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Abstract— A method is developed for transforming chance
constrained optimization problems to a form numerically
solvable. The transformation is accomplished by reformulat-
ing the chance constraints as nonlinear constraints using a
method that combines the previously developed Split-Bernstein
approximation and kernel density estimator (KDE) methods.
The Split-Bernstein approximation in a particular form is a
biased kernel density estimator. The bias of this kernel leads to
a nonlinear approximation that does not violate the bounds
of the original chance constraint. The method of applying
biased KDEs to reformulate chance constraints as nonlinear
constraints transforms the chance constrained optimization
problem to a deterministic optimization problems that retains
key properties of the chance constrained optimization problem
and can be solved numerically. This method can be applied
to chance constrained optimal control problems. As a result,
the Split-Bernstein and Gaussian kernels are applied to a
chance constrained optimal control problem and the results
are compared.

I. INTRODUCTION

Chance constrained optimization problems arise in var-
ious engineering and non-engineering applications as such
problems account for uncertainty in the constraints of op-
timization problems. One application of interest is chance
constrained optimal control. For chance constrained optimal
control, possible applications include trajectory optimization
under uncertain conditions including GPS blackout during
atmospheric entry and fuzzy boundaries on geographic no
fly zones, as well as optimal natural disaster tracking such
as forest fire growth and propagation. Due to the probabilistic
formulation of chance constraints, numerically solving these
chance constrained optimization problems is challenging. As
a result, methods are being developed that look indepen-
dently at chance constraints to transform them to a more
tractable form in terms of computation. The methods can
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then be applied to chance constrained optimization problems
and by extension chance constrained optimal control prob-
lems.

Chance constraints are defined in probability space as
being dependent on random variables and bounded by some
risk violation parameter. This probability is equal to the
expectation (mean) of the indicator function and so the
constraint can be redefined in terms of this expectation.
Solving optimization problems with chance constraints de-
fined relative to the indicator function also suffers from
intractibility issues. It has been shown in recent works [1]—
[4] that functions can be designed with expectations that
are conservative approximations of the expectation of the
indicator function. In the method of [1]-[3], Markov Chain
Monte Carlo (MCMC) sampling is used to obtain samples of
the random variable under the assumption that determining
the expectation of the functions analytically is difficult or
impossible. In the method of [4], the random variables are
assumed to have certain properties by which samples can be
readily obtained. Thus by applying some form of sampling,
the described methods approximate the chance constraints as
expectations of functions designed such that the expectation
does not violate the bounds of the original chance constraint.
The disadvantage of this class of methods is that the resulting
approximate nonlinear constraint can be too conservative as
compared to the original chance constraint.

Another class of methods for transforming the chance
constraints to nonlinear constraints focuses on obtaining
approximations that are not too conservative, at the expense
of possibly violating the bounds of the original chance
constraint. These methods define approximate probability
density functions (PDFs) of the random variables. In the
methods of [5] and [6], non-parametric approximate PDFs
are obtained from samples of the random variables. In par-
ticular, the method of [5] obtains these PDF approximations
using kernel density estimators (KDEs). The expectation
of the integrated kernels of the KDEs is an approximate
cumulative distribution function (CDF). This approximate
CDF is a nonlinear constraint approximation of the original
chance constraint that may violate the bounds of the original
chance constraint. Despite the disadvantage of this possible
violation, the use of KDEs to obtain nonlinear constraints
is an attractive option as there are several well-known
kernels including the Epanechnikov, Gaussian and triangular
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kernels that can be applied to obtain a nonlinear constraint
approximation that is not overly-conservative relative to the
chance constraint.

Looking again at the method from [2] and [3], where
a Split-Bernstein constraint approximation is defined that
does not violate the bounds of the chance constraint, it can
be shown that with the correct choice of parameters this
approximation is a biased KDE. This bias is what leads
to an approximation of the chance constraint that does not
violate the bounds of the chance constraint. Additionally,
the Split-Bernstein approximation in KDE form is a less
conservative approximation of the chance constraint. As a
result, the objective of this paper is to show the connection
of biasing kernels to obtain a KDE constraint approximation
that does not violate the bounds of the chance constraint.
Two of these biased kernels will then be applied to a
chance constrained optimal control problem to transform
the problem to a deterministic optimal control problem that
is solved using a Legendre-Gauss-Radau (LGR) collocation
method [7]-[9]. The solutions will be compared to study the
differences between the two kernels.

