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Abstract

Inspired from ion channels in biology, nanopores have been developed as promising analytical tools. In
principle, nanopores provide crucial information from the observation and analysis of ionic current
modulations caused by the interaction between target analytes and fluidic pores. In this respect, the
biological, chemical and physical parameters of the nanopore regime need to be well-understood and
regulated for intermolecular interaction. Because of well-defined molecular structures, biological
nanopores consequently are of a focal point, allowing precise interaction analysis at single-molecule
level. In this overview, two analytical strategies are summarized and discussed accordingly, upon the
challenges arising in case-dependent analysis using biological nanopores. One kind of strategies relies
on modification, functionalization and engineering on nanopore confined interface to improve molecular
recognition sites (on-pore strategies); The other kind of highlighted strategies concerns to measurement
of various chemistry/biochemistry based interactions triggered by employed molecular agents or probes
(off-pore strategies). In particularly, a few recent paradigms using these strategies for practical
application of accurate analysis of biomarkers in biological fluids are illustrated. To end, the challenging

and future outlook of using analytical tools by means of biological nanopores are depicted.
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1. Introduction
Due to the label-free and real-time analytical capabilities, nanopore technology offers several
competitive advantages for the analysis of single molecules. In principle, nanopores provide crucial
information from the observation and analysis of ionic current modulations caused by the connection
between target analytes and fluidic channels. The changes in the ionic current (Scheme 1), including the
mean residence time (Torr), amplitude (I) and frequency of occurrence (1/ton), are altered with the
interactions between the analytes and nanopores [1-5]. It is well documented that both biological
nanopores and artificial pores (built on solid-state materials) have been used as novel sensing tools [6-
8]. Together with desirable properties and functions, nanopores hold great promise for ultrasensitive,
qualitative and quantitative analyses at single molecule level for chemicals and biomolecules [9-11], etc.
To be a suitable element in stochastic sensing, nanopores need to have clear three-dimensional
structures, tolerance to structural modification, moderate single-channel conductance, and clean open
channel without transient current spikes. Biological nanopores, most of which are derived from bacterial
cytotoxins, have very well-defined structures and can be engineered with sub-nanometer precision using
approaches of site-directed mutagenesis. Hence, biological nanopores consequently are of a focal point,
allowing precise interaction analysis at single molecule level. They have been ingeniously applied in the
field of homeland security [12-13], biomedicine [14-16], environmental monitoring [17-18], etc.
However, accompanied with their unique potential advantages, biological nanopores have limitations
and challenges as well. The intrinsic properties of the pores (e.g., 3D structures) will strongly affect the
transport behaviors of the analytes and subsequently deteriorate the performance (e.g., resolution,
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selectivity and sensitivity) of stochastic sensing [19-21]. Therefore, various approaches have been taken
to overcome these hindrances. Thus far, two major strategies have been utilized to improve the
performance of nanopore sensors. As illustrated in scheme 1, one relies on modifications or engineering
within the nanopore-confined space by accommodating molecular recognition sites (on-pore strategies),
which can be achieved by introducing various chemical components and groups, such as adapters [22],
aromatic [23] and charged residues [24]. The other kind of strategies takes advantage of external
biomolecular agents (off-pore strategies) to detect analytes via various chemical and biochemical
interactions, including host-guest [25], protein-ligand [26], nucleic acids hybridization [27], enzymatic
proteolysis [28], protein denaturation [29] and chelation reactions [30]. Despite excellent works
accomplished by kinds of biological nanopores [31-34], in this review, we aim at introducing the novel
analytical methods and conceptualization via some paradigms in particular with a-hemolysin (a-HL), the
first proposed and most developed candidate among the biological nanopores. First, some cases were
introduced to elucidate the on-pore and off-pore strategies used to improve the performance of nanopore
analysis. Second, the optimization of nanopore sensing were depicted through recent paradigms in
achieving accurate measurements of biomarkers in biological fluids. The highlighted jobs may inspire

people to discover new ways to in-depth research in analytical and bioanalytical chemistry fields.

2. On-pore analytical strategies

The highly well-known and controllable structures of the proteins provide more advantages in
construction of biological nanopores, and make them more flexible to propose nanopore-based analytical
strategies. In this aspect, modification and engineering of molecular recognition sites in nanopore lumen
is a usual strategy to reinforce the interactions between pores and analytes, thus to yield an ultra-high
sensing resolution. Herein, the commonly used modification and their designs were presented, including
accommodation of molecular adapters, replacement with desired residues mutants (e.g. aromatic,

charged and polarized amino acid), and truncated pores via approaches of gene engineering.

