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1. Introduction
The Degasperis-Procesi (DP) equation
my + 2kug + 3mu, + um, =0, x €R, t>0, (1.1)

with momentum density m £ u — u,, and k > 0 as a parameter related to the critical shallow water speed,
was originally derived by Degasperis and Procesi [12] using the method of asymptotic integrability up to
the third order as one of three equations in the family of third-order dispersive PDE conservation laws of
the form

2 2 2
Ut — QpUgyt T Q2Uggy + CoUz = (935(6111, + couy + C3uu$$)'

The other two integrable equations in the family, after rescaling and applying a Galilean transformation,
are the Korteweg-de Vries (KdV) equation [19],

Up + Uppy + Uty = 0, (1.2)

and the Camassa-Holm(CH) shallow-water equation [1,15] (see also [7] for a rigorous justification in shallow
water approximation),

my + 2kug + 2mug +umg =0, M= U — Ugy. (1.3)

The DP equation is also an approximation to the incompressible Euler equations for shallow water and its
asymptotic accuracy is the same as that of the CH shallow-water equation [7] in the CH scaling, where

the solution w(t,x) of (1.1) represents the horizontal velocity field at height zp = \/% after the re-scaling
within 0 < zp < 1 at time t in the spatial z-direction with momentum density m.

The DP equation (1.1) has an apparent similarity to the CH equation (1.3), and both of them are im-
portant model equations for shallow water waves with breaking phenomena, i.e., the wave remains bounded
but its slope becomes unbounded [3,4,23,27]. However, there was very little known about qualitative prop-
erties and long-time dynamics of the DP equation, and what was known about the CH equation can not be
directly applied to the DP equation, due to major structural differences between the DP equation and the
CH equation. For instance, the isospectral problems in the Lax pair for the DP equation (1.1) and the CH
equation are respectively a third-order equation [11]

77Z)ac - ¢xacm - )\mw = 07

and a second-order equation [1]

1
wza: - Zw_ )\mil) = O>

where m = u — ug, in both cases. Moreover, the CH equation is a re-expression of geodesic flow on the
diffeomorphism group [6] and on the Bott-Virasoro group [26], while only a non-metric geometric derivation
of the DP equation is available [13].

When it comes to solitons, the main focus of this work, it is well-known that the KdV equation is an
integrable Hamiltonian equation that possesses smooth solitons as traveling waves. In the KdV equation,
the leading-order asymptotic balance that confines the traveling wave solitons occurs between nonlinear
steepening and linear dispersion. On the other hand, the nonlinear dispersion and nonlocal balance in
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the CH equation and the DP equation, can still produce confined solitary traveling waves. There are two
scenarios, though, depending on the value of k.

In the limiting case of vanishing linear dispersion (k = 0), smooth solitary waves become peaked solitons,
called peakons. More specifically, when k = 0, the CH equation can be written as

1 1 1
ut+8x(§u2+§¢*(§ui+u2)) =0, t>0, z€R, (1.4)
and the DP equation as
145 1 3
ut+ax(5u +§¢*(§u ) =0, t>0, z€R, (1.5)

where ¢(z) = e~ 1*l and “x” stands for convolution with respect to the spatial variable z € R. Peakons are
weak solutions of these conservation laws and are true solitons that interact via elastic collisions respec-
tively under the CH dynamics and the DP dynamics. Moreover, as a fundamental qualitative property in
nonlinear dynamics, the orbital stability of peakons of the CH and DP equation has been verified [9,22].
Relevant stability results for waves approximating peakons are also available [8]. However, the DP equation
distinguishes from the CH equation substantially, mainly in the corresponding conservation laws. Much
more sophisticated arguments are used in [22] to overcome the much weaker L? conservation law presented
in the DP equation. Another novel feature of the DP equation is that for £ = 0, not only does it have peaked
solitons [1,11] of the form u(t,z) = ce™1*=!l| ¢ € R, it also admits shock peakons [14,25] of the form

u(t,x) = — sgn(z)e” 17! a > 0.

t+a

It is not clear if such a discontinuous solution is stable or not in proper settings.

In the case of non-vanishing linear dispersion (k # 0), the existence and stability of localized smooth
solitary waves of the CH equation (1.3) are well understood by now [2,10], while the DP equation case has
been barely explored so far and thus the subject of this paper. The goal of this paper is to establish existence
and spectral stability results of smooth solitons for the DP equation (1.1).

