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We consider the maximum 2-club problem, which aims at finding an induced subgraph of maximum
cardinality with the diameter at most two. Such subgraphs arise from a popular diameter-based clique
relaxation concept, as a subgraph is a clique if and only if its diameter is one. In a 2-club every pair of
non-adjacent vertices has a common neighbor; this “2-hop” property naturally arises in a variety of appli-
cations. In this paper, by exploiting a somewhat different interpretation of the problem, we provide two
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Networks new mixed-integer programming (MIP) models for finding maximum 2-clubs. Our MIPs provide much
Graph theory tighter linear programming (LP) relaxations for sufficiently sparse graphs and have fewer constraints
2-Clubs than the standard integer programming (IP) model at the expense of having slightly more continuous
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variables. We also consider feasibility versions of our MIPs that verify whether there exists a 2-club of
some specified size. Then we incorporate them into a simple-to-implement “feasibility-check” algorithm
that iteratively solves one of the feasibility MIPs for each possible 2-club size within some known lower
and upper bounds. The upper bound is obtained from an LP relaxation of our new MIPs and is shown
to be sharp. Furthermore, we show how to extend our approaches for solving some “robust” (attack- and
failure-tolerant) generalizations of the maximum 2-club problem. Finally, we perform an extensive com-
putational study with randomly generated and real-life graphs to support our theoretical results and to

provide some empirical observations and insights.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Let G= (V,E) be a simple undirected graph with the sets of
vertices (nodes) V and edges E, where |V| =n and |E| = m. Graph
G is called complete if it has all possible edges, i.e., (i, j) € E for
all i, j eV, i# j. A path between i and j in G is a shortest path if
it contains the least number of edges among all paths between i
and j in G; the length (i.e., number of edges) of a shortest path
between two vertices i and j in G is also referred to as the dis-
tance between i and j in G and denoted by d;(i, j). We assume
that dg(i, j) = +oo if there is no path between i and j. The max-
imum distance between any two vertices in G is referred to as
the diameter of G, i.e., diam(G) = max{d;(i, j) | i, j € V}. In the re-
mainder of the paper, without loss of generality, we assume that
diam(G) < +oo, i.e., graph G is connected.
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For any subset of vertices ScV, let G[S] = (S,E’), where E’ =
{(,j) €eE | i, jeS}CE, denote the subgraph induced by S in G. A
clique C is a subset of V such that G[C] is a complete graph; the
problem of finding a clique of maximum cardinality in a given
graph is referred to as the maximum clique problem (Pardalos &
Xue, 1994). This problem is one of the classical NP-hard combi-
natorial optimization problems with numerous applications; see,
e.g., surveys in Butenko and Wilhelm (2006); Garey and Johnson
(2002); Pardalos and Xue (1994).

It has been observed in a number of related studies,
e.g., Komusiewicz (2016) and Pattillo, Youssef, and Butenko
(2013b), that the clique concept is somewhat idealized and too
restrictive in many application contexts as it requires all pair-
wise connections in an induced subgraph. Thus, multiple clique
relaxation models have been introduced in the network analy-
sis and optimization literature to capture more realistic consid-
erations arising in various practical settings; see, for example, a
general framework outlined in Pattillo et al. (2013b). Perhaps one
of the most popular clique relaxation models is the concept of a
k-club, which is defined as a subset of vertices SV such that
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the subgraph G[S] induced by S in G has diameter at most k,
i.e., diam(G[S]) <k, where k is a fixed positive integer. Clearly,
k =1 corresponds to a clique, while having k > 2 defines a graph
with somewhat less restrictive diameter requirements. In the max-
imum k-club problem one seeks to identify a k-club with the max-
imum cardinality; this problem is known to be NP-hard for any
fixed strictly positive integer k; see Balasundaram, Butenko, and
Trukhanov (2005) and Pajouh, Balasundaram, and Hicks (2016).

For 2-clubs every pair of non-adjacent vertices has a common
neighbor. This property, often referred as the “2-hop” property, is
important in many transportation and communication settings. For
example, a star graph, i.e., a graph with one designated vertex as a
“hub” connected to all other vertices with no additional connec-
tions between them, is a well-known example of a 2-club aris-
ing in a variety of real-life applications (Pajouh et al., 2016). This
observation provides a straightforward motivation for an efficient
greedy heuristic for finding large 2-clubs (and general k-clubs, as
any 2-club is also a k-club, k > 3); specifically, the heuristic sim-
ply selects a maximum degree vertex and its neighborhood, see,
e.g., Bourjolly, Laporte, and Pesant (2000). Such an approach is ex-
tremely effective in sparse real-life graphs as it is likely to return
an optimal solution (see our further discussion in Section 4). How-
ever, it is also known that it is NP-hard to determine whether there
exists a 2-club of a strictly larger size than the one constructed in
this greedy manner (Kahruman-Anderoglu, Buchanan, Butenko, &
Prokopyev, 2016).

Furthermore, 2-clubs have a variety of natural interpretations
in social network contexts (Laan, Marx, & Mokken, 2016; Mokken,
1979); one can recall, for example, a well-known “a friend of a
friend” concept widely used in social sciences, see, e.g., Goodreau,
Kitts, and Morris (2009). Similarly, 2-clubs can be exploited for
clustering in data mining as the “2-hop” property may also reflect
some underlying relationships and/or similarity between objects in
a given dataset (e.g., citation of the same document by two dif-
ferent documents in text analytics and web mining applications);
see examples in Jia et al. (2018), Miao and Berleant (2004) and
Terveen, Hill, and Amento (1999).

Generally speaking, 2-clubs form perhaps the “simplest”
distance-based relaxation of a clique as the diameter of one is a
clique-defining property. That is, a graph is a clique if and only if
its diameter is equal to one. By “simplest” we imply that this sub-
graph/cluster model is, in a sense, the easiest and most intuitive
to justify in many real-life contexts. In view of the above discus-
sion, it is not surprising that from the analytical and computa-
tional perspectives the case of k = 2 is the most well-studied class
of the maximum k-club problem, see, e.g., Carvalho and Almeida
(2011), Hartung, Komusiewicz, and Nichterlein (2015), Hartung, Ko-
musiewicz, Nichterlein, and Suchy (2015), Komusiewicz, Nichter-
lein, Niedermeier, and Picker (2019), Laan, Intelligentie, Marx,
Mokken, and van Doornik (2012) and Pajouh et al. (2016) and the
references therein.

In particular, the maximum 2-club problem admits a sim-
ple integer programming (IP) formulation, which is a straightfor-
ward generalization of the classical maximum clique IP model; see
Balasundaram et al. (2005), Bourjolly, Laporte, and Pesant (2002),
Veremyev and Boginski (2012a). Namely, there is a binary variable
for each vertex to indicate whether a vertex is in a feasible solution
(2-club); then for every pair of non-adjacent vertices (i.e., there is
no edge between them) we enforce with a constraint that both
vertices can be in a feasible 2-club only if they have a common
neighboring vertex, which is also in the 2-club. We overview this
IP model, referred to as F2s throughout the paper (this notation
stands for “Formulation for 2-club, standard”), in Section 2.1. Poly-
hedral properties of this classical formulation are studied in Pajouh
et al. (2016); its modeling generalizations for 3-clubs and gen-
eral k-clubs are considered in Almeida and Carvalho (2012) and
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Balasundaram et al. (2005); Bourjolly et al. (2002); Buchanan and
Salemi (2020); Veremyev and Boginski (2012a), respectively.

The first contribution of this paper is to propose two new
mixed-integer programming (MIP) formulations for the maximum
2-club problem that are based on a somewhat different model-
ing interpretation of the problem. In particular, these two new
formulations have slightly more (continuous) variables than the
standard model, however, they require substantially fewer con-
straints for sparse graphs. We describe these models, referred to
as F2c1 and F2¢2 throughout the paper (that is, “Formulation for
2-club, compact”), in Section 2.2. We formally establish that these
two new formulations have much better quality of their linear pro-
gramming (LP) relaxations than the standard F2s model for graphs
with a sufficiently small number of pairs of vertices that are within
the distance of at most 2 from each other. Note that the latter is of-
ten the case in practice as real-life graphs are typically very sparse.

We perform computational experiments with an off-the-shelf
commercial MIP solver (Gurobi Optimization, 2019) to explore the
performance of our new models, F2c1 and F2c2, against the clas-
sical model F2s. Our computational study provides three interest-
ing observations. (i) In contrast to F2s, the new models (in par-
ticular, F2c2) provide much higher quality LP relaxation bounds
for randomly generated and real-life graphs, which is consistent
with our aforementioned theoretical results. (ii) When the presolve
(i.e., a collection of various preprocessing routines implemented in
Gurobi) is switched off, then the new MIP models substantially
outperform F2s with respect to their running times when solving
the problem to optimality. (iii) When the presolve is used, then the
performance of F2s improves substantially; however, the perfor-
mance of F2c1 and F2¢2 is either not affected or deteriorates. This
observation implies that the constraint structure of F2s is more
amenable to preprocessing routines implemented in the Gurobi
MIP solver. Hence, F2s remains a viable alternative for solving the
problem in reasonably sized graphs when using solvers with ad-
vanced MIP presolve implementations. It also opens up an inter-
esting avenue for future research to explore both computationally
and, perhaps, theoretically the reasons behind the latter two ob-
servations.

Furthermore, we consider feasibility versions of these two new
MIPs that verify whether there exists a 2-club of size exactly ¢ ¢ N
in a graph. Then we incorporate them into an easy-to-implement
“feasibility-check” algorithm, see the details in Section 3, that
solves one of these feasibility MIPs for each integer ¢, by iteratively
decreasing it from some upper bound. The bound is derived by
solving the LP relaxations of the new MIPs; hence, their tightness
(observed both experimentally and theoretically) is critical for the
computational performance of the algorithm. In our experiments
this extremely simple method, which we view as the second con-
tribution of the paper, outperforms F2s (even when the presolve is
used) for large graphs with 4,000-10,000 vertices. It is important
to point out that this approach does not require any sophisticated
implementation.

Our third contribution is based on the following intuitive prop-
erty of many real-life graphs. Namely, it is known from the liter-
ature, see, e.g., Hartung et al. (2015); Komusiewicz et al. (2019),
and also observed in our computational experiments, that in real-
life graphs any vertex with the maximum degree and its neighbors
(i.e., adjacent vertices) is often a maximum 2-club. Thus, on the
one hand, from the practical perspective in many real-life graphs
it is rather easy to find a maximum 2-club. On the other hand, it
is much more difficult to verify the global optimality of such “star-
like” solutions.

Moreover, the 2-clubs identified in this manner typically do not
form attack-tolerant (or fault-tolerant) subgraphs as they contain
multiple vertices of degree one. Leaf vertices can be disconnected
from the subgraph by removing the corresponding edges; the lat-
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ter can be viewed as edge failures, e.g., due to an adversarial at-
tack. Furthermore, such subgraphs are also susceptible to vertex
failures, as they easily become disconnected (with multiple con-
nected components), when the “hub” vertex (i.e., the vertex with
the maximum degree) is unavailable/removed/failed. In this paper
we consider two “robust” generalizations from Komusiewicz et al.
(2019); Veremyev and Boginski (2012a,b) that address these issues,
namely, the maximum 2-club problem with some specified min-
imum vertex degree requirement and the maximum R-robust 2-
club problem; see Section 4. Our (third) contribution is that we
show how our MIP models and the “feasibility-check” algorithm
can be adapted to handle these two “robust” versions of the max-
imum 2-club problem in a fairly straightforward manner.

