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Abstract— A method is developed for transforming chance
constrained optimization problems to a form numerically
solvable. The transformation is accomplished by reformulat-
ing the chance constraints as nonlinear constraints using a
method that combines the previously developed Split-Bernstein
approximation and kernel density estimator (KDE) methods.
The Split-Bernstein approximation in a particular form is a
biased kernel density estimator. The bias of this kernel leads to
a nonlinear approximation that does not violate the bounds
of the original chance constraint. The method of applying
biased KDEs to reformulate chance constraints as nonlinear
constraints transforms the chance constrained optimization
problem to a deterministic optimization problems that retains
key properties of the chance constrained optimization problem
and can be solved numerically. This method can be applied
to chance constrained optimal control problems. As a result,
the Split-Bernstein and Gaussian kernels are applied to a
chance constrained optimal control problem and the results
are compared.

I. INTRODUCTION

Chance constrained optimization problems arise in var-

ious engineering and non-engineering applications as such

problems account for uncertainty in the constraints of op-

timization problems. One application of interest is chance

constrained optimal control. For chance constrained optimal

control, possible applications include trajectory optimization

under uncertain conditions including GPS blackout during

atmospheric entry and fuzzy boundaries on geographic no

fly zones, as well as optimal natural disaster tracking such

as forest fire growth and propagation. Due to the probabilistic

formulation of chance constraints, numerically solving these

chance constrained optimization problems is challenging. As

a result, methods are being developed that look indepen-

dently at chance constraints to transform them to a more

tractable form in terms of computation. The methods can
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then be applied to chance constrained optimization problems

and by extension chance constrained optimal control prob-

lems.

Chance constraints are defined in probability space as

being dependent on random variables and bounded by some

risk violation parameter. This probability is equal to the

expectation (mean) of the indicator function and so the

constraint can be redefined in terms of this expectation.

Solving optimization problems with chance constraints de-

fined relative to the indicator function also suffers from

intractibility issues. It has been shown in recent works [1]–

[4] that functions can be designed with expectations that

are conservative approximations of the expectation of the

indicator function. In the method of [1]–[3], Markov Chain

Monte Carlo (MCMC) sampling is used to obtain samples of

the random variable under the assumption that determining

the expectation of the functions analytically is difficult or

impossible. In the method of [4], the random variables are

assumed to have certain properties by which samples can be

readily obtained. Thus by applying some form of sampling,

the described methods approximate the chance constraints as

expectations of functions designed such that the expectation

does not violate the bounds of the original chance constraint.

The disadvantage of this class of methods is that the resulting

approximate nonlinear constraint can be too conservative as

compared to the original chance constraint.

Another class of methods for transforming the chance

constraints to nonlinear constraints focuses on obtaining

approximations that are not too conservative, at the expense

of possibly violating the bounds of the original chance

constraint. These methods define approximate probability

density functions (PDFs) of the random variables. In the

methods of [5] and [6], non-parametric approximate PDFs

are obtained from samples of the random variables. In par-

ticular, the method of [5] obtains these PDF approximations

using kernel density estimators (KDEs). The expectation

of the integrated kernels of the KDEs is an approximate

cumulative distribution function (CDF). This approximate

CDF is a nonlinear constraint approximation of the original

chance constraint that may violate the bounds of the original

chance constraint. Despite the disadvantage of this possible

violation, the use of KDEs to obtain nonlinear constraints

is an attractive option as there are several well-known

kernels including the Epanechnikov, Gaussian and triangular
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kernels that can be applied to obtain a nonlinear constraint

approximation that is not overly-conservative relative to the

chance constraint.

Looking again at the method from [2] and [3], where

a Split-Bernstein constraint approximation is defined that

does not violate the bounds of the chance constraint, it can

be shown that with the correct choice of parameters this

approximation is a biased KDE. This bias is what leads

to an approximation of the chance constraint that does not

violate the bounds of the chance constraint. Additionally,

the Split-Bernstein approximation in KDE form is a less

conservative approximation of the chance constraint. As a

result, the objective of this paper is to show the connection

of biasing kernels to obtain a KDE constraint approximation

that does not violate the bounds of the chance constraint.

