it is also known that it is NP -hard to determine whether there

xists a 2-club of a strictly larger size than the one constructed in 

his greedy manner ( Kahruman-Anderoglu, Buchanan, Butenko, & 

rokopyev, 2016 ). 

Furthermore, 2-clubs have a variety of natural interpretations 

n social network contexts ( Laan, Marx, & Mokken, 2016; Mokken, 

979 ); one can recall, for example, a well-known “a friend of a 

riend” concept widely used in social sciences, see, e.g., Goodreau, 

itts, and Morris (2009) . Similarly, 2-clubs can be exploited for 

lustering in data mining as the “2-hop” property may also reflect 

ome underlying relationships and/or similarity between objects in 

 given dataset (e.g., citation of the same document by two dif- 

erent documents in text analytics and web mining applications); 

ee examples in Jia et al. (2018) , Miao and Berleant (2004) and 

erveen, Hill, and Amento (1999) . 

Generally speaking, 2-clubs form perhaps the “simplest”

istance-based relaxation of a clique as the diameter of one is a 

lique-defining property . That is, a graph is a clique if and only if 

ts diameter is equal to one. By “simplest” we imply that this sub- 

raph/cluster model is, in a sense, the easiest and most intuitive 

o justify in many real-life contexts. In view of the above discus- 

ion, it is not surprising that from the analytical and computa- 

ional perspectives the case of k = 2 is the most well-studied class 

f the maximum k -club problem, see, e.g., Carvalho and Almeida 

2011) , Hartung, Komusiewicz, and Nichterlein (2015) , Hartung, Ko- 

usiewicz, Nichterlein, and Such ̀y (2015) , Komusiewicz, Nichter- 

ein, Niedermeier, and Picker (2019) , Laan, Intelligentie, Marx, 

okken, and van Doornik (2012) and Pajouh et al. (2016) and the 

eferences therein. 

In particular, the maximum 2-club problem admits a sim- 

le integer programming (IP) formulation, which is a straightfor- 

ard generalization of the classical maximum clique IP model; see 

alasundaram et al. (2005), Bourjolly, Laporte, and Pesant (2002), 

eremyev and Boginski (2012a) . Namely, there is a binary variable 

or each vertex to indicate whether a vertex is in a feasible solution 

2-club); then for every pair of non-adjacent vertices (i.e., there is 

o edge between them) we enforce with a constraint that both 

ertices can be in a feasible 2-club only if they have a common 

eighboring vertex, which is also in the 2-club. We overview this 

P model, referred to as F2s throughout the paper (this notation 

tands for “Formulation for 2-club, standard”), in Section 2.1 . Poly- 

edral properties of this classical formulation are studied in Pajouh 

t al. (2016) ; its modeling generalizations for 3-clubs and gen- 

ral k -clubs are considered in Almeida and Carvalho (2012) and 
2 
alasundaram et al. (2005) ; Bourjolly et al. (2002) ; Buchanan and 

alemi (2020) ; Veremyev and Boginski (2012a) , respectively. 

The first contribution of this paper is to propose two new 

ixed-integer programming (MIP) formulations for the maximum 

-club problem that are based on a somewhat different model- 

ng interpretation of the problem. In particular, these two new 

ormulations have slightly more (continuous) variables than the 

tandard model, however, they require substantially fewer con- 

traints for sparse graphs. We describe these models, referred to 

s F2c1 and F2c2 throughout the paper (that is, “Formulation for 

-club, compact”), in Section 2.2 . We formally establish that these 

wo new formulations have much better quality of their linear pro- 

ramming (LP) relaxations than the standard F2s model for graphs 

ith a sufficiently small number of pairs of vertices that are within 

he distance of at most 2 from each other. Note that the latter is of-

en the case in practice as real-life graphs are typically very sparse. 

We perform computational experiments with an off-the-shelf 

ommercial MIP solver ( Gurobi Optimization, 2019 ) to explore the 

erformance of our new models, F2c1 and F2c2 , against the clas- 

ical model F2s . Our computational study provides three interest- 

ng observations. ( i ) In contrast to F2s , the new models (in par-

icular, F2c2 ) provide much higher quality LP relaxation bounds 

or randomly generated and real-life graphs, which is consistent 

ith our aforementioned theoretical results. ( ii ) When the presolve 

i.e., a collection of various preprocessing routines implemented in 

urobi) is switched off, then the new MIP models substantially 

utperform F2s with respect to their running times when solving 

he problem to optimality. ( iii ) When the presolve is used, then the 

erformance of F2s improves substantially; however, the perfor- 

ance of F2c1 and F2c2 is either not affected or deteriorates. This 

bservation implies that the constraint structure of F2s is more 

menable to preprocessing routines implemented in the Gurobi 

IP solver. Hence, F2s remains a viable alternative for solving the 

roblem in reasonably sized graphs when using solvers with ad- 

anced MIP presolve implementations. It also opens up an inter- 

sting avenue for future research to explore both computationally 

nd, perhaps, theoretically the reasons behind the latter two ob- 

ervations. 

Furthermore, we consider feasibility versions of these two new 

IPs that verify whether there exists a 2-club of size exactly � ∈ N 

n a graph. Then we incorporate them into an easy-to-implement 

feasibility-check” algorithm, see the details in Section 3 , that 

olves one of these feasibility MIPs for each integer � , by iteratively 

ecreasing it from some upper bound. The bound is derived by 

olving the LP relaxations of the new MIPs; hence, their tightness 

observed both experimentally and theoretically) is critical for the 

omputational performance of the algorithm. In our experiments 

his extremely simple method, which we view as the second con- 

ribution of the paper, outperforms F2s (even when the presolve is 

sed) for large graphs with 4,0 0 0-10,0 0 0 vertices. It is important

o point out that this approach does not require any sophisticated 

mplementation. 

Our third contribution is based on the following intuitive prop- 

rty of many real-life graphs. Namely, it is known from the liter- 

ture, see, e.g., Hartung et al. (2015) ; Komusiewicz et al. (2019) , 

nd also observed in our computational experiments, that in real- 

ife graphs any vertex with the maximum degree and its neighbors 

i.e., adjacent vertices) is often a maximum 2-club. Thus, on the 

ne hand, from the practical perspective in many real-life graphs 

t is rather easy to find a maximum 2-club. On the other hand, it 

s much more difficult to verify the global optimality of such “star- 

ike” solutions. 

Moreover, the 2-clubs identified in this manner typically do not 

orm attack-tolerant (or fault-tolerant) subgraphs as they contain 

ultiple vertices of degree one. Leaf vertices can be disconnected 

rom the subgraph by removing the corresponding edges; the lat- 
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er can be viewed as edge failures, e.g., due to an adversarial at- 

ack. Furthermore, such subgraphs are also susceptible to vertex 

ailures, as they easily become disconnected (with multiple con- 

ected components), when the “hub” vertex (i.e., the vertex with 

he maximum degree) is unavailable/removed/failed. In this paper 

e consider two “robust” generalizations from Komusiewicz et al. 

2019) ; Veremyev and Boginski (2012a,b) that address these issues, 

amely, the maximum 2-club problem with some specified min- 

mum vertex degree requirement and the maximum R -robust 2- 

lub problem; see Section 4 . Our (third) contribution is that we 

how how our MIP models and the “feasibility-check” algorithm 

an be adapted to handle these two “robust” versions of the max- 

mum 2-club problem in a fairly straightforward manner. 

Finally, we summarize our paper in Section 5 , where we also 

utline promising directions for future research. 

. Integer programming models 

We first briefly describe the standard IP model, 

ee Balasundaram et al. (2005) , Bourjolly et al. (2002) , Veremyev 

nd Boginski (2012a) , in Section 2.1 . Then in Section 2.2 we 

ntroduce two new MIP models. In Section 2.3 we study the LP 

elaxation quality of the models and establish that for sufficiently 

parse graphs our MIPs are superior to the standard IP. Finally, in 

ection 2.4 we perform computational experiments to support our 

heoretical observations using a set of randomly generated and 

eal-life graph instances. 

.1. Standard formulation 

Denote by N(i ) the neighborhood of node i ∈ V , i.e., N(i ) = { j ∈
 | (i, j) ∈ E} . Let x i , i ∈ V , be a 0–1 variable such that x i = 1 if

nd only if vertex i is in a maximum 2-club. Then the standard IP 

odel for solving the maximum 2-club problem is given by: 

 F2s ] : ω̄ 2 := max 
∑ 

i ∈ V 
x i (1a) 

subject to 

x i + x j −
∑ 

t∈ N (i ) ∩ N ( j) 
x t ≤ 1 ∀ (i, j) / ∈ E, (1b) 

x i ∈ { 0 , 1 } ∀ i ∈ V, (1c) 

here constraint (1b) ensures that a pair of non-adjacent vertices 

 and j can be simultaneously in an optimal solution only if there 

xists another vertex t in their common neighborhood that is also 

n the optimal solution. The number of variables in the formula- 

ion is | V | ; the number of constraints is | V | (| V |−1) 
2 − | E| , which is

(| V | 2 ) for sparse graphs. A recent detailed study of the polyhe- 

ral properties of this model can be found in Pajouh et al. (2016) . 

.2. New formulations 

The key idea behind our formulations is to completely avoid 

onsidering vertex pairs i, j with d G (i, j) ≥ 3 . We achieve this goal

y introducing a new set of variables u i j , where u i j can be set to

 if and only if both vertices i and j are selected to be in a 2-club

nd the distance between them in a 2-club is at most 2. Let 

 2 = { (i, j) ∈ 

(
V 

2 

)
| d G (i, j) ≤ 2 } (2) 

e the set of all vertex pairs of graph G with distance at most 2

rom each other. Thus, for this new set of variables it is sufficient 

o consider only indices in this set, i.e., (i, j) ∈ E . Furthermore, we
2 

3 
reat pairs (i, j) ∈ E 2 and ( j, i ) ∈ E 2 as the same and hence, we as-

ume that the corresponding variables u i j and u ji coincide. 

Our first formulation is based on the observation that for any 

ertex i ∈ V , if it is in a 2-club, the number of vertex pairs that

hare 2-club membership with that vertex should be the size of 

he 2-club minus one. Therefore, we have the following model: 

 F2c1 ] : ω̄ 2 = max 
∑ 

i ∈ V 
x i (3a) 

ubject to ∑ 

j ∈ V : (i, j ) ∈ E 2 
u i j ≥

∑ 

j∈ V 
x j − 1 − μ(1 − x i ) ∀ i ∈ V, (3b) 

u i j ≤ x i , u i j ≤ x j ∀ (i, j) ∈ E 2 , (3c) 

u i j ≤
∑ 

t∈ N (i ) ∩ N ( j) 
x t ∀ (i, j) ∈ E 2 , d G (i, j) = 2 , (3d) 

u i j ≥ 0 , x i ∈ { 0 , 1 } ∀ (i, j) ∈ E 2 , i ∈ V, (3e) 

here μ is a sufficiently large constant, so that if x i = 0 then con- 

traint (3b) is inactive, e.g., μ is an upper bound on the size of 

he 2-club minus one. We derive a sharp upper bound on the 

ize of the 2-club in Section 2.3 . Alternatively, we can simply set 

= | V | − 1 . 

Note that by (3c) and (3e) each u i j ∈ [0 , 1] . Furthermore, if the

ight-hand sides of (3c) and (3d) do not enforce u i j to be equal 

o zero, then the left-hand side of (3b) requires the value of u i j 
o be equal to one. Therefore, we do not need to enforce binary 

estrictions for variables u i j in the resulting MIP model. 

Our second model is based on the idea that in order to have a 

-club of size � , there should be exactly � (� − 1) / 2 variables u i j 
hat can be set to one. This requirement can be enforced using 

 classical value-disjunction technique from integer programming 

see, e.g., Vielma (2015) ) on the 2-club size; a somewhat similar 

pproach is used for modeling the maximum quasi-clique problem 

n Veremyev, Prokopyev, Butenko, and Pasiliao (2016) and the max- 

mum clique problem in Martins (2010) ). 