2.1. Analysis with nanopores carring molecular adapters

To improve the selectivity and sensitivity of nanopore stochastic sensors, a significant class of
biological nanopores has been constructed with molecular adapters that possess internal binding sites for
single molecule analytes recognition. In this strategy, an ingenious breakthrough is the employment of
molecular adapter B-cyclodextrin (B-CD). B-CD consists of 7 glucose subunits, creating a cone shape
structure (diameter 0.60~0.65nm) with rich molecular recognition functions. Due to the structural
arrangement, its molecular interior is considerably less hydrophilic than the aqueous environment and
consequently able to host hydrophobic molecules. While the hydrophilic exterior offers improved water
solubility. Such properties make it feasible to regulate on the uptake or release of trapped molecular
species within their cavities [35-36]. Furthermore, -CD once anchors in the constriction area (~1.4 nm)
of the channel, it plays imperative roles in reducing the pore size and subsequently leads to the
enhancement of sensing resolution. In this case, it is capable of improving the transport behavior of
organic molecules, such as DNA individual bases, which have difficulties to form a connection to the
nanopore [22]. For example, Bayley et al. examined the covalent and/or noncovalent interactions

between attached $-CD and different a-HL pores. Results demonstrated the mutated a-HL pores showed
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much stronger (~104 folds) binding affinity to f-CD than that of the wild-types [37-38]. As shown in
Fig. 1A, molecular models show the molecular interaction between engineered a-HL pores and B-CD
adapters. Seeing from the model, recognition regions of B-CD responsible for each interaction were
identified, including hydrogen bonds, hydrophobic interactions and I1-CH group bindings. In addition to
theoretical hypothesis, a-HL pore with B-CD adapter subsequently demonstrated its advantages in the
selective identification of DNA bases, which made DNA sequencing possible in the coming future [39-
40]. In addition, due to the considerable significance of RNA molecules in exo-sequencing, -CD
assisted nanopores were also implemented in identification of individual RNA nucleotides (Fig. 1B).
Different from DNA identification, a processive exoribonuclease (polynucleotide phosphorylase) were
employed to sequentially cleave and load ribonucleotide diphosphates to a B-CD carrying a-HL nanopore
[41]. On the basis of RNA nucleotides identification, RNAs profiling in cells were afterward
implemented, indicating the advantage of nanopores as invaluable tools for biomolecular analysis [42-
43].

Nowadays, extensive studies on proteins analysis have also been demonstrated using a-HL nanopore
with B-CD adapters. One example is that the kinetics of trypsin was analyzed by real-time monitoring of
the current modulations with nanopore sensors (Fig. 1C) [44]. To effectively avoid the disturbance from
background signals and specifically recognize hydrolysate, an o-HL nanopore equipped with a
polyamine decorated B-cyclodextrin (am;B-CD) was employed as the sensing platform. The real-time
monitoring exhibited the process of trypsin enzymatic cleavage of a substrate N-a-benzoyl-L-arginine
ethyl ester (BAEE) at the single molecule level. This B-CD assisted nanopore enables a new scheme to
analyze enzyme activity for cleaving small molecules beyond biomolecular substrates.

In addition to biomolecules analysis, Guan et al. developed a simultaneous detection method for small
organic agents (Fig. 1D). Cyclohexyl methylphosphonic acid (CMPA) and pinacolyl methylphosphonate
(PMPA) are organophosphorus hydrolytes derived from nerve agents Soman and Cyclosarin,
respectively [45-46]. As results showed, the distinctive current signals were further produced due to the
capture of CMPA and PMPA by B-CD anchored channel. More attractively, the detection limits of
CMPA (0.01 mg/mL) and PMPA (0.02 mg/mL) are significantly lower than the discharge limits required
by the US Army (0.1% in w/v, i.e., 1000 mg/L) [47]. Further, results indicated this on-pore modification
with B-CD adapter should make the direct detection feasible for hard-to-obtain small organic compounds,
which is of significant importance for sensing applications in homeland security, environmental
surveillance and beyond.

Similarly, other molecular adapter was recently employed for nanopore sensing (Fig. 1E). Kang et al.
synthesized a novel artificial receptor, heptakis-[6-deoxy-6-(2-hydroxy-3-trimethylammonion-propyl)
amino]-beta-cyclomaltoheptaose, with similar functions of B-CD, which could be harbored in o-HL
nanopore [48]. This bio-mimic adapter was designed to carry ATP, ADP and AMP molecules (APs),
which are relevant to biological energy storage and signal transduction. Based on the high affinity
between APs and molecular adapter, this strategy enabled simultaneous recognition and detection of APs
by real-time at single-molecule level, particularly with significant elevation on both sensing selectivity

and signal-to-noise ratio.



