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ABSTRACT: RNA plays critical roles in guiding protein expression and
catalyzing biological reactions. The gold standard RNA sequencing
method requires converting RNA to complementary DNA (cDNA).
This is followed by DNA amplification via polymerase chain reaction
(PCR) and sequencing, making RNA sequencing indirect, complicated,
and susceptible to sequence data bias. This paper demonstrates RNA
imaging at the single-base level while illustrating a direct method to read
RNA sequences by tip-enhanced Raman scattering (TERS) technique.
To resolve nucleotides within an RNA strand, we adopted gap-mode
TERS involving a gold tip and a gold substrate. After analyzing TERS
measurements based on the reference sequence, we identified RNA
sequences with 90% accuracy. This proof-of-principle RNA imaging
method significantly advances a direct RNA sequencing technique
without RNA labeling or reverse transcriptase RT-PCR amplification.
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RNA conveys rich information in disease diagnostics and
fundamental understanding of disease states. For

example, coronaviruses are enveloped RNA viruses.1 The
viral RNA genome extracted from bronchoalveolar-lavage fluid
is currently used for COVID-19 diagnosis by RT-PCR based
methods.2 Circulating microRNAs serve as potential cancer
biomarkers.3 Furthermore, some RNAs are capable of
regulating cancer-causing genes and some have been linked
to various neurodegenerative diseases, including Alzheimer
disease.4 Thus, sequencing RNA transcripts and identifying
modified RNA bases from patient samples can provide a
detailed look at disease states, including different expression
levels of transcripts and antisense transcription, and allusion to
the structure of genes based on known correlations between
RNA primary sequences and tertiary structures.5 Furthermore,
understanding the interplay between transcriptome sequences
and protein information on expression levels and proteomes
can elucidate many facets of human life and society, including
the understanding of evolution and ecological systems as well
as advances in agriculture, environmental science, and
remediation (see examples in refs 6−22).
Sequencing technologies have underscored our ability to

make progress in understanding such disease states. The gold
standard technique relies on RNA isolation, reverse tran-
scription, and amplification before sequencing. Not only is this
process time-consuming, but the many steps also provide
opportunities for introducing errors into the final sequencing

result. Microarray technologies have expedited the process.
The current next-generation sequencing (NGS) technologies23

allow high-throughput RNA-seq through complementary DNA
(cDNA) sequencing. Although NGS technologies have
eliminated several challenges caused by microarray technolo-
gies, the cDNA-based transcriptome analysis approach displays
several limitations that restrict us from fully understanding the
nature of transcriptomes and genome biology. More
specifically, there are four major shortcomings: (1) the
generation of spurious cDNA due to the DNA-dependent
DNA polymerase activities;24,25 (2) the generation of artificial
cDNAs resulted from contaminating DNA or template
switching26−29 and primer-independent cDNA synthesis;30,31

(3) the production of low quantities of cDNA due to the error-
prone32,33 and inefficacy of reverse transcriptase;34 and (4) the
bias introduced by PCR-based second-strand cDNA syn-
thesis35 due to reducing sequence complexity, distorting the
relative cDNA abundances, skipping some RNA species, and
losing chemical modifications on RNA bases. Considering
these shortcomings, we are highly motivated to develop a new
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method that can directly map RNA transcripts without PCR
amplification and detect antisense transcripts without involving
artifacts of library preparation.36 Further efforts will be
required to reveal the presence and identity of RNA
modifications and to generate continuous and long-range
sequence reads that span splice junctions or repetitive
elements.
Raman spectroscopy is commonly used in chemistry to

provide a structural fingerprint to identify molecules.37

However, the traditional approach fails to identify bonds at
the single-molecule level. Raman spectroscopy is generally
weak for biomolecules or usually overwhelmed by noise and
background fluorescence, which is insufficient for identifying
single-molecules in low-concentration samples. Raman has also
been utilized as an imaging method, yet it falls short of
resolving nanostructures because this diffraction-limited system
is dependent on the wavelength of light used. Such resolution
limitations can be overcome by employing tip-enhanced
Raman scattering (TERS), a technique that combines
surface-enhanced Raman scattering (SERS) and scanning
probe microscopy to improve the Raman signal and enable a
subnanometer spatial resolution.38−41 TERS coupled with
atomic force microscopy (AFM) manifests an estimated
Raman signal enhancement in the range of 106 to 109 and,
at the same time, maps multiple components of the sample.42