Specifically, we define new binary variables z � ∈ { 0 , 1 } for all � ∈
 1 , . . . , n } such that z � = 1 if and only if 

∑ 

i ∈ V x i = � . Therefore, we

ave the following model: 

 F2c2 ] : ω̄ 2 = max 
∑ 

i ∈ V 
x i (4a) 

ubject to 

∑ 

(i, j) ∈ E 2 
u i j ≥

βu 
2 ∑ 

� = β l 
2 

� (� − 1) 

2 
z � , (4b) 

u i j ≤ x i , u i j ≤ x j ∀ (i, j) ∈ E 2 , (4c) 

u i j ≤
∑ 

t∈ N (i ) ∩ N ( j) 
x t ∀ (i, j) ∈ E 2 , d G (i, j) = 2 , (4d) 

βu 
2 ∑ 

� = β l 
2 

�z � = 

∑ 

i ∈ V 
x i , 

βu 
2 ∑ 

� = β l 
2 

z � = 1 , (4e) 

u i j ≥ 0 , x i ∈ { 0 , 1 } ∀ (i, j) ∈ E 2 , i ∈ V, (4f) 
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z � ∈ { 0 , 1 } ∀ � ∈ { β l 
2 , . . . , β

u 
2 } , (4g) 

here β l 
2 
and βu 

2 
are some lower and upper bounds on the size of 

 maximum 2-club in G , respectively. As outlined in our discussion 

n Section 1 we can set 

l 
2 = max 

i ∈ V 
deg G (i ) + 1 , (5) 

here deg G (i ) denotes the degree of vertex i in G , i.e., deg G (i ) =
 N(i ) | . The value of βu 

2 
can be set to | V | ; however, as stated above,

nother sharp upper bound on the size of the 2-club proposed in 

ection 2.3 can be used. 

As mentioned earlier, a constraint similar to (4b) is also used 

n Veremyev et al. (2016) for modeling the maximum quasi-clique 

roblem. The key difference is in defining the left-hand side of 

4b) . In Veremyev et al. (2016) , the left-hand side of (4b) “counts”

he number of edges in the subgraph, i.e., a quasi-clique, which is 

 density-based clique relaxation; see Pattillo et al. (2013b) . How- 

ver, in F2c2 the left-hand side of (4b) represents the number of 

ertex pairs that are within distance 2 in a subgraph (i.e., a 2-club), 

hich requires our definition of set E 2 and constraints (4c) and 

4d) . 

The ideas behind the construction of both MIPs F2c1 and 

2c2 are rather intuitive. We next formally state that the formu- 

ations are valid; see the detailed proof in the Appendix. 

roposition 1. The largest 2-club in a graph G is of size � ∗ if and

nly if the optimal objective values of the formulations F2c1 and F2c2 

re equal to � ∗. 

Furthermore, in F2c2 the binary restrictions for z � can be re- 

axed, i.e., (4g) can be replaced by simply having: 

 � ≥ 0 ∀ � ∈ { β l 
2 , . . . , β

u 
2 } , (6) 

hich is formally stated as follows. 

roposition 2. There exists an optimal solution x ∗, u ∗, z ∗ of formula- 

ion F2c2 with binary restrictions for variables z relaxed such that z ∗

s a binary vector. 

The proof of this result (relegated to the Appendix to stream- 

ine our discussion) is based on a rather standard application of 

ensen’s inequality whenever value-disjunction reformulation ideas 

re used; see a similar derivation in Proposition 1 in Veremyev 

t al. (2016) . 

Finally, we should point out that in both models F2c1 and 

2c2 the total number of variables is �(| V | + | E 2 | ) ; the number

f constraints is O (| V | + | E 2 | ) . Note that in sparse real-life graphs
t is typically the case that | E 2 | �| V | 2 . Thus, one should expect that
or many real-life graphs the numbers of constraints in F2c1 and 

2c2 are much smaller than 
(| V | 

2 

)
− | E| , the number of constraints 

n F2s . 

.3. Sharp upper bound and LP relaxation analysis 

In this section, we derive a sharp upper bound on the maxi- 

um 2-club size, which can be used to set the appropriate values 

or parameters μ and βu 
2 

in F2c1 and F2c2 , respectively. We also 

xplore the quality of the LP relaxations of our new formulations 

2c1 and F2c2 , and compare them against the LP relaxation of F2s . 

roposition 3 (Upper bound on a 2-club size) . Let S ⊆ V be a 2-

lub in G = (V, E) . Then 

 S| ≤ βu 
2 = 

⌊ 

1 + 

√ 

1 + 8 | E 2 | 
2 

⌋ 

(7) 

nd this bound is sharp. 
4 
roof. By definition, for any pair of vertices i, j ∈ S we have 

 G (i, j) ≤ d G [ S] (i, j) ≤ 2 . Therefore, 

| S| (| S| − 1) 

2 
≤ | E 2 | . (8) 

olving this quadratic inequality with respect to | S| leads to condi- 
ion (7) . Finally, the sharpness of this bound follows immediately 

y considering a star graph with βu 
2 
vertices. �

We should note that the derivation idea above (via a quadratic 

nequality) is somewhat similar in spirit to the approach used for 

eriving the upper bound on the size of the maximum quasi-clique 

n a graph; see Pattillo, Veremyev, Butenko, and Boginski (2013a) . 

he key difference is using set E 2 instead of E; recall our discussion 

n F2c2 in Section 2.2 . 

roposition 4 (LP relaxation bounds) . Let ω̄ 
s 
2 
, ω̄ 

c1 
2 

and ω̄ 
c2 
2 

be the 

ptimal objective function values of the LP relaxations of formula- 

ions F2s , F2c1 and F2c2 , respectively, where μ = βu 
2 

− 1 and βu 
2 

= 

 

1+ 
√ 

1+8 | E 2 | 
2 

⌋ 

. Then the following inequalities hold, 

( i ) ω̄ 
s 
2 

≥ | V | 
2 

( ii ) ω̄ 
c1 
2 

≤ ˆ βu 
2 
:= 

1+ 
√ 

1+8 | E 2 | 
2 

( iii ) ω̄ 
c2 
2 

≤ ˆ βu 
2 
:= 

1+ 
√ 

1+8 | E 2 | 
2 , 

where βu 
2 

= � ̂  βu 
2 
� by their definitions. 

roof. ( i ): The inequality follows immediately from the fact that 

etting x ′ 
i 
= 1 / 2 for all i ∈ V is a feasible solution of the LP relax-

tion of F2s . 

( ii ): Let x ′ = (x ′ 
1 
, . . . , x ′ n ) T and u ′ = { u ′ 

i j 
| (i, j) ∈ E 2 } be a feasible

olution of the LP relaxation of F2c1 . Then from constraint (3b) we 

ave: ∑ 

j ∈ V : (i, j ) ∈ E 2 
u ′ i j ≥

∑ 

j∈ V 
x ′ j − 1 − (βu 

2 − 1)(1 − x ′ i ) , 

∑ 

j ∈ V : (i, j ) ∈ E 2 
u ′ i j ≥

∑ 

j∈ V 
x ′ j − x ′ i − βu 

2 (1 − x ′ i ) , 

hich implies that 

 

i ∈ V 

∑ 

j ∈ V : (i, j ) ∈ E 2 
u ′ i j ≥

∑ 

i ∈ V 

( ∑ 

j∈ V 
x ′ j − x ′ i − βu 

2 (1 − x ′ i ) 

) 

nd hence, 

 

∑ 

(i, j) ∈ E 2 
u ′ i j ≥ | V | ∑ 

i ∈ V 
x ′ i −

∑ 

i ∈ V 
x ′ i − βu 

2 

( 

| V | − ∑ 

i ∈ V 
x ′ i 

) 

. 

ecall that βu 
2 

= � ̂  βu 
2 
� , then 

ˆ u 
2 ≥ βu 

2 , 

nd thus, from the derivation of Proposition 3 , see (8) , we have 

 

∑ 

(i, j) ∈ E 2 
u ′ i j ≤ 2 | E 2 | ≤ ˆ βu 

2 ( ̂
 βu 
2 − 1) . 

ext, combining with the previous inequality we have 

ˆ u 
2 ( ̂

 βu 
2 − 1) ≥ (| V | − 1) 

∑ 

i ∈ V 
x ′ i + βu 

2 

( ∑ 

i ∈ V 
x ′ i 

) 

− | V | βu 
2 ≥ (| V | − 1) 

∑ 

i ∈ V 
x ′ i + 

ˆ βu 
2 

( ∑ 

i ∈ V 
x ′ i 

) 

− | V | ̂  βu 
2 
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Table 1 

Problem sizes and the optimal objective function values ω̄ 
s 
2 , ω̄ 

c1 
2 and ω̄ 

c2 
2 of 

the LP relaxations of F2s , F2c1 and F2c2 , respectively, on path graphs with 

| V | vertices. The maximum 2-club size is ω̄ 2 = 3 . The best results for the LP 

relaxation quality are in bold . 

| V | (| V | 
2 

)
− | E| | E 2 | ˆ βu 

2 ω̄ 
s 
2 ω̄ 

c1 
2 ω̄ 

c2 
2 

5 6 7 4.27 3.0 3.57 3.75 

10 36 17 6.35 5.0 5.09 4.35 

15 91 27 7.87 7.5 6.50 4.55 

100 4851 197 20.36 50.0 17.38 4.93 

1000 498,501 1997 63.70 500.0 60.43 4.99 

10000 49,985,001 19,997 200.48 ≥5,000.0 196.17 4.99 
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nd, equivalently, 

 ̂
 βu 
2 ) 

2 ≥ ˆ βu 
2 

∑ 

i ∈ V 
x ′ i + (| V | − 1) 

( ∑ 

i ∈ V 
x ′ i − ˆ βu 

2 

) 

hich implies that 

| V | − 1 + 
ˆ βu 
2 ) 

( 

ˆ βu 
2 −

∑ 

i ∈ V 
x ′ i 

) 

≥ 0 . 

bserve that if 
∑ 

i ∈ V x ′ i > 
ˆ βu 
2 
, then the above inequality is violated. 

ence, 
∑ 

i ∈ V x ′ i ≤ ˆ βu 
2 
, which completes the proof of the proposition. 

( iii ): Let x ′ , u ′ , z ′ be a feasible solution of the LP relaxation of
2c2 . To prove the bound we apply Jensen’s inequality (as in the 

roof of Proposition 2 ) to convex function f (� ) = � (� − 1) / 2 . Ac-

ording to Jensen’s inequality: 

βu 
2 ∑ 

 = β l 
2 

� (� −1) 

2 
z ′ � ≥

∑ βu 
2 

� = β l 
2 

�z ′ � 
(∑ βu 

2 

� = β l 
2 

�z ′ � − 1 

)
2 

= 

∑ 

i ∈ V x 
′ 
i 

(∑ 

i ∈ V x 
′ 
i 
− 1 

)
2 

herefore, due to inequality (4b) , we have: 

 E 2 | ≥
∑ 

(i, j) ∈ E 2 
u ′ i j ≥

βu 
2 ∑ 

� = β l 
2 

� (� − 1) 

2 
z ′ � ≥

∑ 

i ∈ V x 
′ 
i 

(∑ 

i ∈ V x 
′ 
i 
− 1 

)
2 

onsidering only the left- and right-hand sides of the above in- 

qualities and then solving the corresponding quadratic inequality 

with respect to 
∑ 

i x 
′ 
i 
), as in the proof of Proposition 3 , leads to

he desired bound. �

Clearly, the developed result implies that the objective function 

alues of the LP relaxations of F2c1 and F2c2 are O (| E 2 | 1 / 2 ) and
hus, they are tighter than the LP relaxation quality of F2s for suf- 

ciently sparse graphs, where | E 2 | �| V | 2 . However, we would like

o point out that none of the formulations dominate the others, in 

eneral, which we illustrate with the following example. 

Let Path( n ) denote a path graph G with n vertices V = 

 1 , . . . , n } and edges E = { (i, i + 1) | i = 1 , . . . , n − 1 } . Then for n ∈
 5 , 10 , 15 , 100 , 10 0 0 , 10 0 0 0 } , in Table 1 we report the optimal ob-

ective function values ω̄ 
s 
2 
, ω̄ 

c1 
2 

and ω̄ 
c2 
2 

of the LP relaxations of F2s , 

2c1 and F2c2 , respectively. In particular, observe that, for n ≥ 10 

he LP relaxation of F2c2 is better than the others. However, for 

 = 5 it is the worst one; furthermore, the standard model F2s pro-

ides the best LP relaxation bound. A real-life example, where 

2s has the best LP relaxation bound is given in Section 2.4.3 ; see

etwork celegans in Table 3 . 