2.2. Analysis with engineered nanopores carring aromatic residues

Most of nanopore analysis require precision engineering in the pores. According to rational designs,
certain amino acids are modified or replaced [49]. In such a way, a-HL nanopore has been modified
using site-directed mutagenesis. For example, analysis for peptide mixtures appears to require atomic
resolution due to tiny differences in their compositions and lengths, including those differs by only one
amino acid among peptide polymers. Therefore, aromatic residues have been engineered along the lumen
in native biological pores, which resulted in a strong interactive affinity between peptide molecules and
nanopore interiors. This strategy leads to an improvement of sensing resolution due to distinct increase
in residence time, amplitude and event frequency of current signals [23]. Fig. 2A shows an engineered
a-HL pore with seven aromatic Tyrosine side chains (M113Y); that provides peptides with ultra-sensitive
connection spots. The respective affinities between the peptides and three different nanopores, (WT)7,
(M113F)7 and (2FN);, were also examined. Our results revealed that the translocation behaviors of the
peptides were significantly influenced by the replacement of aromatic residues [50-51]. Conclusion, the
enhanced interactive affinity in engineered nanopores allows simultaneous discrimination of peptide

mixtures, and makes the analysis available in peptidome.

2.3. Analysis with engineered nanopores carring charged residues

It is worth mentioning that the sensing resolution can be improved by loading extra internal charged
residues along the pore lumen, which gives rise to intense interactions between analytes and nanopores.
Previous works have already been done on a-HL mutation nanopores, where additional charged residues
were engineered in a-HL interface [24, 52]. Also, earlier reports demonstrated the kinetics of polypeptide
altered during the translocation through mutant nanopores with some negatively charged rings (named
traps). The association rate constant ko, indicated that the molecular interactions increased obviously
with the help of these traps, especially for hydrophilic polypeptides. Therefore, this engineered nanopore
should enable the quantitative analysis of the molecular kinetics to be possible [53].

Another notable example is from Muthukumar et al. (Fig. 2B) who calculated the DNA trajectory in
nanopore channel using Langevin dynamics simulations. With positive charged decorations in the
nanopore, the step-by-step movements of DNA were calculated [54]. Simulation results agreed well with
experimental values for the average translocation time afforded by a single nucleotide [52]. An additional
important aspect was that, the DNA velocity was revealed to be altered depending on the location and
distance of mutations in the channel. These findings brought new insights into DNA dynamics in
nanopores and provided rational engineering strategy for DNA sequencing in the future. Since the impact
of engineered nanopores have been felt in diverse precise analysis, other interesting works aiming at
constructing and discovering novel pores keep increasing, including Aerolysin, [55] Clytolysin A, [56]

MspA, [57] and CsgG nanopores [49].

2.4. Other engineering strategies on nanopores

Previous studies have demonstrated the broader nanopore vestibular area (cavity) allows to capture
single molecule in electric field, imparting nanopore analytical power to investigate various
macromolecular conformations (G-quadruplexes and fishhook hairpin DNAs), and monitor unzipping

kinetics at different locations in the channel [58-59]. The ability to differentiate complicated
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nanostructures depends on the overall shapes, sizes, stem lengths and sequence context of the molecules,
with no need of molecular engineering in the nanopore cavity. However, recent findings have also
suggested that to improve the ability of individual base discrimination, shorter pores should be better
[60]. Hence, much of engineering strategies have focused on the transmembrane B-barrel district of a-
HL nanopores. In this respect, Bayley et al. explored mutants of the a-HL in which the transmembrane
B-barrels were strictly truncated [61]. Truncated barrel mutants (TBM) were made from the o-HL NN
mutant (Fig. 2C), residues from B-strands were pairwise detached to yield barrels shortened by 2, 4, 6, 8,
and 10 amino acids, respectively. This study demonstrated the truncated proteins could float on the
surface of lipid bilayers and form totally different toroidal lipid pores. The truncated pores prompted
well-defined transmembrane ionic currents by pores establishment in the underlying lipids. Because short
pore with a single constriction is optimal for base discrimination, this design may allow useful
improvement in sequencing technology. Another notable engineering example was inspired by the
structure of gap junctions in biology. Bayley engineered a dimeric o-HL pore, in which two a-HL
heptamers were covalently linked by disulphide bonds. The dimeric pores formed spontaneously due to
cysteine residues in cap, allowing cap-to-cap coupling conduit structure [62]. In this structure, one -
barrel inserted into a small lipid vesicle, while the other spanned a planar lipid bilayer. More importantly,
this dimetric nanopore provides the capability to serve as a competent candidate for single molecule

analysis of smaller molecules and even ions like y-CD and phosphate anions.