Two of these biased kernels will then be applied to a

chance constrained optimal control problem to transform

the problem to a deterministic optimal control problem that

is solved using a Legendre-Gauss-Radau (LGR) collocation

method [7]–[9]. The solutions will be compared to study the

differences between the two kernels.

The paper is organized as follows. Section II briefly de-

scribes the Split-Bernstein approximation and its KDE form.

Section III derives an expression for the bias of the Split-

Bernstein kernel as well as providing a comparison to other

kernels. Section IV describes a chance constrained optimal

control problem. Section V describes the LGR collocation

method. Section VI describes the chance constrained optimal

control problem and solutions obtained using both kernels.

Section VII provides some brief conclusions.

II. SPLIT-BERNSTEIN: KERNEL DENSITY ESTIMATOR

Consider the chance constrained optimization problem

P(F(z,ξ )≥ q)≥ 1− ε, (1)

where z is a decision variable defined on the feasible set

Z ⊂ R
n and ξ is a random variable with a probability

density function (PDF) fξ (ξ ) supported on set Ω ⊆ R
d .

To account for the possibility of the PDF being difficult

or impossible to integrate analytically, either Markov Chain

Monte Carlo (MCMC) sampling will be applied to obtain

samples or it is assumed that samples are available. The

function F(z,ξ )> q is an event in the probability space P(·),
where F(·) maps Rn ×Rd → Rng and ε is the risk violation

parameter. The function (F(z,ξ ) is itself a random variable

whose probabilistic properties are assumed unknown. As a

result, the complement of the constraint of (1) can be defined

as

P(ψ < q)≤ ε. (2)

The event of the chance constraint is in vector form, and

so the constraint is a joint chance constraint. Using Boole’s

inequality and the approach of [2] and [10], the original

chance constraint can be redefined as the following set of

conservative scalar constraints

P(ψ < qm)≤ εm,
ng

∑
m=1

εm ≤ ε.
(3)

where m ∈ 1, . . . ,ng is the index corresponding to the mth

component of the event.

The following is a known property of probability:

1− εm ≤ P(ψ ≥ qm) = Eξ [1[qm,+∞)(α(ψ −qm))], (4)

where Eξ [(·)] is the expectation. Applying the expectation

of the Split-Bernstein function Ξα(·) from [2] to (1) gives:

Eξ [1[qm,+∞)(α(ψ −qm))]≤ Eξ [Ξα(α(ψ −qm))], (5)

Ξα(α(ψ −qm)) =

{

exp(α+(ψ −qm)), if ψ −qm ≥ 0,

exp(α−(ψ −qm)), if ψ −qm < 0.
(6)

When enough MCMC samples of the random variable ξ are

available, the inequality from (5) can be approximated as the

following inequality (as proven in [2]):

1

N
∑

j∈J+

exp(α+(qm −ψ j))+
1

N
∑

j∈J−

exp(α−(qm −ψ j))≤ εm,

(7)

where j = 1, . . . ,N is the number of MCMC samples,

α+ and α− are user defined parameters, and the event

is sorted per MCMC sample as J+ ∈ (qm −ψ)> 0) and

J− ∈ (qm −ψ ≤ 0). The left hand side of (7) can exceed unity

and so is not an approximate cumulative distribution function

(CDF), leading to an overly-conservative chance constraint

approximation. It is possible, however, to set α+ equal to

zero, and α− to a sufficiently large number. As a result,

substituting α+ = 0 and α− =α in (7) results in the following

reformulation of (7):

1

N
∑

j∈J+

1+
1

N
∑

j∈J−

exp(α(qm −ψ j)))≤ εm. (8)

The left hand side of (8) is now an approximate CDF

that is a less conservative chance constraint approximation

than (7). Using (8), the approximate Split-Bernstein PDF is

then defined as:

f̂ψ(qm) =
1

N
∑

j∈J+

0+
1

N
∑

j∈J−

α exp(α(qm −ψ j)). (9)

To show that the Split-Bernstein approximate PDF in the

form of (9) is a KDE, first the general form of a KDE is

defined as

f̂ψ(qm) =
1

N

N

∑
j=1

1

h
k (η j) , (10)

where k(·) is the kernel, h is the bandwidth, and η is defined

as follows:

η j =
qm −ψ j

h
. (11)

Setting α from (9) as:

α =
1

h
, (12)

(9) is in the form of a KDE from (10) with the Split-Bernstein

kernel kSB defined as

kSB(η j) =

{

0, η j > 0

exp(η j), η j ≤ 0.
(13)
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With the approximate PDF of the Split-Bernstein method

now in the form of a KDE, it is left to prove that the

derived Split-Bernstein “kernel” satisfies the criteria for an

actual kernel. This criteria is not universally defined [11],

[12], so the authors here apply the following criteria that

encompasses generally accepted requirements as

1) k(η j)≥ 0,

2)
∫ +∞
−∞ k(x)dx = 1,

3) 0 <
∫ +∞
−∞ x2k(x)dx <+∞.

