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The Degasperis-Procesi equation is an approximating model of shallow-water 
wave propagating mainly in one direction to the Euler equations. Such a model 
equation is analogous to the Camassa-Holm approximation of the two-dimensional 
incompressible and irrotational Euler equations with the same asymptotic accuracy, 
and is completely integrable with the bi-Hamiltonian structure. In the present study, 
we establish existence and spectral stability results of localized smooth solitons to 
the Degasperis-Procesi equation on the real line. The stability proof relies essentially 
on refined spectral analysis of the linear operator corresponding to the second-order 
variational derivative of the local Hamiltonian of the Degasperis-Procesi equation.
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r é s u m é

L’équation de Degasperis-Procesi est un modèle approximatif d’ondes en eau basse 
se propageant principalement dans une direction vers les équations d’Euler. Une telle 
équation de modèle est analogue à l’approximation de Camassa-Holm des équations 
d’Euler incompressibles en deux-dimentions et irrotationnelles, avec la même 
précision asymptotique, et ellle est intégrable avec la structure bi-hamiltonienne. 
Dans l’étude présente, nous établissons les résultats d’existence et de stabilité 
spectrale de solitons lisses et localisées à l’équation de Degasperis-Procesi sur la 
droite réelle. La preuve de stabilité repose essentiellement sur une analyse spectrale 
raffinée de l’opérateur linéaire correspondant à la dérivée variationnelle du second 
ordre de l’hamiltonien de l’équation de Degasperis-Procesi.
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1. Introduction

The Degasperis-Procesi (DP) equation

mt + 2kux + 3mux + umx = 0, x ∈ R, t > 0, (1.1)

with momentum density m � u − uxx and k > 0 as a parameter related to the critical shallow water speed, 

was originally derived by Degasperis and Procesi [12] using the method of asymptotic integrability up to 

the third order as one of three equations in the family of third-order dispersive PDE conservation laws of 

the form

ut − α2
2uxxt + α2uxxx + c0ux = ∂x(c1u2 + c2u2

x + c3uuxx).

The other two integrable equations in the family, after rescaling and applying a Galilean transformation, 

are the Korteweg-de Vries (KdV) equation [19],

ut + uxxx + uux = 0, (1.2)

and the Camassa-Holm(CH) shallow-water equation [1,15] (see also [7] for a rigorous justification in shallow 

water approximation),

mt + 2kux + 2mux + umx = 0, m = u − uxx. (1.3)

The DP equation is also an approximation to the incompressible Euler equations for shallow water and its 

asymptotic accuracy is the same as that of the CH shallow-water equation [7] in the CH scaling, where 

the solution u(t, x) of (1.1) represents the horizontal velocity field at height z0 =
√

23
36 after the re-scaling 

within 0 ≤ z0 ≤ 1 at time t in the spatial x-direction with momentum density m.

The DP equation (1.1) has an apparent similarity to the CH equation (1.3), and both of them are im-

portant model equations for shallow water waves with breaking phenomena, i.e., the wave remains bounded 

but its slope becomes unbounded [3,4,23,27]. However, there was very little known about qualitative prop-

erties and long-time dynamics of the DP equation, and what was known about the CH equation can not be 

directly applied to the DP equation, due to major structural differences between the DP equation and the 

CH equation. For instance, the isospectral problems in the Lax pair for the DP equation (1.1) and the CH 

equation are respectively a third-order equation [11]

ψx − ψxxx − λmψ = 0,

and a second-order equation [1]

ψxx − 1

4
ψ − λmψ = 0,

where m = u − uxx in both cases. Moreover, the CH equation is a re-expression of geodesic flow on the 

diffeomorphism group [6] and on the Bott-Virasoro group [26], while only a non-metric geometric derivation 

of the DP equation is available [13].

When it comes to solitons, the main focus of this work, it is well-known that the KdV equation is an 

integrable Hamiltonian equation that possesses smooth solitons as traveling waves. In the KdV equation, 

the leading-order asymptotic balance that confines the traveling wave solitons occurs between nonlinear 

steepening and linear dispersion. On the other hand, the nonlinear dispersion and nonlocal balance in 
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the CH equation and the DP equation, can still produce confined solitary traveling waves. There are two 

scenarios, though, depending on the value of k.

In the limiting case of vanishing linear dispersion (k = 0), smooth solitary waves become peaked solitons, 

called peakons. More specifically, when k = 0, the CH equation can be written as

ut + ∂x(
1

2
u2 +

1

2
φ ∗ (

1

2
u2

x + u2)) = 0, t > 0, x ∈ R, (1.4)

and the DP equation as

ut + ∂x(
1

2
u2 +

1

2
φ ∗ (

3

2
u2)) = 0, t > 0, x ∈ R, (1.5)

where φ(x) = e−|x| and “∗” stands for convolution with respect to the spatial variable x ∈ R. Peakons are 

weak solutions of these conservation laws and are true solitons that interact via elastic collisions respec-

tively under the CH dynamics and the DP dynamics. Moreover, as a fundamental qualitative property in 

nonlinear dynamics, the orbital stability of peakons of the CH and DP equation has been verified [9,22]. 

Relevant stability results for waves approximating peakons are also available [8]. However, the DP equation 

distinguishes from the CH equation substantially, mainly in the corresponding conservation laws. Much 

more sophisticated arguments are used in [22] to overcome the much weaker L2 conservation law presented 

in the DP equation. Another novel feature of the DP equation is that for k = 0, not only does it have peaked 

solitons [1,11] of the form u(t, x) = ce−|x−ct|, c ∈ R, it also admits shock peakons [14,25] of the form

u(t, x) = − 1

t + a
sgn(x)e−|x|, a > 0.