The paper is organized as follows. Section II briefly de-
scribes the Split-Bernstein approximation and its KDE form.
Section III derives an expression for the bias of the Split-
Bernstein kernel as well as providing a comparison to other
kernels. Section IV describes a chance constrained optimal
control problem. Section V describes the LGR collocation
method. Section VI describes the chance constrained optimal
control problem and solutions obtained using both kernels.
Section VII provides some brief conclusions.

II. SPLIT-BERNSTEIN: KERNEL DENSITY ESTIMATOR
Consider the chance constrained optimization problem

P(F(z,§) >q) > 1—¢, (1)

where z is a decision variable defined on the feasible set
Z C R" and £ is a random variable with a probability
density function (PDF) f¢(§) supported on set Q C RY.
To account for the possibility of the PDF being difficult
or impossible to integrate analytically, either Markov Chain
Monte Carlo (MCMC) sampling will be applied to obtain
samples or it is assumed that samples are available. The
function F(z,£) > q is an event in the probability space P(-),
where F(-) maps R" x R? — R" and ¢ is the risk violation
parameter. The function (F(z,&) is itself a random variable
whose probabilistic properties are assumed unknown. As a
result, the complement of the constraint of (1) can be defined
as

Py <q)<e. 2)

The event of the chance constraint is in vector form, and
so the constraint is a joint chance constraint. Using Boole’s
inequality and the approach of [2] and [10], the original
chance constraint can be redefined as the following set of
conservative scalar constraints

P(‘I/ < Qm) < &p,
< (3)

where m € 1,...,ng is the index corresponding to the mth
component of the event.
The following is a known property of probability:

1 =&y <P(Y > qm) =E¢[ly, 1o (@Y —qm))], @)

where Eg[(-)] is the expectation. Applying the expectation
of the Split-Bernstein function Eq(+) from [2] to (1) gives:

Ef; [l[q:n,+°°)(a(w_ Qm))] < Ec‘; [Ea(a(ll/— q:n))]a )]

_ i — >
Ea(a(W—Qm)) — eXP(O‘+(‘I’ Qm))a lf V—qm _07
exp(a— (Y —gm)), if ¥ —gqm <O0.
(6)
When enough MCMC samples of the random variable & are
available, the inequality from (5) can be approximated as the
following inequality (as proven in [2]):

LY expla(an

J€J+

qm — Wj)) < Em,

(N
where j = 1,...,N is the number of MCMC samples,
oy and «a_ are user defined parameters, and the event
is sorted per MCMC sample as J; € (¢, — ) >0) and
J_ € (gm — v <0). The left hand side of (7) can exceed unity
and so is not an approximate cumulative distribution function
(CDF), leading to an overly-conservative chance constraint
approximation. It is possible, however, to set oy equal to
zero, and a_ to a sufficiently large number. As a result,
substituting o =0 and @— = ¢ in (7) results in the following
reformulation of (7):

—ZH——Zexp

]€J+ jE],

—y)+~ ¥ expla(q
NJEL

vj))) < & ®)

The left hand side of (8) is now an approximate CDF
that is a less conservative chance constraint approximation
than (7). Using (8), the approximate Split-Bernstein PDF is
then defined as:

CIm - WJ)) )

Zo+

J€J+

Y aexp(a

]EJ,

flVCIm =

To show that the Split-Bernstein approximate PDF in the
form of (9) is a KDE, first the general form of a KDE is
defined as N

where k(-) is the kernel, / is the bandwidth, and 7 is defined
as follows:
— VY

=T

(10)

3‘\'—‘

(1)

Setting ¢ from (9) as:

1

B’ (12)
(9) is in the form of a KDE from (10) with the Split-Bernstein
kernel kgp defined as

0, T]j>0

(13)
exp(n;), n; <0.

ksg(n;) = {
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With the approximate PDF of the Split-Bernstein method
now in the form of a KDE, it is left to prove that the
derived Split-Bernstein “kernel” satisfies the criteria for an
actual kernel. This criteria is not universally defined [11],
[12], so the authors here apply the following criteria that
encompasses generally accepted requirements as

1) k(n;) =0,

2) [TZk(x)dx=1,

3) 0< [T2x%k(x)dx < +oo.

For case (1), the Split-Bernstein kernel is zero for n > 0 and
always greater than zero for 1 <0. Showing that case (2) is
satisfied is straightforward:

oo 0 oo 0
/ k(x)dx = / exp(x) + 0=exp(x)| +0=1.

— oo —oo 0 —o0

(14)
Case(3) is proven as follows:
o0 0 oo
/ k(x)dx = / x% exp(x)dx + 0dx=2. (15)
— o0 —oo 0

It has been shown that the Split-Bernstein approximation
method yields a kernel that satisfies the definition of a kernel
for ory = 0. When this kernel is applied, the Split-Bernstein
approximation is a KDE.