The increase in spatial resolution and molecular information
through the use of TERS has queried investigations into
various biological samples including viruses,43 bacteria,44 and
single-stranded DNA (ssDNA) molecules.45−48

In most previous reports on TERS, the nanoscale spatial
resolution has been profoundly widely discussed.49−52 In spite
of the fact that oversized conventional tips were used, some
experiments had proved that TERS could resolve nanostruc-
tures with a few nanometers or even subnanometer
resolution.53 Though the reason is still under debate, we
believe that further analysis of the nanostructures themselves,
and their obtained scans, can elucidate the role of nanofeatures
dramatic resolving capability on the tip surface in achieving the
remarkable resolution. As our tip was made via physical vapor
deposition, the tip was expected to be covered by rough
atomic-scale features deposition. Thence, the surface rough-
ness played an essential role as a kind of “mini-tip” that did a
further effort to confine the local light field to a nanometer
scale.52,53 It should be noted that, due to the atomic size of the
“mini-tip”, the total volume-integrated local field was a small
fraction of the total power for the whole tip. Therefore, it was
neglected in most research works targeting a bulky sample. As
in single-molecule experiments, the local field near the tip and
the “mini-tip” yields comparable enhancement of the Raman
signals because the atomic structure may dominate the field
intensity in the subnanometer area. The fine structures on our
tips were assumed to be placed randomly, which might cause
less spatial resolution and some random hotspots. In the future
work, a well-protected fine structure may need to be fabricated
on a tip to achieve a more reliable, repeatable TERS
measurement.
In this report we present a direct TERS-based single-

stranded RNA (ssRNA) imaging method that highlights three
major developments: (1) a unique ssRNA deposition method
to maximize nucleobase identification, (2) an effective “mini-
tip” that provides the requisite resolution for single-molecule
detection, and (3) a novel analytical method in which the
nucleobase information is elucidated. RNA is much more

conformationally flexible than DNA; as a result, RNA may coil
and form complex inter- and intratertiary structures form
before, during, or after surface deposition. By employing a
unique deposition method, we were able to minimize strand
coiling and maximize exposure of nucleobases to the AFM tip
and obtain TERS mapping of RNA at a 0.5 nm resolution.48

The tip employed in the current study was made via physical
vapor deposition and, as a result, was expected to be covered
by rough atomic-scale features. This surface roughness
effectively afforded a “mini-tip,” which can confine the light
field to the nanometer scale and provide resolution appropriate
for single-molecule imaging.52,53 Important distinguishing
characteristics of the different nucleobases are contained in
minor features of the Raman spectrum. Thus, we employed a
sophisticated analytical approach in this work to accurately
decipher the requisite chemical information on the ssRNA
nucleobases in a single-molecule Raman spectrum. We
developed a method based on the Pearson correlation
coefficient, where the correlation function is applied to
multiple spectra with reference data54 and evaluates their
degree of similarity. Compared to fitting methods commonly
used in Raman signal analysis, which require a high signal-to-
noise ratio, the correlation coefficient can identify the spectral
similarity in a way largely insensitive to noise. We were,
therefore, able to determine ssRNA nucleobase sequences with
an accuracy of 90%. Taken together, this report presents the
utilization of TERS to map single molecules of ssRNA directly.
Furthermore, the work presented herein lays the foundation
for a future developments of single-molecule RNA sequencing
methods.

■ RESULTS
Imaging. A HORIBA-AIST-NT system, which combines

Raman scattering and atomic force microscopy, was utilized to
obtain TERS information on RNA. In this report, a 4000 base
CRISPR-associated protein 9 (Cas9) ssRNA was deposited on
a gold substrate (50 nm thick) for TERS mapping. Figure 1a
depicts the RNA deposition method, and Figure 1b shows a
schematic of the TERS experimental setup. TERS probes were
fabricated through metal deposition of 50 nm of Au on the Si
tip (Appnano, Mountain View, CA). The 660 nm laser (400
μW) was focused on the tip using a 100X objective lens to
stimulate localized surface plasmons. Backscattered Raman
photons were collected through the same lens and filtered to
remove residual laser light.
We first explored the RNA alignment by an AFM tip under