Finally, we summarize our paper in Section 5, where we also
outline promising directions for future research.

2. Integer programming models

We first briefly describe the standard IP model,
see Balasundaram et al. (2005), Bourjolly et al. (2002), Veremyev
and Boginski (2012a), in Section 2.1. Then in Section 2.2 we
introduce two new MIP models. In Section 2.3 we study the LP
relaxation quality of the models and establish that for sufficiently
sparse graphs our MIPs are superior to the standard IP. Finally, in
Section 2.4 we perform computational experiments to support our
theoretical observations using a set of randomly generated and
real-life graph instances.

2.1. Standard formulation

Denote by N(i) the neighborhood of node i € V, i.e., N(i) = {j ¢
V | (i,j) €E}. Let x;, i eV, be a 0-1 variable such that x; =1 if
and only if vertex i is in a maximum 2-club. Then the standard IP
model for solving the maximum 2-club problem is given by:

[F2s]: @, :=max) x (1a)
ieV
subject to
xitx— Y x<1 V(. j) ¢ E. (1b)
teN(HNN()
xle{o’l} VieV, (lc)

where constraint (1b) ensures that a pair of non-adjacent vertices
i and j can be simultaneously in an optimal solution only if there
exists another vertex t in their common neighborhood that is also
in the optimal solution. The number of variables in the formula-
tion is |V|; the number of constraints is w — |E|, which is
©®(|V|?) for sparse graphs. A recent detailed study of the polyhe-
dral properties of this model can be found in Pajouh et al. (2016).

2.2. New formulations

The key idea behind our formulations is to completely avoid
considering vertex pairs i, j with dg(i, j) > 3. We achieve this goal
by introducing a new set of variables u;;, where u;; can be set to
1 if and only if both vertices i and j are selected to be in a 2-club
and the distance between them in a 2-club is at most 2. Let

.. % ..
E; ={G,)) e (2> | do(i, j) <2} (2)
be the set of all vertex pairs of graph G with distance at most 2

from each other. Thus, for this new set of variables it is sufficient
to consider only indices in this set, i.e., (i, j) € E,. Furthermore, we
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treat pairs (i, j) € E; and (j,i) € E; as the same and hence, we as-
sume that the corresponding variables u;; and uj; coincide.

Our first formulation is based on the observation that for any
vertex i eV, if it is in a 2-club, the number of vertex pairs that
share 2-club membership with that vertex should be the size of
the 2-club minus one. Therefore, we have the following model:

[F2c1]: @, =max) x (3a)
ieV
subject to
Z UijZZXj—l —/L(l _Xi) VieV, (Bb)
jev: (i,j)eE; jev
Ujj < X;, Ujj < Xj V(i,j) € E, (3¢)

Ujj < Z X

teN(H)NN(j)

V(i j) € B3, dg(i. j) = 2, (3d)

Ujj >0, x; € {0,1} V(l, ]) ek ieV, (36)

where pu is a sufficiently large constant, so that if x; = 0 then con-
straint (3b) is inactive, e.g., i is an upper bound on the size of
the 2-club minus one. We derive a sharp upper bound on the
size of the 2-club in Section 2.3. Alternatively, we can simply set
u=1|V|-1.

Note that by (3¢) and (3e) each u;; € [0, 1]. Furthermore, if the
right-hand sides of (3¢) and (3d) do not enforce u;; to be equal
to zero, then the left-hand side of (3b) requires the value of u;;
to be equal to one. Therefore, we do not need to enforce binary
restrictions for variables u;; in the resulting MIP model.

Our second model is based on the idea that in order to have a
2-club of size ¢, there should be exactly ¢(¢—1)/2 variables u;;
that can be set to one. This requirement can be enforced using
a classical value-disjunction technique from integer programming
(see, e.g., Vielma (2015)) on the 2-club size; a somewhat similar
approach is used for modeling the maximum quasi-clique problem
in Veremyev, Prokopyev, Butenko, and Pasiliao (2016) and the max-
imum clique problem in Martins (2010)).

Specifically, we define new binary variables z, € {0, 1} for all ¢ €
{1,...,n} such that z, = 1 if and only if }";., x; = ¢. Therefore, we
have the following model:

[F2¢2]: @, =max) x (4a)
ieV
subject to
By
-1
> owzy o (4b)
(i.j)eEs =P}
Ujj < Xj, Ujj < Xj V(i, j) € Ea, (4c)

Y(, j) € Ey, dc(i, j) = 2, (4d)

up< Y. X

teN(H)NN(j)

B3 B
ZZZ(:ZX,', ZZng, (4e)

e=ﬂé ieV z:ﬁé

Ujj = 0, X; € {0, 1} V(l, ]) € E,, ieV, (4f)
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z, €{0,1} Vee{Bh..... By}, (4g)

where ﬁé and Y are some lower and upper bounds on the size of
a maximum 2-club in G, respectively. As outlined in our discussion
in Section 1 we can set

B} = maxdega (i) +1. (5)
l1e

where deg; (i) denotes the degree of vertex i in G, i.e., degg(i) =
IN(i)|. The value of Y can be set to |V|; however, as stated above,
another sharp upper bound on the size of the 2-club proposed in
Section 2.3 can be used.

As mentioned earlier, a constraint similar to (4b) is also used
in Veremyev et al. (2016) for modeling the maximum quasi-clique
problem. The key difference is in defining the left-hand side of
(4b). In Veremyev et al. (2016), the left-hand side of (4b) “counts”
the number of edges in the subgraph, i.e., a quasi-clique, which is
a density-based clique relaxation; see Pattillo et al. (2013b). How-
ever, in F2c2 the left-hand side of (4b) represents the number of
vertex pairs that are within distance 2 in a subgraph (i.e., a 2-club),
which requires our definition of set E; and constraints (4c) and
(4d).

The ideas behind the construction of both MIPs F2c1 and
F2c2 are rather intuitive. We next formally state that the formu-
lations are valid; see the detailed proof in the Appendix.

Proposition 1. The largest 2-club in a graph G is of size ¢* if and
only if the optimal objective values of the formulations F2c1 and F2c2
are equal to ¢*.

Furthermore, in F2¢2 the binary restrictions for z, can be re-
laxed, i.e., (4g) can be replaced by simply having:

Vee (Bl ... BY). (6)

which is formally stated as follows.

z,>0

Proposition 2. There exists an optimal solution x*, u*, z* of formula-
tion F2c2 with binary restrictions for variables z relaxed such that z*
is a binary vector.

The proof of this result (relegated to the Appendix to stream-
line our discussion) is based on a rather standard application of
Jensen’s inequality whenever value-disjunction reformulation ideas
are used; see a similar derivation in Proposition 1 in Veremyev
et al. (2016).

Finally, we should point out that in both models F2¢1 and
F2c2 the total number of variables is ©(|V|+ |E;|); the number
of constraints is O(|V| + |E;|). Note that in sparse real-life graphs
it is typically the case that |E,|«|V|2. Thus, one should expect that
for many real-life graphs the numbers of constraints in F2c1 and
F2¢2 are much smaller than (“;') — |E|, the number of constraints
in F2s.

2.3. Sharp upper bound and LP relaxation analysis

In this section, we derive a sharp upper bound on the maxi-
mum 2-club size, which can be used to set the appropriate values
for parameters u and BY in F2c1 and F2c2, respectively. We also
explore the quality of the LP relaxations of our new formulations
F2c1 and F2¢c2, and compare them against the LP relaxation of F2s.

Proposition 3 (Upper bound on a 2-club size). Let SCV be a 2-
club in G = (V,E). Then

Sl< g — LH JT+8IE| J -

2

and this bound is sharp.
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Proof. By definition, for any pair of vertices i,j S we have
dg(i, j) < dgs) (i, j) < 2. Therefore,

BII=ZD gy (8)

Solving this quadratic inequality with respect to |S| leads to condi-
tion (7). Finally, the sharpness of this bound follows immediately
by considering a star graph with 8% vertices. O

We should note that the derivation idea above (via a quadratic
inequality) is somewhat similar in spirit to the approach used for
deriving the upper bound on the size of the maximum quasi-clique
in a graph; see Pattillo, Veremyev, Butenko, and Boginski (2013a).
The key difference is using set E, instead of E; recall our discussion
on F2¢2 in Section 2.2.

Proposition 4 (LP relaxation bounds). Let @35, @S! and @S? be the
optimal objective function values of the LP relaxations of formula-
tions F2s, F2c1 and F2c2, respectively, where u = B4 —1 and B =

{”7 V];WJ Then the following inequalities hold,

Das > Wl
(i) @y = 5

oy =1 Au . 1+4/1+8|E|
(ii) @s! < By = T/
(iii) @2 < py .= T8I

where B = LB;J by their definitions.

Proof. (i): The inequality follows immediately from the fact that
setting x; = 1/2 for all i e V is a feasible solution of the LP relax-
ation of F2s.

(ii): Let X' = (x],....x)T and o’ = {u;j | (i, j) € E3} be a feasible
solution of the LP relaxation of F2¢1. Then from constraint (3b) we
have:

U= X —1- (B - 1)(1—x),

jev: (i,j)ekE; jev
Yo uz ) XX -x),
jev: (i,j)ekE,; jev

which implies that

YooY upzy (Zx; — X - Bl —x;))

i€V jeV: (i,j)ekE; ieV \ jeV

and hence,

2 ) up=VIY xi— > xi- B[ IVI- ) X ).
(i.j)eEs iev iev ieVv

Recall that By = LB;J, then
By = B,

and thus, from the derivation of Proposition 3, see (8), we have
2 Y uy < 20E) < LB -1).
(i.j)€E;

Next, combining with the previous inequality we have

BiBy - 1) = (IVI-1) Y X+ By (ZX§>

ieV ieV

—VIBE = (V-1 Y X+ B (Zx;) ~ VB

ieV ieV
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Table 1

Problem sizes and the optimal objective function values @3, @' and @$? of
the LP relaxations of F2s, F2c1 and F2c2, respectively, on path graphs with
|V| vertices. The maximum 2-club size is @; = 3. The best results for the LP
relaxation quality are in bold.

vio G)-E BB @ oy ag
5 6 7 4.27 3.0 3.57 3.75
10 36 17 6.35 5.0 5.09 4.35
15 91 27 7.87 7.5 6.50 4.55
100 4851 197 20.36 50.0 17.38 4.93
1000 498,501 1997 63.70 500.0 60.43 4.99
10000 49,985,001 19,997 20048  =5,0000 196.17 4.99

and, equivalently,

(B2 = B>+ (VI - D Y x - By

ieV ieV

which implies that

VI-1+H( B -3 x) =0
ieV
Observe that if Y.y x; > ,35‘ then the above inequality is violated.
Hence, Yy X| < ﬁ;‘ which completes the proof of the proposition.
(iii): Let X/, uw/,Z’ be a feasible solution of the LP relaxation of
F2c2. To prove the bound we apply Jensen’s inequality (as in the

proof of Proposition 2) to convex function f(¢) =¢(¢—1)/2. Ac-
cording to Jensen’s inequality:

u ﬁu / ﬂu /
% Z(Z—l)z, - Zéiﬂﬁ ‘2, (Zliﬂé tz, - 1) _ Yiev xz{(ZieV Xi — 1)
2 t= 2 - 2
=B}

Therefore, due to inequality (4b), we have:

¢ =

a - X (> X =1
Bl Y uyxy LoD, L (22 )
(i.J)<E (=Bl

Considering only the left- and right-hand sides of the above in-
equalities and then solving the corresponding quadratic inequality
(with respect to ) ;x{), as in the proof of Proposition 3, leads to
the desired bound. O

Clearly, the developed result implies that the objective function
values of the LP relaxations of F2c1 and F2¢2 are O(|E;|!/?) and
thus, they are tighter than the LP relaxation quality of F2s for suf-
ficiently sparse graphs, where |E;|«|V|2. However, we would like
to point out that none of the formulations dominate the others, in
general, which we illustrate with the following example.