III. BIASED KERNEL DENSITY ESTIMATORS

KDEs place a kernel at each sample point and approximate
the true PDF of the samples as the average weighted distance
evaluated at each kernel. Integrating the kernel results in
a function that converges to the indicator function with
decreasing bandwidth. The bandwidth cannot be set equal to
zero, however, as the variance of the kernel increases while
the bandwidth decreases. Care must be taken in choosing
a bandwidth that best accounts for this trade off. The
expectation of the integrated kernels at each sample is an
approximate CDF, and so provides an approximation of the
chance constraint. The relation between the probability of the
chance constraint and the approximate CDF is influenced by
shifting the expectation of the kernel, which will be referred
to as biasing the kernel.

In order to better characterize the bias, first the form of
the KDE approximate CDF is derived as follows. Consider
the KDE approximate probability of the chance constraint
from (3) in terms of the approximate PDF from (10):

PV <gm) :/

dm .
y(X)dx =

Z/q'" (x "’f>dx. (16)

Using the definition of n; from (11), (16) can be reformu-

lated as
N
Z/

1 & ram X—
— k
i L k() e
Jj=
Substituting the result of (17) into (16), the KDE approxi-
mate probability in terms of the chance constraint is defined

—o0

k(nj)dn;. (A7)

0.8+

ksp(n

0.2+

-10 -5 0 5 10

Fig. 1. Split-Bernstein kernel.

as follows:
N qm— ‘l/]

P(y < gqm)~ Z/ (18)

77/ dr’ja

where the right hand side is an approximate CDF that
can possibly violate the bounds of the chance constraint.
By contrast, applying the Split-Bernstein kernel to define
an approximate CDF results in an approximate CDF that
remains within the bounds of the chance constraint as seen
in (8), due to the bias of Split-Bernstein kernel.

The Split-Bernstein kernel from (2) has a sail like shape
from —oo to zero and is zero otherwise as can be seen in
Fig. 1. This shape implies that the kernel is biased. To prove
this bias, first a point w is defined at which half of the total
area under of the curve of the kernel lies. Next the integration
of the Split-Bernstein kernel from —oo to w can be defined
as:

w
/ exp(x)dx=0.5,

—oo

w
=0.5,

—o0

= exp(x)

19)

= 0+exp(w) =0.5,
w =1In(0.5).

Then applying the definition of 1 from (11), the mean of the
Split-Bernstein kernel p can be determined as:

W= ”T"’f —In (;) <0, > p— wj+hln(;>7 (20)
proving that the Split-Bernstein kernel has a bias of Aln (%)
that is dependent on the bandwidth.

The bias of the Split-Bernstein kernel ensures that the
expectation of the integrated kernel (which is the Split-
Bernstein function EZ,) results in an upper bound on the
expectation of the indicator function as defined in (5). To
demonstrate the relation of bias to the indicator function,
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Fig. 2.

Biased integrated kernel functions and the indicator function.

the function K(-) for the Split-Bernstein kernel and biased
Gaussian kernel is plotted in Fig. 2 along with the indicator
function. For Fig. 2, the function K(-) is the integration of the
Split-Bernstein and Gaussian kernels. The Gaussian kernel in
Fig. 2 has been biased by 3 * g to ensure that at least 99%
of the Gaussian function K(-) is greater than the indicator
function, where hg is the Gaussian bandwidth. In summary,
biasing a kernel such that its integrated function K(-) is
greater than the indicator function and applying MCMC
sampling leads to the following inequality:

1y

L [T Hpan <pty<an <en @1
where the left most expression is the biased KDE nonlinear
constraint approximation. This method of biasing kernels and
applying MCMC sampling to reformulate chance constraints
as nonlinear constraints transforms chance constrained opti-
mization problems to deterministic optimization problems.
Extending this discussion to chance constrained optimal
control problems (CCOCPs), the method of biased KDEs
can be applied to transform CCOCPs to deterministic optimal
control problems solvable using numerical methods.