It is not clear if such a discontinuous solution is stable or not in proper settings.

In the case of non-vanishing linear dispersion (k �= 0), the existence and stability of localized smooth 

solitary waves of the CH equation (1.3) are well understood by now [2,10], while the DP equation case has 

been barely explored so far and thus the subject of this paper. The goal of this paper is to establish existence 

and spectral stability results of smooth solitons for the DP equation (1.1).

We start with a rigorous definition of solitary waves, i.e., solitons. Firstly, a solution of the DP equation 

u(t, x) is a traveling wave if there exist a real number c and a scalar function φ : R → R such that

u(t, x) = φ(x − ct).

Moreover, a traveling wave of the DP equation φ(x − ct) is a solitary wave if there exists ξ0 ∈ R such that

• max
ξ∈R

φ(ξ) = φ(ξ0) and lim
ξ→±∞

φ(ξ) = 0.

• φ is strictly increasing on (−∞, ξ0) and strictly decreasing on (ξ0, ∞).

We give the existence result below, refer to Section 2 for further reading and move on directly to the 

discussion of the essential topic–the stability issue.

Theorem 1.1 (Existence). Under the physical condition c > 2k > 0, there exists, up to translations, a unique 

c-speed solitary wave φ(ξ; c) with its maximum height

c − 2k

4
< φmax � max

ξ∈R

{φ} < c − 2k.

In addition, the function φ(ξ; c) could be taken even and strictly monotonically increases from 0 to φmax for 

negative values of ξ.
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Thanks to the translation invariance of the equation, for any given solitary wave φ(ξ; c), its spatial 

translation generates a family of solutions, called the orbit of the solitary wave, denoted as

Oc = {φ(· + x0; c) | x0 ∈ R}.

Moreover, a solitary-wave solution φ of the DP equation is called orbitally stable if a wave starting close 

to the solitary wave φ remains close to the orbit of the solitary wave up to the existence time. A generic 

feature of nonlinear dispersive equations is that their solutions usually tend to be oscillations that, as time 

evolves, spread out spatially in a significantly nonlinear and complicated way. When it comes to solitary 

waves, one would naively expect that a small perturbation of a solitary wave would at least yield another 

one with a different speed and phase shift, if not more complicated, which makes the stability of solitary 

waves counter-intuitive and thus fascinating.

Another weaker form of stability is called spectral stability. A solitary wave is called spectrally stable if 

the corresponding linearized equation admits no exponentially unstable solution.

The study of stability is essentially based on the local Hamiltonian structure of the DP equation applying 

some general index counting theorem from [24]. Actually, the DP equation (1.1) in terms of u, that is,

ut − uxxt + 2kux − 3uxuxx − uuxxx + 4uux = 0, (1.6)

can be written as an infinite dimensional Hamiltonian PDE, that is,

ut = J
δH

δu
(u), (1.7)

where

J � ∂x(4 − ∂2
x)(1 − ∂2

x)−1, H(u) � −1

6

∫ (
u3 + 6k

(
(4 − ∂2

x)− 1
2 u
)2
)

dx.

Remark 1.1. As mentioned in the abstract, the DP equation is bi-Hamiltonian [17] and also completely 

integrable [5]. In addition to the local Hamiltonian mentioned here, there is another, nonlocal, Hamiltonian 

operator, compatible with the local one; see [17] for details. Due to the fact that we only use the local 

Hamiltonian in this work, we from now on refer to the local Hamiltonian as the Hamiltonian for simplicity.

It is observed that some relevant conservation laws of the DP equation (1.1) are generically weaker than 

those of the CH equation (1.3). More specifically, there are at least three relevant conservation laws of (1.1)

in study of stability—the conservation of momentum M(u), the Hamiltonian H(u), the conserved quantity 

S(u) arising from the translation symmetry, respectively taking the following forms.

M(u) =

∫

R

(1 − ∂2
x)u dx, H(u) = −1

6

∫

R

(
u3 + 6ku · (4 − ∂2

x)−1u
)

dx,

S(u) =
1

2

∫

R

(1 − ∂2
x)(4 − ∂2

x)−1u · u dx, (1.8)

while the corresponding ones of the CH equation (1.3) are the following,

M(u) =

∫

R

(1 − ∂2
x)u dx, H̃(u) =

∫

R

(
u3 + uu2

x + 2ku2
)

dx,

S̃(u) =

∫

R

(
u2 + u2

x

)
dx. (1.9)



302 J. Li et al. / J. Math. Pures Appl. 142 (2020) 298–314

Remark 1.2. Using Kato’s theorem [18], it is known [28] that if initial profiles u0 ∈ Hs(R) with s > 3
2 , (1.1)

has a unique solution in C([0, T ); Hs(R)) for some T > 0 with M, H and S all conserved. Moreover, the 

only way that a classical solution of equation (1.1) fails to exist for all time is that the wave breaks. Some 

solutions of (1.1) are defined globally in time (e.g. the smooth solitary waves) while other waves break in 

finite time [23].