As a side note it can be mentioned that to improve the per- 

ormance of the solver when solving the formulation F2c1 and its 

P relaxation for large instances, the term 

∑ 

j∈ V x j in the right- 
and side of constraint (3b) can be replaced by a new variable, say 

 , with the corresponding addition to the model of an extra con- 

traint v = 

∑ 

j∈ V x j . This simple modification preserves the correct- 

ess of the model, but makes the constraints matrix more sparse. 
5 
.4. Computational study: Comparison of the MIP models without 

resolve 

.4.1. Preliminaries 

The computational experiments were conducted on an HP ma- 

hine equipped with Windows 7 x64 operating system, an In- 

el Core i7-3520M processor (CPU 2.90 GHz, 2 Cores) and RAM 

 GB. All MIP models are solved using Gurobi Optimizer 8.1 

 Gurobi Optimization, 2019 ) using Python 3.7 interface, and Net- 

orkX ( Hagberg, Swart, & S Chult, 2008 ) library to handle net- 

orks. The Gurobi parameters are kept at their default values ex- 

ept the time limit and presolve level, which were set to 50,0 0 0 

econds and 0 (off), respectively. 

With respect to the latter, it should be pointed that the 

IP presolve, i.e., a collection of various preprocessing rou- 

ines ( Achterberg, Bixby, Gu, Rothberg, & Weninger, 2020 ), imple- 

ented in MIP solvers are software specific. Hence, in this sec- 

ion we first explore the MIP models without presolve to have 

n idea about potential performance of the models with other 

IP solvers (including open source ones). On the other hand, the 

resolve implemented in Gurobi MIP solver significantly improves 

he performance of the F2s model. Hence, we discuss this is- 

ue in Section 2.4.3 and provide additional computational exper- 

ments with the presolve set to the default value (automatic) in 

ection 3.1.2 . 

.4.2. Test instances 

We use both real-life and randomly generated network in- 

tances. We focus on a subset of various sparse real-life net- 

orks obtained from different application domains, in particular, 

hose, where the considered problem may have some meaning- 

ul interpretation. If the original network is disconnected, then we 

onsider (and report parameters for) its largest connected com- 

onent. This set of real-life networks contains the following in- 

tances (all instances including the additional ones considered in 

ection 3.1.2 are also available at http://www.pitt.edu/ ∼droleg/files/ 
-clubs.html ): 

• bcspwr04 ( | V | = 274 , | E| = 669 ): A representation of a U.S.

power network from Davis and Hu (2011) . 
• bus_494 ( | V | = 494 , | E| = 586 ), bus_662 ( | V | = 662 , | E| = 906 ),

bus_1138 ( | V | = 1138 , | E| = 1458 ) : Bus power systems ( Davis &

Hu, 2011 ). 
• cables ( | V | = 429 , | E| = 636 ): A network adopted from the

Greg’s Cable Map ( http://www.cablemap.info) , which repre- 

sents “the undersea communication infrastructure,” and ob- 

tained from Nguyen, Shen, and Thai (2013) ; Shen, Nguyen, 

Xuan, and Thai (2013) . 
• celegans ( | V | = 453 , | E| = 2025 ): Metabolic network of

C.elegans ( Davis & Hu, 2011; DIMACS, 2011 ). 
• diseasome ( | V | = 516 , | E| = 1188 ): The human disease network

( Goh et al., 2007; Rossi & Ahmed, 2015 ) 
• erdos971 ( | V | = 429 , | E| = 1312 ): Erd ̋os collaboration network,

see Davis and Hu (2011) . 
• HarvardWeb ( | V | = 500 , | E| = 2043 ): Web connectivity ma-

trix ( Davis & Hu, 2011 ). 
• homer ( | V | = 542 , | E| = 1619 ): A social network of Homer’s “Il-

iad,” see Graph Coloring and its Generalizations (2004) . 
• LindenStrasse (| N| = 232 , | E| = 303) : A social network of the

German soap opera “Lindenstrasse” ( Batagelj & Mrvar, 2006 ). 
• netscience ( | V | = 379 , | E| = 914 ): A collaboration network in

network science ( Batagelj & Mrvar, 2006; Davis & Hu, 2011 ). 
• USAir97 ( | V | = 332 , | E| = 2126 ): An airline transportation net-

work ( Davis & Hu, 2011 ). 

In addition, we consider two classes of randomly generated 

raph instances: 

http://www.pitt.edu/~droleg/files/2-clubs.html
http://www.cablemap.info)
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Table 2 

Comparison of the number of constraints, the optimal objective function values of the LP relaxations and the solution times (when 

solved to optimality) for formulations F2s , F2c1 and F2c2 on randomly generated graphs. The average values over 10 random instances 

are reported. The best LP relaxation objective functions and the best running times are in bold . 

LP rlx. objective Time (seconds) 

Graph | V | | E| (| V | 
2 

)
− | E| | E 2 | ω̄ 2 

ˆ βu 
2 F2s F2c1 F2c2 F2s F2c1 F2c2 

WS graphs 

WS100 100 200 4750 630.2 7.6 36.0 50 29.8 13.7 0.7 1.3 1.5 

WS200 200 400 19,500 1254.5 7.9 50.6 100 43.3 13.6 11.8 10.0 11.2 

WS300 300 600 44,250 1832.6 7.6 61.0 150 53.3 13.3 70.4 25.7 51.3 

WS400 400 800 79,000 2521.8 8.1 71.5 200 63.2 13.7 253.3 54.6 172.6 

WS500 500 1000 123,750 3148.4 8.2 79.9 250 71.3 13.6 746.2 121.7 220.4 

WS600 600 1200 178,500 3800.4 8.3 87.7 300 78.7 13.7 1755.7 218.2 518.8 

WS700 700 1400 243,250 4419.2 8.3 94.5 350 85.4 13.7 3768.7 548.1 726.4 

WS800 800 1600 318,000 5103.5 8.5 101.5 400 92.3 13.8 7128.7 936.3 1487.0 

WS900 900 1800 402,750 5716.8 8.6 107.4 450 98.2 13.8 12547.0 1696.6 2477.9 

WS1000 1000 2000 497,500 6326.4 8.4 113.0 500 103.6 13.7 20083.4 2198.7 3268.0 

BA graphs 

BA100 100 196 4754 1249.6 25.3 50.5 50 40.9 28.4 0.5 2.3 0.7 

BA200 200 396 19,504 2859.7 32.7 76.1 100 62.3 35.5 7.7 19.4 1.5 

BA300 300 596 44,254 5199.1 47.3 102.4 150 84.6 49.0 53.2 79.1 2.7 

BA400 400 796 79,004 6971.6 50.4 118.5 200 99.1 52.0 199.9 203.4 4.5 

BA500 500 996 123,754 9127.9 58.3 135.5 250 114.3 59.8 618.8 449.4 6.0 

BA600 600 1196 178,504 11517.6 64.2 152.2 300 129.1 65.9 1691.9 705.0 10.7 

BA700 700 1396 243,254 13855.1 65.8 166.8 350 142.3 67.1 3518.8 973.3 11.1 

BA800 800 1596 318,004 15965.6 67.9 179.1 400 153.7 69.7 7147.4 1247.6 19.4 

BA900 900 1796 402,754 18455.4 77.3 192.5 450 166.1 79.1 12925.8 2046.7 22.7 

BA1000 1000 1996 497,504 21317.8 91.0 206.8 500 179.2 92.1 22182.3 3259.5 73.1 
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• Watts-Strogatz ( WS ) graphs are constructed based on the 

model proposed by Watts and Strogatz ( Watts & Strogatz, 

1998 ) and generated using the corresponding function in Net- 

workX ( Hagberg et al., 2008 ) library. The sampled graphs can 

be “highly clustered, like regular lattices, yet have small charac- 

teristic path lengths” ( Watts & Strogatz, 1998 ). We consider all 

possible sizes n from 100 to 10 0 0 (with 10 0 vertex increment).

For each n we generate 10 instances and report the average re- 

sults in the corresponding tables, where the instance sets are 

labelled as WS n ( n is the graph size). The number of neighbors

in the original ring topology and the edge rewiring probability 

are set to 4 and 0.15, respectively. 
• Barabási-Albert ( BA ) graphs are constructed according to 

Barabási-Albert preferential attachment mechanism (BA 

model) ( Albert & Barabási, 2002 ) and also obtained using 

the corresponding function in NetworkX ( Hagberg et al., 2008 ) 

library. This model is widely used for generating scale-free 

networks. For each n we also generate 10 instances and report 

the average results for all instances in the corresponding tables, 

where the instance sets are labelled as BA n ( n is the graph

size). To approximately match the edge density of WS graphs, 

the number of edges attached to any new vertex is set to 2. 

.4.3. Results and discussion 

We first discuss our experiments for the randomly constructed 

est instances, see Table 2 . In particular, we want to point out that

oth new MIP models F2c1 and F2c2 significantly outperform the 

tandard formulation F2s with respect to the quality of their LP 

elaxations. Note that for F2s the value of ω̄ 
s 
2 
is exactly | V | / 2 for

ll randomly generated instances; on the other hand, the LP re- 

axations of both F2c1 and F2c2 are much tighter. These compu- 

ational observations are consistent with the theoretical results in 

roposition 4 . 

The results for real-life graphs are reported in Table 3 . For al- 

ost all test instances (except celegans where the largest 2-club 

ize is larger than | V | / 2 ), both new models F2c1 and F2c2 provide

 better LP relaxation quality than the F2s model, with F2c2 being 

ypically the best one. 
6 
With respect to the solver’s running time performance, we, first, 

ecall that in the considered set of experiments the presolve is 

et 0 (i.e., no preprocessing used) for the MIP solver. In this set- 

ing, both new MIP models F2c1 and F2c2 significantly outperform 

he standard formulation F2s with respect to the solver’s running 

ime for all instances in Table 2 . For WS graphs model F2c1 is 

he best, while F2c2 is not far behind; for BA graphs F2c2 pro- 

ides the best performance. For real-life graphs in Table 3 there are 

nly 4 instances (out of 13), namely, celegans , erdos971 , homer 

nd USAir97 , where the standard MIP F2s outperforms the new 

odels. 

As briefly mentioned earlier, if the presolve is used, then the 

erformance of our new models F2c1 and F2c2 is not affected 

otably, in fact, it often deteriorates. On the other hand, the 

erformance of the F2s model improves significantly with re- 

pect to the solver’s running time. We provide the correspond- 

ng running time results and our additional discussion on this 

ssue in Section 3.1.2 . We conjecture that the constraint struc- 

ure of the F2s model is more amenable to various preprocess- 

ng routines implemented in the (commercial) Gurobi MIP solver 

han the constraint structures of the proposed MIP models. Fur- 

her exploration of this issue both from the theoretical and com- 

utational perspectives (e.g., comparing different commercial and 

pen source MIP solvers) provides an interesting avenue of further 

esearch. 

Nevertheless, our empirical and theoretical (recall 

roposition 4 ) results imply that the LP relaxations of F2c1 and 

2c2 can be used to provide high quality (and polynomially 

omputable) upper bounds for the maximum 2-club problem. 

urthermore, as we demonstrate next, the good LP relaxation 

uality of our new models can be exploited within a simple 

teration-based scheme, where a sequence of MIP feasibility mod- 

ls is solved. This new “easy-to-implement” approach turns out 

o be competitive with F2s (even when the presolve is used), 

nd outperforms it for larger graphs. Hence, the proposed simple 

ethod allows us to consider much larger real-life graphs (up to 

0,0 0 0 vertices) in our experiments than those solved by the MIPs 

n this section; see further details in Section 3 . 
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Table 3 

Comparison of the number of constraints, the optimal objective function values of the LP relaxations and the solution times (when solved to 

optimality) for formulations F2s , F2c1 and F2c2 on real-life graphs, see their description in Section 2.4.2 . Time limit (TL) is set to 50,0 0 0 sec. 

The best LP relaxation objective functions and the best running times are in bold . 