3. Off-pore analytical strategies

The ability of sensing individual molecules is highly desirable in modern biology, chemistry, and
beyond. However, some molecules cannot be easily detected by biological nanopores due to their
inappropriate dimensions (either too large or too small) or nonspecific interactions with the pores. This
disadvantages hinder the usage of nanopore sensing. As a result, there have been various approaches in
literature to transmit binding events arising outside the pores in addition to the interior spaces so that the
ionic current could be modulated accordingly. One optimized solution towards versatile sensing is to
design biomolecular agents (such as aptamers [63-64] or molecular probes [65-66]) for specific coupling
to target analytes, therefore analytes can be captured and detected effectively by the pores with enhanced

sensing resolution.

3.1 Analysis via aptamer based host-gest interactions

Wu et al. reported a universal nanopore sensing strategy by employing a combination of aptamers and
host-guest interactions [25]. In their designation (Fig. 3A), as the host part, an aptamer was first
hybridized with a DNA sequence which was modified ahead of time with a ferrocenecCcucurbituril
complex. When a guest analyte was applied to the sensing system, the hybridized duplex of aptamer with
a ferroceneCcucurbituril-modified sequence will unwind due to the higher affinity between the analyte
and aptamer. The competitive binding behavior produced specific current signatures with consecutive
multiple substates when the modified DNA molecules translocated through the channel. According to
the results of the two types of signature events, the highly sensitive detection of variant molecules was

finally implemented via this aptamer-assisted sensing approach. Because aptamers have shown robust



binding affinities with a wide variety of target molecules, this host-guest strategy enables quantitative
and selective analysis of different types of analytes within nanopore sensors.

Etiology and pathogenisis of many diseases are often closely associated with the changes in expression
of multiple biomarkers. In generally, it requires multiplex detection of series molecules at the same time
for precise disease diagnosis and prognosis. Taking lung cancer for example, a most recent work has
been presented with designed protein-aptamer binding nanopore strategy on simultaneous detection of
three protein biomarkers [67]. As shown in Fig. 3B, the output DNA hybrids (in different length) released
for nanopore sensing upon aptamer-target binding and this binding was proved to be a key component
of the probe. With more detailed analysis, the distinctive current signals generated in the nanopore
provided visual and quantitative discrimination among several proteins (VEGF165: Vascular endothelial
growth factor, TB: Thrombin, and PDGF-BB: Platelet-derived growth factor B-chain) even in complex
biological samples, and without the need of additional labeling. More attractively, this simple approach
allows universal, convenient, and low-cost sensing for different analyte types only need the modulation

of the probe composition and length.

3.2. Analysis via nucleotides hybridization

Single-nucleotide polymorphisms (SNPs) are specific nucleotide site mutations where they may have
two different nucleotides (including single nucleotide deletion, insertion, substitution or other mutation).
When SNPs occur within a gene or in a regulatory region near a gene, they may cause a disease via gene
dysfunction. Hence, SNPs are usually used to predict the risk of certain diseases [68-69]. To date, several
methods have been developed for the fully and semi-automated discovery of SNPs, including sequencing
strategies [70], multiplex reverse dot blots [71], DNA chips [72], and the TagMan approach [73]. As an
attractive choice for obtaining DNA sequence information, nanopore has also emerged as a rapid, direct
determination method for detecting SNPs. However, the determining remains a challenge due to
extremely short translocation time, low capture rates and signal-to-noise ratio in nanopores. Therefore,
molecular probes are introduced to couple with target DNAs to form complex structures that strongly
improved the sensing quality [74-75].

Guan et al. developed a novel enzymatic reaction-based method for nanopore sensing of DNA
mutations (substitution, deletion and insertion) [76]. The surveyor nuclease was employed since it
activates each accurate mismatch site in dsDNA [77-78]. As shown in Fig. 3C, full-matched dsDNA
(none mutations) permanently blocked the nanopore regardless of the presence of the nuclease. In
contrast, nuclease working on the DNA duplex with mismatches resulted in disappearance of permanent
blockage but accompanied with short current events. The phenomena verified surveyor nuclease
cleavage in the nanopore. In addition, the dsDNA chains with nucleotides substitution, deletion or
insertion were also effectively determined, respectively. It is worth mentioning that this method was also
identified to be capable of detecting terminal base-base substitution mismatch, which remains as a
challenging task using other determination approaches.