We start with a rigorous definition of solitary waves, i.e., solitons. Firstly, a solution of the DP equation
u(t, x) is a traveling wave if there exist a real number ¢ and a scalar function ¢ : R — R such that

u(t,z) = ¢(x — ct).
Moreover, a traveling wave of the DP equation ¢(x — ct) is a solitary wave if there exists £y € R such that

» max ?(&) = ¢(&o) and dm $(§) = 0.

e ¢ is strictly increasing on (—o0,&y) and strictly decreasing on (&g, 00).

We give the existence result below, refer to Section 2 for further reading and move on directly to the
discussion of the essential topic—the stability issue.

Theorem 1.1 (Existence). Under the physical condition ¢ > 2k > 0, there exists, up to translations, a unique
c-speed solitary wave ¢(&; ) with its mazimum height

c— 2k
4

< Gmaz = <c—2k.
¢ max{¢} < c

In addition, the function ¢(&;c) could be taken even and strictly monotonically increases from 0 to ¢maz for
negative values of &.
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Thanks to the translation invariance of the equation, for any given solitary wave ¢(§;c), its spatial
translation generates a family of solutions, called the orbit of the solitary wave, denoted as

O.={é(- +xo;¢) | o € R}.

Moreover, a solitary-wave solution ¢ of the DP equation is called orbitally stable if a wave starting close
to the solitary wave ¢ remains close to the orbit of the solitary wave up to the existence time. A generic
feature of nonlinear dispersive equations is that their solutions usually tend to be oscillations that, as time
evolves, spread out spatially in a significantly nonlinear and complicated way. When it comes to solitary
waves, one would naively expect that a small perturbation of a solitary wave would at least yield another
one with a different speed and phase shift, if not more complicated, which makes the stability of solitary
waves counter-intuitive and thus fascinating.

Another weaker form of stability is called spectral stability. A solitary wave is called spectrally stable if
the corresponding linearized equation admits no exponentially unstable solution.

The study of stability is essentially based on the local Hamiltonian structure of the DP equation applying
some general index counting theorem from [24]. Actually, the DP equation (1.1) in terms of u, that is,

Up — Uzt + 2Kty — BUglpy — Ulggy + duu, =0, (1.6)

can be written as an infinite dimensional Hamiltonian PDE, that is,
up = J—(u), (1.7)

where
1 1 \2
J209,(4— 01—, H(u)é—g/(u?’—i—(ik: ((4—33)—%) ) dz.

Remark 1.1. As mentioned in the abstract, the DP equation is bi-Hamiltonian [17] and also completely
integrable [5]. In addition to the local Hamiltonian mentioned here, there is another, nonlocal, Hamiltonian
operator, compatible with the local one; see [17] for details. Due to the fact that we only use the local
Hamiltonian in this work, we from now on refer to the local Hamiltonian as the Hamiltonian for simplicity.

It is observed that some relevant conservation laws of the DP equation (1.1) are generically weaker than
those of the CH equation (1.3). More specifically, there are at least three relevant conservation laws of (1.1)
in study of stability—the conservation of momentum M (u), the Hamiltonian H(u), the conserved quantity
S(u) arising from the translation symmetry, respectively taking the following forms.

M(u) = /(1 — 02)udz, H(u) = —é / (u® + 6ku - (4 — 82) ') da,
R R

S(u) = /(1 04 - 03 u-uda, (1.8)
R

N | =

while the corresponding ones of the CH equation (1.3) are the following,

M(u) = [ (1—0?)udx, H(u) = (u® + wu? + 2ku?) dz,
f /

R
S(u) = / (v® +u2) da. (1.9)
R
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Remark 1.2. Using Kato’s theorem [18], it is known [28] that if initial profiles ug € H*(R) with s > 3, (1.1)
has a unique solution in C([0,T); H*(R)) for some T > 0 with M, H and S all conserved. Moreover, the
only way that a classical solution of equation (1.1) fails to exist for all time is that the wave breaks. Some
solutions of (1.1) are defined globally in time (e.g. the smooth solitary waves) while other waves break in
finite time [23].