Remark 1.3. While it is straightforward to verify that M and H are conserved quantities, the verification 

of the conservation of S under the flow is relatively nontrivial. In fact, the conservation of S(u) holds as 

long as the Hamiltonian density at spatial infinity equal to zero. More specifically, for any solution u(t, x)

to the DP equation with initial condition u(0, ·) ∈ Hs(R) with s > 3/2, the solution u(t, x) is continuous in 

x with lim
x→±∞

u(t, x) = 0 and

dS

dt
= ((1 − ∂2

x)(4 − ∂2
x)−1u, ut) = ((1 − ∂2

x)(4 − ∂2
x)−1u, J

δH

δu
(u))

= −(∂xu,
δH

δu
(u)) =

∫

R

∂xh(u(t, x))dx

= h(u(t, ∞)) − h(u(t, −∞)) = h(0) − h(0) = 0,

where h(u) = −1
6

[
u3 + 6k

(
(4 − ∂2

x)− 1
2 u
)2
]

is the Hamiltonian density.

In particular, one can see that the conservation law S for the DP equation is equivalent to ‖u‖2
L2 . In fact, 

by the Fourier transform, we have

S(u) =
1

2

∫

R

(1 − ∂2
x)u(4 − ∂2

x)−1udx =
1

2

∫

R

1 + ξ2

4 + ξ2
|û(ξ)|2dξ ∼ ‖û‖2

L2 = ‖u‖2
L2 .

Due to such a weaker conservation law S for the DP equation, compared with S̃ of the CH case, we can 

only expect spectral (or orbital) stability of solitons in the sense of the L2 norm, which makes the study of 

the stability of smooth DP solitons much more subtle.

In fact, taking advantage of the fact that the conserved energy S̃ in (1.9) of the CH equation is H1 norm 

of the solution and fixed sign of the momentum density, the variational framework by Grillakis, et al. [16]

can be successfully applied without too much trouble to obtain orbital stability of smooth CH solitons [8]. 

More specifically,

• According to the conservation law of momentum M , the CH skew symmetric operator

JCH = −∂x(1 − ∂2
x)−1

is bounded and invertible when restricted to the zero-average co-dimensional one subspace.

• By the Liouville substitution, the linearized operator

LCH = −∂x((2c − 2φ)∂x) − 6φ + 2φ′′ + 2(c − k)

with respect to the soliton φ, defined on the space H2(R), is transformed into a regular self adjoint 

Sturm-Liouville operator, which is, as one readily sees, a relatively compact perturbation of a second 

order differential operator with constant coefficients. The required spectral properties of LCH then 

follows directly from the Sturm-Liouville theory.
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• The corresponding convexity condition is easily verified in the CH soliton case which takes big advantage 

of the simple form of the conservation law Ẽ3.

• The strong L2 coercivity on restrained space can be lifted to H1, so as to control the remaining nonlinear 

part and to obtain orbital stability.

As for the orbital stability of smooth DP solitons, there are several obstacles to tackle.

• The corresponding DP skew symmetric operator

JDP = −∂x(4 − ∂2
x)(1 − ∂2

x)−1

is not bounded invertible. This obstacle is mild, since the generator of the translation symmetry is 

∂x, annihilating the unbounded part ∂−1
x in the pseudo inversion J−1

DP and making J−1
DP ∂x bounded 

invertible, as in the KdV case.

• The corresponding linearized operator

LDP = (c − 2k − c∂2
ξ )(4 − ∂2

ξ )−1 − φ

fails to directly transform into a regular self-adjoint Sturm-Liouville type operator, so the study of 

its spectral properties becomes highly nontrivial. While the essential spectrum and the simplicity of 

the eigenvalue 0 of the operator LDP can be readily obtained via a neat and brief functional analysis 

argument, the analysis on negative eigenvalues roots deep in dynamical systems and is technical.

• The verification of the convexity of the Lagrangian evaluated at solitary wave profiles with respect to 

the wave speed c is also highly nontrivial and relies substantially on the special structure of the DP 

equation.

• The strong L2 coercivity (to be proved for the DP soliton in this paper) on restrained space can NOT 

be lifted to H1, essentially because of the weaker conservation law S of DP equation which leads to 

consideration of an non-differential operator LDP .

We succeed in tackling the first three listed obstacles and have the following main result.

Theorem 1.2. Let uc(t, x) be the solitary-wave solution of (1.1) with its traveling speed c > 2k. Such a 

solitary-wave uc(t, x) is spectrally stable in L2(R).

Remark 1.4. As explained above that the strong L2 coercivity can not be lifted to H1 because of the special 

form of the linear operator LDP . One can actually prove that the strong H1 coercivity fails on corresponding 

restrained space by performing parallel spectral analysis of LDP viewed as an operator on H1 which admits 

positive continuous spectrum touching 0.

Remark 1.5. While the term 
∫

u3dx can be bounded by the H1-norm of u, it generically can not be bounded 

by the L2-norm of u. As a result, we note that, in order to obtain orbital stability results of DP smooth 

solitons, a remedy is to establish the stability in the L2 and L∞ norm simultaneously. For peaked soliton 

ϕ = ce−|x−ct| with k = 0, the control of the L∞ norm is reduced to bound the pointwise distance between the 

peakon’s maximum and the maximum height of the perturbed profile, which is related to the perturbation 

in L2-norm. This could be observed from the following formula derived in [22],

S(u) − S(ϕ) = S(u − ϕ(· − ξ)) + 2c (vu(ξ) − vϕ(0)) ,

where vu = (4 − ∂2
x)−1u and ξ ∈ R. However, it seems not easy to control the L∞ norm in the case of 

smooth solitons, leaving the orbital stability of these smooth solitons as an open problem.
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The remainder of the paper is organized as follows. In Section 2 we establish the existence and properties of 

the smooth solitary-wave solutions (Theorem 1.1). In Section 3, we study the spectrum of the corresponding 

linear operator of the second-order variational derivative of the Hamiltonian. In Section 4 we give the proof 

of the spectral stability result (Theorem 1.2).