In addition to DNA analysis, tumor-related mRNAs analysis was also completed (e.g. single
nucleotide deletion). For example, Baxa, known as a key tumor suppressor gene, is often expressed

incorrectly as its isoform, BaxA2, which has the same sequence, except for a single base deletion from



eight continuous guanines (G8 to G7) in exon 3 of Bax. It is known that traditional methods, including
western blot and reverse transcription polymerase chain reaction, used to detect Baxo and BaxA2 are
sensitive; however, these techniques also have drawbacks. One significant drawback is the high GC pair
content, which often creates artificial mistakes, resulting in truncated or no PCR products. In this case,
our nanopore sensor seems to be an optimized analyst candidate without this concern. Based on the
complementary base pairs, two DNA probes were designed to selectively distinguish Baxa and BaxA2
at the same time [79]. The statistical results of distinguishable events indicated the successful detection
of single base deletion between Baxa and BaxA2. It further means the occurrence of a potential, rapid
and sensitive analytical strategy on other single-base mutations detection in genetic diseases. This probe-

assisted nucleic acid sensing strategy was also documented in other literatures [80-82].

3.3. Analysis of enzyme activity via proteolysis

Enzymes are involved in a wide variety of physiological activities in biological environments. Hence,
studies on enzymes can help reveal biochemical processes, including enzyme kinetics and proteolysis
mechanisms within living cells. These can consequentially provide information for disease state, such as
early diagnosis of HIV [83] and ADAMs [84]. Taking pandemic HIV as an example, Fig. 3D shows
analytical strategy for the sensitive detection of HIV-1 protease. In our work, peptide-enzyme proteolytic
reaction was examined in real time to obtain the kinetic studies of HIV-1 protease, via monitoring the
current signals caused by proteolysis. To further evaluate the potential clinical value for disease diagnosis
and prognosis, the enzyme in simulated clinical samples with human serum were examined. As expected,
this designed nanopore sensor was not affected by human serum and gave advanced high sensitivity. The
designed nanopore sensors should provide potential to earlier diagnosis in powerful addition to the
current diagnosis via measurement of antibodies in patients. Soon afterward, quantitative measurement
of trypsin activity and inhibition with calcium ions was also achieved using the same nanopore strategy
[85]. Besides, Long et al. reported their recent effort on a one-step method for determination of protein
kinase activity using kinase and phosphopeptides with aerolysin nanopores [86]. In addition, Wu et al.
presented their most recent work on monitoring protease activities using a DNA probe that bore a short
peptide probe containing phenylalanine [87]. This category of DNA probe permits dual-response to both
enzymatic activity and environmental pH. In view of the crucial role of local pH value and protease
activity in cancer initiation and metastasis, this nanopore method may be soon explored for specific

screening of complex tumor cells.

3.4. Analysis of protein conformational change via denaturation

Exploring the interaction mechanism between proteins at the single molecule level remains one of the
mostly fundamental problems in biology. For instance, aggregated proteins need to be unfolded to
transport through narrow pores in membranes, and then refolded within a recipient cellular compartment,
such as toxin proteins into host cells [88]. Previous studies including experiments and theories have
explored protein translocation mechanisms through nanopores [89-91], but one of the main difficulties
is to experimentally explore the conformational change in transport process. In this context, Pelta et al.
proposed nanopore electrical method to study the protein folding/unfolding at the single molecule level,

which permits the complete separation of all the conformations in denaturant unfolding [29]. In their
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examination (Fig. 3E), they compared the unfolding transition of the wild type and a destabilized variant
of maltose binding protein using two different channels, a-HL and aerolysin. The distinguishable current
signals were capable to differentiate unfolded states from partially folded ones. They found that the
unfolding transition curves of the destabilized variant protein were shifted toward the lower values of the
denaturant agent compared to the wild type protein. According to their results, they also proved that the
nanopore structure, geometry, and net charge did not influence the folding transition but change the
transport dynamics. Soon after, Pelta et al. also explored the protein unfolding in thermal denaturation
using same protein and nanopore models [92]. The sigmoid function fits the normalized frequency of
occurrence for both nanopores (Fig. 3F), indicating the protein unfolding sped up by thermal motion, and
did not depend on the nanopore characters neither. All of the above suggest that such real time elucidate
protein folding-unfolding transition using nanopore strategies can obviously lead to exciting

developments in research area of protein exploration and designation.

3.5. Analysis of metal ions via chelation

While nanopores have been designed for studying different biomolecules in various ways, they also
enable the sensitive and selective detection of analytes as small as metal ions. To achieve this application,
one of the simplest paradigms is the employment of an appropriate molecular probe, which can
selectively chelate with target metal ions. Concise and convenient cases using this approach have been
demonstrated, including specifically designed DNA strands for mercury (Fig. 4A )[66], lead and barium
ions (Fig. 4B) [93], or molecular probes for the discrimination of Copper, Zinc, Nickel and Cobalt ions
(Fig. 4C) [94-97]. However, metal ion detection using a chelating molecular probe remains challenging,
as without a clear understanding of how the molecular probe nature changes after chelation (e.g.,
conformational changes or net charges). This change is correlated with characteristics of current signals,
including residence time and blockage amplitude, further makes the current signals unpredictable and
results in difficulty for designing sensors.

