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Abstract 

Centrifuge modeling has been used to observe some key characteristics of liquefiable soils 
during seismic motions.  If carefully conducted, the results of centrifuge tests can be used for 
validation of constitutive models and numerical modeling tools.   However, a thorough evaluation 
of numerical models requires knowledge of the soil properties and the uncertainties associated 
with these properties.  Moreover, the base excitations achieved in centrifuge tests often vary from 
the target base excitation, and a fair evaluation of the quality of blind prediction of a centrifuge 
test requires an account of the uncertainties associated with the achieved base motion.  This paper 
presents an analysis of the effects of the inherent variability present in the soil density and base 
motion on the lateral spreading of mildly sloping ground.  The analysis combines fully-coupled 
non-linear finite element modeling with Monte Carlo simulation.  The stochastic analysis is based 
on the variabilities observed in the density of the soil specimens and in the achieved base motions 
of the centrifuge tests conducted for the Liquefaction Experiments and Analysis Projects (LEAP): 
LEAP-GWU-2015 and LEAP-UCD-2017.  The two-surface plasticity model for sand is used to 
model the soil response.  The model is calibrated against element tests performed on Ottawa-F65 
sand to determine its liquefaction strength.  The finite element model is pre-validated through 
deterministic simulation of the centrifuge experiments conducted during the LEAP project.   The 
sources of variability are identified and their magnitudes are quantified based on the results 
obtained from the LEAP centrifuge experiments.  First, the effects of the soil spatial variability are 
presented.  Then, the effects of the base motion variability are discussed.  Finally the combined 
effects of the variability in the soil density and base motion are evaluated. The results obtained 
from the stochastic analysis are compared with the variability in the soil response observed in the 
centrifuge experiments.  The results obtained from this study show that by carefully modeling the 
different sources of variability, the stochastic analysis was able to model the observed variability 
in the lateral displacement of the centrifuge experiments.  The results obtained confirm the 
observation that the lateral displacement of liquefiable soil is more sensitive to the base excitation 
variability than the variability in the soil density.  
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1.  Introduction 

Soil is a heterogeneous material that is variable in nature.  This inherent variability influences 
the soil response to external loading.  Therefore relying solely on the average measures of the soil 
properties in the analysis and design of geo-structural systems may not be a suitable approach. 
This is especially true as performance-based design is becoming more common within the 
geotechnical engineering practice.  Accordingly, a stochastic analysis may be a more fitting 
methodology for analyzing the soil response to the high level of uncertainty present. In particular, 
utilizing the stochastic analysis in understanding the complex phenomena of soil liquefaction and 
its effects on civil infrastructure could lead to valuable insights.   

The main objective of the work presented here is to evaluate the effects of unavoidable 
variations in the achieved soil density and base motions on the magnitudes of lateral spreading of 
mildly sloping soil specimens modeled in centrifuge.  The analysis combines fully-coupled non-
linear finite element modeling with the Monte Carlo simulation.  The stochastic analysis is based 
on the variabilities observed in the Liquefaction Experiments and Analysis Projects (LEAP): 
LEAP-GWU-2015 and LEAP-UCD-2017 centrifuge experiments.  In the following sections, first 
a brief review of current literature on the variability in soil properties, base motion variability and 
the applications of the stochastic analysis in geotechnical engineering is presented.  Next, sources 
of variability in the soil density and base motion observed during the LEAP projects are discussed.  
Afterward, the consequences of these observed variabilities on the dynamic excess pore pressure 
generation and the magnitude of lateral spreading are presented.  Finally, the variability in the 
results obtained from the stochastic analysis is compared to the variability observed in the 
experiments. 

1.1. Soil Variability 

The natural variability of soil has been studied by many researchers [1–5].  Lumb [1] evaluated 
the variability of various soil properties (Atterberg limits, compression index, the coefficient of 
consolidation, as well as the void ratio) in four typical natural soils.  The probability distributions 
of these properties were shown to be estimated by a normal or log-normal distribution.   Lacasse 
and Nadim [2] reported the probability distribution function as well as the mean and coefficient of 
variation for different soil properties.  For the initial void ratio, a coefficient of variation ranging 
from 7 to 30 percent was reported.  The reported values were obtained from data available in the 
literature and the sources of uncertainty were attributed to different soil types, stress conditions, 
test methods, stress history, codes of practice and testing errors or imprecisions, among many other 
factors.  The variability in the soil properties stems from the uniqueness of the soil conditions in 
each situation.  This results in high uncertainty leading to a coefficient of variation with different 
magnitudes that could be as high as 30%.    

Variability has been categorized based on two aspects.  The first is the source of the variability.  
In the source-based categorization, the variability is divided into epistemic and aleatory.   
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Epistemic variability pertains to the variability due to the lack of knowledge.  This type of 
variability could be due to limited number of observations, uncertainty in the measurement, or 
assumed idealizations when modeling the natural phenomenon (model uncertainty) [6]. Aleatory 
variability (also known as inherent variability) describes the natural randomness of a variable.  
This type of variability cannot be reduced [6].  

The second aspect based on which the variability is categorized is the nature of the variability.  
The variability could be described as spatial variability if the random variable is position 
dependent.  Soil properties such as the density and permeability are examples of spatially variable 
random fields.  This type of variability can be defined using two components.  The first is a trend 
component and the second is a random component with zero-mean [2].  According to Vanmarcke 
[7], the fluctuation component is considered to be statistically homogeneous, with a constant mean 
and standard deviation and a correlation that depends on relative distance rather than absolute 
location.  Several methods have been developed to measure the spatial correlation, e.g. Method of 
Moments, Maximum Likelihood, and Local Average Theory [8]. To model the spatial correlation, 
Vanmarcke [7] introduced the concept of correlation length which is a measure of the correlation 
function.   