2. Smooth Degasperis-Procesi solitons

In this section, we study smooth solitary wave of (1.7),

ut = J
δH

δu
(u),

where

J = ∂x(4 − ∂2
x)(1 − ∂2

x)−1, H(u) = −1

6

∫ (
u3 + 6k

(
(4 − ∂2

x)− 1
2 u
)2
)

dx.

Changing the (t, x) coordinates into the traveling frame (t, ξ) with ξ � x − ct and slightly abusing the 

notation by denoting u(t, ξ) � u(t, x − ct), the equation (1.7) is now written as

ut = J
δH

δu
(φ) + cuξ = J(

δH

δu
(u) + c

δS

δu
(u)), (2.1)

where we recall

S(u) =
1

2

∫
(1 − ∂2

ξ )(4 − ∂2
ξ )−1u · udξ.

Introducing the Lagrangian

Qc(u) � H(u) + cS(u), (2.2)

the solitary wave with speed c > 0, denoted as φ(ξ; c), is a steady state of (2.1) and a critical point of the 

Lagrangian, namely,

δQc

δu
(φ) =

δH

δu
(φ) + c

δS

δu
(φ) = 0. (2.3)

We now prove Theorem 1.1.

Proof of Theorem 1.1. The stationary traveling DP equation (2.3) is equivalent to

−[
1

2
φ2 + (4 − ∂2

ξ )−12kφ] + c(1 − ∂2
ξ )(4 − ∂2

ξ )−1φ = 0. (2.4)

Applying 4 − ∂2
ξ , we get

−2φ2 + φφξξ + φ2
ξ − 2kφ + c(φ − φξξ) = 0.

In terms of a system of first order ODEs, we have

{
φξ = ψ

(c − φ)ψξ = (c − 2k)φ − 2φ2 + ψ2,
(2.5)
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which has a first integral

Φ(φ, ψ) = φ2(
1

2
φ2 − cφ +

2

3
kφ +

1

2
c2 − kc) − 1

2
(c − φ)2ψ2.

A solitary wave of (2.1) corresponds to the φ entry of the connected component of the level curve

Φ(φ, ψ) = Φ(0, 0) = 0,

which connects to the origin. Any point (φ, ψ) on the level curve Φ(φ, ψ) = 0 satisfies

φ2(
1

2
φ2 − cφ +

2

3
kφ +

1

2
c2 − kc) =

1

2
(c − φ)2φ2

ξ , (2.6)

and thus the quadratic polynomial, P (φ) � 1
2φ2 − cφ + 2

3kφ + 1
2c2 − kc, is nonnegative. Noting that, given 

c > 2k, the polynomial P (φ) admits two distinctive positive real roots, denoted as φ±, admitting the 

following expressions

φ± = c − 2

3
k ±
√

2

9
k(3c + 2k) > 0,

we conclude that the level curve Φ(φ, ψ) = 0 has two connected components, lying respectively within the 

region φ ≥ φ+ and φ ≤ φ−. The solitary wave profile φ(ξ; c), as part of the level curve Φ(φ, ψ) = 0, is a 

subset of the connected component within φ ≤ φ−. More specifically, we readily see from the geometry of 

the level curve (2.6), which is symmetric about ψ, that the solitary wave profile φ(ξ; c) is even with respect 

to ξ and is strictly increasing on ξ ∈ (−∞, 0] with its global maximum φmax obtained at ξ = 0; that is,

φmax = φ− = c − 2

3
k −
√

2

9
k(3c + 2k).

Given that c > 2k > 0, it is also straightforward to see that φmax ∈ ( c−2k
4 , c − 2k), which concludes the 

proof of the theorem. �

Remark 2.1. It is known that in the limit k → 0, the solitary waves of the CH equation (1.3) with maximal 

elevation at x = 0 converge uniformly on every compact subset of R to the peakon ϕ(x) = ce−|x| [21]. For 

the DP equation (1.1), a similar convergence result of the smooth solitary waves to peakon can also be 

obtained by studying the following ODE:

uξ(ξ)

u(ξ)
=

√
u2 − 2(c − 2

3k)u + c2 − 2ck

c − u
.

3. Spectral analysis

In this section, we study the spectrum of the corresponding linear operator of the second-order variational 

derivative of the Lagrangian, which is critical to the stability of smooth solitary waves. From now on, we 

simply write φ for the solitary wave profile φ(ξ; c) unless specified.

Consider under the traveling frame (t, ξ) the linearization of (2.1) along the soliton φ,

vt = JLcv, (3.1)

where v ∈ L2(R), and
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Lc =
δ2Qc

δu2
(φ) = −φ − 2k(4 − ∂2

ξ )−1 + c(1 − ∂2
ξ )(4 − ∂2

ξ )−1 = c − φ − (3c + 2k)(4 − ∂2
ξ )−1.

It is straightforward to see that Lc : L2(R) → L2(R) is a well-defined, self-adjoint, bounded linear operator. 

Moreover, we have the following spectral theorem about the operator Lc.

Theorem 3.1. The spectrum of the operator Lc, denoted as σ(Lc), admits the following properties.

(1) The spectrum set σ(Lc) lies on the real line; that is, σ(Lc) ⊂ R.

(2) 0 is a simple isolated eigenvalue of Lc with ∂ξφ(ξ) as its eigenfunction.