Let Path(n) denote a path graph G with n vertices V =
{1,....n} and edges E ={(i,i+1) | i=1,...,n—1}. Then for n ¢
{5, 10, 15, 100, 1000, 10000}, in Table 1 we report the optimal ob-
jective function values @3, @S' and @$? of the LP relaxations of F2s,
F2c1 and F2c¢2, respectively. In particular, observe that, for n > 10
the LP relaxation of F2¢2 is better than the others. However, for
n =5 it is the worst one; furthermore, the standard model F2s pro-
vides the best LP relaxation bound. A real-life example, where
F2s has the best LP relaxation bound is given in Section 2.4.3; see
network celegans in Table 3.

As a side note it can be mentioned that to improve the per-
formance of the solver when solving the formulation F2c1 and its
LP relaxation for large instances, the term ) ;. x; in the right-
hand side of constraint (3b) can be replaced by a new variable, say
v, with the corresponding addition to the model of an extra con-
straint v = 3~ ;.y x;. This simple modification preserves the correct-
ness of the model, but makes the constraints matrix more sparse.
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2.4. Computational study: Comparison of the MIP models without
presolve

2.4.1. Preliminaries

The computational experiments were conducted on an HP ma-
chine equipped with Windows 7 x64 operating system, an In-
tel Core i7-3520M processor (CPU 2.90GHz, 2 Cores) and RAM
8 GB. All MIP models are solved using Gurobi Optimizer 8.1
(Gurobi Optimization, 2019) using Python 3.7 interface, and Net-
workX (Hagberg, Swart, & S Chult, 2008) library to handle net-
works. The Gurobi parameters are kept at their default values ex-
cept the time limit and presolve level, which were set to 50,000
seconds and 0 (off), respectively.

With respect to the latter, it should be pointed that the
MIP presolve, i.e., a collection of various preprocessing rou-
tines (Achterberg, Bixby, Gu, Rothberg, & Weninger, 2020), imple-
mented in MIP solvers are software specific. Hence, in this sec-
tion we first explore the MIP models without presolve to have
an idea about potential performance of the models with other
MIP solvers (including open source ones). On the other hand, the
presolve implemented in Gurobi MIP solver significantly improves
the performance of the F2s model. Hence, we discuss this is-
sue in Section 2.4.3 and provide additional computational exper-
iments with the presolve set to the default value (automatic) in
Section 3.1.2.

2.4.2. Test instances

We use both real-life and randomly generated network in-
stances. We focus on a subset of various sparse real-life net-
works obtained from different application domains, in particular,
those, where the considered problem may have some meaning-
ful interpretation. If the original network is disconnected, then we
consider (and report parameters for) its largest connected com-
ponent. This set of real-life networks contains the following in-
stances (all instances including the additional ones considered in
Section 3.1.2 are also available at http://www.pitt.edu/~droleg/files/
2-clubs.html):

o bespwr04 (|V| =274, |E| =669): A representation of a U.S.
power network from Davis and Hu (2011).

bus_494 (|V| = 494, |E| = 586), bus_662 (|V| = 662, |E| = 906),
bus_1138 (|V| = 1138, |E| = 1458) : Bus power systems (Davis &
Hu, 2011).

cables (|V| =429, |E| =636): A network adopted from the
Greg's Cable Map (http://www.cablemap.info), which repre-
sents “the undersea communication infrastructure,” and ob-
tained from Nguyen, Shen, and Thai (2013); Shen, Nguyen,
Xuan, and Thai (2013).

celegans (|V| =453, |E|=2025): Metabolic
C.elegans (Davis & Hu, 2011; DIMACS, 2011).
diseasome (|V| = 516, |E| = 1188): The human disease network
(Goh et al., 2007; Rossi & Ahmed, 2015)

erdos971 (|V| =429, |E| = 1312): Erdos collaboration network,
see Davis and Hu (2011).

HarvardWeb (|V| =500, |E|=2043): Web connectivity ma-
trix (Davis & Hu, 2011).

homer (|V| =542, |[E| = 1619): A social network of Homer’s “II-
iad,” see Graph Coloring and its Generalizations (2004).
 LindenStrasse (|N| =232, |E| =303): A social network of the
German soap opera “Lindenstrasse” (Batagelj & Mrvar, 2006).
netscience (|V| =379, |E| =914): A collaboration network in
network science (Batagelj & Mrvar, 2006; Davis & Hu, 2011).
USAir97 (|V| =332, |[E| =2126): An airline transportation net-
work (Davis & Hu, 2011).

network of

In addition, we consider two classes of randomly generated
graph instances:


http://www.pitt.edu/~droleg/files/2-clubs.html
http://www.cablemap.info)
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Comparison of the number of constraints, the optimal objective function values of the LP relaxations and the solution times (when
solved to optimality) for formulations F2s, F2c1 and F2¢2 on randomly generated graphs. The average values over 10 random instances
are reported. The best LP relaxation objective functions and the best running times are in bold.

LP rlx. objective

Time (seconds)

Graph V| IE| (S —1El  IE| @ By F2s F2c1  F2c¢2 F2s F2c1 F2c2
WS graphs

Ws100 100 200 4750 630.2 76 360 50 298 137 0.7 1.3 1.5
WS200 200 400 19,500 1254.5 7.9 50.6 100 433 136 118 10.0 11.2
WS300 300 600 44,250 1832.6 76 610 150  53.3 133 704 25.7 51.3
WS400 400 800 79,000 2521.8 8.1 715 200 632 13.7 2533 54.6 172.6
WS500 500 1000 123,750 3148.4 8.2 79.9 250 713 13.6 7462 121.7 2204
WS600 600 1200 178,500 3800.4 8.3 877 300 787 137 17557 218.2 518.8
WS700 700 1400 243,250 44192 8.3 94.5 350 85.4 13.7 37687 548.1 726.4
WS800 800 1600 318,000 5103.5 8.5 101.5 400 923 138 71287 9363 1487.0
WS900 900 1800 402,750 5716.8 8.6 107.4 450 982 13.8  12547.0 1696.6 2477.9
WS1000 1000 2000 497,500 63264 84 1130 500 103.6 13.7 200834 2198.7 3268.0
BA graphs

BA100 100 196 4754 12496 253 505 50 409 284 05 2.3 0.7
BA200 200 396 19,504 2859.7 327  76.1 100 623 355 7.7 19.4 15
BA300 300 596 44,254 5199.1 473 1024 150 846  49.0 532 79.1 27
BA400 400 796 79,004 6971.6 504 1185 200 99.1 52.0  199.9 2034 45
BA500 500 996 123,754 9127.9 583 1355 250 1143 59.8 618.8 4494 6.0
BA600 600 1196 178,504 115176 642 1522 300 1291 659  1691.9 705.0 10.7
BA700 700 1396 243,254 13855.1 658 1668 350 1423 67.1 35188 973.3 111
BA800 800 1596 318,004 159656 67.9 179.1 400 1537 69.7 7147.4 12476 194
BA900 900 1796 402,754 184554 773 1925 450 166.1 791 129258 20467  22.7
BA1000 1000 1996 497,504 213178 91.0 2068 500 179.2 921 221823 32595 73.1

o Watts-Strogatz (WS) graphs are constructed based on the
model proposed by Watts and Strogatz (Watts & Strogatz,
1998) and generated using the corresponding function in Net-
workX (Hagberg et al., 2008) library. The sampled graphs can
be “highly clustered, like regular lattices, yet have small charac-
teristic path lengths” (Watts & Strogatz, 1998). We consider all
possible sizes n from 100 to 1000 (with 100 vertex increment).
For each n we generate 10 instances and report the average re-
sults in the corresponding tables, where the instance sets are
labelled as WSn (n is the graph size). The number of neighbors
in the original ring topology and the edge rewiring probability
are set to 4 and 0.15, respectively.

Barabdsi-Albert (BA) graphs are constructed according to
Barabdasi-Albert preferential attachment mechanism (BA
model) (Albert & Barabasi, 2002) and also obtained using
the corresponding function in NetworkX (Hagberg et al., 2008)
library. This model is widely used for generating scale-free
networks. For each n we also generate 10 instances and report
the average results for all instances in the corresponding tables,
where the instance sets are labelled as BAn (n is the graph
size). To approximately match the edge density of WS graphs,
the number of edges attached to any new vertex is set to 2.

2.4.3. Results and discussion

We first discuss our experiments for the randomly constructed
test instances, see Table 2. In particular, we want to point out that
both new MIP models F2c1 and F2c¢2 significantly outperform the
standard formulation F2s with respect to the quality of their LP
relaxations. Note that for F2s the value of @5 is exactly |V|/2 for
all randomly generated instances; on the other hand, the LP re-
laxations of both F2c1 and F2¢2 are much tighter. These compu-
tational observations are consistent with the theoretical results in
Proposition 4.

The results for real-life graphs are reported in Table 3. For al-
most all test instances (except celegans where the largest 2-club
size is larger than |V|/2), both new models F2c1 and F2c2 provide
a better LP relaxation quality than the F2s model, with F2c2 being
typically the best one.

With respect to the solver’s running time performance, we, first,
recall that in the considered set of experiments the presolve is
set 0 (i.e., no preprocessing used) for the MIP solver. In this set-
ting, both new MIP models F2c1 and F2¢2 significantly outperform
the standard formulation F2s with respect to the solver’s running
time for all instances in Table 2. For WS graphs model F2c1 is
the best, while F2¢2 is not far behind; for BA graphs F2c2 pro-
vides the best performance. For real-life graphs in Table 3 there are
only 4 instances (out of 13), namely, celegans, erdos971, homer
and USAir97, where the standard MIP F2s outperforms the new
models.