IV. CHANCE CONSTRAINED OPTIMAL CONTROL
PROBLEM

Without loss of generality, consider the following CCOCP.
Determine the state y(7) € R™ and the control u(t) € R™ on
the domain 7 € [—1,+1], the initial time, #y, and the terminal

the inequality path constraints

Cmin < ¢(¥(7),u(7),2(7,70,17)) < Cmax, (22¢)
the boundary conditions
bomin <b(y(=1),00,¥(+1),17) <bmax,  (22d)
and the chance-constraints
P(F(y(7),u(7),1(z,10,17):8) <q) 2 1—e. (220)

It is noted that the time interval 7 € [—1,4+1] can be
transformed to the time interval r € [fg,7s] via the affine
transformation

tr—1o tr+to

t=1(1,t0,t5) = 3 T+ >

where y is the state defined on the feasible set Y C R”. u is
the control defined on the feasible set U C R™. J € R is the
cost functional. The variables of P(-) are the same as those
defined in Sect. II. It should be noted that dynamic, path, and
event constraints could be formulated as chance constraints.

In order to apply numerical methods to the CCOCEP,
the continuous time CCOCP is discretized on the domain
T € [—1,+1] which is partitioned into a mesh consisting
of K mesh intervals % = [Tr—1,Ti], k = 1,...,K, where
—1=Ty<T) <...<Tg =+1. The mesh intervals have the
property that UX_ .7 = [~1,+1]. Let y¥) (1) and u¥) () be
the state and control in .#;. Using the transformation given
in Eq. (23), the CCOCP of Egs. (22a)-(22e) can then be
rewritten as follows. Minimize the cost functional

(23)

j - %(y(l)(fl)vtmy(lq(+1)vtf)
I =10 &
2

T;
C 2y ()0 (1), dr, (240)
k=1"Tk—1

+

subject to the dynamic constraints

dy(k)(r) B tr—1o

(k) (k) -
a0 () u (1), =0,

(k=1,...,K), (24b)
the path constraints
emin < ¢(y¥ (1),u¥(1),1) <emax, (k=1,...,K), (24c)

the boundary conditions

time 7 that minimize the cost functional bmin < b(y(l)(*1),l(),y(K)(+1),tf) < brmax, (244)
and the chance-constraints
/ = ‘%(y(_l)at07y(+l)7tf)
g PGV (P8 <@ = 1-6  (240)
+-7 L(y(0)u(e),1(%,10,17))d7, (22)
2 Ja Because the state must be continuous at each interior
subject to the dynamic constraints mesh point, it is required that the condition y(7, ) =
+ . . .

dy tr—1o y(7,7), (k=1,...,K — 1) be satisfied at the interior mesh

E_ 2 a(Y(T)au(T)vt(T7t07tf)) :07 (22b) points (Tl7...’TK71)_
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V. LEGENDRE-GAUSS-RADAU COLLOCATION

The multiple-interval form of the continuous-time CCOCP
in Section IV is discretized using collocation at Legendre-
Gauss-Radau (LGR) points [7]-[9]. In the LGR collocation
method, the state of the continuous-time CCOCP is approx-

imated in %, k €[l1,...,K], as
Nk+l
y® (1) ~ Z Y ék
Nk+1 (k) (25)
")y — T
6= IUI RO
1
I#j

where 7€ [—1,+1], €§k>(’r), ji=1,...

grange polynomials, (rl(k), U TI(\,]Z)) are the Legendre-Gauss-

Radau (LGR) [7] collocation points in .% = [T;_1,T;), and
‘L'I(\,l; >+1 = T} is a noncollocated point. Differentiating Y(*) (1)
in Eq. (25) with respect to T gives

,Ni+1, is a basis of La-

®(g) Nt dé(k> T
dY ( ) Z vt ( ) 26)
Defining ti(k) = t(ri(k),to,tf) using Eq. (23), the dynamics are

then approximated at the Ny LGR points in mesh interval

kell,...,K] as
Ni+1
K k) If—To k) ¢1k) (K .
'Zl DE/)YE)_fTa(Yl( )’Ul( )’ti( >):0’ (l: 1""7Nk)7
j=
27
where D\t =t (¢V)jdr, (i=1,....N), (j=1,....Ne+

1) are the elements of the Ny ¥ (Nk —|— 1) Legendre- Gauss-
Radau differentiation matrix [7] in mesh interval .7, k €
[1,...,K]. The LGR discretization then leads to the following
nonlinear programming problem (NLP). Minimize

/ %( 1 7t07 1(VK>+17tf)

D), @8

subject to the collocation constraints of Eq. (27) and the
constraints

Cmin < (Y, UW 1) < epa, (i=1,...,N0),  (29)
Basin < BOY{, 10, Y5, 1,17) < Binax, (30)
PEYN UV Mg <q) > 1-e (i=1...N), 3D
Yy =YY =1, k- 1), (32)

where N = ZkK:l Ny is the total number of LGR points and
Eq. (32) is the continuity condition on the state and is
enforced at the interior mesh points (77,...,7x—1) by treating

Yl(\lfk) 1 and ngH) as the same variable in the NLP.