LP rlx. objective Time (seconds) 

Graph | V | | E| (| V | 
2 

)
− | E| | E 2 | ω̄ 2 

ˆ βu 
2 F2s F2c1 F2c2 F2s F2c1 F2c2 

bcspwr04 274 669 36,732 2354 16 69.1 137.0 58.9 22.4 45.9 22.1 6.3 

bus_494 494 586 121,185 1784 10 60.2 247.0 55.1 10.7 875.3 78.5 0.3 

bus_662 662 906 217,885 2909 10 76.8 331.0 70.7 11.6 3914.8 197.5 1.4 

bus_1138 1138 1458 645,495 5002 18 100.5 569.0 94.4 19.0 TL 1999.3 5.0 

USAir97 332 2126 52,820 22,191 140 211.2 166.0 172.6 163.3 27.8 119.3 TL 

cables 429 636 91,170 2272 17 67.91 214.5 60.9 17.0 419.8 55.2 0.2 

celegans 453 2025 100,353 45,351 238 301.7 238.0 254.8 240.6 0.2 773.4 538.2 

diseasome 516 1188 131,682 5814 51 108.3 258.0 94.0 53.4 959.7 130.8 5.5 

LindenStrasse 232 303 26,493 1225 14 50.0 116.0 43.6 14.9 26.2 8.9 0.3 

homer 542 1619 144,992 21,728 100 209.0 271.0 170.3 111.6 776.5 2261.3 1612.8 

netscience 379 914 70,717 3830 35 88.0 189.5 75.6 37.4 200.4 51.3 2.4 

erdos971 429 1312 90,494 9904 42 141.2 214.5 117.2 72.5 324.9 641.4 TL 

HarvardWeb 500 2043 122,707 34,255 201 262.2 250.0 220.6 201.0 179.4 676.0 45.8 
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. “Feasibility-check” algorithm 

Next, in Section 3.1 we consider feasibility versions of our MIPs 

hat verify whether there exists a 2-club of size exactly � ∈ N ; then

e incorporate one of them (more promising in terms of tight- 

ess) into an easy-to-implement “feasibility-check” algorithm as 

utlined. Note that the 2-club property is not hereditary (i.e., a 

ubgraph of a 2-club is not necessarily a 2-club); thus, we need 

o consider all possible sizes of the maximum 2-club between 

ts lower and upper bounds. This observation implies that good 

uality lower and upper bounds are extremely important, as a 

isection-like scheme (or, at least its naive version) cannot be ex- 

loited. The computational experiments with our new approach 

nd its comparison against the MIP solver (with presolve) are pro- 

ided in Section 3.1.2 . 

.1. Feasibility MIPs and the algorithm 

Consider the feasibility versions of formulations F2c1 and F2c2 . 

amely, for each possible value � , the formulations further referred 

o as F2c1 ( � ) and F2c2 ( � ), respectively, verify whether there exists

 2-club of size exactly � . Thus, we obtain: 

 F2c1 (� )] : 
∑ 

j ∈ V : (i, j ) ∈ E 2 
u i j ≥ (� − 1) x i ∀ i ∈ V, (9a) 

u i j ≤ x i , u i j ≤ x j ∀ (i, j) ∈ E 2 , (9b) 

u i j ≤
∑ 

t∈ N (i ) ∩ N ( j) 
x t ∀ (i, j) ∈ E 2 , d G (i, j) = 2 , (9c) 

∑ 

i ∈ V 
x i = �, (9d) 

u i j ≥ 0 , x i ∈ { 0 , 1 } ∀ (i, j) ∈ E 2 , i ∈ V, (9e) 

here constraint (9d) enforces the required size of a 2-club. The 

ther model is given by: 

 F2c2 (� )] : 
∑ 

(i, j) ∈ E 2 
u i j ≥

� (� − 1) 

2 
, (10a) 

u i j ≤ x i , u i j ≤ x j ∀ (i, j) ∈ E 2 , (10b) 

u i j ≤
∑ 

t∈ N (i ) ∩ N ( j) 
x t ∀ (i, j) ∈ E 2 , d G (i, j) = 2 , (10c) 
7 
∑ 

i ∈ V 
x i = �, (10d) 

u i j ≥ 0 , x i ∈ { 0 , 1 } ∀ (i, j) ∈ E 2 , i ∈ V. (10e) 

Next, we observe that if u and x form a feasible solution of the 

P relaxation of F2c1( � ) for a given � , then ∑ 

j ∈ V : (i, j ) ∈ E 2 
u i j ≥ (� − 1) x i , 

nd 
 

i ∈ V 

∑ 

j ∈ V : (i, j ) ∈ E 2 
u i j ≥

∑ 

i ∈ V 
(� − 1) x i = (� − 1) 

∑ 

i ∈ V 
x i = � (� − 1) 

r, equivalently, 

 

∑ 

(i, j) ∈ E 2 
u i j ≥ � (� − 1) , 

hich implies that u and x also provide a feasible solution of the 

P relaxation of F2c2( � ) for the same value of � . Thus, the tightness

f the LP relaxation of F2c1( � ) is not worse than that of F2c2( � ) .

herefore, we use F2c1( � ) as our main MIP feasibility model in our 

lgorithm, which we describe next. The formal pseudo-code is pro- 

ided in Algorithm 1 . 

Specifically, the key idea of the algorithm is to simply verify 

y solving MIP F2c1( � ) , whether there exists a 2-club of size ex-

ctly � , where � ∈ N is considered between some lower and upper 

ounds. For the lower bound we can use β l 
2 
given by (5) ; see line

 in Algorithm 1 . For the upper bound we can use the best upper

ound from those formulations considered in this paper; see line 

 of Algorithm 1 . Namely, we can consider the LP relaxations of all

hree MIP models; recall Table 1 and our discussion at the end of 

ection 2.3 that, in general, none of them dominates the others. 

As mentioned earlier, the 2-club property is not hereditary, i.e., 

 subgraph of a 2-club is not necessarily a 2-club. For example, 

 cycle with 5 vertices is a 2-club, but this graph does not con- 

ain a 2-club of size 4. Hence, in our algorithm in the worst case 

e need to solve a feasibility MIP for all possible values of � from 

he upper bound to the lower bound plus one; see lines 13–16 in 

lgorithm 1 . 

As we decrease the value of � , we can stop the procedure when- 

ver a feasible solution is found. One feasible solution is read- 

ly available from the lower bound; see lines 6–7 in Algorithm 1 . 

learly, the required number of iterations (i.e., feasibility MIPs 

olved) depends on the difference between the upper and lower 

ounds used. Therefore, if this number is sufficiently small (which 
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Algorithm 1: Exact “feasibility-check” algorithm (2-club) . 

1 Input: graph G = (V, E) 

2 Output: maximum 2-club S ⊆ V 

3 begin 

4 LB ← β l 
2 
:= max i ∈ V deg(i ) + 1 

5 UB ← min {� ̄ω 
s 
2 
� , � ̄ω 

c1 
2 

� , � ̄ω 
c2 
2 

�} 
6 i ∗ ← any vertex from argmax i ∈ V deg G (i ) 
7 S ← { N(i ∗) ∪ { i ∗}} 
8 � ← UB 

9 if LB = UB then 

10 return S 

11 end 

12 Solve a feasibility MIP, denoted by MIP ( � ), that verifies 

whether there exists a 2-club of size exactly � 

13 while MIP( � ) is infeasible and � ≥ LB + 2 do 

14 � ← � − 1 

15 Solve MIP( � ) 

16 end 

17 if MIP( � ) is feasible then 

18 S ← { i : x ∗
i 

= 1 , ∀ i ∈ V } , where x ∗ is feasible for MIP( � ) 

19 end 

20 return S 

21 end 
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Table 4 

Performance comparisons of the “feasibility-check” algorithms (multiple v

option turned on; see column F2s pre . The total solution times for solving

solving the LP relaxation of F2c2 ) are reported in the respective columns.

relaxation of F2c2 , which is used as the upper bound (UB) in the algorithm

times of F2c2 LP and one of the feasibility MIPs. The best approach ( Algori

Graph | V | | E| d max ω̄ 2 ω̄ 
c2 
2 #ite

bcspwr04 274 669 15 16 22.44 6 

bus_494 494 586 9 10 10.67 0 

bus_662 662 906 9 10 11.6 1 

bus_1138 1138 1458 17 18 19 1 

USAir97 332 2126 139 140 163.28 23 

cables 429 636 16 17 17 0 

celegans 453 2025 237 238 240.59 2 

diseasome 516 1188 50 51 53.42 2 

LindenStrasse 232 303 13 14 14.88 0 

homer 542 1619 99 100 111.6 11 

netscience 379 914 34 35 37.38 2 

erdos971 429 1312 41 42 72.51 30 

HarvardWeb 500 2043 200 201 201.03 0 

WS1000_1 1000 2000 7 8 13.81 5 

WS1000_2 1000 2000 8 9 13.7 4 

BA1000_1 1000 1996 107 108 115.75 7 

BA1000_2 1000 1996 69 70 72.33 2 

cerevisae 1458 1948 56 57 57 0 

human-protein 1615 3106 95 96 117.42 21 

yeast 2224 6609 64 65 118.4 53 

bible-nouns 1707 9059 364 365 406.08 41 

hamster 1788 12476 272 273 374.71 101 

hamster-full 2000 16098 273 274 382.57 108 

Geom 3621 9461 102 103 158.36 55 

GR-QC 4158 13422 81 82 115.28 33 

Erdosh02 6927 11850 507 508 508 0 

HighEnergy 8638 24806 65 66 119.8 53 

US_Power 4941 6594 19 20 21.07 1 

PGPgiantcompo 10680 24316 205 206 225.07 19 

Notes: For Algorithm 1 , we consider its three versions with different fea

presolve. If the presolve is used, then it is denoted as subscript “pre ” in 

number of feasibility MIPs solved, given by � ̄ω 
c2 
2 � − d max − 1 , where d max 

implies that Algorithm 1 does not need to solve any feasibility MIP as the

the available lower bound; hence, the required number of iterations is 0. 

8 
s the case if the bounds are tight), then the overall performance 

f this approach can be expected to be better than simply solving 

ne of the original MIPs, F2s , F2c1 and F2c2 . 

For comparisons with the standard model, F2s , in our exper- 

ments discussed next, we also consider the proposed algorithm 

ith a feasibility version of the F2s model. The latter can be easily 

onstructed by removing the objective function in (1a) and adding 

 cardinality constraint (9d) . 

.2. Computational study: “feasibility-check” algorithm and MIP 

olver with presolve 

.2.1. Preliminaries 

The computational environment (software and hardware) is the 

ame as in the previous set of experiments, see Section 2.4.1 . The 

lgorithm was implemented in Python 3.7. From our experiments 

ith real-life graphs in Section 2.4 , see Table 3 , we observe that 

he LP relaxation bound provided by F2c2 is typically the best one. 

hus, in our implementation and the experiments discussed below 

e compute only � ̄ω 
c2 
2 

� in line 5 of Algorithm 1 . 

.2.2. Additional test instances 

The proposed algorithm allows us to consider an additional set 

f real-life networks with larger sizes, approximately up to 10,0 0 0 

ertices. This additional set contains the following networks: 
ersions of Algorithm 1 ) against Gurobi with F2s and the presolve 

 the feasibility MIPs in Algorithm 1 (without the time needed for 

 In column “F2c2 LP” we report the running time for solving the LP 

. The total running time of Algorithm 1 is the sum of the running 

thm 1 vs. F2s pre ) is in bold . 