Remark 1.3. While it is straightforward to verify that M and H are conserved quantities, the verification
of the conservation of S under the flow is relatively nontrivial. In fact, the conservation of S(u) holds as
long as the Hamiltonian density at spatial infinity equal to zero. More specifically, for any solution u(¢, x)
to the DP equation with initial condition «(0,-) € H*(R) with s > 3/2, the solution u(t, z) is continuous in
x with lirinOo u(t,z) =0 and

r—

% = (=) (A=) uu) = (1= )4 — ) 'u.J

oH
=)

= —(0yu, i—f(u)) = /8zh(u(t,x))dx
R
= h(u(t, 00)) = h(u(t, —00)) = h(0) — h(0) = 0,
where h(u) = —¢ [u3 + 6k ((4 - 8%)_%u) 2} is the Hamiltonian density.

In particular, one can see that the conservation law S for the DP equation is equivalent to ||u|%.. In fact,
by the Fourier transform, we have

1 1 1 2
S =5 [ (1=t =) ude = 5 [ TSI ~ e =l
R R

Due to such a weaker conservation law S for the DP equation, compared with S of the CH case, we can
only expect spectral (or orbital) stability of solitons in the sense of the L? norm, which makes the study of
the stability of smooth DP solitons much more subtle.

In fact, taking advantage of the fact that the conserved energy S in (1.9) of the CH equation is H! norm
of the solution and fixed sign of the momentum density, the variational framework by Grillakis, et al. [16]
can be successfully applied without too much trouble to obtain orbital stability of smooth CH solitons [§].
More specifically,

e According to the conservation law of momentum M, the CH skew symmetric operator
Jog = *835(1 — 85)71

is bounded and invertible when restricted to the zero-average co-dimensional one subspace.
e By the Liouville substitution, the linearized operator

Loy = —0:((2¢ — 2¢)0,) — 66 +2¢" +2(c — k)

with respect to the soliton ¢, defined on the space H?(R), is transformed into a regular self adjoint
Sturm-Liouville operator, which is, as one readily sees, a relatively compact perturbation of a second
order differential operator with constant coefficients. The required spectral properties of Loy then
follows directly from the Sturm-Liouville theory.
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e The corresponding convexity condition is easily verified in the CH soliton case which takes big advantage
of the simple form of the conservation law Eg,.

o The strong L? coercivity on restrained space can be lifted to H', so as to control the remaining nonlinear
part and to obtain orbital stability.

As for the orbital stability of smooth DP solitons, there are several obstacles to tackle.

e The corresponding DP skew symmetric operator
Jpp = —0,(4—02)(1 - 02)!

is not bounded invertible. This obstacle is mild, since the generator of the translation symmetry is
O, annihilating the unbounded part 9, ' in the pseudo inversion JB}D and making JB}D&C bounded
invertible, as in the KdV case.

e The corresponding linearized operator

Lpp=(c—2k—cOf)(4—08) " —¢

fails to directly transform into a regular self-adjoint Sturm-Liouville type operator, so the study of
its spectral properties becomes highly nontrivial. While the essential spectrum and the simplicity of
the eigenvalue 0 of the operator Lpp can be readily obtained via a neat and brief functional analysis
argument, the analysis on negative eigenvalues roots deep in dynamical systems and is technical.

e The verification of the convexity of the Lagrangian evaluated at solitary wave profiles with respect to
the wave speed c is also highly nontrivial and relies substantially on the special structure of the DP
equation.

o The strong L? coercivity (to be proved for the DP soliton in this paper) on restrained space can NOT
be lifted to H', essentially because of the weaker conservation law S of DP equation which leads to
consideration of an non-differential operator Lpp.

We succeed in tackling the first three listed obstacles and have the following main result.

Theorem 1.2. Let u®(t,z) be the solitary-wave solution of (1.1) with its traveling speed ¢ > 2k. Such a
solitary-wave u®(t, x) is spectrally stable in L?(R).

Remark 1.4. As explained above that the strong L? coercivity can not be lifted to H! because of the special
form of the linear operator £pp. One can actually prove that the strong H' coercivity fails on corresponding
restrained space by performing parallel spectral analysis of £pp viewed as an operator on H! which admits
positive continuous spectrum touching 0.