For case (1), the Split-Bernstein kernel is zero for η > 0 and

always greater than zero for η ≤ 0. Showing that case (2) is

satisfied is straightforward:

∫ +∞

−∞
k(x)dx ⇒

∫ 0

−∞
exp(x)+

∫ +∞

0
0 ⇒ exp(x)

∣

∣

∣

∣

0

−∞

+0 = 1.

(14)

Case(3) is proven as follows:

∫ +∞

−∞
x2k(x)dx ⇒

∫ 0

−∞
x2 exp(x)dx+

∫ +∞

0
0dx = 2. (15)

It has been shown that the Split-Bernstein approximation

method yields a kernel that satisfies the definition of a kernel

for α+ = 0. When this kernel is applied, the Split-Bernstein

approximation is a KDE.

III. BIASED KERNEL DENSITY ESTIMATORS

KDEs place a kernel at each sample point and approximate

the true PDF of the samples as the average weighted distance

evaluated at each kernel. Integrating the kernel results in

a function that converges to the indicator function with

decreasing bandwidth. The bandwidth cannot be set equal to

zero, however, as the variance of the kernel increases while

the bandwidth decreases. Care must be taken in choosing

a bandwidth that best accounts for this trade off. The

expectation of the integrated kernels at each sample is an

approximate CDF, and so provides an approximation of the

chance constraint. The relation between the probability of the

chance constraint and the approximate CDF is influenced by

shifting the expectation of the kernel, which will be referred

to as biasing the kernel.

In order to better characterize the bias, first the form of

the KDE approximate CDF is derived as follows. Consider

the KDE approximate probability of the chance constraint

from (3) in terms of the approximate PDF from (10):

p̂(ψ < qm) =
∫ qm

−∞
f̂ψ(x)dx =

1

Nh

N

∑
j=1

∫ qm

−∞
k

(

x−ψ j

h

)

dx. (16)

Using the definition of η j from (11), (16) can be reformu-

lated as

1

Nh

N

∑
j=1

∫ qm

−∞
k

(

x−ψ j

h

)

dx =
1

N

N

∑
j=1

∫

qm−ψ j
h

−∞
k(η j)dη j. (17)

Substituting the result of (17) into (16), the KDE approxi-

mate probability in terms of the chance constraint is defined

Fig. 1. Split-Bernstein kernel.

as follows:

P(ψ < qm)≈
1

N

N

∑
j=1

∫

qm−ψ j
h

−∞
k(η j)dη j, (18)

where the right hand side is an approximate CDF that

can possibly violate the bounds of the chance constraint.

By contrast, applying the Split-Bernstein kernel to define

an approximate CDF results in an approximate CDF that

remains within the bounds of the chance constraint as seen

in (8), due to the bias of Split-Bernstein kernel.

The Split-Bernstein kernel from (2) has a sail like shape

from −∞ to zero and is zero otherwise as can be seen in

Fig. 1. This shape implies that the kernel is biased. To prove

this bias, first a point w is defined at which half of the total

area under of the curve of the kernel lies. Next the integration

of the Split-Bernstein kernel from −∞ to w can be defined

as:
∫ w

−∞
exp(x)dx = 0.5,

⇒ exp(x)

∣

∣

∣

∣

w

−∞

= 0.5,

⇒ 0+ exp(w) = 0.5,

⇒ w = ln(0.5).

(19)

Then applying the definition of η from (11), the mean of the

Split-Bernstein kernel µ can be determined as:

w =
µ −ψ j

h
= ln

(

1

2

)

< 0, ⇒ µ = ψ j +h ln

(

1

2

)

, (20)

proving that the Split-Bernstein kernel has a bias of h ln
(

1
2

)

that is dependent on the bandwidth.