Time (seconds) 

Formulation Algorithm 1 (lines 12–20) 

r F2c2 LP F2s pre F2s ( � ) pre F2c1 ( � ) F2c1 ( � ) pre 

0.49 3.88 2.32 0.23 0.22 

0.36 5.03 - - - 

0.94 7.05 2.15 0.05 0.04 

1.09 6.93 5.29 0.1 0.05 

30.24 1.52 19.72 4.19 2.31 

0.5 1.22 - - - 

118.58 4.38 4.69 0.84 0.39 

1.91 1.33 2.6 0.13 0.1 

0.13 0.41 - - - 

20.75 3.21 22.5 1.93 1.26 

0.86 1.03 1.26 0.09 0.09 

5.62 1.68 35.03 197.15 277.95 

80.87 3.19 - - - 

4.28 55.48 149.87 212.03 0.64 

4.86 35.65 33.94 0.4 0.24 

33.03 15.78 61.85 2.41 0.88 

47.97 13.89 16.88 0.61 0.21 

7.79 14 - - - 

78.82 32.35 554.87 7.79 5.24 

252.38 665.18 3273.88 6500.71 141.72 

1823.08 81.25 3665.99 87.35 53.88 

2375.67 80.69 9807.85 274.5 208.59 

2843.01 92.1 13715.75 316.57 248.36 

406.9 506.4 25946.06 62.65 47.81 

234.44 3519.44 26253.4 25.98 17.41 

5884.51 10612.41 - - - 

2024.84 TL TL 217.62 116.35 

8.71 12689.87 1392.47 0.37 0.16 

1050.29 ML ML 80.94 29.44 

sibility MIPs: F2s ( � ) with presolve, and F2c1 ( � ) with and without 

an MIP. Column “#iter” contains the number of iterations, i.e., the 

= max i ∈ V deg G (i ) denotes maximum degree in a graph. Symbol “-”

 upper bound provided by the LP relaxation of F2c2 coincides with 
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• cerevisae ( | V | = 1458 , | E| = 1948 ): Protein-protein interactions

network in yeast Saccharomyces cerevisiae ( Balasundaram et al., 

2005; DIMACS, 2011 ). 
• human-protein ( | V | = 1615 , | E| = 3106 ): Human protein (stelzl)

network dataset ( Kunegis, 2013 ). The network represents inter- 

acting pairs of proteins in Humans (Homo sapiens). 
• yeast ( | V | = 2224 , | E| = 6609 ): Protein-protein interaction net-

work in yeast ( Batagelj & Mrvar, 2006 ). 
• bible-nouns ( | V | = 1707 , | E| = 9059 ): The lexical network of

nouns of the King James Version of the Bible; an edge indicates 

that two nouns appeared together in the same verse ( Kunegis, 

2013 ). 
• hamster ( | V | = 1788 , | E| = 12476 ): The network containing

friendships between users of the website hamsterster.com 

( Kunegis, 2013 ). 
• hamster-full ( | V | = 20 0 0 , | E| = 16098 ): The network containing

friendships and family links between users of the website ham- 

sterster.com ( Kunegis, 2013 ) 
• Geom ( | V | = 3621 , | E| = 9461 ): Collaboration network in com-

putational geometry ( Batagelj & Mrvar, 2006 ). 
• GR-QC ( | V | = 4941 , | E| = 13422 ): Collaboration network of

Arxiv General Relativity ( Rossi & Ahmed, 2015 ). 
• Erdos02 ( | V | = 6927 , | E| = 11850 ): Erd ̋os collaboration network

from Davis and Hu (2011) . 
• HighEnergy ( | V | = 8638 , | E| = 24806 ): Collaboration network

of Arxiv High Energy Physics ( Rossi & Ahmed, 2015 ). 
• US_Power ( | V | = 4941 , | E| = 6594 ): A network representing US

power grid from Davis and Hu (2011) . 
• PGPgiantcompo ( | V | = 10680 , | E| = 24316 ): The giant compo-

nent of the network of users of the Pretty-Good-Privacy algo- 

rithm for secure information interchange ( Davis & Hu, 2011; 

Rossi & Ahmed, 2015 ) (compiled by Boguná, Pastor-Satorras, 

Díaz-Guilera, & Arenas (2004) ). 

.2.3. Results and discussion 

As pointed out in Section 2.4 if the MIP presolve (in Gurobi) 

s used, then the performance of the F2s model improves signif- 

cantly. Hence, in our experiments next we compare the perfor- 

ance of the “feasibility-check” algorithm against the MIP solver 

ith F2s model under the default MIP presolve setting. Further- 

ore, we consider three versions of Algorithm 1 , where in each 

teration we solve either a feasibility MIP F2s ( � ), or F2c1 ( � ), and

or the latter, we consider two presolve settings (default and off). 

The results for the first set of our experiments with two sets of 

eal-life graphs (see Sections 2.4.2 and 3.1.2 for their detailed de- 

criptions) and 4 additional randomly generated graphs (the largest 

rom those considered in Section 2.4.2 ) are provided in Table 4 . We

ant to point out the following observations: 

• The MIP preprocessing routines implemented in Gurobi, i.e., 

presolve, significantly improve the running time performance 

(when solving to optimality) of the F2s model; compare the 

results for F2s in Tables 3 and 4 . On the other hand, in our

experiments the running time performance of our new models 

F2c1 and F2c2 either does not change, or deteriorates for all 

instances in Table 3 when the presolve is used. Hence, the cor- 

responding results for the latter MIP models (with the presolve) 

are omitted from Table 4 for brevity. 
• Comparing the results of F2c2 in Table 3 against F2s in Table 4 ,

we observe that F2s becomes either competitive or outper- 

forms F2c2 . In fact, F2c2 (without presolve) slightly outper- 

forms F2s (with presolve) only for bus_494 , bus_662 , bus_1138 , 

cables , LindenStrasse , while F2s (with presolve) is better for 

the remaining 8 instances. 
9 
• The upper bound provided by the LP relaxation of F2c2 re- 

mains relatively good even for the larger networks with several 

thousand vertices; see column ω̄ 
c2 
2 

of Table 4 . In fact, there are 

several real-life instances for which there is no need to solve 

the feasibility MIPs (as indicated by 0 in the column “#iter” of 

Table 4 ), as the upper bound provided by the LP relaxation of 

F2c2 coincides with the lower bound. In particular, we refer to 

networks bus_494 , cables , LindenStrasse , HarvardWeb , cere- 

visae and Erdos02 , where the latter contains about 70 0 0 ver- 

tices. 
• Our simple “feasibility-check” algorithm (specifically, using a 

feasibility version of F2c1 under both considered presolve op- 

tions) is competitive against the MIP solver with the F2s model 

under the default MIP presolve setting for larger instances; see 

the bottom of Table 4 . In particular, note that Algorithm 1 (with 

a feasibility version of F2c1 ) outperforms F2s for our 6 largest 

test instances ( Geom , GR-QC , Erdos02 , HighEnergy , US_Power 

and PGPgiantcompo ). The total running time of Algorithm 1 is 

the sum of the running times for solving the LP relaxation of 

F2c2 and the corresponding feasibility MIPs. In Table 4 we de- 

note in bold the best solution approach in bold that is, either 

one of the versions of Algorithm 1 or simply solving model 

F2s via the MIP solver; note that for the former whenever the 

feasibility MIP does not need to be solved, we mark in bold the 

solution time of the LP relaxation. 
• In Table 4 when comparing the running time needed for solv- 

ing multiple feasibility MIPs (i.e., lines 12–20 in Algorithm 1 ) 

and the solution time of MIP F2s we observe that the perfor- 

mance of Algorithm 1 could be potentially improved by having 

better upper bounding schemes, in particular for larger graphs. 

That is, it could be an interesting avenue for future research to 

explore upper bounding schemes that can be computed faster 

than solving the LP relaxation of F2c2 to optimality (as in our 

computations). 
• The “feasibility-check” algorithm using a feasibility version of 

F2s is not competitive. 

The above observations emphasize high-quality of the LP relax- 

tion of F2c2 . Hence, the proposed MIP models F2c1 and F2c2 (or, 

t least their LP relaxations) can be exploited for the development 

f more advanced solution methods for the maximum 2-club prob- 

em, and further research in this direction seems to be promising. 

Next, recall from our discussion in Section 1 that a maximum 

egree vertex and its neighborhood form a 2-club, which often 

urns out to be an optimal solution. Hence, if a maximum 2-club 

ontains a leaf vertex (i.e., a vertex with degree one), then this 

aximum 2-club should be a maximum degree vertex with its 

eighbours. Otherwise, all leaf vertices can be removed from con- 

ideration and only the 2-core (i.e., a maximum subgraph such 

hat the degree of any vertex is at least 2) of the initial graph 

eeds to be considered. Hence, we need to simply compare and 

ick as an optimal solution either a 2-club formed using a maxi- 

um degree vertex (and its neighbourhood), or a maximum 2-club 

ound in the 2-core of the original graph. We provide additional 

etails on this preprocessing approach in a more general setting 

n Section 4.1 . 

In Table 5 , we explore the same solution methods as in Table 4 ,

fter the outlined preprocessing idea is applied. That is, we con- 

ider only the 2-cores of the same graphs as in Table 4 . Further-

ore, in Table 5 we do not consider graphs that do not contain 

eaf vertices (i.e., they are 2-cores by themselves), and graphs, for 

hich the upper bound provided by the LP relaxation of F2c2 is 

harp (i.e., there is no need to solve feasibility MIPs). Our ob- 

ervations from Table 5 are fairly consistent with those made for 

able 4 in our earlier discussion. 
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Table 5 

Performance comparisons of the “feasibility-check” algorithms (multiple versions of Algorithm 1 ) against Gurobi with F2s and the presolve 

option turned (see column F2s pre ), after additional preprocessing is used for both methods. The size of the remaining 2-core (after prepro- 

cessing) is reported in the column “2-core”. In this set of experiments we do not consider graphs that do not contain leaf vertices, and 

graphs for which the upper bound provided by the LP relaxation of F2c2 is sharp. 

Time (seconds) 

2-core Formulation Algorithm 1 (lines 12–20) 

Graph | V | | E| d max ω̄ 2 ω̄ 
c2 
2 #iter F2c2 LP F2s pre F2s ( � ) pre F2c1 ( � ) F2c1 ( � ) pre 

bcspwr04 217 612 15 16 22.21 6 0.53 2.27 1.58 0.26 0.29 

bus_662 574 818 9 10 11.31 1 0.69 7.76 1.55 0.04 0.04 

bus_1138 671 991 17 18 18.71 0 0.86 2.19 - - - 

USAir97 277 2071 139 140 156.99 16 24.86 1.1 9.84 2.42 1.33 

celegans 445 2017 237 238 240.59 2 128.6 4.08 4.58 0.79 0.42 

diseasome 420 1092 50 51 52.26 1 2.12 1.24 0.88 0.06 0.04 

erdos971 337 1220 41 42 72.35 30 6.45 1.31 22.76 233.27 341.49 

homer 333 1410 99 100 100.98 0 11.52 1.43 - - - 

netscience 352 887 34 35 36.68 1 0.75 0.83 0.55 0.04 0.03 

human-protein 811 2302 95 96 114.32 18 42.85 6.54 117.29 4.35 2.96 

yeast 1488 5873 64 65 118.36 53 198.76 73.19 1560.09 6767.32 102.39 

bible-nouns 1707 9059 364 365 406.08 41 1971.95 81.75 3753.94 89.81 54.97 

hamster 1535 12223 272 273 373.69 100 2279.85 59.68 7626.9 257.63 197.34 

hamster-full 1872 15970 273 274 382.09 108 2890.21 93.89 11424.42 307.26 239.17 

Geom 2811 8651 102 103 157.2 54 247.26 187.6 7965.09 52.56 40.18 

GR-QC 3413 12677 81 82 115.1 33 184.07 577.81 10638.77 23.31 15.17 

HighEnergy 7059 23227 65 66 119.8 53 1880.02 TL TL 216.95 117.95 

US_Power 3353 5006 19 20 21.04 1 5.57 1793.25 74.27 0.15 0.09 

PGPgiantcompo 5434 19070 205 206 215.31 9 416 482.48 17891.21 25.03 8.93 

Notes: See our discussion on preprocessing in Section 3.1.5 and also the caption of Table 4 for additional details on the notation used in 

the table. 
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. “Robust” generalizations 

As briefly outlined in Sections 1 and 3.1.2 , for many real-life 

raphs an induced subgraph that contains the maximum degree 

ertex with all its neighbors, i.e., adjacent vertices, very often turns 

ut to be either an optimal solution or a solution that is nearly 

ptimal; see, e.g., a recent study in Komusiewicz et al. (2019) . An- 

ther supporting evidence for these earlier experimental results 

n the literature is also provided in our computational study in 

ection 3.1.2 if one compares the values computed in the columns 

enoted by “d max ” and “ω̄ 2 ” in Table 4 . These empirical observa- 

ions lead to the following two important viewpoints. 

First, in real-life graphs the greedy heuristic provides a very 

ood feasible solution, which is often also optimal. Thus, branch- 

nd-bound and other enumerative approaches usually need to fo- 

us most of their effort s on proving optimality of such solutions. 

t implies that good quality upper bounds, e.g., those provided by 

he LP relaxations of our MIPs, are critical for improving computa- 

ional performance of the exact methods. These arguments further 

ighlight the importance of our theoretical ( Proposition 3 ) and nu- 

erical ( Tables 2, 3, 4 , and 5 ) results on the LP relaxation tightness

f our MIP models. 

More importantly, the empirical observations in this paper and 

n the related literature imply that in many, if not most, sufficiently 

parse real-life graphs maximum 2-clubs (in particular, those ob- 

ained by the aforementioned greedy procedure) can be viewed 

tructurally as very close to star graphs. Therefore, as also outlined 

n Section 1 , such 2-clubs contain multiple leaf vertices, which are 

ypically connected to the vertex with the maximum degree; the 

atter is often referred to as the “hub” vertex. Hence, such 2-clubs 

re also susceptible to both edge and vertex failures, as they eas- 

ly become disconnected with two or more connected components, 

f either the edge connecting the “hub” and one of the leaf ver- 

ices fails, or the “hub” vertex fails itself, e.g., due to a natural 

ailure or an adversarial attack. These considerations resulted in a 

umber of studies that focus on possible “robust” generalizations 

f the problem ( Almeida & Brás, 2019; Carvalho & Almeida, 2017; 
10 
omusiewicz et al., 2019; Veremyev & Boginski, 2012a; 2012b; 

eremyev, Prokopyev, Boginski, & Pasiliao, 2014; Yezerska, Pajouh, 

 Butenko, 2017 ). 