As briefly mentioned earlier, if the presolve is used, then the
performance of our new models F2c1 and F2c2 is not affected
notably, in fact, it often deteriorates. On the other hand, the
performance of the F2s model improves significantly with re-
spect to the solver’s running time. We provide the correspond-
ing running time results and our additional discussion on this
issue in Section 3.1.2. We conjecture that the constraint struc-
ture of the F2s model is more amenable to various preprocess-
ing routines implemented in the (commercial) Gurobi MIP solver
than the constraint structures of the proposed MIP models. Fur-
ther exploration of this issue both from the theoretical and com-
putational perspectives (e.g., comparing different commercial and
open source MIP solvers) provides an interesting avenue of further
research.

Nevertheless, our empirical and theoretical (recall
Proposition 4) results imply that the LP relaxations of F2¢1 and
F2c¢2 can be used to provide high quality (and polynomially
computable) upper bounds for the maximum 2-club problem.
Furthermore, as we demonstrate next, the good LP relaxation
quality of our new models can be exploited within a simple
iteration-based scheme, where a sequence of MIP feasibility mod-
els is solved. This new “easy-to-implement” approach turns out
to be competitive with F2s (even when the presolve is used),
and outperforms it for larger graphs. Hence, the proposed simple
method allows us to consider much larger real-life graphs (up to
10,000 vertices) in our experiments than those solved by the MIPs
in this section; see further details in Section 3.
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Comparison of the number of constraints, the optimal objective function values of the LP relaxations and the solution times (when solved to
optimality) for formulations F2s, F2c1 and F2c2 on real-life graphs, see their description in Section 2.4.2. Time limit (TL) is set to 50,000 sec.
The best LP relaxation objective functions and the best running times are in bold.

LP rlx. objective Time (seconds)

Graph v |E| (5 - El @ B F2s F2c1  F2c2  F2s F2c1 F2c2
bespwr04 274 669 36,732 2354 16 69.1 1370 589 224 459 22.1 6.3
bus_494 494 586 121,185 1784 10 602 2470 55.1 107 8753 78.5 0.3
bus_662 662 906 217,885 2909 10 768 3310 707 11.6 39148 1975 14
bus_1138 1138 1458 645,495 5002 18 1005 569.0 944 190 TL 1999.3 5.0
USAir97 332 2126 52,820 22,191 140 2112 166.0 1726 1633 27.8 1193  TL
cables 429 636 91,170 2272 17 6791 2145 609 170 4198 55.2 0.2
celegans 453 2025 100353 45351 238 3017 2380 2548 2406 0.2 7734 5382
diseasome 516 1188 131,682 5814 51 1083 2580 940 534 9597 1308 55
LindenStrasse 232 303 26,493 1225 14 500 1160 436 149 262 8.9 0.3
homer 542 1619 144,992 21,728 100 2090 271.0 1703 111.6 7765 22613 161238
netscience 379 914 70,717 3830 35 880 1895 756 374 2004 513 24
erdos971 429 1312 90,494 9904 42 1412 2145 1172 725 3249 6414 TL
HarvardWeb 500 2043 122,707 34255 201 2622 2500 2206 201.0 1794 6760  45.8

3. “Feasibility-check” algorithm

Next, in Section 3.1 we consider feasibility versions of our MIPs
that verify whether there exists a 2-club of size exactly ¢ € N; then
we incorporate one of them (more promising in terms of tight-
ness) into an easy-to-implement “feasibility-check” algorithm as
outlined. Note that the 2-club property is not hereditary (i.e., a
subgraph of a 2-club is not necessarily a 2-club); thus, we need
to consider all possible sizes of the maximum 2-club between
its lower and upper bounds. This observation implies that good
quality lower and upper bounds are extremely important, as a
bisection-like scheme (or, at least its naive version) cannot be ex-
ploited. The computational experiments with our new approach
and its comparison against the MIP solver (with presolve) are pro-
vided in Section 3.1.2.

3.1. Feasibility MIPs and the algorithm

Consider the feasibility versions of formulations F2¢1 and F2c2.
Namely, for each possible value ¢, the formulations further referred
to as F2c1(¢) and F2c2(¢), respectively, verify whether there exists
a 2-club of size exactly ¢. Thus, we obtain:

[F2c1(¢)] : > wp=(-1x VieV, (9a)
jev: (i,j)eE;
Uij < X, Ujj < x;V(i, j) € Ea, (9b)

(i, j) € B2, dg(i, j) = 2, (9¢)

ui< Y %

teN(i)NN(j)

ZX,’ =, (gd)
ieV
uij > 0, Xj € {O, 1} V(l, ]) (<] Ez, ie V, (96)

where constraint (9d) enforces the required size of a 2-club. The
other model is given by:

-1
[F2c2(¢)] : Z uj > % (10a)
(i,j)€E>
Uij < X;, Ujj < Xj V(i j) € Ey, (10b)

V(l’ J) € EZ’ dG(L J):27 (lOC)

Ujj = Z Xt

teN(i)NN(j)

> oxi=¢ (10d)
ieV
Ujj >0, x; € {0,1} V(l, ]) eky,ieV. (lOe)

Next, we observe that if u and x form a feasible solution of the
LP relaxation of F2c1(¢) for a given ¢, then

> w=(e-1x;,

jev: (i,j)ekE,;
and

Yoo wpzy (E-Dx=@E-1)Y xi=(-1)

ieV jeV: (i,j)eE, iev iev
or, equivalently,

2 > uy=ee—1),

(i.j)eE,

which implies that u and x also provide a feasible solution of the
LP relaxation of F2c2(¢) for the same value of ¢. Thus, the tightness
of the LP relaxation of F2c1(¢) is not worse than that of F2c2(¢).
Therefore, we use F2c1(¢) as our main MIP feasibility model in our
algorithm, which we describe next. The formal pseudo-code is pro-
vided in Algorithm 1 .

Specifically, the key idea of the algorithm is to simply verify
by solving MIP F2c1(¢), whether there exists a 2-club of size ex-
actly ¢, where ¢ € N is considered between some lower and upper
bounds. For the lower bound we can use ﬂé given by (5); see line
4 in Algorithm 1. For the upper bound we can use the best upper
bound from those formulations considered in this paper; see line
5 of Algorithm 1. Namely, we can consider the LP relaxations of all
three MIP models; recall Table 1 and our discussion at the end of
Section 2.3 that, in general, none of them dominates the others.

As mentioned earlier, the 2-club property is not hereditary, i.e.,
a subgraph of a 2-club is not necessarily a 2-club. For example,
a cycle with 5 vertices is a 2-club, but this graph does not con-
tain a 2-club of size 4. Hence, in our algorithm in the worst case
we need to solve a feasibility MIP for all possible values of ¢ from
the upper bound to the lower bound plus one; see lines 13-16 in
Algorithm 1.

As we decrease the value of ¢, we can stop the procedure when-
ever a feasible solution is found. One feasible solution is read-
ily available from the lower bound; see lines 6-7 in Algorithm 1.
Clearly, the required number of iterations (i.e., feasibility MIPs
solved) depends on the difference between the upper and lower
bounds used. Therefore, if this number is sufficiently small (which
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Algorithm 1: Exact “feasibility-check” algorithm (2-club) .

1 Input: graph G = (V,E)
2 Qutput: maximum 2-club SV

3 begin

4 | LB« Bl :=maxy deg(i) + 1

5

6

7 | S < (NG Ui
8 ¢ <« UB

9 if LB = UB then
10 | return S

1 end

UB < min{|@3 |, |&5']. &S]}
i* < any vertex from argmax;.ydegg (i)

12 Solve a feasibility MIP, denoted by MIP(¢), that verifies

whether there exists a 2-club of size exactly ¢

13 | while MIP(¢) is infeasible and ¢ > LB+ 2 do

14 L«—0—1

15 Solve MIP(¢)

16 end

17 if MIP(¢) is feasible then

18 \ S < {i: xr =1,VieV}, where x* is feasible for MIP(¢)
19 end

20 return S

21 end

Table 4

[m5G;June 24, 2021;22:47]

European Journal of Operational Research xxx (XXxx) Xxx

is the case if the bounds are tight), then the overall performance
of this approach can be expected to be better than simply solving
one of the original MIPs, F2s, F2c1 and F2c2.

For comparisons with the standard model, F2s, in our exper-
iments discussed next, we also consider the proposed algorithm
with a feasibility version of the F2s model. The latter can be easily
constructed by removing the objective function in (1a) and adding
a cardinality constraint (9d).

3.2. Computational study: “feasibility-check” algorithm and MIP
solver with presolve

3.2.1. Preliminaries

The computational environment (software and hardware) is the
same as in the previous set of experiments, see Section 2.4.1. The
algorithm was implemented in Python 3.7. From our experiments
with real-life graphs in Section 2.4, see Table 3, we observe that
the LP relaxation bound provided by F2¢2 is typically the best one.
Thus, in our implementation and the experiments discussed below
we compute only Ld)§2J in line 5 of Algorithm 1.

3.2.2. Additional test instances

The proposed algorithm allows us to consider an additional set
of real-life networks with larger sizes, approximately up to 10,000
vertices. This additional set contains the following networks:

Performance comparisons of the “feasibility-check” algorithms (multiple versions of Algorithm 1) against Gurobi with F2s and the presolve
option turned on; see column F2s,.. The total solution times for solving the feasibility MIPs in Algorithm 1 (without the time needed for
solving the LP relaxation of F2c2) are reported in the respective columns. In column “F2c2LP” we report the running time for solving the LP
relaxation of F2¢2, which is used as the upper bound (UB) in the algorithm. The total running time of Algorithm 1 is the sum of the running
times of F2c2LP and one of the feasibility MIPs. The best approach (Algorithm 1 vs. F2sp) is in bold.