For the purpose of optimizing this chelation-based nanopore detection method, as shown in Fig. 4D,
we proposed a computation-assisted approach for highly sensitive and selective detection of thorium ions
(Th*"), a well-known radioactive and chemically toxic element [30]. The computational prediction
indicated the most significant changes in the net-charge of peptide probe (before/after the addition of
Th*") occurred at pH 4.5. In addition, Th*' is prone to form eight-coordinate 1: 2 (Th/D-12)
stoichiometric complexes, especially in acidic solutions. Consequently, Th*" was detected at a
concentration of ~ 250-fold less than those of other interfering ion species in the optimal pH condition.
Furthermore, the detection limit in a 10 min examination using this nanopore strategy was sufficient for
the analysis of thorium in environmental samples. Similarly, we also developed a label-free method for
the detection of uranyl ions (UO,*") by monitoring the peptide-ions chelation [98]. The detection of
uranyl ions is significant not only for environmental monitoring, but also for radioactive nonproliferation.
In conclusion, driven by the need of an advanced platform for metal ions analysis (especially heavy and
radioactive metal ions), this development of nanopore sensors provides a great potential in a wide range

of applications.

4. Application in biological fluids



Based on substantial academic effort, nanopore technique has been developed as an outstanding
analysis tool not only in fundamental sciences but also going to commercialization [49]. Given a massive
effort in sequencing field, there is no doubt that additional areas can be commercialized, including the
stochastic sensing in real word. However, despite the advances, to reach the full application in real world
using nanopore analysis, several technical challenges still need to be resolved. For example, in terms of
disease diagnosis and prognosis, it requires precision selectivity and ultra-high sensitivity for biomarkers
tests with complex biological samples. In this case, one issue is that blood components usually block
pores and affect the stability of lipid membranes, accordingly hinders the sensing resolutions [99].
Another snag falls into that trace amount analyte detection in biological fluids prolongs the sampling,
and also accompanied with nonspecific background signals decrease the analysis efficiency [100].
Hence, the optimization of nanopore sensing strategies is of more importance in achieving the accurate
measurement of a range of biomarkers in biological fluids.

At the example of the renin protease, which is a diagnostically relevant hydrolytic enzyme and
involved in regulation of blood pressure and homeostasis, Howorka et al. presented a new nanopore-
based analysis strategy for matrix containing serum samples [99]. Using their strategy (Fig. 5A), the
renin enzymatic activity was electrically detected with the help of single spin-column, within where the
enzyme-cleaved substrate was affinity-purified using multifunctional resin to discard the analytically
harmful interferent from blood serum. This method overcame limitations arised from blood component-
induced membrane instability and poor signal-to-noise ratio. As they demonstrated this strategy using a
multifunctional resin spin-column can very likely be extended to other hydrolytic enzymes dissolved in
any analyte matrix and be exploited for analytical read-out methods other than nanopore sensing.

Second example concerns for mRNAs detection in biological fluids, which is recognized valuable for
predicting cancers [43]. In Fig. 5B, we depicted the selective extraction and accurate detection of mRNAs
using displacement-chemistry strategy with the help of nano-mag-beads and two-probes (capture and
release probe) [101]. Despite the loss of mMRNA molecules in sample preparation, nRNAs recovery could
be significantly improved using a simple method of increasing the molar ratio between probes and target
mRNAs. Notably, compared to other approaches [43, 99, 102-103], our method is crystal simple and not
involved in molecular structure functionalization, complicated molecular probes designation and tedious
physical preparation (e.g. centrifugation and elution) [59].

Third example in aspect of biomarker analysis, Wu et. al. proposed a DNA-assisted nanopore strategy
on simultaneous quantification of multiple cancer biomarkers in blood samples [104-105]. In their
experiments, five barcode DNAs were thoughtfully designed to label different gold nanoparticles that
can selectively bind to specific antigens (Fig. 5C). After the completion of the sandwich assay, barcode
DNAs were released and subjected to nanopore translocation test. This approach was determined very
useful for accurate and multiplexed quantification of cancer-associated antigens at picomolar level in
clinical samples, including prostate-specific antigen (PSA), carcinoembryonic antigen (CEA), alpha-
fetoprotein (AFP), neuron specific enolase (NSE) and carbohydrate antigen 19-9 (CA19-9).