Next, we discuss two intuitive robust versions of the maximum 

-club problem that directly address the outlined concerns on edge 

nd vertex failures. Formally, let S ⊆ V be a 2-club. Then: 

( i ) The first generalization simply requires that the degree of 

ny vertex in G [ S] should be at least d min , where d min ∈ N is some

redefined constant parameter. Clearly, if d min ≥ 2 , then G [ S] does 

ot contain leaf vertices; also, in order to disconnect such 2-club 

here should be at least d min edge failures ( Veremyev & Boginski, 

012b ). We refer to the problem of finding such S with maximum 

ardinality as the problem of finding a maximum 2-club with the 

inimum degree requirement , see ( Veremyev & Boginski, 2012b ). In 

ection 4.2 we describe how to extend the MIP-based approaches 

rom Sections 2 and 3 in order to model such 2-clubs. 

( ii ) The other generalization is known as the maximum R -robust 

-club problem ( Komusiewicz et al., 2019; Veremyev & Boginski, 

012a ). In this problem we seek a 2-club of maximum cardinality 

hat also has at least R vertex-disjoint paths of length at most 2 be- 

ween any pair of vertices, where R ∈ N . (The paths with the same

ndpoints are vertex-disjoint if they do not have any other ver- 

ex in common.) Hence, such 2-clubs are “protected” (i.e., keep the 

-club property and remain vertex pairwise connected with short 

aths of length at most 2) against up to R − 1 vertex (and/or edge) 

ailures. We discuss the MIP-based methods for this generalization 

n Section 4.3 . 

In Table 6 we compare the maximum cardinality of such “ro- 

ust” 2-clubs for the same set of real-life graphs described in 

ection 2.4.2 . From the results in this table we can make the fol-

owing observations. First, the minimum degree requirement is 

uch less restrictive than the other one based on the availabil- 

ty of R “short” vertex-disjoint paths. For some graphs (see, e.g., 

cspwr04 and celegans ) the minimum degree requirement does 

ot substantially influence the sizes of the maximum 2-club. How- 

ver, in general, the extra “robustness” condition (in particular, the 

vailability of R “short” vertex-disjoint paths) considerably reduces 
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Table 6 

Size comparison of the maximum 2-clubs with extra “robustness” requirements: either the minimum 

degree for each vertex d min or the minimum number R of “short” vertex-disjoint paths between any 

pair of vertices. Symbol “-” indicates that such 2-clubs do not exist. 

2-club with d min R -robust 2-club 

Graph | V | | E| d max d min = 1 d min = 2 d min = 3 R = 2 R = 3 

bcspwr04 274 669 15 16 16 16 12 10 

bus_494 494 586 9 10 7 - 3 - 

bus_662 662 906 9 10 8 8 8 4 

bus_1138 1138 1458 17 18 9 7 7 5 

USAir97 332 2126 139 140 137 133 84 69 

cables 429 636 16 17 10 4 5 4 

celegans 453 2025 237 238 238 228 104 54 

diseasome 516 1188 50 51 49 46 20 14 

LindenStrasse 232 303 13 14 7 - 4 - 

homer 542 1619 99 100 80 65 42 33 

netscience 379 914 34 35 33 31 22 15 

erdos971 429 1312 41 42 41 38 26 20 

HarvardWeb 500 2043 200 201 162 131 43 40 
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he sizes of the maximum 2-clubs. Moreover, in some cases such 

-clubs do not even exist under some rather modest extra “robust- 

ess” requirements (see, e.g., bus_494 and LindenStrasse ). Note 

hat this non-existence scenario occurs for very sparse real-life 

raphs, which is very intuitive. 

We should note that there exist other “robust” generalizations 

f the maximum 2-club problem; see, e.g., Komusiewicz et al. 

2019) ; Pattillo et al. (2013b) ; Yezerska et al. (2017) and the ref-

rences therein. In particular, the study by Komusiewicz et al. 

2019) considers the maximum R -robust 2-club problem and its 

eneralizations ( t -Robust/ t -Hereditary/ t -Connected 2-clubs), and 

evelops specialized exact combinatorial algorithms. The latter 

xploits various efficient data reduction and preprocessing tech- 

iques. As a benchmark, Komusiewicz et al. (2019) uses a version 

f the F2s model that is extended to capture the considered gen- 

ralizations. We leave it as a possible direction of future research 

o explore extensions of our models to the “robust” generalizations 

onsidered in Komusiewicz et al. (2019) . Furthermore, it could be 

f interest to study the advanced data reduction and preprocessing 

echniques proposed in Komusiewicz et al. (2019) to enhance the 

erformance of our approaches. 

Finally, for the details on the computational setting used in our 

xperiments discussed below, we refer the reader to Section 2.4.1 . 

.1. Preprocessing 

For both of the considered generalizations we observe that 

ny vertex such that its degree is smaller than r, where either 

 = d min , or r = R , cannot belong to an optimal solution. Thus, all

uch vertices can be removed from the graph, which, in turn, 

ay reduce the degrees of the remaining vertices. Consequently, 

his procedure, often referred to in the related literature (see, 

.g., Pastukhov, Veremyev, Boginski, & Prokopyev, 2018; Verma, 

uchanan, & Butenko, 2015 ) as “peeling” (or “vertex peeling”), can 

e performed in an iterative manner until the remaining subgraph 

ontains only vertices with degrees at least r. Such subgraph is 

nown as an r-core , see, e.g., Pattillo et al. (2013b) . We apply this

fficient preprocessing procedure (its running time is O (| E| ) ) for 
oth generalizations and report the sizes of the remaining sub- 

raphs (further referred to as either d min -core, or R -core, respec- 

ively) in our computational results; see Tables 7 and 8 . By com- 

aring the graph sizes given in Table 6 with those reported in 

ables 7 and 8 we conclude that the preprocessing procedure is 

ery effective for all of our test instances except celegans when 

 = 2 and R = 2 . 
min 

11 
.2. 2-clubs with the minimum degree requirement 

Next, we assume that G = (V, E) contains only vertices with 

heir degrees at least d min . That is, the preprocessing procedure 

rom Section 4.1 is applied, and G is a d min -core itself in the re-

ainder of this section. 

To solve the problem of finding a maximum 2-club with the 

inimum degree requirement, it is sufficient to add for each MIP 

rom Sections 2 an extra set of linear constraints in the form: ∑ 

j∈ N(i ) 

x j ≥ d min x i ∀ i ∈ V, (11) 

hich ensures that the resulting 2-club contains only vertices with 

egrees at least d min . 

We refer to the resulting MIPs as FD2s , FD2c1 and FD2c2 , 

hich are obtained by adding (11) into F2s , F2c1 and F2c2 , re- 

pectively. Also, the optimal objective function value, i.e., the size 

f the optimal 2-club, is denoted by ω̄ d2 . 

Furthermore, we note that the theoretical results on the LP 

elaxation quality from Section 2.3 , namely, Propositions 3 and 

 , also hold for the considered “robust” version of the problem. 

he corresponding computational results, see the columns de- 

oted by “LP rlx. objective” in Table 7 , are consistent with the 

orresponding results in Table 3 . That is, both LP relaxations of 

D2c1 and FD2c2 are better than that of FD2s in most cases (ex- 

ept celegans and USAir97 ), with FD2c2 being the best one. How- 

ver, we observe that the presence of (11) decreases the qual- 

ty of the LP relaxation based bounds (if one compares the lat- 

er values against the maximum size of the “robust” 2-club given 

y ω̄ d2 ). Consequently, the running times of the solver with MIPs 

D2c1 and FD2c2 significantly deteriorate, see Table 7 . 

However, the “feasibility-check” algorithm ( Algorithm 1 ) from 

ection 3 can be adapted with some modifications to handle both 

onsidered “robust” versions of the problem, see its pseudo-code 

n Algorithm 2 . The modified algorithm provides consistent results 

nd outperforms the considered MIPs, see Table 7 , with respect to 

he running time for most of the instances. 

To conclude the discussion, we briefly describe 

lgorithm 2 next. The feasibility MIP FD2c1 ( � ) can be created 

y adding (11) into F2c1 ( � ). As in the previous approach, FD2c1 ( � )

s solved iteratively for different values of � , see line 14 in 

lgorithm 2 . There are two differences between Algorithms 1 and 

 . First, the lower bound given by (5) cannot be applied. Instead, 

t is replaced by a trivial lower bound � ≥ d min + 1 , see line 13

n Algorithm 2 . Second, the problem is not guaranteed to have 

 feasible solution, see LindenStrasse in Table 7 ; recall also our 
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Table 7 

Comparison of the number of constraints, the optimal objective function values of the LP relaxations and the solution times for formulations FD2s , 

FD2c1 and FD2c2 as well as Algorithm 2 on real-life graphs; see their description and other settings in Section 2.4 . Time limit (TL) is set to 

50,0 0 0 sec. The best LP relaxation objective functions and the best running times are in bold . For each graph we report its size after preprocessing, 

i.e., the size of the corresponding d min -core. 

d min -core LP rlx. objective Time (seconds) 

Graph | V | | E| (| V | 
2 

) | E 2 | ω̄ d2 
ˆ βu 
2 FD2s FD2c1 FD2c2 FD2s FD2c1 FD2c2 Alg. 2 

d min = 2 

bcspwr04 217 612 22824 1999 16 63.7 108.5 53.1 22.2 10.6 11.9 5.7 0.4 

bus_494 277 369 37857 1044 7 46.2 138.5 40.5 10.2 4.4 4.1 0.5 0.2 

bus_662 574 818 163633 2521 8 71.5 287.0 65.0 11.2 156.5 46.8 2.2 0.6 

bus_1138 671 991 223794 3229 9 80.9 335.5 73.3 17.7 1165.9 86.6 2.5 1.1 

USAir97 277 2071 36155 18331 137 191.9 138.5 159.1 156.7 11.1 61.7 TL 11.5 

cables 337 544 56072 1935 10 62.7 168.5 54.8 16.0 33.7 14.7 2.1 0.8 

celegans 445 2017 96773 45256 238 301.4 238.0 253.9 240.6 0.2 954.4 832.4 42.2 

diseasome 420 1092 86898 4929 49 99.8 210.0 85.3 52.3 251.2 57.3 3.6 1.0 

LindenStrasse 116 187 6483 680 7 37.4 58.0 30.5 13.1 0.7 1.2 0.6 0.8 

homer 333 1410 53868 13568 80 165.2 166.5 132.3 101.0 45.5 166.0 TL 6.4 

netscience 352 887 60889 3551 33 84.8 176.0 72.1 36.3 122.4 26.3 3.4 0.6 

erdos971 337 1220 55396 8974 41 134.5 168.5 108.9 72.4 71.6 417.8 TL 215.1 

HarvardWeb 421 1964 86446 30130 162 245.9 210.5 208.2 198.9 64.6 455.2 TL 29.3 

d min = 3 

bcspwr04 169 528 13668 1606 16 57.2 84.5 46.7 22.1 6.3 9.2 7.7 0.3 

bus_494 0 0 - - - - - - - - - - - 

bus_662 17 37 99 65 8 11.9 8.5 10.1 10.1 0.1 0.1 0.4 0.1 

bus_1138 16 29 91 37 7 9.1 8.0 7.63 7.0 < 0 . 1 0.1 0.2 < 0 . 1 

USAir97 227 1982 23669 15308 133 175.5 133.7 148.3 151.1 0.6 272.9 TL 9.5 

cables 43 74 829 169 4 18.9 21.5 15.3 11.0 0.2 0.1 0.5 0.2 

celegans 429 1988 89818 43325 228 294.9 230.2 247.8 234.3 1.4 2434.8 45092.1 36.2 

diseasome 290 873 41032 3343 46 82.3 145.0 69.3 49.6 155.3 123.4 35.2 0.6 

LindenStrasse 0 0 - - - - - - - - - - - 

homer 226 1223 24202 9296 65 136.9 113.0 109.6 93.4 32.4 626.5 TL 4.4 

netscience 265 736 34244 2464 31 70.7 132.5 59.6 33.7 77.7 81.3 4.6 0.3 

erdos971 257 1073 31823 7636 38 124.1 128.5 99.3 71.7 33.5 433.5 TL 391.9 

HarvardWeb 315 1755 47700 18599 131 193.4 157.5 166.1 160.0 72.5 1197.5 TL 13.3 

Table 8 

Comparison of the number of constraints, the optimal objective function values of the LP relaxations and the solution times for formulations FR2s , 

FR2c1 and FR2c2 as well as Algorithm 2 on real-life graphs; see their description and other settings in Section 2.4 . Time limit (TL) is set to 

50,0 0 0 sec. The best LP relaxation objective functions and the best running times are in bold . For each graph we report its size after preprocessing, 

i.e., the size of the corresponding R -core. 