Time (seconds)

Formulation Algorithm 1 (lines 12-20)
Graph 4 |E| dmax [0} d)gz #iter F2c2LP F2s,re F25(¢) pre F2c1(¢) F2c1(€) pre
bcspwr04 274 669 15 16 22.44 6 0.49 3.88 2.32 0.23 0.22
bus_494 494 586 9 10 10.67 0 0.36 5.03 - - -
bus_662 662 906 9 10 11.6 1 0.94 7.05 2.15 0.05 0.04
bus_1138 1138 1458 17 18 19 1 1.09 6.93 5.29 0.1 0.05
USAir97 332 2126 139 140 163.28 23 30.24 1.52 19.72 4.19 2.31
cables 429 636 16 17 17 0 0.5 1.22 - - -
celegans 453 2025 237 238 24059 2 118.58 4.38 4.69 0.84 0.39
diseasome 516 1188 50 51 53.42 2 191 1.33 2.6 0.13 0.1
LindenStrasse 232 303 13 14 14.88 0 0.13 0.41 - - -
homer 542 1619 99 100 111.6 11 20.75 3.21 22.5 1.93 1.26
netscience 379 914 34 35 37.38 2 0.86 1.03 1.26 0.09 0.09
erdos971 429 1312 41 42 72.51 30 5.62 1.68 35.03 197.15 277.95
HarvardWeb 500 2043 200 201 201.03 0 80.87 3.19 - - -
WS1000_1 1000 2000 7 8 13.81 5 4.28 55.48 149.87 212.03 0.64
WS1000_2 1000 2000 8 9 13.7 4 4.86 35.65 33.94 0.4 0.24
BA1000_1 1000 1996 107 108 11575 7 33.03 15.78 61.85 241 0.88
BA1000_2 1000 1996 69 70 72.33 2 47.97 13.89 16.88 0.61 0.21
cerevisae 1458 1948 56 57 57 0 7.79 14 - - -
human-protein 1615 3106 95 96 11742 21 78.82 32.35 554.87 7.79 524
yeast 2224 6609 64 65 1184 53 252.38 665.18 3273.88 6500.71 141.72
bible-nouns 1707 9059 364 365 406.08 41 1823.08  81.25 3665.99 87.35 53.88
hamster 1788 12476 272 273 37471 101 2375.67  80.69 9807.85 274.5 208.59
hamster-full 2000 16098 273 274 38257 108 2843.01 921 13715.75  316.57 248.36
Geom 3621 9461 102 103 15836 55 406.9 506.4 25946.06  62.65 47.81
GR-QC 4158 13422 81 82 11528 33 234.44 3519.44 26253.4 25.98 1741
Erdosh02 6927 11850 507 508 508 0 5884.51 10612.41 - - -
HighEnergy 8638 24806 65 66 119.8 53 2024.84 TL TL 217.62 116.35
US_Power 4941 6594 19 20 21.07 1 8.71 12689.87  1392.47 0.37 0.16
PGPgiantcompo 10680 24316 205 206 225.07 19 105029 ML ML 80.94 29.44

Notes: For Algorithm 1, we consider its three versions with different feasibility MIPs: F2s(¢) with presolve, and F2¢1(¢) with and without
presolve. If the presolve is used, then it is denoted as subscript “pre” in an MIP. Column “#iter” contains the number of iterations, i.e., the
number of feasibility MIPs solved, given by chgzj — dmax — 1, where dpnax = max;.y degc (i) denotes maximum degree in a graph. Symbol “-”
implies that Algorithm 1 does not need to solve any feasibility MIP as the upper bound provided by the LP relaxation of F2c2 coincides with
the available lower bound; hence, the required number of iterations is 0.
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cerevisae (|V| = 1458, |E| = 1948): Protein-protein interactions

network in yeast Saccharomyces cerevisiae (Balasundaram et al.,

2005; DIMACS, 2011).

o human-protein (|V| = 1615, |E| = 3106): Human protein (stelzl)
network dataset (Kunegis, 2013). The network represents inter-
acting pairs of proteins in Humans (Homo sapiens).

o yeast (|V| = 2224, |E| = 6609): Protein-protein interaction net-

work in yeast (Batagelj & Mrvar, 2006).

bible-nouns (|V| = 1707, |E| = 9059): The lexical network of

nouns of the King James Version of the Bible; an edge indicates

that two nouns appeared together in the same verse (Kunegis,

2013).

hamster (|V|= 1788, |E| = 12476): The network containing

friendships between users of the website hamsterster.com

(Kunegis, 2013).

hamster-full (V| = 2000, |E| = 16098): The network containing

friendships and family links between users of the website ham-

sterster.com (Kunegis, 2013)

Geom (|V| = 3621, |E| = 9461): Collaboration network in com-

putational geometry (Batagelj & Mrvar, 2006).

GR-QC (|V| =4941, |E|=13422): Collaboration network of

Arxiv General Relativity (Rossi & Ahmed, 2015).

Erdos02 (|V| = 6927, |E| = 11850): Erdds collaboration network

from Davis and Hu (2011).

HighEnergy (|V|= 8638, |E| = 24806): Collaboration network

of Arxiv High Energy Physics (Rossi & Ahmed, 2015).

US_Power (|V| = 4941, |E| = 6594): A network representing US

power grid from Davis and Hu (2011).

PGPgiantcompo (|V| = 10680, |E| = 24316): The giant compo-

nent of the network of users of the Pretty-Good-Privacy algo-

rithm for secure information interchange (Davis & Hu, 2011;

Rossi & Ahmed, 2015) (compiled by Bogund, Pastor-Satorras,

Diaz-Guilera, & Arenas (2004)).

3.2.3. Results and discussion

As pointed out in Section 2.4 if the MIP presolve (in Gurobi)
is used, then the performance of the F2s model improves signif-
icantly. Hence, in our experiments next we compare the perfor-
mance of the “feasibility-check” algorithm against the MIP solver
with F2s model under the default MIP presolve setting. Further-
more, we consider three versions of Algorithm 1, where in each
iteration we solve either a feasibility MIP F2s(¢), or F2c1(¢), and
for the latter, we consider two presolve settings (default and off).

The results for the first set of our experiments with two sets of
real-life graphs (see Sections 2.4.2 and 3.1.2 for their detailed de-
scriptions) and 4 additional randomly generated graphs (the largest
from those considered in Section 2.4.2) are provided in Table 4. We
want to point out the following observations:

e The MIP preprocessing routines implemented in Gurobi, i.e.,
presolve, significantly improve the running time performance
(when solving to optimality) of the F2s model; compare the
results for F2s in Tables 3 and 4. On the other hand, in our
experiments the running time performance of our new models
F2c1 and F2c2 either does not change, or deteriorates for all
instances in Table 3 when the presolve is used. Hence, the cor-
responding results for the latter MIP models (with the presolve)
are omitted from Table 4 for brevity.

Comparing the results of F2c2 in Table 3 against F2s in Table 4,
we observe that F2s becomes either competitive or outper-
forms F2¢2. In fact, F2c2 (without presolve) slightly outper-
forms F2s (with presolve) only for bus_494, bus_662, bus_1138,
cables, LindenStrasse, while F2s (with presolve) is better for
the remaining 8 instances.
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o The upper bound provided by the LP relaxation of F2c2 re-
mains relatively good even for the larger networks with several
thousand vertices; see column d)§2 of Table 4. In fact, there are
several real-life instances for which there is no need to solve
the feasibility MIPs (as indicated by 0 in the column “#iter” of
Table 4), as the upper bound provided by the LP relaxation of
F2c2 coincides with the lower bound. In particular, we refer to
networks bus_494, cables, LindenStrasse, HarvardWeb, cere-
visae and Erdos02, where the latter contains about 7000 ver-
tices.

Our simple “feasibility-check” algorithm (specifically, using a
feasibility version of F2c1 under both considered presolve op-
tions) is competitive against the MIP solver with the F2s model
under the default MIP presolve setting for larger instances; see
the bottom of Table 4. In particular, note that Algorithm 1 (with
a feasibility version of F2¢1) outperforms F2s for our 6 largest
test instances (Geom, GR-QC, Erdos02, HighEnergy, US_Power
and PGPgiantcompo). The total running time of Algorithm 1 is
the sum of the running times for solving the LP relaxation of
F2c2 and the corresponding feasibility MIPs. In Table 4 we de-
note in bold the best solution approach in bold that is, either
one of the versions of Algorithm 1 or simply solving model
F2s via the MIP solver; note that for the former whenever the
feasibility MIP does not need to be solved, we mark in bold the
solution time of the LP relaxation.

In Table 4 when comparing the running time needed for solv-
ing multiple feasibility MIPs (i.e., lines 12-20 in Algorithm 1)
and the solution time of MIP F2s we observe that the perfor-
mance of Algorithm 1 could be potentially improved by having
better upper bounding schemes, in particular for larger graphs.
That is, it could be an interesting avenue for future research to
explore upper bounding schemes that can be computed faster
than solving the LP relaxation of F2¢2 to optimality (as in our
computations).

The “feasibility-check” algorithm using a feasibility version of
F2s is not competitive.

The above observations emphasize high-quality of the LP relax-
ation of F2¢2. Hence, the proposed MIP models F2¢1 and F2c2 (or,
at least their LP relaxations) can be exploited for the development
of more advanced solution methods for the maximum 2-club prob-
lem, and further research in this direction seems to be promising.

Next, recall from our discussion in Section 1 that a maximum
degree vertex and its neighborhood form a 2-club, which often
turns out to be an optimal solution. Hence, if a maximum 2-club
contains a leaf vertex (i.e., a vertex with degree one), then this
maximum 2-club should be a maximum degree vertex with its
neighbours. Otherwise, all leaf vertices can be removed from con-
sideration and only the 2-core (i.e, a maximum subgraph such
that the degree of any vertex is at least 2) of the initial graph
needs to be considered. Hence, we need to simply compare and
pick as an optimal solution either a 2-club formed using a maxi-
mum degree vertex (and its neighbourhood), or a maximum 2-club
found in the 2-core of the original graph. We provide additional
details on this preprocessing approach in a more general setting
in Section 4.1.

In Table 5, we explore the same solution methods as in Table 4,
after the outlined preprocessing idea is applied. That is, we con-
sider only the 2-cores of the same graphs as in Table 4. Further-
more, in Table 5 we do not consider graphs that do not contain
leaf vertices (i.e., they are 2-cores by themselves), and graphs, for
which the upper bound provided by the LP relaxation of F2¢2 is
sharp (i.e., there is no need to solve feasibility MIPs). Our ob-
servations from Table 5 are fairly consistent with those made for
Table 4 in our earlier discussion.
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Table 5
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Performance comparisons of the “feasibility-check” algorithms (multiple versions of Algorithm 1) against Gurobi with F2s and the presolve
option turned (see column F2sy.), after additional preprocessing is used for both methods. The size of the remaining 2-core (after prepro-
cessing) is reported in the column “2-core”. In this set of experiments we do not consider graphs that do not contain leaf vertices, and
graphs for which the upper bound provided by the LP relaxation of F2¢2 is sharp.

Time (seconds)

2-core Formulation Algorithm 1 (lines 12-20)
Graph 14 |E| dimax @, 6)52 #iter  F2c2LP F2s,re F28(¢) pre F2c1(¢) F2c1(€) pre
bcspwr04 217 612 15 16 22.21 6 0.53 2.27 1.58 0.26 0.29
bus_662 574 818 9 10 11.31 1 0.69 7.76 1.55 0.04 0.04
bus_1138 671 991 17 18 18.71 0 0.86 2.19 - - -
USAir97 277 2071 139 140  156.99 16 24.86 1.1 9.84 2.42 1.33
celegans 445 2017 237 238 24059 2 128.6 4.08 4.58 0.79 0.42
diseasome 420 1092 50 51 52.26 1 2.12 1.24 0.88 0.06 0.04
erdos971 337 1220 41 42 72.35 30 6.45 131 22.76 233.27 341.49
homer 333 1410 99 100 10098 O 11.52 143 - - -
netscience 352 887 34 35 36.68 1 0.75 0.83 0.55 0.04 0.03
human-protein 811 2302 95 96 11432 18 42.85 6.54 117.29 4.35 2.96
yeast 1488 5873 64 65 11836 53 198.76 73.19 1560.09 6767.32  102.39
bible-nouns 1707 9059 364 365 406.08 41 197195 81.75 3753.94 89.81 54.97
hamster 1535 12223 272 273 373.69 100 2279.85  59.68 7626.9 257.63 197.34
hamster-full 1872 15970 273 274  382.09 108 2890.21  93.89 11424.42  307.26 239.17
Geom 2811 8651 102 103 1572 54 247.26 187.6 7965.09 52.56 40.18
GR-QC 3413 12677 81 82 115.1 33 184.07 577.81 10638.77  23.31 15.17
HighEnergy 7059 23227 65 66 119.8 53 1880.02 TL TL 216.95 117.95
US_Power 3353 5006 19 20 21.04 1 5.57 1793.25  74.27 0.15 0.09
PGPgiantcompo 5434 19070 205 206 21531 9 416 482.48 17891.21  25.03 8.93

Notes: See our discussion on preprocessing in Section 3.1.5 and also the caption of Table 4 for additional details on the notation used in

the table.