(3) On the negative axis (−∞, 0), the spectrum set σ(Lc) admits nothing but only one simple eigenvalue, 

denoted as λ∗, with its corresponding normalized eigenfunction, denoted as φ∗.

(4) The set of essential spectrum σess(Lc) lies on the positive real axis, admitting a positive distance to the 

origin.

Proof. Statement (1) is straightforward, due to the fact that Lc is self-adjoint. We now prove statement (4) 

first. Denoting λ0 � min{ c−2k
4 , c−φmax

2 } > 0, we consider the eigenvalue problem

Lcv = λv, for λ ∈ (−∞, λ0), and v ∈ L2(R).

Introducing the notation

p � (4 − ∂2
ξ )−1v, A(ξ, λ) �

c − 2k − 4φ(ξ) − 4λ

c − φ(ξ) − λ
,

the above eigenvalue problem is equivalent to

Lλp � pξξ − A(ξ, λ)p = 0, q ∈ H2(R). (3.2)

Note that φ(ξ) < c −2k < c for any ξ ∈ (−∞, ∞) and λ < λ0, so the coefficient A(ξ, λ) is well-defined in the 

sense that its numerator c − φ − λ is always positive. Moreover, for any given λ ∈ (−∞, λ0), the constant 
c−2k−4λ

c−λ
> 0, yielding that the operator

L∞
λ :H2(R)−→L2(R),

p �−→ − ∂2
ξ p +

c − 2k − 4λ

c − λ
p,

is bounded invertible and thus Fredholm with index 0. As a result, for any λ ∈ (−∞, λ0), the operator 

Lλ is Fredholm with index 0 for that it differs by a compact perturbation from the operator L∞
λ , which 

concludes the proof of statement (4) and indicates that any λ ∈ (−∞, λ0) is either in the resolvent of Lc

or an eigenvalue of Lc. As a matter of fact, from general properties of Sturm-Liouville operators [20], if 

λ ∈ (−∞, λ0) is an eigenvalue of Lλ (and thus of Lc), then it must be a simple eigenvalue.

Statement (2) is basically a consequence of the above argument. Taking λ = 0 and noting that (4 −
∂2

ξ )−1∂ξφ is a solution of the eigenvalue problem L0p = 0 by differentiate the traveling wave equation with 

respect to ξ, we conclude that statement (2) is true.

We consider last the statement (3). The proof takes advantage of properties of the coefficient A(ξ, λ), 

which is even in ξ and strictly increasing on the interval ξ ∈ [0, ∞). Moreover, since φ(ξ) decays exponentially 

as ξ approaches ±∞, and λ ≤ 0, the coefficient of q, −A(ξ, λ), is always negative for non-positive values of 

λ and large enough |ξ|. It follows that there always exist unique Jost solutions Js(ξ, λ) and Ju(ξ, λ), up to 
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multiplication of a constant, which approaches 0 as ξ → ±∞ respectively. In fact, Js\u(ξ, λ) is asymptotic 

to the limit solution

Js\u
∞ (ξ, λ) � e∓

√
A(∞,λ)ξ, A(∞, λ) � lim

ξ→±∞
A(ξ, λ) =

c − 2k − 4λ

c − λ
;

that is,

Js\u(ξ, λ) 
 e
∓
√

c−2k−4λ
c−λ

ξ
, as ξ → ±∞.

The eigenvalue problem (3.2) is really a shooting one. λ is an eigenvalue of (3.2) if and only if the two 

vectors

(Js(0, λ),
d

dξ
Js(0, λ)) and (Ju(0, λ),

d

dξ
Ju(0, λ))

are parallel to each other.

While it is possible to compute the corresponding Evans function to locate the eigenvalues of (3.2), 

we prefer to give a more geometric proof which takes advantage of the special structure of solitary wave, 

specifically the evenness of the solitary wave profile φ(ξ).

Under the polar coordinates change

{
q = ρ cos θ

qξ = ρ sin θ,

the equation (3.2) becomes

θξ = A(ξ, λ)cos2θ − sin2θ, (3.3)

and an equation of ρ which is slaved to the θ equation and thus omitted. An eigenvalue λei is such that 

there is a solution θei(ξ, λei) of (3.3) which approaches

θ−∞(λ) � arctan( lim
ξ→±∞

d
dξ

Js(ξ, λ)

Js(ξ, λ)
) = arctan

√
A(∞, λ),

as ξ → −∞ and approaches

θ∞
k (λ) � arctan( lim

ξ→∞

d
dξ

Js(ξ, λ)

Js(ξ, λ)
) + kπ = kπ − arctan

√
A(∞, λ), k ∈ Z,

as ξ → ∞, where, to prevent multiple counting of eigenfunctions, we intentionally set θ−∞ fixed, in the 

sense that θ−∞ does not depend on k while θ∞
k does, so that the shooting problem has a fixed “start point” 

at −∞, that is, θ−∞, and infinite many valid choices of “end points” at ξ = +∞, that is, {θ∞
k }k∈Z.

It is observed that the coefficient A(ξ, λ), as a function of ξ for fixed λ, admits the following dichotomy.

• For any fixed λ ∈ (−∞, λ0) with λ1 � c−2k
4 − φmax,

A(ξ, λ) > 0, for all ξ;
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• For any fixed λ ∈ [λ0, 0], there exists ξ̄(λ) ≥ 0 such that

A(ξ, λ)

{
≥ 0, |ξ| ≥ ξ̄(λ),

≤ 0, |ξ| ≤ ξ̄(λ).