R -core LP rlx. objective Time (seconds) 

Graph | V | | E| (| V | 
2 

) | E R 2 | ω̄ R 2 
ˆ βu 
R 2 FR2s FR2c1 FR2c2 FR2s FR2c1 FR2c2 Alg. 2 

R = 2 

bcspwr04 217 612 23,436 990 12 45.0 108.5 38.8 16.3 26.8 8.8 0.5 0.3 

bus_494 277 369 38,226 101 3 14.7 138.5 13.4 3.7 90.2 3.58 < 0 . 1 < 0 . 1 

bus_662 574 818 164,451 229 8 21.9 287.0 20.3 9.0 3104.2 47.9 0.1 0.1 

bus_1138 671 991 224,785 499 7 32.1 335.5 30.7 7.5 6441.3 71.2 < 0 . 1 0.1 

USAir97 277 2071 38,226 11,937 84 155.0 138.5 127.3 120.2 41.3 185.7 TL 200.9 

cables 337 544 56,616 334 5 26.35 168.5 24.4 6.3 188.6 7.0 0.1 0.1 

celegans 445 2017 102,378 17,872 104 189.6 227.7 154.3 116.9 317.9 924.5 TL 16.8 

diseasome 420 1092 87,990 1664 20 58.2 210.0 52.0 24.9 432.8 36.8 1.2 0.4 

LindenStrasse 116 187 6670 71 4 12.4 58.0 11.1 4.6 2.7 0.4 0.1 < 0 . 1 

homer 333 1410 55,278 5219 42 102.7 166.5 85.4 59.4 186.9 202.0 TL 8.5 

netscience 352 887 61,776 1457 22 54.5 176.0 48.0 22.8 206.7 12.3 0.3 0.2 

erdos971 337 1220 56,616 3465 26 83.8 168.5 70.9 43.4 159.1 42.8 38483.2 15.5 

HarvardWeb 421 1964 88,410 6291 43 112.7 210.5 94.3 52.1 378.2 119.9 373.3 3.2 

R = 3 

bcspwr04 169 528 14,196 560 10 34.0 84.5 28.7 12.9 10.5 3.2 0.3 0.1 

bus_494 0 0 - - - - - - - - - - - 

bus_662 17 37 136 38 4 9.2 8.5 7.6 7.3 < 0 . 1 0.1 < 0 . 1 0.1 

bus_1138 16 29 120 26 5 7.7 8.0 6.0 5.0 < 0 . 1 < 0 . 1 < 0 . 1 < 0 . 1 

USAir97 227 1982 54,946 8076 69 127.6 118.2 104.6 99.5 20.5 110.7 TL 126.6 

cables 43 74 903 23 4 7.3 21.5 6.3 4.0 0.1 0.1 < 0 . 1 < 0 . 1 

celegans 429 1988 91,806 7814 54 125.5 217.8 104.9 69.2 514.2 269.7 48688.5 6.1 

diseasome 290 873 41,905 950 14 44.1 145.0 39.1 17.3 96.9 15.3 0.6 0.2 

LindenStrasse 0 0 - - - - - - - - - - - 

homer 226 1223 25,425 2873 33 76.3 113.0 63.2 47.0 32.0 18.5 3748.0 1.4 

netscience 265 736 34,980 847 15 41.7 132.5 36.4 16.1 56.3 2.6 0.1 0.2 

erdos971 257 1073 32,896 1674 20 58.4 128.5 50.1 32.2 75.8 10.1 236.4 4.6 

HarvardWeb 315 1755 49,455 2781 40 75.1 158.3 64.1 41.6 116.1 20.3 5.0 0.7 

12 
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Algorithm 2: Exact “feasibility-check” algorithm (“robust” 2- 

club). 

1 Input: graph G = (V, E) , either “robustness” parameter d min 

or R ∈ N 

2 Output: maximum “robust” 2-club S ⊆ V (either with the 

minimum degree d min requirement or R -robust 2-club) 

3 begin 

4 G ← either d min -core or R -core of the input graph G , 

depending on the “robust” version considered, after the 

preprocessing procedure from Section 4.1 is applied 

5 FIPs ← either FD2s , or FR2s ~depending on the “robust”

version considered 

6 FMIP1 ← either FD2c1 , or FR2c1 , as above 

7 FMIP2 ← either FD2c2 , or FR2c2 , as above 

8 FMIP1 (� ) ← either FD2c1 ( � ), or FR2c1 ( � ), as above 

9 UB ← minimum value of the optimal objective function 

values after solving the LP relaxations of FIPs , FMIP1 and 

FMIP2 

10 � ← � UB � 
11 � min ← either d min or R depending on the “robust” version 

considered 

12 S ← ∅ 
13 while S is empty and � ≥ � min + 1 do 

14 Solve FMIP1 (� ) 

15 if FMIP1 (� ) is feasible then 

16 S ← { i : x ∗
i 

= 1 , ∀ i ∈ V } , where x ∗ is feasible for 

FMIP1 (� ) 

17 end 

18 � ← � − 1 

19 end 

20 return S 

21 end 
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arlier discussion of Table 6 , where the entry “-” corresponds to 

he values of d min for which a feasible solution does not exists. 

ence, in contrast to Algorithm 1 , in its modified version given 

y Algorithm 2 we have an empty initial feasible solution (see 

ines 12 and 13 of Algorithm 2 ). Furthermore, we need to consider 

 = d min + 1 (see line 13 of Algorithm 2 ), while in Algorithm 1 a

easible solution is readily available for the corresponding lower 

ound (recall lines 6–8 in Algorithm 1 ). 

Finally, it should be pointed out that similar to Algorithm 1 , in 

ur experiments with real-life graphs we compute only the LP re- 

axation of FD2c2 in line 9 of Algorithm 2 , as FD2c2 almost always

rovides the best LP relaxation bound. 

.3. R -robust 2-club 

The standard formulation for the maximum R -robust 2-club 

roblem ( Veremyev & Boginski, 2012a ) is given by: 

 FR2s ] : ω̄ R 2 := max 
∑ 

i ∈ V 
x i (12a) 

subject to 

1 (i, j) ∈ E + 

∑ 

t∈ N (i ) ∩ N ( j) 
x t ≥ R (x i + x j − 1) ∀ (i, j) ∈ 

(
V 

2 

)
, (12b) 

x i ∈ { 0 , 1 } ∀ i ∈ V, (12c) 

here (12b) is a generalization of (1b) , and 1 (i, j) ∈ E indicates 

hether (i, j) ∈ E, i.e., 1 (i, j) ∈ E = 1 if (i, j) ∈ E, and 1 (i, j) ∈ E = 0 if

i, j) / ∈ E. Specifically, (12b) ensures that for any pair of vertices 

i, j) ∈ 

(
V 
2 

)
selected to be in an R -robust 2-club (i.e., x i = x j = 1 ),
13 
here must be at least R − 1 or R common neighbors of vertices i, j

n that R -robust 2-club depending on whether the vertices are ad- 

acent or non-adjacent, respectively. The formulation requires 
(| V | 

2 

)
onstraints. 

To apply our new formulation technique in a more efficient way 

e modify the definition of E 2 in (2) as follows: 

 R 2 = { (i, j) ∈ 

(
V 

2 

)
| | N(i ) ∩ N( j) | + 1 (i, j) ∈ E ≥ R } , 

.e., E R 2 is a set of all vertex pairs in G such that there exist at least

 vertex-disjoint paths of length at most 2 between them. Similar 

n spirit to Section 2 , one would expect that | E R 2 | �| V | 2 for suffi-

iently sparse graphs, see the appropriate columns in Table 8 for 

omparison. 

Given the above notation model F2c1 is generalized as fol- 

ows: 

 FR2c1 ] : ω̄ R 2 = max 
∑ 

i ∈ V 
x i (13a) 

ubject to ∑ 

j ∈ V : (i, j ) ∈ E R 2 
u i j ≥

∑ 

j∈ V 
x j − 1 − μ(1 − x i ) ∀ i ∈ V, (13b) 

u i j ≤ x i , u i j ≤ x j ∀ (i, j) ∈ E R 2 , (13c) 

u i j ≤
1 

R 

( 

1 (i, j) ∈ E + 

∑ 

t∈ N (i ) ∩ N ( j) 
x t 

) 

∀ (i, j) ∈ E R 2 , (13d) 

u i j ≥ 0 , x i ∈ { 0 , 1 } ∀ (i, j) ∈ E R 2 , i ∈ V, (13e) 

here (13d) is a generalization of (3d) , and E 2 is replaced by E R 2 
n the appropriate terms. Similarly, F2c2 becomes: 

 FR2c2 ] : ω̄ R 2 = max 
∑ 

i ∈ V 
x i (14a) 

ubject to 

∑ 

(i, j) ∈ E R 2 
u i j ≥

βu 
R 2 ∑ 

� = β l 
R 2 

� (� − 1) 

2 
z � , (14b) 

u i j ≤ x i , u i j ≤ x j ∀ (i, j) ∈ E R 2 , (14c) 

u i j ≤
1 

R 

( 

1 (i, j) ∈ E + 

∑ 

t∈ N (i ) ∩ N ( j) 
x t 

) 

∀ (i, j) ∈ E R 2 , (14d) 

βu 
R 2 ∑ 

� = β l 
R 2 

�z � = 

∑ 

i ∈ V 
x i , 

βu 
R 2 ∑ 

� = β l 
R 2 

z � = 1 , (14e) 

u i j ≥ 0 , x i ∈ { 0 , 1 } ∀ (i, j) ∈ E R 2 , i ∈ V, (14f) 

z � ∈ { 0 , 1 } ∀ � ∈ { β l 
R 2 , . . . , β

u 
R 2 } , (14g) 

here (14d) corresponds to modified (4d) from F2c2 . Also, β l 
R 2 

nd βu 
R 2 

denote some lower and upper bounds on the size of 

 maximum R -robust 2-club. We use β l 
R 2 

= 0 as such 2-club 

oes not necessarily exist; recall Table 8 . For the upper bound, 

roposition 3 can easily be extended to: 
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orollary 1 (Upper bound on an R -robust 2-club size) . Let S ⊆ V be

n R -robust 2-club in G = (V, E) . Then 

 S| ≤ βu 
R 2 = 

⌊ 

1 + 

√ 

1 + 8 | E R 2 | 
2 

⌋ 

(15) 

nd this bound is sharp. 

Furthermore, Proposition 2 also holds for FR2c2 and thus, 

14g) can be replaced by z � ≥ 0 for all � ∈ { β l 
R 2 

, . . . , βu 
R 2 

} . With re-

pect to the LP relaxation quality, next we assume that G = (V, E) 

ontains only vertices with their degrees at least R after the pre- 

rocessing procedure from Section 4.1 is applied. Then: 

orollary 2 (LP relaxation bounds) . Let ω̄ 
s 
R 2 
, ω̄ 

c1 
R 2 

and ω̄ 
c2 
R 2 

be the 

ptimal objective function values of the LP relaxations of formulations 

R2s , FR2c1 and FR2c2 , respectively, where μ = βu 
R 2 

− 1 and βu 
R 2 

= 

 

1+ 
√ 

1+8 | E R 2 | 
2 

⌋ 

. Then the following inequalities hold, 

( i ) ω̄ 
s 
R 2 

≥ | V | 
2 

( ii ) ω̄ 
c1 
R 2 

≤ ˆ βu 
R 2 

:= 

1+ 
√ 

1+8 | E R 2 | 
2 

( iii ) ω̄ 
c2 
R 2 

≤ ˆ βu 
R 2 

:= 

1+ 
√ 

1+8 | E R 2 | 
2 

To conclude our theoretical development, we point out that 

he feasibility MIPs can be extended in a similar manner, and the 

feasibility-check” algorithm is outlined in Algorithm 2 . Note that 

n the pseudo-code, see Algorithm 2 , we use notation for the “ro- 

ust” feasibility MIPs similar to those used in Section 3.1 . 