Noteworthily, nanopore sensing was soon afterwards applied to analysis with real cancer cells [106].
At this example, Xi et.al. reported a sensing strategy to probe the human 8-oxoguanine DNA glycosylase

(hOGG1) activity in human lung adenocarcinoma cells, by employing an enzyme-catalytic cleavage
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reaction of DNA substrates. As shown in Fig. 5D, the hOGG1 specifically catalyzed the removal of the
8-hydroxyguanine (8-0x0G) and cleaved the DNA substrates immobilized on magnetic beads, following
the release of output DNA for quantitative test in a-HL nanopore. This strategy exhibited the excellent
performances for discriminating hOGG1 from the interferent. According to statistical results of a linear
correlation in the range from 100 to 10000 cells, this approach shows impressive practical capability for
quantitative detection of enzyme activity in complex cell systems. Besides, in addition to bio-nanopores
sensing, the ultrasensitive detection of antigens in blood samples was recently reported using
nanoparticles-assisted SiNy nanopores [107]. Taken together, it can be concluded that the success of
nanopore sensing in complex biological media opens the door towards nanopore development of

commercial devices for potential point-of-care diagnostics.

5. Conclusions, Challenges, and Future Outlooks

Nanopores have shown great potential as fast, label-free and ultrasensitive analysis elements for
individual molecules at single-molecule level. It is, at least in principle, easy based on the Coulter
counting technique using the current-pulse sensing method in the electric field. As mentioned above, this
biology-inspired monitoring technique leads to surprising observations when molecules or ions are
driven through the nanoscaled channels. However, several challenges remain to be overcome to extend
the availability of nanopore sensing assays for various analyses. Accordingly, we herein elucidate the
solutions to those snags through recent paradigms, including on-pore strategies (intrinsic engineering
with the pore), off-pore strategies (extrinsic interaction factors) and practical analysis in biological fluids.
These strategies exhibit great diversity and rapid advancement in fields of analytical and bioanalytical
chemistry.

In terms of advances of an ideal analytical tool, nanopore technology can provide flexible and versatile
properties for molecular analysis in a range of great interest. However, there is, of course, much more
work that remains to be done to build such an ideal tool using nanopore elements. To the best of our
knowledge, it is fundamental that two factors play imperative roles in nanopore analysis, the pore itself
and the analysis methodology. In terms of the pores, one of the most attractive aspects is that this biology-
derived element enables many sensitive and selective analyses in biological systems (from bio to bio).
In addition, it is highly reproducible and easy to regenerate through site-directed genetic engineering. In
contrast, the biological properties may become the weaknesses as well as the advances. In particular, the
suitability of a nanopore for stochastic sensing is mostly affected by 3D structures and other instinct
properties. That includes the opening, the vestibule, the latch and the constriction area of the pore. These
factors make the channel more specific (ion selectivity similar to that of potassium, sodium ion channels)
and subsequently deteriorate the performance (confined space for molecules capturing, e.g. chiral
molecules). One strategy should fall in the discovery of other nanopores from microbial origin. The novel
exploited nanopores should provide multiple opportunities and be expected to offer great benefits to
bioanalyses. As an alternative, the other solution is the construction of nanopores using molecular self-
assembling nanotechnology. Among these structures, the most competitive ones are DNA-based
programmable nanopores and o-helical peptide-based nanopores. The structures of self-assembling

nanopores are very clear at the atom level and allow flexibility in tuning the properties of each
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component, including pore size, chirality, hydrophilic and hydrophobic characters, host of functional
groups, etc. With such advantages, the sensing resolution and practical feasibility of these artificially
built bio-pores can be improved in case-dependent analyses.

The optimization of the analysis methodology is an optional strategy in addition to pore design and
construction. There are many very good works regarding interdisciplinary applications in the
combination of classic methods with nanopore platforms. For example, excellent jobs have been reported
regarding nanopore analysis coupled with back titration chemistry, proteolysis chemistry, chelation
chemistry, oxidation-reduction chemistry and displacement chemistry, etching chemistry, etc. These
great efforts may inspire people to make fast progress in developing an advanced and functional