There can not be any solution of the angle equation (3.3) approaching θ−∞(λ), θ∞
k (λ) as ξ → ±∞. 

Indeed, the angle equation (3.3) has four (ξ, λ)-dependent pseudo-equilibrium on the unite circle:

Θ±
1 (ξ, λ) � ± arctan

√
A(ξ, λ), Θ±

2 (ξ, λ) � ± arctan
√

A(ξ, λ) − π.

Θ+
1 and Θ+

2 attract nearby points, while Θ−
1 and Θ−

2 repel nearby points. For conveniences, we also introduce 

the notation Bk � −kπ
2 for k ∈ N.

Case 1. Any λ ∈ (−∞, λ0) is not an eigenvalue since the first quadrant, θ ∈ [0, π/2], is forward-invariant, 

which indicates that if θ(ξ, λ) starts at ξ = −∞ from θ−∞(λ) = Θ+
1 (−∞, λ) ∈ [0, π/2], it will not leave 

[0, π/2] and thus never reaches any θ∞
k , which lies in the second and fourth quadrant. More specifically, 

as ξ increases from −∞ → 0, Θ+
1 and Θ−

1 move respectively clockwise and counterclockwise towards, but 

never reach, B0, and as ξ then increases from 0 → ∞, the whole process is reversed; that is, Θ+
1 and Θ−

1

return to their starting positions at −∞ in exactly the same speed but opposite directions. Essentially, the 

movement of Θ+
1 and Θ−

1 is a reflection about the line {θ = 0} of each other because of the evenness of 

φ(ξ). The movement of Θ+
2 and Θ−

2 are exactly the same as that of Θ+
1 and Θ−

1 in obvious sense.

As a matter of fact, we can show that, for ξ ∈ [0, ∞), the angle evolution, θs(ξ, λ), of the stable Just 

solution Js(ξ, λ), is strictly decreasing, and shadows the unstable pseudo-equilibria Θ−
1\2, modulo 2π. More 

specifically, θs(ξ, λ) can be viewed as the solution to the angle equation (3.3) with the limit boundary 

condition θs(+∞, λ) = Θ−
1\2(+∞, λ) mod (2π). For conveniences, we simple set θs(+∞, λ) = Θ−

2 (+∞, λ). 

Noting that the intervals

(Θ−
2 (+∞, λ), θ−

1 (0, λ) − 2π) and (Θ−
2 (0, λ), Θ−

1 (+∞, λ)),

are forward invariant, we conclude that the angle of the stable Jost function, θs(ξ, λ), is trapped within the 

interval (Θ−
2 (+∞, λ), Θ−

2 (0, λ)); that is,

{θs(ξ, λ) | ξ ∈ [0, ∞)} ⊂ (Θ−
2 (+∞, λ), Θ−

2 (0, λ)).

Moreover, we claim that

θs(ξ, λ) < Θ−
2 (ξ, λ), for any ξ ∈ [0, ∞),

essentially due to the fact that the unstable pseudo-equilibrium Θ−
2 (ξ, λ) is strictly decreasing with respect 

to ξ ∈ [0, ∞). We prove by contradiction. If this is not true, we have the following two scenarios.

(1) If there exists ξ0 ∈ [0, ∞) such that θs(ξ0, λ) > Θ−
2 (ξ0, λ), then it is straightforward to see that the 

interval (Θ−
2 (ξ0, λ), −π) is forward invariant for ξ ∈ [ξ0, +∞). As a result, we have

Θ−
2 (+∞, λ) = lim

ξ→∞
θs(ξ, λ) ∈ [Θ−

2 (ξ0, λ), −π] /� Θ−
2 (+∞, λ),

which is a contradiction.
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(2) If there exists ξ0 ∈ [0, ∞) such that θs(ξ0, λ) = Θ−
2 (ξ0, λ), then we claim that the interval [Θ−

2 (ξ0, λ), −π)

is forward invariant for ξ ∈ [ξ0, +∞) and thus a contradiction follows as in the previous case. The subtle 

part of the forward invariance lies at the inclusion of the left end point Θ−
2 (ξ0, λ), due to the fact that, 

if θs(ξ0, λ) = Θ−
2 (ξ0, λ), then

∂ξθs(ξ0, λ) = 0 > ∂ξΘ−
2 (ξ0, λ),

letting θs fall behind Θ−
2 and converges towards Θ+

2 as ξ goes to infinity from ξ0.

According to the evenness of A with respect to ξ, similar conclusions can be drawn for the angle evolution, 

θu(ξ, λ), of the unstable Jost solution Ju(ξ, λ).

Case 2. In the interval [λ0, 0], we claim that there are only two eigenvalues; that is, λ = 0 and λ = λ∗ ∈
(λ0, 0). It is straightforward to see that

λ is an eigenvalue if and only if θs(0, λ) = θu(0, λ),

which, thanks to the evenness of A(ξ, λ) with respect to ξ, is equivalent to the following statement.

λ is an eigenvalue if and only if θu(0, λ) = Bk, for some k ∈ N.

Noting that for any λ ∈ (−∞, 0],

∂λA(ξ, λ) = − 3c + 2k

(c − φ(ξ) − λ)2
< 0, ∂λθ−∞(λ) =

∂λA(∞, λ)

2
√

A(∞, λ)(1 + A(∞, λ))
< 0,

we conclude that

∂λθu(0, λ) = ∂λ

(
θu(0, λ) − θ−∞(λ)

)
+ ∂λθ−∞(λ)

= ∂λ

(
0∫

−∞

(A(ξ, λ) cos2 θ − sin2 θ)dξ
)

+ ∂λθ−∞(λ)

=

0∫

−∞

(∂λA(ξ, λ)) cos2 θdξ + ∂λθ−∞(λ)

< 0.