4. “Robust” generalizations

As briefly outlined in Sections 1 and 3.1.2, for many real-life
graphs an induced subgraph that contains the maximum degree
vertex with all its neighbors, i.e., adjacent vertices, very often turns
out to be either an optimal solution or a solution that is nearly
optimal; see, e.g., a recent study in Komusiewicz et al. (2019). An-
other supporting evidence for these earlier experimental results
in the literature is also provided in our computational study in
Section 3.1.2 if one compares the values computed in the columns
denoted by “dmax” and “@,” in Table 4. These empirical observa-
tions lead to the following two important viewpoints.

First, in real-life graphs the greedy heuristic provides a very
good feasible solution, which is often also optimal. Thus, branch-
and-bound and other enumerative approaches usually need to fo-
cus most of their efforts on proving optimality of such solutions.
It implies that good quality upper bounds, e.g., those provided by
the LP relaxations of our MIPs, are critical for improving computa-
tional performance of the exact methods. These arguments further
highlight the importance of our theoretical (Proposition 3) and nu-
merical (Tables 2, 3, 4, and 5) results on the LP relaxation tightness
of our MIP models.

More importantly, the empirical observations in this paper and
in the related literature imply that in many, if not most, sufficiently
sparse real-life graphs maximum 2-clubs (in particular, those ob-
tained by the aforementioned greedy procedure) can be viewed
structurally as very close to star graphs. Therefore, as also outlined
in Section 1, such 2-clubs contain multiple leaf vertices, which are
typically connected to the vertex with the maximum degree; the
latter is often referred to as the “hub” vertex. Hence, such 2-clubs
are also susceptible to both edge and vertex failures, as they eas-
ily become disconnected with two or more connected components,
if either the edge connecting the “hub” and one of the leaf ver-
tices fails, or the “hub” vertex fails itself, e.g., due to a natural
failure or an adversarial attack. These considerations resulted in a
number of studies that focus on possible “robust” generalizations
of the problem (Almeida & Bras, 2019; Carvalho & Almeida, 2017;
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Komusiewicz et al., 2019; Veremyev & Boginski, 2012a; 2012b;
Veremyev, Prokopyev, Boginski, & Pasiliao, 2014; Yezerska, Pajouh,
& Butenko, 2017).

Next, we discuss two intuitive robust versions of the maximum
2-club problem that directly address the outlined concerns on edge
and vertex failures. Formally, let S €V be a 2-club. Then:

(i) The first generalization simply requires that the degree of
any vertex in G[S] should be at least d,;,, where d,;; € N is some
predefined constant parameter. Clearly, if d,;, > 2, then G[S] does
not contain leaf vertices; also, in order to disconnect such 2-club
there should be at least d,;, edge failures (Veremyev & Boginski,
2012b). We refer to the problem of finding such S with maximum
cardinality as the problem of finding a maximum 2-club with the
minimum degree requirement, see (Veremyev & Boginski, 2012b). In
Section 4.2 we describe how to extend the MIP-based approaches
from Sections 2 and 3 in order to model such 2-clubs.

(ii) The other generalization is known as the maximum R-robust
2-club problem (Komusiewicz et al., 2019; Veremyev & Boginski,
2012a). In this problem we seek a 2-club of maximum cardinality
that also has at least R vertex-disjoint paths of length at most 2 be-
tween any pair of vertices, where R € N. (The paths with the same
endpoints are vertex-disjoint if they do not have any other ver-
tex in common.) Hence, such 2-clubs are “protected” (i.e., keep the
2-club property and remain vertex pairwise connected with short
paths of length at most 2) against up to R — 1 vertex (and/or edge)
failures. We discuss the MIP-based methods for this generalization
in Section 4.3.

In Table 6 we compare the maximum cardinality of such “ro-
bust” 2-clubs for the same set of real-life graphs described in
Section 2.4.2. From the results in this table we can make the fol-
lowing observations. First, the minimum degree requirement is
much less restrictive than the other one based on the availabil-
ity of R “short” vertex-disjoint paths. For some graphs (see, e.g.,
bcspwr04 and celegans) the minimum degree requirement does
not substantially influence the sizes of the maximum 2-club. How-
ever, in general, the extra “robustness” condition (in particular, the
availability of R “short” vertex-disjoint paths) considerably reduces
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Table 6
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Size comparison of the maximum 2-clubs with extra “robustness” requirements: either the minimum
degree for each vertex dy,;, or the minimum number R of “short” vertex-disjoint paths between any
pair of vertices. Symbol “-” indicates that such 2-clubs do not exist.

2-club with dp;,

R-robust 2-club

Graph 14 [E| dnax ~ Gmin=1 dpn=2 dmn=3 R=2 R=3
bcspwr04 274 669 15 16 16 16 12 10
bus_494 494 586 9 10 7 - 3 -
bus_662 662 906 9 10 8 8 8 4
bus_1138 1138 1458 17 18 9 7 7 5
USAir97 332 2126 139 140 137 133 84 69
cables 429 636 16 17 10 4 5 4
celegans 453 2025 237 238 238 228 104 54
diseasome 516 1188 50 51 49 46 20 14
LindenStrasse 232 303 13 14 7 - 4 -
homer 542 1619 99 100 80 65 42 33
netscience 379 914 34 35 33 31 22 15
erdos971 429 1312 41 42 41 38 26 20
HarvardWeb 500 2043 200 201 162 131 43 40

the sizes of the maximum 2-clubs. Moreover, in some cases such
2-clubs do not even exist under some rather modest extra “robust-
ness” requirements (see, e.g., bus_494 and LindenStrasse). Note
that this non-existence scenario occurs for very sparse real-life
graphs, which is very intuitive.

We should note that there exist other “robust” generalizations
of the maximum 2-club problem; see, e.g., Komusiewicz et al.
(2019); Pattillo et al. (2013b); Yezerska et al. (2017) and the ref-
erences therein. In particular, the study by Komusiewicz et al.
(2019) considers the maximum R-robust 2-club problem and its
generalizations (t-Robust/t-Hereditary/t-Connected 2-clubs), and
develops specialized exact combinatorial algorithms. The latter
exploits various efficient data reduction and preprocessing tech-
niques. As a benchmark, Komusiewicz et al. (2019) uses a version
of the F2s model that is extended to capture the considered gen-
eralizations. We leave it as a possible direction of future research
to explore extensions of our models to the “robust” generalizations
considered in Komusiewicz et al. (2019). Furthermore, it could be
of interest to study the advanced data reduction and preprocessing
techniques proposed in Komusiewicz et al. (2019) to enhance the
performance of our approaches.

Finally, for the details on the computational setting used in our
experiments discussed below, we refer the reader to Section 2.4.1.

4.1. Preprocessing

For both of the considered generalizations we observe that
any vertex such that its degree is smaller than r, where either
T = dpip, OF =R, cannot belong to an optimal solution. Thus, all
such vertices can be removed from the graph, which, in turn,
may reduce the degrees of the remaining vertices. Consequently,
this procedure, often referred to in the related literature (see,
e.g., Pastukhov, Veremyev, Boginski, & Prokopyev, 2018; Verma,
Buchanan, & Butenko, 2015) as “peeling” (or “vertex peeling”), can
be performed in an iterative manner until the remaining subgraph
contains only vertices with degrees at least r. Such subgraph is
known as an r-core, see, e.g., Pattillo et al. (2013b). We apply this
efficient preprocessing procedure (its running time is O(|E|)) for
both generalizations and report the sizes of the remaining sub-
graphs (further referred to as either d,,;,-core, or R-core, respec-
tively) in our computational results; see Tables 7 and 8. By com-
paring the graph sizes given in Table 6 with those reported in
Tables 7 and 8 we conclude that the preprocessing procedure is
very effective for all of our test instances except celegans when
dmin =2 and R= 2.

1

4.2. 2-clubs with the minimum degree requirement

Next, we assume that G = (V,E) contains only vertices with
their degrees at least d;,. That is, the preprocessing procedure
from Section 4.1 is applied, and G is a d;,-core itself in the re-
mainder of this section.

To solve the problem of finding a maximum 2-club with the
minimum degree requirement, it is sufficient to add for each MIP
from Sections 2 an extra set of linear constraints in the form:

Z Xj = dm,»nxi Vie Vv,
JeN()

(11)

which ensures that the resulting 2-club contains only vertices with
degrees at least dpp.

We refer to the resulting MIPs as FD2s, FD2c1 and FD2c2,
which are obtained by adding (11) into F2s, F2¢1 and F2c2, re-
spectively. Also, the optimal objective function value, i.e., the size
of the optimal 2-club, is denoted by @g;.

Furthermore, we note that the theoretical results on the LP
relaxation quality from Section 2.3, namely, Propositions 3 and
4, also hold for the considered “robust” version of the problem.
The corresponding computational results, see the columns de-
noted by “LP rlx. objective” in Table 7, are consistent with the
corresponding results in Table 3. That is, both LP relaxations of
FD2c1 and FD2c2 are better than that of FD2s in most cases (ex-
cept celegans and USAir97), with FD2c2 being the best one. How-
ever, we observe that the presence of (11) decreases the qual-
ity of the LP relaxation based bounds (if one compares the lat-
ter values against the maximum size of the “robust” 2-club given
by @4,). Consequently, the running times of the solver with MIPs
FD2c1 and FD2c¢2 significantly deteriorate, see Table 7.

However, the “feasibility-check” algorithm (Algorithm 1) from
Section 3 can be adapted with some modifications to handle both
considered “robust” versions of the problem, see its pseudo-code
in Algorithm 2 . The modified algorithm provides consistent results
and outperforms the considered MIPs, see Table 7, with respect to
the running time for most of the instances.