Remark 1.5. While the term [ u*dz can be bounded by the H'-norm of u, it generically can not be bounded
by the L?-norm of u. As a result, we note that, in order to obtain orbital stability results of DP smooth
solitons, a remedy is to establish the stability in the L? and L norm simultaneously. For peaked soliton
¢ = ce~ 1"~ with k = 0, the control of the L> norm is reduced to bound the pointwise distance between the
peakon’s maximum and the maximum height of the perturbed profile, which is related to the perturbation
in L?-norm. This could be observed from the following formula derived in [22],

S(u) = S(p) = S(u— (- = §)) + 2¢(vu(§) = v,(0)),

where v, = (4 — 92)"!u and £ € R. However, it seems not easy to control the L> norm in the case of
smooth solitons, leaving the orbital stability of these smooth solitons as an open problem.
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The remainder of the paper is organized as follows. In Section 2 we establish the existence and properties of
the smooth solitary-wave solutions (Theorem 1.1). In Section 3, we study the spectrum of the corresponding
linear operator of the second-order variational derivative of the Hamiltonian. In Section 4 we give the proof
of the spectral stability result (Theorem 1.2).

2. Smooth Degasperis-Procesi solitons

In this section, we study smooth solitary wave of (1.7),

0H
Uy = JE(’U,),

where
J=0,(4— 85)(1 B 82)71, H(u) = _%/ (u“)’ + 6k ((4 — 35)§u)2> dx.

Changing the (,z) coordinates into the traveling frame (t,£) with ¢ £ 2 — ct and slightly abusing the
notation by denoting u(t,&) £ u(t,x — ct), the equation (1.7) is now written as

ue = 70 (6) - cue =TI (u) + 0 (), (2.1)

where we recall
S(u) = % /(1 024~ 02) V- ude
Introducing the Lagrangian
Qc(uw) & H(u) + eS(u), (2.2)

the solitary wave with speed ¢ > 0, denoted as ¢(&; ¢), is a steady state of (2.1) and a critical point of the
Lagrangian, namely,

0Q.
ou

oH oS
= E((b) Tesy

(@) (¢) = 0. (2.3)

We now prove Theorem 1.1.

Proof of Theorem 1.1. The stationary traveling DP equation (2.3) is equivalent to
1 _ _
—[§¢>2 +(4—-92)712k¢] + (1 - 32)(4 - 03) ' =0. (2.4)
Applying 4 — 852, we get

—20° + ¢ec + O — 2k + c(¢ — pee) = 0.

In terms of a system of first order ODEs, we have

¢e =1
{ (c — P)pe = (c — 2k)p — 2% + 2, (2.5)
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which has a first integral

B(6,4) = (56" — o+ ko + 3¢ —ke) — (e~ 9y

A solitary wave of (2.1) corresponds to the ¢ entry of the connected component of the level curve

®(p, ) = ®(0,0) =0,
which connects to the origin. Any point (¢, ) on the level curve ®(¢, ) = 0 satisfies

1 2 1 1

P*(50% — co+ Sko+ S —ke) = S(c— ¢)°¢, (2.6)
2 3 2 2

and thus the quadratic polynomial, P(¢) £ %(]52 —co+ %k‘¢ + %02 — ke, is nonnegative. Noting that, given
¢ > 2k, the polynomial P(¢) admits two distinctive positive real roots, denoted as ¢, admitting the
following expressions

2 2
Or =c— gkt Sk(3e+2k) > 0,

we conclude that the level curve ®(¢, 1) = 0 has two connected components, lying respectively within the
region ¢ > ¢4 and ¢ < ¢_. The solitary wave profile ¢(¢; ¢), as part of the level curve ®(¢,v¢) = 0, is a
subset of the connected component within ¢ < ¢_. More specifically, we readily see from the geometry of
the level curve (2.6), which is symmetric about 1, that the solitary wave profile ¢(&; ¢) is even with respect
to € and is strictly increasing on £ € (—oo, 0] with its global maximum ¢,,., obtained at & = 0; that is,

2 2
max — P— = ——k— —k 2k).
Ormaz = 0 = ¢ = =k — | 2k(3e +28)

Given that ¢ > 2k > 0, it is also straightforward to see that ¢p,.. € (“”42’“,0 — 2k), which concludes the
proof of the theorem. 0O

Remark 2.1. It is known that in the limit £ — 0, the solitary waves of the CH equation (1.3) with maximal
elevation at = 0 converge uniformly on every compact subset of R to the peakon ¢(x) = ce~ 17l [21]. For
the DP equation (1.1), a similar convergence result of the smooth solitary waves to peakon can also be
obtained by studying the following ODE:

ue (€) \/u2—2(c—§k)u—|—02—20k
u(§) B c—u '

3. Spectral analysis

In this section, we study the spectrum of the corresponding linear operator of the second-order variational
derivative of the Lagrangian, which is critical to the stability of smooth solitary waves. From now on, we
simply write ¢ for the solitary wave profile ¢(&; ¢) unless specified.