In other words, θu(0, λ) is a strictly decreasing function with respect to λ ∈ (−∞, 0]. In addition, we claim 

that

θu(0, λ0) > 0, θu(0, 0) = −π/2. (3.4)

As a result of the monotonicity and boundary conditions, there exists a unique λ∗ ∈ (λ0, 0) such that 

θu(0, λ) = B0 = 0; that is, λ0 is the only eigenvalue in the interval (−λ0, 0). We are now left to prove that 

(3.4) holds.

• θu(0, λ0) > 0. As a matter of fact, for the interval (−∞, −ξ̄(λ)], the analysis about the angle evolution 

of the unstable Jost solutions in Case 1 holds. More specifically, as ξ goes from −∞ to ξ̄(λ), θu(ξ, λ)

decreases from θ−∞(λ) to θ̄(λ) := θu(ξ̄(λ), λ) > 0 = Θ+
1 (ξ̄(λ), λ). For λ = λ0, we have ξ̄(λ) and thus 

θu(0, λ0) = θ̄(λ0) > 0.
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Remark 3.1. The angle evolution of the unstable Jost solution, θu(ξ, λ), is a strictly decreasing func-

tion for ξ ∈ (−∞, 0]. For the interval (−∞, −ξ̄(λ)], it is just shown. For the interval (−ξ̄(λ), 0], it is 

straightforward to see that θξ(ξ, λ) = A(ξ, λ) cos2 θ − sin2 θ < 0, which concludes our proof.

• θu(0, 0) = −π/2. Note that λ = 0 is proved to be an eigenvalue of (3.2) with eigenfunction

qe = (4 − ∂2
ξ )−1∂ξφ(ξ),

which satisfies the ODE

∂2
ξ qe − 4qe = −∂ξφ(ξ), qe ∈ H2(R).

To show that θu(0, 0) = −π/2, we only need to prove that qe(ξ) has exactly one 0 on (−∞, ∞). Note 

that qe(ξ) is an odd function since φ(ξ) is even. Therefore it suffices to show

qe(ξ) < 0, for all ξ > 0. (3.5)

In fact, as the only solution which decays on both ±∞,

qe(ξ) =
1

4

⎛
⎜⎝

+∞∫

ξ

e2(ξ−s)∂ξφ(s)ds +

ξ∫

−∞

e−2(ξ−s)∂ξφ(s)ds

⎞
⎟⎠ .

Integrating by parts and change variable yields that, for any ξ > 0,

qe(ξ) =
1

2

⎛
⎜⎝

+∞∫

ξ

e2(ξ−s)φ(s)ds −
ξ∫

−∞

e−2(ξ−s)φ(s)ds

⎞
⎟⎠

=
1

2

⎛
⎜⎝

+∞∫

ξ

(e2ξ − e−2ξ)e−2sφ(s)ds −
ξ∫

−ξ

e−2(ξ−s)φ(s)ds

⎞
⎟⎠

<
1

2

⎛
⎜⎝

+∞∫

ξ

(e2ξ − e−2ξ)e−2sφ(ξ)ds −
ξ∫

−ξ

e−2(ξ−s)φ(ξ)ds

⎞
⎟⎠

=
1

2
φ(ξ)

⎛
⎜⎝

+∞∫

ξ

(e2ξ − e−2ξ)e−2sds −
ξ∫

−ξ

e−2(ξ−s)ds

⎞
⎟⎠

= 0,

which concludes the desired statement (3) and hence completes the proof of Theorem 3.1. �

4. Spectral stability of the DP smooth solitons

In this section, we give a proof of Theorem 1.2, which is mainly based on the frame work of Lin and Zeng 

[24].

Let X− � span{φ∗} be the eigenspace of the operator Lc with respect to the unique negative eigenvalue 

λ∗ and
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X+ � (X− ⊕ Ker Lc)
⊥(Lc·,·)

L2 .

We then conclude that the Morse index of Lc is 1, denoted as n−(Lc) � dim X− = 1, and have the following 

decomposition

L2(R) = X− ⊕ ker Lc ⊕ X+,

where all subspaces are invariant under Lc, satisfying

• (Lcv, v) < 0 for all v ∈ X− \ {0};

• there exists δ > 0 such that

(Lcv, v) ≥ δ‖v‖L2(R), for any v ∈ X+.

Given all the above conditions, according to the work by Lin and Zeng [24], we have the following index 

inequality,

k≤0
0 ≤ n−(Lc), (4.1)

where k≤0
0 is the number of nonpositive dimensions of (Lc·, ·) restricted to the generalized kernel of JLc

modulo ker(Lc). Please note that the above inequality is a direct consequence of the general index formula 

Eq (1.2) in [24]; see Section 2.4 in [24] for details. Moreover, we have the following lemma.

Lemma 4.1 (Corollary 2.2, [24]). If k≤0
0 = n−(L), then the corresponding linearized flow is spectrally stable; 

that is, there exists no exponentially unstable solution.

To obtain the spectral stability result in Theorem 1.2, it suffices to prove the following index equality.

Lemma 4.2. It holds that k≤0
0 = n−(Lc) = 1 for any c > 2k > 0.