The computational results are provided in Table 8 , which are 

onsistent with those in our previous results. Namely, FR2c2 pro- 

ides the best LP relaxation quality (hence, only this model is used 

n line 9 of Algorithm 2 ); furthermore the “feasibility-check” al- 

orithm is typically the best approach with respect to the overall 

unning time. 

. Concluding remarks 

In this paper we consider new MIP models for the maximum 2- 

lub problem and compare them against a classical IP model from 

he literature. The new models are based on exploiting slightly dif- 

erent interpretations of the original “small diameter” requirement 

f this popular clique relaxation model. We demonstrate both the- 

retically and numerically that our MIP models have much better 

P relaxation quality than the standard IP model for sufficiently 

parse graphs. Hence, these LP relaxations can be used to provide 

igh quality (and polynomially computable) upper bounds for the 

izes of maximum 2-clubs in real-life graphs. 

We perform a computational study with real-life and randomly 

enerated graphs to explore the running time performance (when 

olving to optimality) of our models using an off-the-shelf com- 

ercial MIP solver Gurobi ( Gurobi Optimization, 2019 ). If the pre- 

olve (i.e., a collection of various preprocessing routines imple- 

ented in Gurobi ( Achterberg et al., 2020 )) is switched off, then 

he new models substantially outperform the standard model (due 

o a better quality of the LP relaxation). If the presolve is used, 

hen the performance of the standard model improves substan- 

ially; however, the performance of our models is either not af- 

ected or deteriorates. This observation implies that the new mod- 

ls are structurally less amenable to preprocessing routines imple- 

ented in the Gurobi MIP solver. Hence, the classical IP model re- 

ains a viable alternative for solving the problem in reasonably 

ized graphs when using solvers with advanced presolve imple- 

entations. It also opens up an interesting avenue for future re- 

earch to explore both computationally (e.g., by comparing com- 

ercial and open source MIP solvers) and, perhaps, theoretically 

he reasons behind these observations. 
14 
Furthermore, we consider a “feasibility-check” algorithm that it- 

ratively solves feasibility versions of the considered MIPs for each 

ossible 2-club size within some known lower and upper bounds. 

he latter bound is computed using the LP relaxations of new 

odels. Their high quality allows this algorithm to outperform the 

tandard IP model (even when the presolve used in the solver) for 

ufficiently large graphs with up to 10,0 0 0 vertices. As emphasized 

arlier, the key advantage of this feasibility based approach is that 

t is extremely simple to implement and does not require signifi- 

ant implementation efforts. 

Our numerical experiments also support earlier observations 

rom the related literature that in sparse real-life networks maxi- 

um 2-clubs are typically not “robust” with respect to edge and/or 

ertex failures and are easily disconnected into multiple connected 

omponents. Hence, we show how to extend our approaches to 

olving two “robust” (attack- and failure-tolerant) generalizations 

f the maximum 2-club problem. 

With respect to future research directions our results provide 

umerous avenues for further studies. For example, the developed 

ormulations can be directly extended to the 2-club partition or 

overage problems ( Dondi & Lafond, 2019; Dondi, Mauri, Sikora, & 

oppis, 2018; Dondi, Mauri, & Zoppis, 2019; Gschwind, Irnich, Fu- 

ini, & Calvo, 2020; Yezerska, Pajouh, Veremyev, & Butenko, 2019 ). 

n addition, it may be interesting to extend our modeling approach 

o other k -club problems with k ≥ 3 . 

Finally, more results on the polyhedral properties of our MIPs 

re also of interest; see, e.g., ( Buchanan & Salemi, 2020; Pajouh 

t al., 2016 ). For example, the study in Carvalho and Almeida 

2011) builds upon the classical IP model (and its polyhedral prop- 

rties) to develop specialized algorithms and heuristics for solv- 

ng the maximum 2-club problem. A similar direction could be 

ursued in order to explore whether the new models could be 

trengthened, perhaps, in some some combinations with the clas- 

ical approach. Such results may lead to the development of sub- 

tantially more advanced algorithms for solving the considered 

lass of combinatorial optimization problems. 
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ppendix A 

roof of Proposition 1. We demonstrate that any optimal solution 

f formulations F2c1 or F2c2 corresponds to a certain 2-club with 

he size equal to their respective objective function values, and for 

ny 2-club S ′ ⊆ V of graph G we can construct feasible solutions of 

ormulations F2c1 and F2c2 with the objective function value | S ′ | . 
ithout loss of generality, we assume that β l 

2 
= 1 and βu 

2 
= | V | =

 in F2c2 . 

First, we consider F2c1 . Let x ∗ = (x ∗
1 
, . . . , x ∗n ) T and u ∗ =

 u ∗
i j 

| (i, j) ∈ E 2 } be an optimal solution of F2c1 , and let S ∗ = { i ∈
 | x ∗

i 
= 1 } . We need to show that S ∗ is a 2-club. 

Note that constraints (3c) imply that u ∗
i j 

∈ [0 , 1] . Furthermore, if 

 
∗
i j 

> 0 in an optimal solution, then setting u ∗
i j 

= 1 does not violate

onstraint (3b) as it only increases its left-hand side; also, it does 

ot violate constraints (3c) and (3d) as variable x i is binary for all 

 ∈ V . More importantly, this modification does not change the ob- 
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ective function value of F2c1 . Thus, without loss of generality we 

an assume that u ∗
i j 

∈ { 0 , 1 } for all (i, j) ∈ E 2 . 

For any vertex i ∈ S ∗, we have ∑ 

j ∈ V :(i, j ) ∈ E 2 
u ∗i j ≥ | S ∗| − 1 

ue to constraint (3b) . Moreover, since u ∗
i j 

= 0 for any j / ∈ S ∗ and

i, j) ∈ E 2 due to constraints (3c) we have: ∑ 

j ∈ V : (i, j ) ∈ E 2 
u ∗i j = 

∑ 

j ∈ S ∗\{ i } : (i, j ) ∈ E 2 
u ∗i j ≤ | S ∗| − 1 . 

herefore, ∑ 

j ∈ V : (i, j ) ∈ E 2 
u ∗i j = 

∑ 

j ∈ S ∗\{ i } : (i, j ) ∈ E 2 
u ∗i j = | S ∗| − 1 , 

hich implies that for any i, j ∈ S ∗, we have (i, j) ∈ E 2 and u 
∗
i j 

= 1 .

ence, it is either (i, j) ∈ E, or 
∑ 

t∈ N (i ) ∩ N ( j) x ∗t ≥ 1 due to constraint 

3d) . The latter implies that if vertices i ∈ S ∗ and j ∈ S ∗ are not di-

ectly connected by an edge, then they have at least one common 

eighbor t ∈ S ∗. Thus, S ∗ is a 2-club. 

Next, we consider F2c2 . Let x ∗ = (x ∗
1 
, . . . , x ∗n ) T , z ∗ = (z ∗

1 
, . . . , z ∗n ) T ,

 
∗ = { u ∗

i j 
| (i, j) ∈ E 2 } be an optimal solution of F2c2 , and let S ∗ =

 i ∈ V | x ∗
i 

= 1 } . Similarly, to the discussion above we can assume

hat u ∗
i j 

∈ { 0 , 1 } for all (i, j) ∈ E 2 . 

Note that z ∗| S ∗| = 1 and z ∗� = 0 for � ∈ { 1 , . . . , n } , � � = | S ∗| , due to
onstraint (4e) . Therefore, constraint (4b) becomes 

∑ 

i, j) ∈ E 2 
u ∗i j ≥

n ∑ 

� =1 

� (� − 1) 

2 
z ∗� = 

| S ∗| (| S ∗| − 1) 

2 
. 

oreover, due to constraints (4c) we have u ∗
i j 

= 0 if either i ∈ V \ S ∗
r j ∈ V \ S ∗ and (i, j) ∈ E 2 . Hence, ∑ 

i, j) ∈ E 2 
u ∗i j = 

∑ 

(i, j ) ∈ E 2 : i, j ∈ S ∗
u ∗i j ≥

| S ∗| (| S ∗| − 1) 

2 

nd since |{ (i, j) ∈ E 2 | i, j ∈ S ∗}| ≤ |{ i, j ∈ S ∗ | i < j}| = 
| S ∗| (| S ∗|−1) 

2 ,

t follows that ∑ 

i, j ) ∈ E 2 : i, j ∈ S ∗
u ∗i j = 

| S ∗| (| S ∗| − 1) 

2 
. 

he latter implies that for any i, j ∈ S ∗, we have (i, j) ∈ E 2 and

 
∗
i j 

= 1 . Using the same arguments as in the case of F2c1 above,

e conclude that S ∗ is a 2-club. Namely, it is either (i, j) ∈ E, or
 

t∈ N (i ) ∩ N ( j) x ∗t ≥ 1 , which implies that if vertices i ∈ S ∗ and j ∈ S ∗

re not directly connected by an edge, then they have at least one 

ommon neighbor t ∈ S ∗. 
Next, assume that S ′ is a 2-club. For any i, j ∈ V such that

i, j) ∈ E 2 , let 

 
′ 
i = 

{
1 , if i ∈ S ′ , 
0 , if i / ∈ S ′ , and u ′ i j = 

{
1 , if i ∈ S ′ , and j ∈ S ′ , 
0 , if i / ∈ S ′ , or j / ∈ S ′ . 

learly, if i, j ∈ S ′ , then (i, j) ∈ E 2 . Also, it can be verified that x 
′ , u ′ ,

here x ′ = (x ′ 
1 
, . . . , x ′ n ) T and u ′ = { u ′ 

i j 
| (i, j) ∈ E 2 } , is a feasible so-

ution of F2c1 , i.e., it satisfies all modeling constraints. 

Moreover, let z ′ | S ′ | = 1 and z ′ � = 0 for � ∈ { 1 , . . . , n } , � � = | S ′ | , and
 
′ = (z ′ 

1 
, . . . , z ′ n ) T . It is also easy to verify that x ′ , u ′ , z ′ is a feasible

olution of formulation F2c2 . Both objective functions are equal to 

 S ′ | , which completes the proof. �

roof of Proposition 2. Without loss of generality, we assume 

hat β l 
2 

= 1 and βu 
2 

= n . Let x ∗ = (x ∗
1 
, . . . , x ∗n ) T , z ′ = (z ′ 1 , . . . , z ′ n ) T ,

 
∗ = { u ∗

i j 
| (i, j) ∈ E 2 } be an optimal solution of formulation F2c2

ith relaxed variables z , i.e., (4g) is replaced by (6) . Next, suppose
15 
hat z ′ is not a binary vector. Let z ∗ = (z ∗
1 
, . . . , z ∗n ) T be defined as

ollows: 

 
∗
� = 

⎧ ⎨ 

⎩ 

1 , if � = 

∑ 

i ∈ V 
x ∗
i 
, 

0 , if � � = 

∑ 

i ∈ V 
x ∗
i 
. 

(16) 

he definition above and (4e) imply that 

n 
 

� =1 

�z ′ � = 

∑ 

i ∈ V 
x ∗i = 

n ∑ 

� =1 

�z ∗� (17) 

o prove that x ∗, u ∗, z ∗ is also a feasible solution of F2c2 we ap-

ly Jensen’s inequality to convex function f (� ) = � (� − 1) / 2 . Specif-

cally, using Jensen’s inequality and (17) we have: ∑ n 
� =1 

� (� −1) 
2 

z ′ � ∑ n 
� =1 z 

′ 
� 

≥
∑ n 

� =1 �z 
′ 
� 

(∑ n 
� =1 �z 

′ 
� − 1 

)
2 

= 

∑ n 
� =1 �z 

∗
� 

(∑ n 
� =1 �z 

∗
� − 1 

)
2 

= 

n ∑ 

� =1 

� (� − 1) 

2 
z ∗� , 

hich implies that 

∑ 

i, j) ∈ E 2 
u ∗i j ≥

n ∑ 

� =1 

� (� − 1) 

2 
z ′ � ≥

n ∑ 

� =1 

� (� − 1) 

2 
z ∗� 

nd inequality (4b) is also valid for z ∗. Note that the other con- 
traints involving z , i.e., (4e) are valid for z ∗ due to (16) and (17) .

his observation completes the proof. �
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