The bias of the Split-Bernstein kernel ensures that the

expectation of the integrated kernel (which is the Split-

Bernstein function Ξα ) results in an upper bound on the

expectation of the indicator function as defined in (5). To

demonstrate the relation of bias to the indicator function,
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Fig. 2. Biased integrated kernel functions and the indicator function.

the function K(·) for the Split-Bernstein kernel and biased

Gaussian kernel is plotted in Fig. 2 along with the indicator

function. For Fig. 2, the function K(·) is the integration of the

Split-Bernstein and Gaussian kernels. The Gaussian kernel in

Fig. 2 has been biased by 3∗hG to ensure that at least 99%

of the Gaussian function K(·) is greater than the indicator

function, where hG is the Gaussian bandwidth. In summary,

biasing a kernel such that its integrated function K(·) is

greater than the indicator function and applying MCMC

sampling leads to the following inequality:

1

N

N

∑
j=1

∫

qm−ψ j
h

−∞
k(η j)dη j ≤ P(ψ < qm)≤ εm, (21)

where the left most expression is the biased KDE nonlinear

constraint approximation. This method of biasing kernels and

applying MCMC sampling to reformulate chance constraints

as nonlinear constraints transforms chance constrained opti-

mization problems to deterministic optimization problems.

Extending this discussion to chance constrained optimal

control problems (CCOCPs), the method of biased KDEs

can be applied to transform CCOCPs to deterministic optimal

control problems solvable using numerical methods.

IV. CHANCE CONSTRAINED OPTIMAL CONTROL

PROBLEM

Without loss of generality, consider the following CCOCP.

Determine the state y(τ)∈R
ny and the control u(τ)∈R

nu on

the domain τ ∈ [−1,+1], the initial time, t0, and the terminal

time t f that minimize the cost functional

J = M (y(−1), t0,y(+1), t f )

+
t f − t0

2

∫ +1

−1
L (y(τ),u(τ), t(τ, t0, t f ))dτ, (22a)

subject to the dynamic constraints

dy

dτ
−

t f − t0

2
a(y(τ),u(τ), t(τ, t0, t f )) = 0, (22b)

the inequality path constraints

cmin ≤ c(y(τ),u(τ), t(τ, t0, t f ))≤ cmax, (22c)

the boundary conditions

bmin ≤ b(y(−1), t0,y(+1), t f )≤ bmax, (22d)

and the chance-constraints

P(F(y(τ),u(τ), t(τ, t0, t f );ξ )≤ q)≥ 1− ε. (22e)

It is noted that the time interval τ ∈ [−1,+1] can be

transformed to the time interval t ∈ [t0, t f ] via the affine

transformation

t ≡ t(τ, t0, t f ) =
t f − t0

2
τ +

t f + t0

2
. (23)

where y is the state defined on the feasible set Y ⊂R
n. u is

the control defined on the feasible set U ⊂ R
m. J ∈ R is the

cost functional. The variables of P(·) are the same as those

defined in Sect. II. It should be noted that dynamic, path, and

event constraints could be formulated as chance constraints.

In order to apply numerical methods to the CCOCP,

the continuous time CCOCP is discretized on the domain

τ ∈ [−1,+1] which is partitioned into a mesh consisting

of K mesh intervals Sk = [Tk−1,Tk], k = 1, . . . ,K, where

−1 = T0 < T1 < .. . < TK =+1. The mesh intervals have the

property that ∪K
k=1Sk = [−1,+1]. Let y(k)(τ) and u(k)(τ) be

the state and control in Sk. Using the transformation given

in Eq. (23), the CCOCP of Eqs. (22a)-(22e) can then be

rewritten as follows. Minimize the cost functional

J = M (y(1)(−1), t0,y
(K)(+1), t f )

+
t f − t0

2

K

∑
k=1

∫ Tk

Tk−1

L (y(k)(τ),u(k)(τ), t)dτ, (24a)

subject to the dynamic constraints

dy(k)(τ)

dτ
−

t f − t0

2
a(y(k)(τ),u(k)(τ), t) = 0,

(k = 1, . . . ,K), (24b)

the path constraints

cmin ≤ c(y(k)(τ),u(k)(τ), t)≤ cmax, (k = 1, . . . ,K), (24c)

the boundary conditions

bmin ≤ b(y(1)(−1), t0,y
(K)(+1), t f )≤ bmax, (24d)

and the chance-constraints

P(F(y(k)(τ),u(k)(τ), t;ξ )≤ q)≥ 1− ε. (24e)