To conclude the discussion, we briefly describe
Algorithm 2 next. The feasibility MIP FD2c1(¢) can be created
by adding (11) into F2c1(¢). As in the previous approach, FD2c1(¢)
is solved iteratively for different values of ¢, see line 14 in
Algorithm 2. There are two differences between Algorithms 1 and
2. First, the lower bound given by (5) cannot be applied. Instead,
it is replaced by a trivial lower bound ¢ > d,;, + 1, see line 13
in Algorithm 2. Second, the problem is not guaranteed to have
a feasible solution, see LindenStrasse in Table 7; recall also our
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Table 7

Comparison of the number of constraints, the optimal objective function values of the LP relaxations and the solution times for formulations FD2s,
FD2c1 and FD2c2 as well as Algorithm 2 on real-life graphs; see their description and other settings in Section 2.4. Time limit (TL) is set to
50,000 sec. The best LP relaxation objective functions and the best running times are in bold. For each graph we report its size after preprocessing,
i.e., the size of the corresponding d,;,-core.

dnin-core LP rlx. objective Time (seconds)
Graph V| |E| (';‘) |E, | on Py FD2s  FD2c1 FD2c2 FD2s FD2c1  FD2c2 Alg. 2
dmin=2
bcspwr04 217 612 22824 1999 16 63.7 108.5 53.1 22.2 10.6 11.9 5.7 04
bus_494 277 369 37857 1044 7 46.2 138.5 40.5 10.2 44 41 0.5 0.2
bus_662 574 818 163633 2521 8 715 287.0 65.0 11.2 156.5 46.8 2.2 0.6
bus_1138 671 991 223794 3229 9 80.9 3355 733 17.7 1165.9 86.6 2.5 1.1
USAir97 277 2071 36155 18331 137 191.9 138.5 159.1 156.7 111 61.7 TL 11.5
cables 337 544 56072 1935 10 62.7 168.5 54.8 16.0 33.7 14.7 2.1 0.8
celegans 445 2017 96773 45256 238 3014 238.0 2539 240.6 0.2 954.4 8324 42.2
diseasome 420 1092 86898 4929 49 99.8 210.0 853 523 251.2 57.3 3.6 1.0
LindenStrasse 116 187 6483 680 7 374 58.0 30.5 13.1 0.7 1.2 0.6 0.8
homer 333 1410 53868 13568 80 165.2 166.5 1323 101.0 45.5 166.0 TL 6.4
netscience 352 887 60889 3551 33 84.8 176.0 721 36.3 122.4 26.3 3.4 0.6
erdos971 337 1220 55396 8974 41 134.5 168.5 108.9 724 71.6 417.8 TL 215.1
HarvardWeb 421 1964 86446 30130 162 2459 2105 208.2 198.9 64.6 455.2 TL 29.3
dmin:3
bcspwr04 169 528 13668 1606 16 57.2 84.5 46.7 221 6.3 9.2 7.7 0.3
bus_494 0 0 - - - - - - - - - - -
bus_662 17 37 99 65 8 11.9 8.5 10.1 101 0.1 0.1 0.4 0.1
bus_1138 16 29 91 37 7 9.1 8.0 7.63 7.0 <01 0.1 0.2 <01
USAir97 227 1982 23669 15308 133 1755 133.7 1483 151.1 0.6 272.9 TL 9.5
cables 43 74 829 169 4 18.9 215 15.3 11.0 0.2 01 0.5 0.2
celegans 429 1988 89818 43325 228 2949 230.2 247.8 2343 14 2434.8 45092.1 36.2
diseasome 290 873 41032 3343 46 823 145.0 69.3 49.6 155.3 1234 35.2 0.6
LindenStrasse 0 0 - - - - - - - - - - -
homer 226 1223 24202 9296 65 136.9 113.0 109.6 934 324 626.5 TL 44
netscience 265 736 34244 2464 31 70.7 132.5 59.6 33.7 77.7 81.3 4.6 03
erdos971 257 1073 31823 7636 38 124.1 1285 993 71.7 335 433.5 TL 391.9
HarvardWeb 315 1755 47700 18599 131 193.4 1575 166.1 160.0 72.5 1197.5 TL 133
Table 8

Comparison of the number of constraints, the optimal objective function values of the LP relaxations and the solution times for formulations FR2s,
FR2c1 and FR2c2 as well as Algorithm 2 on real-life graphs; see their description and other settings in Section 2.4. Time limit (TL) is set to
50,000 sec. The best LP relaxation objective functions and the best running times are in bold. For each graph we report its size after preprocessing,
i.e.,, the size of the corresponding R-core.

R-core LP rlx. objective Time (seconds)
Graph \Y |E| ¢4 |Ega| o BY FR2s FR2c1 FR2c2 FR2s FR2c1  FR2c2 Alg. 2
R=2
bcspwr04 217 612 23,436 990 12 45.0 108.5 38.8 16.3 26.8 8.8 0.5 0.3
bus_494 277 369 38,226 101 3 14.7 138.5 134 3.7 90.2 3.58 <01 <01
bus_662 574 818 164,451 229 8 219 287.0 20.3 9.0 3104.2 47.9 0.1 0.1
bus_1138 671 991 224,785 499 7 321 3355 30.7 7.5 6441.3 71.2 <01 0.1
USAir97 277 2071 38,226 11,937 84 155.0 138.5 127.3 120.2 413 185.7 TL 200.9
cables 337 544 56,616 334 5 26.35 168.5 24.4 6.3 188.6 7.0 0.1 0.1
celegans 445 2017 102,378 17,872 104 189.6 227.7 154.3 116.9 317.9 924.5 TL 16.8
diseasome 420 1092 87,990 1664 20 58.2 210.0 52.0 249 432.8 36.8 1.2 0.4
LindenStrasse 116 187 6670 71 4 124 58.0 111 4.6 2.7 0.4 0.1 <0.1
homer 333 1410 55,278 5219 42 102.7 166.5 85.4 59.4 186.9 202.0 TL 8.5
netscience 352 887 61,776 1457 22 54.5 176.0 48.0 22.8 206.7 123 0.3 0.2
erdos971 337 1220 56,616 3465 26 83.8 168.5 70.9 43.4 159.1 42.8 38483.2 155
HarvardWeb 421 1964 88,410 6291 43 112.7 210.5 94.3 52.1 378.2 119.9 3733 3.2
R=3
bcspwr04 169 528 14,196 560 10 34.0 84.5 28.7 129 10.5 3.2 0.3 0.1
bus_494 0 0 - - - - - - - - - - -
bus_662 17 37 136 38 4 9.2 8.5 7.6 7.3 <0.1 0.1 <01 0.1
bus_1138 16 29 120 26 5 7.7 8.0 6.0 5.0 <01 <01 <01 <01
USAir97 227 1982 54,946 8076 69 127.6 118.2 104.6 99.5 20.5 110.7 TL 126.6
cables 43 74 903 23 4 7.3 215 6.3 4.0 0.1 0.1 <01 <01
celegans 429 1988 91,806 7814 54 125.5 217.8 104.9 69.2 514.2 269.7 48688.5 6.1
diseasome 290 873 41,905 950 14 441 145.0 39.1 173 96.9 153 0.6 0.2
LindenStrasse 0 0 - - - - - - - - - - -
homer 226 1223 25,425 2873 33 76.3 113.0 63.2 47.0 32.0 18.5 3748.0 14
netscience 265 736 34,980 847 15 41.7 1325 36.4 16.1 56.3 2.6 0.1 0.2
erdos971 257 1073 32,896 1674 20 58.4 128.5 50.1 32.2 75.8 10.1 236.4 4.6
HarvardWeb 315 1755 49,455 2781 40 75.1 158.3 64.1 41.6 116.1 20.3 5.0 0.7

12
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Algorithm 2: Exact “feasibility-check” algorithm (“robust” 2-
club).

1 Input: graph G = (V, E), either “robustness” parameter d;,
orReN

2 Output: maximum “robust” 2-club S € V (either with the
minimum degree d,;, requirement or R-robust 2-club)

3 begin

4 | G < either d,;,-core or R-core of the input graph G,
depending on the “robust” version considered, after the
preprocessing procedure from Section 4.1 is applied

5 FIPs < either FD2s, or FR2s~depending on the “robust”
version considered

6 FMIP1 < either FD2c1, or FR2c1, as above

7 FMIP2 < either FD2c2, or FR2c2, as above

8 FMIP1(¢) < either FD2c1(¢), or FR2c1(¢), as above

9 | UB <« minimum value of the optimal objective function
values after solving the LP relaxations of FIPs, FMIP1 and
FMIP2

10 ¢ < |UBJ
1 ¢min < either d,;, or R depending on the “robust” version
considered
12 S« ¢
13 | while S is empty and ¢ > ¢,,;, + 1 do
14 Solve FMIP1(¢)
15 if FMIP1(¢) is feasible then
16 S < {i: xf =1,VieV}, where x* is feasible for
FMIP1(¢)
17 end
18 L«—t—1
19 end
20 return S
21 end

“w n

earlier discussion of Table 6, where the entry corresponds to
the values of d,;, for which a feasible solution does not exists.
Hence, in contrast to Algorithm 1, in its modified version given
by Algorithm 2 we have an empty initial feasible solution (see
lines 12 and 13 of Algorithm 2). Furthermore, we need to consider
¢ =dmpip + 1 (see line 13 of Algorithm 2), while in Algorithm 1 a
feasible solution is readily available for the corresponding lower
bound (recall lines 6-8 in Algorithm 1).

Finally, it should be pointed out that similar to Algorithm 1, in
our experiments with real-life graphs we compute only the LP re-
laxation of FD2c2 in line 9 of Algorithm 2, as FD2¢2 almost always
provides the best LP relaxation bound.

4.3. R-robust 2-club

The standard formulation for the maximum R-robust 2-club
problem (Veremyev & Boginski, 2012a) is given by:

[FR2s]: gy :=max ) x; (12a)
ieV
subject to
.. Vv
Lipee+ Y, X =Rxi+x;-1) V(i j) e (2) (12b)
teNHAN()

x; €{0,1} VieV, (12¢)

where (12b) is a generalization of (1b), and 1 ;¢ indicates
whether (l, _]) € E, i.e., ]l(l',j)EE =1 if (l, ]) € E, and ]l(i.j)eE =0 if
(i, j) ¢ E. Specifically, (12b) ensures that for any pair of vertices
(i. j) € () selected to be in an R-robust 2-club (ie., x; =x; = 1),

13
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there must be at least R — 1 or R common neighbors of vertices i, j
in that R-robust 2-club depending on whether the vertices are ad-
jacent or non-adjacent, respectively. The formulation requires (“;')
constraints.

To apply our new formulation technique in a more efficient way
we modify the definition of E;, in (2) as follows:

Erp=1{(i, j) € <‘2/) | IN() NN + 1 jyee = R},

i.e., Egy is a set of all vertex pairs in G such that there exist at least
R vertex-disjoint paths of length at most 2 between them. Similar
in spirit to Section 2, one would expect that |Eg,|«|V|? for suffi-
ciently sparse graphs, see the appropriate columns in Table 8 for
comparison.