tapping mode. Ideally, the AFM could identify the thickness
feature of RNA based on the high precision in the vertical
direction. However, due to the tip-broadening effect55 in our
experiment, AFM cannot resolve a nanostructure less than the
tip size (50 nm). One RNA molecule is expected to be
approximately 1.5 nm in width and 0.5 nm in height.56 We
chose a thin strand and identified its profile by AFM (Figure
2a). The corresponding measurements are shown in Figure 2b.
The width is around 20 nm, and the height is around 1.2 nm,
indicating that the strand is composed of two overlapping
molecules. Even if the AFM is sensitive enough to measure a
height of less than 1 nm, the limitation of spatial resolution
makes single molecule sensing impossible. We, therefore,
determined that AFM was not sensitive enough to study single-
strand RNA and pursued TERS as a more viable option.
TERS was conducted simultaneously with AFM scanning

using a step-based contact mode approach. At each step, the
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tip was in contact with the sample for 4 s to produce a
reasonably high signal-to-noise ratio. Since long-time contact
at one spot can possibly cause tip drift, a longer acquisition
time should be avoided. In this experiment, a 4 s acquisition
provided an optimal balance between acceptable signal
intensity and minimal tip drift. Figure 3a shows the TERS
signal intensity of 1370 cm−1 along the RNA strand during a
0.5 nm contact step.
The imaging intensity is the integral counts of spectra

between 1353 and 1387 cm−1. This peak appeared stronger
than others because it is composed of multiple bands from all
nucleobases, including adenine, C2−H (1371 cm−1), N9−H
(1374 cm−1), str C8−N9 (1372 cm−1), C4−N9 (1372 cm−1);
guanine, in ring str C−N (1385 cm−1), C−C (1376 cm−1),
rock NH2 (1382 cm−1), bend N1/9-H (1388 cm−1); uracil, in
ben N3−H (1374 cm−1), C5−H (1372 cm−1), C6−H (1372

cm−1); cytosine, in ben N1−H (1387 cm−1), C5−H (1373
cm−1), C6−H (1373 cm−1).54 Therefore, the spectral region
utilized in Figure 3a can identify RNA but not distinguish the
identity of individual nucleobases.

Determining RNA Sequences. To identify individual
nucleobases, a more sophisticated analytical approach must be
employed. This involves first the determination of reference
peaks for each nucleobase, followed by the correlation of
sample spectra to reference spectra to extract sequence
information. Table S1 shows the assignment of each
nucleobase characteristic reference peaks along with their
normalized amplitudes. Raman peaks at 1325−1333 (A1),
1483−1491 (A2), 1303−1311 (C1), 1423−1431 (C2), 1457−
1465 (G1), 1566−1574 (G2), 1046−1054 (U1), 1275−1283
(U2) are labeled to distinguish the four RNA bases: adenine
(A), cytosine (C), guanine (G), and uracil (U).54 At ambient
conditions, the TERS technique may heat the sample and
result in thermally induced peak shifts. Therefore, the center
frequencies of Raman peaks are allowed in a range of
frequencies.57 The reference spectra take this error into
consideration; the resulting allowable frequency ranges for
the reference peaks are indicated by the colored areas in Figure
S1. We employ dual-peak Gaussian functions to build the
reference spectra intensities, Pref, for A, C, G, and U, as
described in eq 1:

= +σ σ− − − −P A e A ex x x x
ref 1

( ) /2
2

( ) /21
2

1
2

2
2

2
2

(1)

A1 and A2 represent the respective amplitudes of the reference
peaks normalized to the maximum of A1 and A2, as only peak
ratios are later used to calculate the correlation coefficient. The
peak ratios of the two peaks assigned to one nucleobase were
obtained from ref 54. The parameters x1 andx2 are the
reference peak centers, and σ1 and σ2 represent the
bandwidths. The full-width-half-maximum (fwhm) is 8 cm−1

for all peaks.
Since the characteristic peaks are unique for each

nucleobase, they present at relatively low intensity in a
measured sample spectrum and, as a result, require stringent
analytical processing to determine nucleobase identity
successfully. From a measured sample spectrum, we first
searched for each peak at the frequencies defined in Table S1
and Figure S1. We then applied a discrete Pearson correlation
function using the reference spectrum. The correlation
evaluation is as follows:

=
∑ − ̅ − ̅

∑ − ̅ ∑ − ̅
P P

P P P P

P P P P
Corr( , )

( )( )

( ) ( )

ref
ref

ref

2
ref ref

2
(2)

where P and Pref are the intensities of the sample and reference
spectra. The values P and P ref are the average values of P and
Pref. The peak with maximum Corr(P, Pref) was retained for
nucleobase identification. This guarantees that minute peak
features in the prospect area could be discovered. Figures S3
and S4 demonstrate this approach with the spectra of different
nucleobases in different samples. Finally, we calculated the
probabilities

=
∑

P
Corr
Corri

i

j j (3)

of the four nucleobases by normalizing the correlation
coefficient of all four Pref. The measured nucleobase identity
was determined by selecting that with the maximum

Figure 1. (a) RNA deposition method. We used compressed nitrogen
to align the RNA on the gold surface and evade RNA coiling during
deposition. Furthermore, Mg2+ cations were added in the RNA buffer
solution (pH 7.5) to facilitate the adhesion of negatively charged
RNA phosphate backbone to the gold surface. This will help to expose
nucleobases to the tip for the downstream sensing and sequencing.
Each “+” sign indicates an Mg2+ ion, and “−” sign indicates the
negative charge carried by the RNA phosphate backbone or the gold
surface. (b) Schematic of tip-enhanced Raman scattering. The
diameter of the gold tip is 50 nm. An objective (100×, NA 0.7)
focuses the 660 nm incidence light on the tip at 45°. The same
objective collects TERS signals.

Figure 2. AFM image of RNA. (a) A few long RNA strands. As the
approximate width is given by 20 nm, we assume that some RNA
molecules were bundled. The white arrow shows the cross line of a
single molecule. (b) The thickness profile along the white arrow in
(a). The height profile shows a strand of 1.2 nm thickness and a 20
nm width.
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probability (Figure 3c). Using the above procedure, we
determined the sequence of a selected fragment of RNA to
be AAGAAAAAGAAAGGAUCCUA, showing a sequence
accuracy of 90%.

■ DISCUSSION
This report presents the use of a gap-mode TERS-AFM system
to image and subsequently sequence ssRNA. Figure 3c
illustrates the nucleobase sequence determination of a segment
of ssRNA through our dual-Gaussian/Pearson coefficient
correlation method. The most probable bases are labeled
below the bars, and the resulting sequence was 90% accurate.
There remain a few significant points which, upon further work
with this method, will aid in propelling the TERS technique
from an ssRNA imaging technique to an ssRNA sequencing
technique.
Furthermore, since the nucleobases are not significantly

spatially separated from each other in the ssRNA, they are
likely close enough to affect adjacent signals. Though the
“mini-tip” can resolve a single nucleobase, the local field of the
whole tip could cover multiple bases. As a result, the
interference from the surrounding nucleobases increases the
error of sequencing. The curved alignment of RNA exacerbates
this problem as nucleotides could be overlapped in a coiled
area. Compared with the reference RNA sequences, we found
that spots 16 and 18 were misread due to the strong
neighboring guanine and adenine signals, which resulted in the
90% accuracy of our measurement. This is exemplified in
Figure S2, where the Raman spectra of each step and,
therefore, each base are shown.
Moreover, six repeated measurements with different tips and

different samples are demonstrated in Table S2 and Figures S4
and S5, which all agree with the declared accuracy. Yet the
curvature of the RNA strand still does not exactly align with
the scanning direction, making accurate longer reads more
challenging. A pertinent solution is to consider adjacent spots
above or below the targeted nucleobase; one nucleotide may
lead to signals in multiple pixels. The actual spectrum for each
base was determined according to the base peaks with the
highest probabilities. For example, the red and green curves in
Figure 3b represent the Raman spectra of adjacent pixels, and
they carry almost similar peaks. We evaluated both pixels to
select the most correlated nucleotide. Repeating the calcu-

lations, sequences of a curved RNA fragment could be
estimated. More complex, long, or coiled RNA species would
require a more intricate algorithm or machine learning to
extract an accurate sequence.
With TERS, single-molecule RNA imaging is challenging