Because the state must be continuous at each interior

mesh point, it is required that the condition y(T−
k ) =

y(T+
k ), (k = 1, . . . ,K − 1) be satisfied at the interior mesh

points (T1, . . . ,TK−1).
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V. LEGENDRE-GAUSS-RADAU COLLOCATION

The multiple-interval form of the continuous-time CCOCP

in Section IV is discretized using collocation at Legendre-

Gauss-Radau (LGR) points [7]–[9]. In the LGR collocation

method, the state of the continuous-time CCOCP is approx-

imated in Sk, k ∈ [1, . . . ,K], as

y(k)(τ)≈ Y(k)(τ) =
Nk+1

∑
j=1

Y
(k)
j ℓ

(k)
j (τ),

ℓ
(k)
j (τ) =

Nk+1

∏
l=1
l 6= j

τ − τ
(k)
l

τ
(k)
j − τ

(k)
l

,

(25)

where τ ∈ [−1,+1], ℓ
(k)
j (τ), j = 1, . . . ,Nk+1, is a basis of La-

grange polynomials,
(

τ
(k)
1 , . . . ,τ

(k)
Nk

)

are the Legendre-Gauss-

Radau (LGR) [7] collocation points in Sk = [Tk−1,Tk), and

τ
(k)
Nk+1 = Tk is a noncollocated point. Differentiating Y(k)(τ)

in Eq. (25) with respect to τ gives

dY(k)(τ)

dτ
=

Nk+1

∑
j=1

Y
(k)
j

dℓ
(k)
j (τ)

dτ
. (26)

Defining t
(k)
i = t(τ

(k)
i , t0, t f ) using Eq. (23), the dynamics are

then approximated at the Nk LGR points in mesh interval

k ∈ [1, . . . ,K] as

Nk+1

∑
j=1

D
(k)
i j Y

(k)
j −

t f − t0

2
a(Y

(k)
i ,U

(k)
i , t

(k)
i ) = 0, (i = 1, . . . ,Nk),

(27)

where D
(k)
i j = dℓ

(k)
j (τ

(k)
i )/dτ, (i = 1, . . . ,Nk), ( j = 1, . . . ,Nk +

1) are the elements of the Nk × (Nk + 1) Legendre-Gauss-

Radau differentiation matrix [7] in mesh interval Sk, k ∈

[1, . . . ,K]. The LGR discretization then leads to the following

nonlinear programming problem (NLP). Minimize

J ≈ M (Y
(1)
1 , t0,Y

(K)
NK+1, t f )

+
K

∑
k=1

Nk

∑
j=1

t f − t0

2
w
(k)
j L (Y

(k)
j ,U

(k)
j , t

(k)
j ), (28)

subject to the collocation constraints of Eq. (27) and the

constraints

cmin ≤ c(Y
(k)
i ,U

(k)
i , t

(k)
i )≤ cmax, (i = 1, . . . ,Nk), (29)

bmin ≤ b(Y
(1)
1 , t0,Y

(K)
NK+1, t f )≤ bmax, (30)

P(F(Y
(k)
i ,U

(k)
i , t

(k)
i ;ξ )≤ q)≥ 1− ε, (i = 1, . . . ,Nk), (31)

Y
(k)
Nk+1 = Y

(k+1)
1 , (k = 1, . . . ,K −1), (32)

where N = ∑
K
k=1 Nk is the total number of LGR points and

Eq. (32) is the continuity condition on the state and is

enforced at the interior mesh points (T1, . . . ,TK−1) by treating

Y
(k)
Nk+1 and Y

(k+1)
1 as the same variable in the NLP.

VI. APPLICATION OF METHOD

A chance constrained variation of a UAV optimal control

problem from [13] was solved using the software package

GPOPS− II [14] that employs the Gaussian quadrature

orthogonal collocation described in Sect. V implemented

in MATLAB R© version R2018a (build 9.4.0.813654). The

NLP solver used in conjunction with GPOPS− II [14] was

SNOPT [15], [16]. All runs were performed using a 3.50GHz

Intel R© Xeon(R) CPU E5-2637 v4 16 cores Dell Precision

Tower 7910 running GNOME version 3.20.2 with 188.8 GiB

and base system openSUSE Leap 42.3 64-bit.