Consider under the traveling frame (¢,&) the linearization of (2.1) along the soliton ¢,

v = JLcv, (3.1)

where v € L?(R), and
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62Q.
L =
€ ou?

(¢) = —p—2k(4 =) +c(1- )4~ )" =c—¢— (3c+2k)(4—07) 7",

It is straightforward to see that L. : L?(R) — L?(R) is a well-defined, self-adjoint, bounded linear operator.
Moreover, we have the following spectral theorem about the operator L..

Theorem 3.1. The spectrum of the operator L., denoted as o(L.), admits the following properties.

(1) The spectrum set o(L,) lies on the real line; that is, o(L.) C R.

(2) 0 is a simple isolated eigenvalue of L. with Ogp(§) as its eigenfunction.

(3) On the negative axis (—00,0), the spectrum set o(L.) admits nothing but only one simple eigenvalue,
denoted as A, with its corresponding normalized eigenfunction, denoted as ¢..

(4) The set of essential spectrum oess(Lc) lies on the positive real azis, admitting a positive distance to the
origin.

Proof. Statement (1) is straightforward, due to the fact that L. is self-adjoint. We now prove statement (4)
first. Denoting \g £ min{%, Hb%} > 0, we consider the eigenvalue problem

L =M, for\e (—00,No), and v € L*(R).
Introducing the notation

¢ — 2k — 4¢(€) — 4X
c—o(§) A

pEM@-9) v, AN =
the above eigenvalue problem is equivalent to
Lyp £ pee — A(E,\)p =0, g€ H*(R). (3.2)

Note that ¢(§) < ¢—2k < ¢ for any £ € (—00,00) and A < Ag, so the coefficient A(£, A) is well-defined in the
sense that its numerator ¢ — ¢ — X is always positive. Moreover, for any given A € (—o0, \g), the constant
=2k > 0, yielding that the operator

LY :H*(R)—L*(R),
c—2k — 4\

P Opt ————n,

is bounded invertible and thus Fredholm with index 0. As a result, for any A € (—oo, Ag), the operator
Ly is Fredholm with index 0 for that it differs by a compact perturbation from the operator L$°, which
concludes the proof of statement (4) and indicates that any A € (—o0, \g) is either in the resolvent of L.
or an eigenvalue of L.. As a matter of fact, from general properties of Sturm-Liouville operators [20], if
A € (—00, Ag) is an eigenvalue of Ly (and thus of L), then it must be a simple eigenvalue.

Statement (2) is basically a consequence of the above argument. Taking A = 0 and noting that (4 —
852)’185q§ is a solution of the eigenvalue problem Lop = 0 by differentiate the traveling wave equation with
respect to &, we conclude that statement (2) is true.

We consider last the statement (3). The proof takes advantage of properties of the coefficient A(E, ),
which is even in ¢ and strictly increasing on the interval £ € [0, 00). Moreover, since ¢(£) decays exponentially
as £ approaches +o00, and A < 0, the coefficient of ¢, —A(€, A), is always negative for non-positive values of
A and large enough [¢]. It follows that there always exist unique Jost solutions J*(&, A) and J*(&, A), up to
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multiplication of a constant, which approaches 0 as & — 400 respectively. In fact, J5\“(£, \) is asymptotic
to the limit solution

c— 2k — 4\

J;}u(é" )\) L ei\/m"i A(OO, )\) £ lim A(E, )\) - ’
t—+too c—A

that is,

c—2k—4X 5
)

JNUEN) etV TR as £ = too.
The eigenvalue problem (3.2) is really a shooting one. A is an eigenvalue of (3.2) if and only if the two
vectors
d d

(Js(ov )‘)7 dig‘]s(oa /\)) and (‘]u(oﬂ >‘)7 ISJU(O7 >‘))

are parallel to each other.

While it is possible to compute the corresponding Evans function to locate the eigenvalues of (3.2),
we prefer to give a more geometric proof which takes advantage of the special structure of solitary wave,
specifically the evenness of the solitary wave profile ¢(&).