analytical tools using nanopore devices.
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Scheme 1. Schematic representation of nanopore analysis using a-hemolysin (PDB ID:
3ANZ) embedded into a planar lipid bilayer. It principally takes advantage of recording ionic
current modulations by the passage of target analytes that are driven through a single fluidic
channel. The analysis strategies rely on modifications within the nanopore-confined space by
accommodating molecular recognition sites (on-pore strategies), which can be achieved by
introducing various chemical components and groups, including adapters, aromatic and
charged residues. The other uses are external biomolecular agents (off-pore strategies) that
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Fig. 1. (A) Molecular model showing interactions involved between o-HL pores and
molecular adapters, including hydrogen bonding, hydrophobic interactions and IT-CH group
bonding interactions. Figure adapted with permission from Ref. [37] Copyright (2010)
National Academy of. Sciences. (B) Direct identification of individual RNA nucleotides with
processive exoribonuclease in a B-CD carrying a-HL nanopore. Figure adapted with
permission from Ref. [41] Copyright (2013) American Chemical Society. (C) a-hemolysin
nanopore equipped with (amsB-CD) for the kinetics studies of trypsin. Figure adapted with
permission from Ref. [44] Copyright (2019) American Chemical Society. (D) Simultaneous
detection method for small organic agents. Figure adapted with permission from Ref. [45]
Copyright (2009) Elsevier. (E) Simultaneously recognize and detect ATP, ADP and AMP.
Figure adapted with permission from Ref. [48] Copyright (2020) American Chemical Society.
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Fig. 2. (A) A model of the wild-type o-HL pore and representative amyloid-f peptide(10—20).
The three mutation positions (113, 145, and 147) are highlighted. Current traces showing the
structural effect of the pore on the peptide translocation. Figure adapted with permission from
Ref. [51] Copyright (2009) American Chemical Society. (B) The a-HL pore mutations with
additional positive charged residues in the B-barrel. The blue beads represent positively
charged mutations. The red beads are negatively charged, and the gray beads are neutral. The
ssDNA is modeled using three beads per nucleotide. Figure adapted with permission from
Ref. [54] Copyright (2017) Cell Press. (C) Cartoon and cut-through representations of the WT
a-HL pore (PDB ID:7AHL) and truncated barrel mutants shortened by 2, 4, 6, 8, and 10 amino

acids. Figure adapted with permission from Ref. [61] Copyright (2014) National Academy of
Sciences.
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Fig. 3. (A) The sensing strategy for quantitative and selective determination of VEGF121. The
icon legends are shown in the dashed rectangle box. Figure adapted with permission from Ref.
[25] Copyright (2015) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (B) Illustration of
the nanopore assay used for simultaneous detection of multiple protein biomarkers with a
series of dsDNA-based probes. Figure adapted with permission from Ref. [67] Copyright
(2020) American Chemical Society. (C) Schematic representation of the nanopore detection
of dsDNA mutations (substitution, deletion and insertion) with nuclease. Figure adapted with
permission from Ref. [76] Copyright (2018) American Chemical Society. (D) Schematic
representation showing the detection of HIV-1 protease in a nanopore sensor through a
strategy for enzyme-peptide proteolysis (Top), Plot of event frequency vs. the concentration
of HIV-1 PR and interference study with BSA samples (Bottom). Figure adapted with
permission from Ref. [83] Copyright (2014) Elsevier B.V. (E) Schematic representation
showing the principle of protein conformation detection using the nanopore device and
unfolding curves using different nanopores and different proteins. Figure adapted with
permission from Ref. [29] Copyright (2012) American Chemical Society. (F) Schematic
representation showing thermal unfolding transition curves of MalE219 detected by a-
hemolysin and aerolysin nanopores. Figure adapted with permission from Ref. [92] Copyright
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Fig. 4. (A) Specifically designed DNA strands for mercury detection in nanopores. Figure
adapted with permission from Ref. [66] Copyright (2013) American Chemical Society. (B)
Highly sensitive simultaneous detection of lead (II) and barium (II) with DNA G-quadruplex
in a-HL nanopore. Figure adapted with permission from Ref. [93] Copyright (2013) American
Chemical Society. (C) Nanopore detection of Cu®*, Zn*", Ni** and Co?" ions using a
polyhistidine probe. Figure adapted with permission from Ref. [95] Copyright (2014) Elsevier
B.V. (D) Computation-assisted nanopore detection of thorium ions with calculation of the
charge state of peptide probes and interference study of the Th*" in nanopores. Figure adapted
with permission from Ref. [30] Copyright (2018) American Chemical Society.
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Fig. 5. (A) Scheme illustrates the sensing strategy for the protease renin. Steps A-C are
conducted using one spin column containing a mixture of beads. Figure adapted with
permission from Ref. [99] Copyright (2015) American Chemical Society. (B) Scheme
represents the principle of displacement chemistry-based nanopore analysis of nucleic acids
in complicated matrices. Figure adapted with permission from Ref. [101] Copyright (2018)
Royal Chemical Society. (C) Schematic sandwich assay for the detection and quantification
of multiple cancer biomarkers. Figure adapted with permission from Ref. [105] Copyright
(2018) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (D) Schematic illustration of the
nanopore-based assay for the detection of cellular hOGG1 activity. Figure adapted with
permission from Ref. [106] Copyright (2018) American Chemical Society.
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