VI. APPLICATION OF METHOD

A chance constrained variation of a UAV optimal control
problem from [13] was solved using the software package
GPOPS —1II [14] that employs the Gaussian quadrature
orthogonal collocation described in Sect. V implemented
in MATLAB® version R2018a (build 9.4.0.813654). The
NLP solver used in conjunction with GPOPS —IT [14] was
SNOPT [15], [16]. All runs were performed using a 3.50GHz
Intel® Xeon(R) CPU E5-2637 v4 16 cores Dell Precision
Tower 7910 running GNOME version 3.20.2 with 188.8 GiB
and base system openSUSE Leap 42.3 64-bit.

The chance constrained UAV problem is defined as the
following:

min 7, 33)
subject to the dynamic constraints
x(t) = VcosO(z),
y(@) = Vsin8(t),
. 34
9(1‘) _ tan(gmax) M7 ( )
vV = a,
the boundary conditions
x(0) = —1.3852, x(ty) = 0.5160,
y(0) = 0.5875, y(ty) = 0.5021, (35)
0(0) = 0, V() = 0.2934,
the control bounds
—-1<u<l, (36)

and the chance path constraint

PR~ (&) 5~ (04 &) -3 > 0) < e
(37
where R is the radius of the keep out zone and the center
of the keep out zone is delineated by x. and y.. The random
variables & and &, represent vectors of 50,000 Markov
Chain Monte Carlo MCMC) samples generated with normal
distributions N(0,0.0007%) and N(0,0.0005%), respectively,
using a Hamiltonian Monte Carlo (HMC) method from

Neal [17], [18]. The values for all parameters are provided
in Table I.

TABLE I
PARAMETERS FOR EXAMPLE PROBLEM.

Gmax

-0.01 | 0.35

0.17 | 0 | 0.52 | 0.01

The kernels used for comparison in thirty runs of the
optimal control problem for each kernel were the Split-
Bernstein kernel with a bandwidth of 1% 10™* and the biased
Gaussian kernel with bandwidth of 5% 10~*, where the bias
of the Gaussian kernel was set to three times its bandwidth.
The bandwidths were chosen to be as small as possible while
still ensuring convergence of the NLP solver on all runs. The
same initial guess of a line approximation between the initial
and terminal conditions with a control of zero was provided
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for both kernels. Table II contains the average optimal cost
J* and run time T results for all thirty runs of both kernels,
where the run time 7 does not include setup time.

TABLE I
RUN RESULTS FOR KERNELS

Biased Gaussian | Split-Bernstein
Ly 7.6807 7.6549
oy 0.0024 1.6415%107°
ur 97.0609 sec 70.4740 sec
or 22.2886 sec 37.4294 sec
Tiax 138.2312 sec 254.3716 sec
Tnin 61.8254 sec 48.8354 sec

The Gaussian kernel produced a more conservative av-
erage optimal cost than the Split-Bernstein kernel, due to
a larger bandwidth and greater overshoot of the indicator
function by its integrated kernel function as compared to the
integrated kernel function of the Split-Bernstein kernel. The
variation in the average optimal cost for the Gaussian kernel
is higher than for the Split-Bernstein kernel. The Gaussian
kernel additionally had higher average run times (7'), though
there was much less variation in run time for the Gaussian
kernel than for the Split-Bernstein kernel. The maximum run
time for the Gaussian kernel was a little over half that of
the Split-Bernstein kernel as a result of the smoothness and
continuous derivative form of the Gaussian kernel. Thus, a
less conservative average optimal cost is obtained using the
Split-Bernstein kernel, with the incurred penalty of possibly
more expensive computations.

VII. CONCLUSIONS

The method of biased KDEs has been developed to refor-
mulate chance constraints as nonlinear constraints that pro-
vide an upper bound on the chance constraint. The method
transforms chance constrained optimization problems to de-
terministic optimization problems solvable numerically. Two
kernels were then applied with the method of biased KDEs
to transform a chance constrained optimal control problem
to two different deterministic optimal control problems. The
kernels compared were the Split-Bernstein kernel for its
less conservative design and the biased Gaussian kernel for
its smoothness. Thirty runs using optimal control software
paired with an NLP solver were performed using each
kernel. The Split-Bernstein kernel produced a less conser-
vative average optimal cost. The average run time using the
Gaussian kernel was higher, although the run times were
more consistent than those obtained using the Split-Bernstein
kernel. Thus the method of biased KDEs can be applied to
efficiently solve CCOCPs using numerical methods.
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