Under the polar coordinates change

q = pcosf
ge = psiné,
the equation (3.2) becomes
0 = A(E, N)cos0 — sin’0), (3.3)

and an equation of p which is slaved to the 6 equation and thus omitted. An eigenvalue Ae; is such that
there is a solution 0.;(&, Ne;) of (3.3) which approaches

47,0
— 00 S . d€ ’ _
6=>°(\) = arctan(ggriloo TEN ) = arctan y/ A(oo, \),

as & — —oo and approaches

)6 )
0°(\) = arctan(glir& ngs(TA)

) + km = km — arctan v/ A(oo, A), keZ,
as & — oo, where, to prevent multiple counting of eigenfunctions, we intentionally set 6~°° fixed, in the
sense that =°° does not depend on k while 6;° does, so that the shooting problem has a fized “start point”
at —oo, that is, 0~°°, and infinite many valid choices of “end points” at & = +oo, that is, {07°}rez.-

It is observed that the coefficient A(£, A), as a function of £ for fixed A, admits the following dichotomy.

o For any fixed A € (—o0, Ag) with A; £ =2£ — ¢,

A(&,A) >0, forall &
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o For any fixed A € [Ag, 0], there exists £(\) > 0 such that

>0, [£
A(E,N)
<0, [£
There can not be any solution of the angle equation (3.3) approaching 6=°°(\), 67°(\) as £ — =+oo.
Indeed, the angle equation (3.3) has four (£, \)-dependent pseudo-equilibrium on the unite circle:

@f({,)\) £ 4 arctan VAN, @f(g, A) £ 4 arctan VAE N — 7.

@T and @;‘ attract nearby points, while ©] and O, repel nearby points. For conveniences, we also introduce
the notation By = —%’“ for kK € N.

Case 1. Any X € (—o0, \g) is not an eigenvalue since the first quadrant, 6 € [0, 7/2], is forward-invariant,
which indicates that if 6(¢,\) starts at £ = —oo from 67°(\) = O] (—oc0, \) € [0,7/2], it will not leave
[0,7/2] and thus never reaches any 67°, which lies in the second and fourth quadrant. More specifically,
as £ increases from —oo — 0, @f and ©] move respectively clockwise and counterclockwise towards, but
never reach, By, and as £ then increases from 0 — oo, the whole process is reversed; that is, @f and ©7
return to their starting positions at —oo in exactly the same speed but opposite directions. Essentially, the
movement of ©F and O] is a reflection about the line {§ = 0} of each other because of the evenness of
#(€). The movement of ©F and O, are exactly the same as that of © and ©; in obvious sense.

As a matter of fact, we can show that, for £ € [0, 00), the angle evolution, 8°(£, \), of the stable Just

solution J*(&, ), is strictly decreasing, and shadows the unstable pseudo-equilibria © modulo 27. More

1\2°
specifically, 6°(¢,\) can be viewed as the solution to the angle equation (3.3) with the limit boundary

condition 6%(+o00,\) = @;\2(—&—007 A) mod (27). For conveniences, we simple set 0°(+00, ) = ©5 (+00, A).
Noting that the intervals

(03 (+00,4),0; (0,A) — 27) and (63 (0, ), O1 (+00, 1)),

are forward invariant, we conclude that the angle of the stable Jost function, 6%(£, M), is trapped within the
interval (O3 (400, A), ©5 (0, A)); that is,

{0°(6,A) [ € € 0,00)} C (O (400, 1),05 (0, ).
Moreover, we claim that
0°(&,\) < ©5 (&, A), for any & € [0, 00),

essentially due to the fact that the unstable pseudo-equilibrium 05 (€, A) is strictly decreasing with respect
to € € [0,00). We prove by contradiction. If this is not true, we have the following two scenarios.

(1) If there exists & € [0,00) such that 6°(£o, A\) > ©3 (&, A), then it is straightforward to see that the
interval (05 (€0, A), —7) is forward invariant for £ € [, +00). As a result, we have

03 (00, 1) = lim 0°(¢, ) € (65 (€, X). 7] # 5 (0,1,

which is a contradiction.
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(2) If there exists & € [0, 00) such that 6° (&g, A) = O3 (€0, A), then we claim that the interval [0 (&o, A), —7)
is forward invariant for £ € [£y, +00) and thus a contradiction follows as in the previous case. The subtle
part of the forward invariance lies at the inclusion of the left end point O3 (€, A), due to the fact that,
if 6%(&, A) = O35 (€0, A), then

8598(50,)\) =0> 85@2’(50,)\),
letting 6° fall behind ©, and converges towards ©F as £ goes to infinity from &.