Proof. Recall that

δH

δu
(φ) + c

δS

δu
(φ) = 0,

which, taken derivative with respect to c to both sides, yields,

Lc∂cφ = −δS

δu
(φ) = −(1 − ∂2

ξ )(4 − ∂2
ξ )−1φ.

Therefore, we denote the general kernel of JLc as gKer(JLc), recall that J = ∂x(4 −∂2
ξ )(1 −∂2

ξ )−1 and have

JLc∂cφ = −∂xφ ∈ ker(Lc) ⊆ ker(JLc),

implying that ∂cφ ∈ gKer(JLc)\ ker(Lc). In addition, we have

(Lc∂cφ, ∂cφ) = (−δS

δu
(φ), ∂cφ) = − d

dc
S(φ).

As a result, it suffices to show

d

dc
S(φ) > 0 (4.2)
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to conclude 1 ≤ k≤0
0 ≤ n−(Lc) = 1 and thus k≤0

0 = n−(Lc) = 1.

To prove (4.2), we first derive a more explicit expression of S(φ). Denoting

w = (4 − ∂2
ξ )−1φ,

we have

S(φ) =
1

2

∞∫

−∞

φ · (1 − ∂2
ξ )(4 − ∂2

ξ )−1φdξ =
1

2

∞∫

−∞

φ · (φ − 3w)dξ. (4.3)

The profile w can be expressed in terms of φ. More specifically, the traveling wave equation (2.4):

c(1 − ∂2
ξ )(4 − ∂2

ξ )−1φ − [
1

2
(φ)2 + (4 − ∂2

ξ )−12kφ] = 0

yields

c(φ − 3w) =
1

2
φ2 + 2kw,

which, after simple rearrangements, yields

w =
2cφ − φ2

6c + 4k
and φ − 3w =

3φ + 4k

2(3c + 2k)
φ.

Taking advantage of (4.3) and the evenness of φ, we then have

S(φ) =
1

2(3c + 2k)

0∫

−∞

(3φ + 4k)φ2dξ. (4.4)

In order to derive a more explicit expression of the above integral with respect to c, we take advantage 

of (2.6), which reads

1

2
(c − φ)2φ2

ξ = φ2(
1

2
φ2 − cφ +

2

3
kφ +

1

2
c2 − kc) = φ2P (φ) =

1

2
φ2(φ − φ+)(φ − φ−),

where we recall that φ± = c − 2
3k ±

√
2
9k(3c + 2k) are the two positive roots of the quadratic polynomial 

P (φ). As a result, for ξ ∈ (−∞, 0), φξ > 0, and

φ =
c − φ√

(φ − φ+)(φ − φ−)
φξ, for ξ ∈ (−∞, 0).

Plugging this expression of φ on ξ ∈ (−∞, 0] into (4.4), we have

S(φ) =
1

2(3c + 2k)

0∫

−∞

(3φ + 4k)φ2dξ

=
1

2(3c + 2k)

0∫

−∞

(3φ + 4k)φ · c − φ√
(φ − φ+)(φ − φ−)

φξdξ (4.5)



J. Li et al. / J. Math. Pures Appl. 142 (2020) 298–314 313

=
1

2(3c + 2k)

φ
−∫

0

(3φ + 4k)φ(c − φ)√
(φ − φ+)(φ − φ−)

dφ.

It is noted that one can not take derivative with respect to c directly because of the singularity in the 

denominator. Instead, introducing the change of variable

z �
√

(φ − φ+)(φ − φ−), α± �
φ+ ± φ−

2
, β � φ+φ−,

and noting that

dφ = − zdz

α+ − φ
, α+ − φ =

√
z2 + α2

−, α+ = c − 2

3
k, α− =

√
2

3
kc +

4

9
k2, β = c2 − 2kc,

the expression of S in (4.5) becomes

S(φ) =
1

2(3c + 2k)

φ
−∫

0

(3φ + 4k)φ(c − φ)√
(φ − φ+)(φ − φ−)

dφ

=
3

2(3c + 2k)

√
β∫

0

[
(α+ − φ) − (α+ + 4

3k)
][

(α+ − φ) − α+

][
(α+ − φ) − (α+ − c)

]

α+ − φ
dz

=
3

2(3c + 2k)

√
β∫

0

{
(α+ − φ)2 − (3α+ +

4

3
k − c)(α+ − φ)

+

[
3α2

+ + 2(
4

3
k − c)α+ − 4

3
kc

]
− α+(α+ + 4

3k)(α+ − c)

α+ − φ

}
dz

=
3

2(3c + 2k)

√
β∫

0

⎧
⎨
⎩(z2 + α2

−) − 2(c − 1

3
k)
√

z2 + α2
− +

(
c2 − 4

3
kc − 4

9
k2
)

+
2
3k(c2 − 4

9k2)√
z2 + α2

−

⎫
⎬
⎭ dz

=
1

2(3c + 2k)

{
z3 + (3c2 − 2kc)z + (k − 3c)

[
z
√

z2 + α2
− + α2

− log(z +
√

z2 + α2
−)

]

+2k(c2 − 4

9
k2) log(z +

√
z2 + α2

−)

} ∣∣∣∣
z=

√
β

z=0

=
(c2 − ck − 2

3k2)
√

c2 − 2ck

2(3c + 2k)
− 1

9
k2 log

c − 2
3k +

√
c2 − 2ck√

2
3kc + 4

9k2
.

A straightforward but lengthy calculation shows that the derivative

d

dc
S(φ) =

3c2(c + k)

(3c + 2k)2

√
c − 2k

c
> 0, for any c > 2k > 0.

This completes the proof Lemma 4.2. �
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