Given the above notation model F2c1 is generalized as fol-
lows:

[FR2c1]: &g =max )y x (13a)
ieV
subject to
D> uy=y xj—1—p(l-x) VieV, (13b)
jeV: (i,j)eEgy jev
Ujj < X, Ujj < Xj V(i j) € Era, (13¢c)

Xt> V(i, j) € Ega, (13d)

1
Uij = ¢ (%nes + )

teN(i))NN(j)

uj >0, x;€{0,1} Y(i, j) € Egp,ieV, (13e)

where (13d) is a generalization of (3d), and E, is replaced by Eg,
in the appropriate terms. Similarly, F2c2 becomes:

[FR2c2]: g = maxe,- (14a)
ieV
subject to
Bra
(-1
Z Ui > Z te-n 3 )Zz, (14b)
(i.j)eER, =Pk,
Ujj < Xj, Ujj < X V(i j) € Era. (14c)
1 ..
Uij = | Lajes + Yooox V(i, j) € Ega, (14d)
teN()NN()
Biz Biz
Z 0z, = in, Z z =1, (14e)
Z:ﬂ}zz ieV Z:ﬂ}zz
ujj = 0, x; € {0, 1} Y(i, j) € Egp, i€V, (14f)
2z €{0,1} Vee (B - Bio): (14g)

where (14d) corresponds to modified (4d) from F2c2. Also, ﬂ}zz
and Bj, denote some lower and upper bounds on the size of
a maximum R-robust 2-club. We use ﬁ,’Q:O as such 2-club
does not necessarily exist; recall Table 8. For the upper bound,
Proposition 3 can easily be extended to:
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Corollary 1 (Upper bound on an R-robust 2-club size). Let S C V be
an R-robust 2-club in G = (V,E). Then

1+ /1+ 8|Ea|

| < Bty = 5 (15)

and this bound is sharp.

Furthermore, Proposition 2 also holds for FR2c¢2 and thus,
(14g) can be replaced by z, > 0 for all ¢ {,3,’?2, ... BRy ). With re-
spect to the LP relaxation quality, next we assume that G = (V,E)
contains only vertices with their degrees at least R after the pre-
processing procedure from Section 4.1 is applied. Then:

Corollary 2 (LP relaxation bounds). Let @y, 5’?212 and cb% be the
optimal objective function values of the LP relaxations of formulations
FR2s, FR2c1 and FR2c2, respectively, where u = B¢, — 1 and B, =

{Hi WJ Then the following inequalities hold,

N 1%
(i) @3, = 14!
iy = au . 1+4/1+8]E
(i) o = By 1= T

55y =02 Au . 1+/148Epo|
(iii) of5 < Bf, = Y"1

To conclude our theoretical development, we point out that
the feasibility MIPs can be extended in a similar manner, and the
“feasibility-check” algorithm is outlined in Algorithm 2. Note that
in the pseudo-code, see Algorithm 2, we use notation for the “ro-
bust” feasibility MIPs similar to those used in Section 3.1.

The computational results are provided in Table 8, which are
consistent with those in our previous results. Namely, FR2¢2 pro-
vides the best LP relaxation quality (hence, only this model is used
in line 9 of Algorithm 2); furthermore the “feasibility-check” al-
gorithm is typically the best approach with respect to the overall
running time.

5. Concluding remarks

In this paper we consider new MIP models for the maximum 2-
club problem and compare them against a classical IP model from
the literature. The new models are based on exploiting slightly dif-
ferent interpretations of the original “small diameter” requirement
of this popular clique relaxation model. We demonstrate both the-
oretically and numerically that our MIP models have much better
LP relaxation quality than the standard IP model for sufficiently
sparse graphs. Hence, these LP relaxations can be used to provide
high quality (and polynomially computable) upper bounds for the
sizes of maximum 2-clubs in real-life graphs.

We perform a computational study with real-life and randomly
generated graphs to explore the running time performance (when
solving to optimality) of our models using an off-the-shelf com-
mercial MIP solver Gurobi (Gurobi Optimization, 2019). If the pre-
solve (i.e., a collection of various preprocessing routines imple-
mented in Gurobi (Achterberg et al., 2020)) is switched off, then
the new models substantially outperform the standard model (due
to a better quality of the LP relaxation). If the presolve is used,
then the performance of the standard model improves substan-
tially; however, the performance of our models is either not af-
fected or deteriorates. This observation implies that the new mod-
els are structurally less amenable to preprocessing routines imple-
mented in the Gurobi MIP solver. Hence, the classical IP model re-
mains a viable alternative for solving the problem in reasonably
sized graphs when using solvers with advanced presolve imple-
mentations. It also opens up an interesting avenue for future re-
search to explore both computationally (e.g., by comparing com-
mercial and open source MIP solvers) and, perhaps, theoretically
the reasons behind these observations.
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Furthermore, we consider a “feasibility-check” algorithm that it-
eratively solves feasibility versions of the considered MIPs for each
possible 2-club size within some known lower and upper bounds.
The latter bound is computed using the LP relaxations of new
models. Their high quality allows this algorithm to outperform the
standard IP model (even when the presolve used in the solver) for
sufficiently large graphs with up to 10,000 vertices. As emphasized
earlier, the key advantage of this feasibility based approach is that
it is extremely simple to implement and does not require signifi-
cant implementation efforts.

Our numerical experiments also support earlier observations
from the related literature that in sparse real-life networks maxi-
mum 2-clubs are typically not “robust” with respect to edge and/or
vertex failures and are easily disconnected into multiple connected
components. Hence, we show how to extend our approaches to
solving two “robust” (attack- and failure-tolerant) generalizations
of the maximum 2-club problem.

With respect to future research directions our results provide
numerous avenues for further studies. For example, the developed
formulations can be directly extended to the 2-club partition or
coverage problems (Dondi & Lafond, 2019; Dondi, Mauri, Sikora, &
Zoppis, 2018; Dondi, Mauri, & Zoppis, 2019; Gschwind, Irnich, Fu-
rini, & Calvo, 2020; Yezerska, Pajouh, Veremyev, & Butenko, 2019).
In addition, it may be interesting to extend our modeling approach
to other k-club problems with k > 3.

Finally, more results on the polyhedral properties of our MIPs
are also of interest; see, e.g., (Buchanan & Salemi, 2020; Pajouh
et al, 2016). For example, the study in Carvalho and Almeida
(2011) builds upon the classical IP model (and its polyhedral prop-
erties) to develop specialized algorithms and heuristics for solv-
ing the maximum 2-club problem. A similar direction could be
pursued in order to explore whether the new models could be
strengthened, perhaps, in some some combinations with the clas-
sical approach. Such results may lead to the development of sub-
stantially more advanced algorithms for solving the considered
class of combinatorial optimization problems.
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Appendix A

Proof of Proposition 1. We demonstrate that any optimal solution
of formulations F2c1 or F2¢2 corresponds to a certain 2-club with
the size equal to their respective objective function values, and for
any 2-club §’ € V of graph G we can construct feasible solutions of
formulations F2c1 and F2¢2 with the objective function value |5'|.
Without loss of generality, we assume that B, =1 and B = |[V| =
n in F2c2.

First, we consider F2cl. Let x*= (x%,...,x5)T and u*=
{u;‘j | (i, j) € E;} be an optimal solution of F2c1, and let S* = {i ¢
V | xf = 1}. We need to show that S$* is a 2-club.

Note that constraints (3c) imply that uj; € [0, 1]. Furthermore, if
u;*j > 0 in an optimal solution, then setting u;*j =1 does not violate
constraint (3b) as it only increases its left-hand side; also, it does
not violate constraints (3c) and (3d) as variable x; is binary for all
i € V. More importantly, this modification does not change the ob-
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jective function value of F2c1. Thus, without loss of generality we
can assume that uj € {0, 1} for all (i, j) € Es.
For any vertex i € S*, we have

doooup= s -1
jev:(i,j)eE;
due to constraint (3b). Moreover, since u;‘j =0 for any j ¢ S* and
(i, j) € E5 due to constraints (3c¢) we have:

Yooou= Y u<|s-1

jev: (i,j)eE; jeS\{i}: (i.j)eE;

Therefore,
O !
JjeV: (i.j)eE; jes\{i}: (i.j)eEy

which implies that for any i, j € S*, we have (i, j) € E; and u* =1.
Hence, it is either (i, j) € E, or 3 ingnn) Xf = 1 due to constralnt
(3d). The latter implies that if vertices i € S* and j € S* are not di-
rectly connected by an edge, then they have at least one common
neighbor ¢ € $*. Thus, $* is a 2-club.

Next we consider F2¢2. Let x* = (x*,...,.x)T, 2zt = (z4,..., 2T,
= {u | (i, j) € E;} be an optimal solutlon of F2¢2, and let St =
{1 eV | xf = 1}. Similarly, to the discussion above we can assume

that uj; € {0, 1} for all (i, j) € E>.
Note that Zs.| =1and z; =0 for ¢ € {1,...,n}, ¢+ |S*, due to
constraint (4e). Therefore, constraint (4b) becomes

"o -1 SH(1S*] = 1
ZU?}ZZ( )z;f=| [(]S*] ).

(i.j)eE; =1

Moreover, due to constraints (4c) we have u;‘j =0 if eitherieV \ S*
or jeV\S*and (i, j) € E;. Hence,

. L ISAsH =1
Z Ujj = Z ujj = - 2
(i.j)eEs (i.j)eEy: i,jeS*
and since [{(i,j) € F | i,j €S} <|{i.jeS | i<jjl =S50,
it follows that
L IS1AsT =1
Z uij = 2

(i.j)eEy: ijeS*

The latter implies that for any i, j € S*, we have (i, j) € E; and
uj = 1. Using the same arguments as in the case of F2c1 above,
we conclude that S* is a 2-club. Namely, it is either (i, j) € E, or
YteN@nNG) X = 1, which implies that if vertices i € S* and j e $*
are not directly connected by an edge, then they have at least one
common neighbor t e S*.

Next, assume that S’ is a 2-club. For any i, jeV such that
(@, j) € E, let
X{_{L ifieS, 4 _ {1, ificS, and je§,

7o, ifi¢s, U)o, ifigSs, orjg§s.

Clearly, if i, j € §, then (i, j) € E2 Also, it can be verified that X/, o/,
where X' = (x]. ..., x; )T and o’ = {u | (i, j) € Ey}, is a feasible so-
lution of F2c1, ie it satisfies all modelmg constraints.

Moreover, let Z|5/| =1and z, =0 for ¢ {1,...,n},¢#|5], and
7 =(Z,,....z)7. It is also easy to verify that X', w’,Z’ is a feasible
solution of formulation F2¢2. Both objective functions are equal to

|S’], which completes the proof. O

Proof of Proposition 2. Without loss of generality, we assume
that Bi=1 and BY=n. Let x* = (x},....x;)7T, 2 = (Z}.....2))",

= {u | (i,j) € E;} be an optimal solution of formulation F2¢c2
w1th relaxed variables z, i.e., (4g) is replaced by (6). Next, suppose
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that z’ is not a binary vector. Let z* = (z%,...,z5)T be defined as
follows:
1, ife=)x;,
zi = e (16)
0, if £# Y x5
ieV

The definition above and (4e) imply that
n n

Yz =) xr=> "tz

=1 ieV =1

To prove that x*, u*, z* is also a feasible solution of F2¢2 we ap-

ply Jensen’s inequality to convex function f(¢) = ¢(¢ — 1)/2. Specif-
ically, using Jensen’s inequality and (17) we have:

(17)

i Gl XXz -1) X (T ez - 1)
Z?—1 z, T~ 2 a 2
e(z - 1)

—Z

which implies that

> u ,,_z‘f“

(i.j)eEr

and inequality (4b) is also valid for z*. Note that the other con-
straints involving z, i.e., (4e) are valid for z* due to (16) and (17).
This observation completes the proof. O

1 n -1
),>Z€(€2 )Z?

Z, =
=1
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