According to the evenness of A with respect to &, similar conclusions can be drawn for the angle evolution,
0" (&, A), of the unstable Jost solution J*(&, ).

Case 2. In the interval [)g, 0], we claim that there are only two eigenvalues; that is, A =0 and A = A, €
(Mo, 0). Tt is straightforward to see that

A is an eigenvalue if and only if 6°(0, A) = 0%(0, ),

which, thanks to the evenness of A(£, A) with respect to £, is equivalent to the following statement.
A is an eigenvalue if and only if (0, A) = By, for some k € N.
Noting that for any A € (—o0, 0],

3c+ 2k ooy OrA(oo, N)
oo — a2 = T = e N+ Ao

a)\A(£7 )‘) = -

we conclude that

N0 (0,X) = 05 (0“(0,X) — 07(\)) + 00 >°(N)

0
= Ox( / (A(&, ) cos® 6 — sin® 0)dE) + r0~>°(N)
0 -
= / (ONA(E,N)) cos? BdE + Dr0~°°(N)
< 0.

In other words, 6%(0, \) is a strictly decreasing function with respect to A € (—o0,0]. In addition, we claim
that

(0, \0) >0, 6%(0,0) = —1/2. (3.4)

As a result of the monotonicity and boundary conditions, there exists a unique A. € (Ag,0) such that
0*(0,A) = By = 0; that is, Ag is the only eigenvalue in the interval (—\g,0). We are now left to prove that
(3.4) holds.

o 0(0,)\9) > 0. As a matter of fact, for the interval (—oo, —£(\)], the analysis about the angle evolution
of the unstable Jost solutions in Case 1 holds. More specifically, as & goes from —oco to (), 0%(&, \)
decreases from 0=°(\) to O(\) := 0%(E(N), ) > 0 = OF (£(N\), \). For A = \g, we have £(\) and thus
6*(0, \o) = (Xo) > 0.
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Remark 3.1. The angle evolution of the unstable Jost solution, 8%(&, \), is a strictly decreasing func-
tion for £ € (—o0,0]. For the interval (—oo, —£(\)], it is just shown. For the interval (—£()), 0], it is
straightforward to see that 0¢ (&, \) = A(&, \) cos? 6 — sin? @ < 0, which concludes our proof.
e 0“(0,0) = —m/2. Note that A = 0 is proved to be an eigenvalue of (3.2) with eigenfunction
e = (4= 9%)10c0(6),
which satisfies the ODE

02qe — 4ge = —0¢6(€), qe € H*(R).

To show that 6“(0,0) = —m/2, we only need to prove that ¢.(£) has exactly one 0 on (—o00,00). Note
that ¢.(€) is an odd function since ¢(&) is even. Therefore it suffices to show

q.(§) <0, forall £>0. (3.5)

In fact, as the only solution which decays on both +oo,

+o0 &
@ =1 | [ 00+ [ eI gea(s)s
£ —00

Integrating by parts and change variable yields that, for any £ > 0,

+o0 £
Qe(f):% /62(575)¢(S)d3—/672(575%(5)0&9

I3 —o0
~+o0 £

= 1 /(e26 — e 2)e 2% ¢p(s)ds — /efQ(E*S)QS(s)dS

2

5 —
+oo

<5 | [ o - [ ois
3

= %d)(f) / (€% — e 2)e™25ds — [ e2(E9) (s

j
—£
+o0 /§
€ —£
= O’
which concludes the desired statement (3) and hence completes the proof of Theorem 3.1. O
4. Spectral stability of the DP smooth solitons
In this section, we give a proof of Theorem 1.2, which is mainly based on the frame work of Lin and Zeng
[24].

Let X _ £ span{¢,} be the eigenspace of the operator L. with respect to the unique negative eigenvalue
A« and
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X4 2 (X_ @ Ker L) Feee |

We then conclude that the Morse index of L. is 1, denoted as n™(L.) £ dim X_ = 1, and have the following
decomposition

L*R)=X_@kerL.® X,,
where all subspaces are invariant under L., satisfying

o (Lov,v) <0forallve X_\{0};
o there exists 6 > 0 such that

(Lev,v) > 6||vf| 2wy, for any v e X,

Given all the above conditions, according to the work by Lin and Zeng [24], we have the following index
inequality,

kO <n (L), (4.1)

where kogo is the number of nonpositive dimensions of (L., -) restricted to the generalized kernel of JL.
modulo ker(L.). Please note that the above inequality is a direct consequence of the general index formula
Eq (1.2) in [24]; see Section 2.4 in [24] for details. Moreover, we have the following lemma.