The chance constrained UAV problem is defined as the

following:

min t f , (33)

subject to the dynamic constraints

ẋ(t) = V cosθ(t),
ẏ(t) = V sinθ(t),

θ̇(t) = tan(σmax)
V

u,
V̇ = a,

(34)

the boundary conditions

x(0) = −1.3852, x(t f ) = 0.5160,
y(0) = 0.5875, y(t f ) = 0.5021,

θ(0) = 0, V (t0) = 0.2934,
(35)

the control bounds

−1 ≤ u ≤ 1, (36)

and the chance path constraint

P

(

1

2
(R2 − ((x+ξ1)− xc)

2 − ((y+ξ2)− yc)
2)> 0

)

≤ εd ,

(37)

where R is the radius of the keep out zone and the center

of the keep out zone is delineated by xc and yc. The random

variables ξ1 and ξ2 represent vectors of 50,000 Markov

Chain Monte Carlo (MCMC) samples generated with normal

distributions N(0,0.00072) and N(0,0.00052), respectively,

using a Hamiltonian Monte Carlo (HMC) method from

Neal [17], [18]. The values for all parameters are provided

in Table I.

TABLE I

PARAMETERS FOR EXAMPLE PROBLEM.

R xc yc εd a σmax

0.17 0 0.52 0.01 −0.01 0.35

The kernels used for comparison in thirty runs of the

optimal control problem for each kernel were the Split-

Bernstein kernel with a bandwidth of 1∗10−4 and the biased

Gaussian kernel with bandwidth of 5∗10−4, where the bias

of the Gaussian kernel was set to three times its bandwidth.

The bandwidths were chosen to be as small as possible while

still ensuring convergence of the NLP solver on all runs. The

same initial guess of a line approximation between the initial

and terminal conditions with a control of zero was provided
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for both kernels. Table II contains the average optimal cost

J∗ and run time T results for all thirty runs of both kernels,

where the run time T does not include setup time.

TABLE II

RUN RESULTS FOR KERNELS

Biased Gaussian Split-Bernstein

µJ∗ 7.6807 7.6549

σJ∗ 0.0024 1.6415∗10−5

µT 97.0609 sec 70.4740 sec

σT 22.2886 sec 37.4294 sec

Tmax 138.2312 sec 254.3716 sec

Tmin 61.8254 sec 48.8354 sec

The Gaussian kernel produced a more conservative av-

erage optimal cost than the Split-Bernstein kernel, due to

a larger bandwidth and greater overshoot of the indicator

function by its integrated kernel function as compared to the

integrated kernel function of the Split-Bernstein kernel. The

variation in the average optimal cost for the Gaussian kernel

is higher than for the Split-Bernstein kernel. The Gaussian

kernel additionally had higher average run times (T ), though

there was much less variation in run time for the Gaussian

kernel than for the Split-Bernstein kernel. The maximum run

time for the Gaussian kernel was a little over half that of

the Split-Bernstein kernel as a result of the smoothness and

continuous derivative form of the Gaussian kernel. Thus, a

less conservative average optimal cost is obtained using the

Split-Bernstein kernel, with the incurred penalty of possibly

more expensive computations.

VII. CONCLUSIONS

The method of biased KDEs has been developed to refor-

mulate chance constraints as nonlinear constraints that pro-

vide an upper bound on the chance constraint. The method

transforms chance constrained optimization problems to de-

terministic optimization problems solvable numerically. Two

kernels were then applied with the method of biased KDEs

to transform a chance constrained optimal control problem

to two different deterministic optimal control problems. The

kernels compared were the Split-Bernstein kernel for its

less conservative design and the biased Gaussian kernel for

its smoothness. Thirty runs using optimal control software

paired with an NLP solver were performed using each

kernel. The Split-Bernstein kernel produced a less conser-

vative average optimal cost. The average run time using the

Gaussian kernel was higher, although the run times were

more consistent than those obtained using the Split-Bernstein

kernel. Thus the method of biased KDEs can be applied to

efficiently solve CCOCPs using numerical methods.
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