due to weak signals, nanoscale dimensions, and instability,
especially in the ambient conditions. As the Raman cross-
section of a single nucleobase is even smaller than the RNA
backbone, weak signals were expected in these experiments.
Because long RNA molecules are naturally coiled and bundled,
it is even more difficult to explore their chemical components
at the single-molecule level. In Figure 3, we present a high
spatial resolution of TERS that overcomes the above technical
challenges. In addition, in Figure S6, we display the image of a
400-base RNA strand that includes the segment shown in
Figure 3. The strand occupies at least three lines and exposes
no breakpoint. This indicates that TERS scanning of RNA did
not fall short of maintaining the molecule.
Yet determining the complete 400-base sequence by TERS

remained elusive as the properties of the longer RNA strand
mentioned before diminishes spatial resolution and obfuscates
spectral information. In our previous work,48 a DNA strand
was realigned along the scanning direction by the tip, which
suggested that the tip could move molecules and straighten the
RNA strand for optimal sequencing. However, the correspond-
ing tip−RNA interaction is insufficient to realign the strand
along the scanning direction and maintain the Raman signal.
Rather, scanning RNA sequences required a relatively soft scan
along the strand. Therefore, we set a softer compression force
under contact mode and worked with a long RNA strand. The
TERS scanning was performed with the contact mode known
as the “Spec-top mode” (HORIBA-AIST), where the tip
contacted the sample at each spot for 4 s before it was lifted to
the next spot. A 30 nN force was applied to the sample, which
may cause tip contamination and affect the RNA orientation.
Under this mode, the tip can read and realign the molecule
much more easily when the RNA strand contains one molecule
and is relatively short. An example of this is shown in Figure
S6, where a long single strand was not perfectly aligned along
the scanning direction. Moreover, an even thicker strand is
displayed in Figure S7, where the tip could not align it. As
such, TERS has managed to provide stable imaging but only
resolve nucleotide sequences of a shorter RNA fragment.

Figure 3. TERS signals of RNA. (a) Image of the plotting of the integral intensity of the peak 1370 cm−1. The scanning step size is 0.5 nm. (b)
Four spectra along the red arrow in (a). The contrast between the off-strand signals (cyan, blue) and the on-strand signals (red, green) indicates the
spatial resolution less than 1 nm. (c) Measured sequence along the strand. A total of 20 nucleotides were measured in total. Spots 1 and 20 are
labeled in (a). The most probable bases are labeled at the bottom. Compared to the real RNA sequence AAGAAAAAGAAAGGAUCCUA, two
errors were found at spots 16 (U → A) and 18 (C → A).
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Additionally, tip contamination could be toxic to the tip.
The contaminated signals were observed in several trials
because a dirty tip could be easily identified during TERS
scanning. If the tip were contaminated, the “bright signals”
would spread randomly in the image. As a result, the spatial
resolution could be lost. Therefore, we conclude that the
results in Figure 3 are contamination free. Though the contact
mode could result in unpredicted failure, TERS scanning must
be performed under this mode for two reasons: (1) we need to
contact the molecule to ensure the gap-mode configuration,
and (2) without contact, no signal could be observed. To
improve the performance, the contact force, speed, time, and
scanning rate were optimized (see Supporting Information for
details).
The issues presented above, including the weak single-

molecule Raman signal and thermal drift due to the scan at
ambient conditions, the future effort of TERS nanoscale
imaging would require larger enhancement factors, tips with
fine structures, and a more effective data analysis method to
read Raman spectra with a low signal-to-noise ratio. The
results so far, though not 100% perfect, show an excellent
example of exploring RNA by a sophisticated analysis of their
tip-enhanced Raman scattering signals.
In conclusion, we present our proof-of-principle TERS-

based direct ssRNA imaging method and employ unique
spectral interpretation to sequence nucleobases. This work
demonstrates high-resolution RNA imaging and identification
of RNA nucleobases sequences at 4 s per base and 90%
accuracy. Our approach can potentially benefit many facets of
fundamental research, medical diagnostics, and society,
including the emerging need for detecting and sequencing
viral RNA genome at the single-molecule resolution to help
curb the spread of highly contagious infectious diseases like
COVID-19.58−60 The best defense against a new outbreak is
early detection, and single-molecule RNA TERS can assist in
that pursuit.
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