Lemma 4.1 (Corollary 2.2, [24]). If kOSO =n" (L), then the corresponding linearized flow is spectrally stable;
that is, there exists no exponentially unstable solution.

To obtain the spectral stability result in Theorem 1.2, it suffices to prove the following index equality.
Lemma 4.2. [t holds that kOSO =n"(L.) =1 for any ¢ > 2k > 0.

Proof. Recall that

0H 08

E(@ + CE(@ =0,

which, taken derivative with respect to ¢ to both sides, yields,

)
Ledep = =5-(9) = —(1 = %) (4 = 38) "¢

Therefore, we denote the general kernel of JL. as gKer(JL.), recall that J = 9, (4 —9Z)(1—9Z)~" and have
JL:Oep = —0,¢ € ker(L.) C ker(JL,),

implying that d.¢ € gKer(JL.)\ ker(L.). In addition, we have

0S d
(Lcac¢,8c¢) = (_E(d)),acd)) = _%S((b)
As a result, it suffices to show
15(@ >0 (4.2)
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to conclude 1 < kJOSO <n (L.) =1 and thus kOSO =n"(L.) =1
To prove (4.2), we first derive a more explicit expression of S(¢). Denoting

w = (4 - ag)_l(bv

we have
S@ =5 [o-0-)a-a =3 [ 6:(0-su)de (4.3)

The profile w can be expressed in terms of ¢. More specifically, the traveling wave equation (2.4):
_ 1 _
c(1—-0g)(4=0¢) "6 = [5(0)° + (41— 92) "' 2k¢] =0
yields
Lo
(¢ — 3w) = 5(;5 + 2kw,

which, after simple rearrangements, yields

42
wz% and ¢—3w=%¢.
Taking advantage of (4.3) and the evenness of ¢, we then have
0
S(¢) = m / (3¢ + 4k)p*dE. (4.4)

— 00

In order to derive a more explicit expression of the above integral with respect to ¢, we take advantage
of (2.6), which reads

S 0262 = P (36" — e+ ko + 5 — ko) = P(9) = 6D~ 6:)(6— 6-).

where we recall that ¢+ = c — %k + ./%k(?)c + 2k) are the two positive roots of the quadratic polynomial
P(¢). As a result, for £ € (—00,0), ¢¢ > 0, and

c—¢

AR vy

¢g, for & € (—00,0).

Plugging this expression of ¢ on £ € (—o0,0] into (4.4), we have

0
S(¢) = m /(3¢+ Ak) ¢ de
1 / 8
= 23+ 2k) / S A e [ ke (45)

— 00
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1 T (3¢ + 4k)gp(c — §)
2(3c + 2k) ) V(o= )(d—0-)

dé.
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It is noted that one can not take derivative with respect to ¢ directly because of the singularity in the

denominator. Instead, introducing the change of variable

N CEr e m e A

and noting that

d 2 2 4
dp = — 2% ay —p=1/22+0a%, ap=c—k, a_=1/kc+ k2, [=c*—2ke,
a —¢ 3 V3" Ty

the expression of S in (4.5) becomes

b
! (3¢ + 4k)g(c — ¢)
B : f[(a+¢)(a++§k)] (g — @) — ay][(ay — ¢) — (ag — ¢)] dz
_2(3c—|—2k) ) ar—o
3 VB
:mo/{<a+—¢> (Bas + 2k = c)(ay = 9)
+(O‘++—k)(04+ )
[3a++2( k )a+—_kc]_ a+3_¢ }d
1 2 2 4 4 o 2k(c* - 3K?)
3C—|—2k O/ (2% 4+ a2 —2(C—§/€)W+(c—§kc—§k>+ﬁ dx

30+2k { P+ (8¢ = 2ke)z + (k= 36){ \/m—i—a log(z + +a2)}
4 z=+/B
+2k(c® — k%) log(z + W)}
0 z2=0

(e® — ck — 2KV = 2ck Lo log £~ 2k 4 /2 — 2k

2(3c + 2k) 9 \/ 2ke + k2

A straightforward but lengthy calculation shows that the derivative

d 3 (c+k) [c—2k
%S((b)— Be 1 2k . >0, foranyc>2k>0.

This completes the proof Lemma 4.2. 0O
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