A survey of the correlation length for various soil properties is reported by DeGroot [9] and 
Lacasse and Nadim [2]. It is shown that the in-situ properties of soil such as the SPT and CPT have 
correlation lengths in the range of 15 to 30 meters horizontally and 1 to 3 meters vertically. It is 
also noted that the correlation length is influenced by the laboratory environment as the correlation 
length of laboratory undrained shear strength, Su obtained from triaxial and direct simple shear 
tests is in the range of 0.3 to 0.6 m. This means that the correlation length is highly affected by the 
depositional method of the soil. Therefore, it is important in this study to consider the effects of 
the method used in the sample preparation of the centrifuge experiments on the correlation length 
of the achieved soil properties. The correlation length along with the mean and coefficient of 
variation provide an appropriate and more complete description of the spatially correlated random 
field.  Therefore, in order to conduct a realistic stochastic analysis, these parameters should be 
carefully selected. 

In addition to the spatial variability, another category of variability is the temporal variability. 
It describes how the random field changes with respect to time.  A random variable that is constant 
with time is known as a stationary random variable, while a random variable that changes with 
time is known as a non-stationary random variable.  The variability present in the base acceleration 
time history due to a seismic event is an example of a non-stationary random process.  This is 
discussed further in the following section. 

1.2. Base Motion Variability 

While the variability in the soil affects the material properties and initial conditions, another 
source of variability stems from the variations in the applied base excitation. The causes of 
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variability in the base motion are various depending on the application. In the field, earthquakes 
are influenced by soil characteristics, fault type, and distance from the source, among others. In 
the laboratory, the target base motion is predetermined but the achieved base motions almost 
always vary with respect to the target motion.  These variations are usually affected by the size of 
the experiment, stiffness of the containing box, the natural frequency of the centrifuge, the 
presence of damping, and many other factors.  These sources of variability manifest themselves in 
the variations of the amplitude and the frequency content of the resulting base motion.   

  In order to provide seismic resistant design, engineers initially relied on estimates of intensity 
measures which describe the base motion in their seismic hazard analysis.  Based on collected data 
of the past seismic activity, empirical relationships (attenuation relationships) are developed to 
provide estimates of intensity measures such as the peak ground acceleration (PGA), velocity 
(PGV) and displacement (PGD) as well as the response spectral acceleration (SA), velocity (SD) 
and displacement (SD) [10–12].  Attenuation relationships adopt a lognormal distribution for the 
intensity measures and provide an estimate of the mean and standard deviation [12]. While the 
statistics of the intensity measures can provide useful insight for the design of simple structures, it 
proves to be insufficient in the design of important structures such as nuclear power plants, dams, 
and bridges. For such structure, a nonlinear dynamic analysis is necessary [13]. 

The nonlinear dynamic analysis techniques are time-based methods which require a description 
of the base motion as a time history.   These methods are feasible for deterministic analysis where 
the time history is known.  However, in the case of modeling the variability in the base motion, 
these methods are proven to be more challenging.  While it may be feasible to obtain estimates of 
intensity measures statistics, it is quite difficult to obtain the statistics of the full time-history. 
Unlike the variability of single parameters, the time history is a non-stationary random process 
where the mean and variance are functions of time.  Hence, taking the direct average of a set of 
time histories would result in an average time history with intensity measures that differ from the 
average intensity measures of these time histories.   Therefore, the response due to the direct 
average of the time histories is in turn different from the average response of these time histories.   

Another way to look at the base motion is in the frequency domain.  The Fourier transform and 
response spectrum are two methods used by engineers to describe a base motion in the frequency 
domain.  The Fourier transform describes the frequency content of base motion, while the spectral 
response presents the natural frequency of the SDOF system responding to the base motion.  Even 
though both Fourier transform and spectral response provide a representation of the base motion 
in the frequency domain, they are quite different. Unlike the Fourier transform, taking the average 
of the acceleration response spectral would produce intensity measures matching the average of 
the intensity measures.  Hence the statistics of a sample of base motions is best described by the 
statistics of the response spectra.     

While the description of the base motion statistics can be presented with the statistics of the 
response spectra, generating an artificial base motion to match the obtained statistics is 
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challenging.  The reason is that the response spectrum method is not reversible, which means 
having a response spectrum of a base motion is insufficient to obtain a corresponding base motion.  
Different attempts were pursued to finding base motion corresponding to a target base motion.   

One attempt is through a selection process where base motions are selected from a database to 
match a target design response spectra [14–18]. While this method may be useful for design 
purposes, it is not as useful for modeling the variability in a target base motion.  Another method 
proposed by [19] focuses on utilizing the white noise for generating the random base motion.  
Gazetas et al. [19] attempted to model the effects of random vibrations on the response of dams.  
Two modifications were applied to a stationary white noise model (SWN) which has a constant 
power spectral density (PSD).  The first is the use of the Tajimi-Kanai PSD function to model the 
frequency content of the target response spectrum.  The second is the use of a build-up and decay 
function to model the rise and drop in the base motion.  

 A different approach has been adopted by other researchers which links the time history of the 
base motion to the spectral velocity and a power spectrum density (PSD) function [13,20–22]. The 
methods and approaches followed in the aforementioned literature propose an approximate 
solution for generating a base motion that is compatible with a target response spectrum.  Due to 
the insufficiency of the response spectrum as a representation of the base motion, it may not be 
possible to obtain an exact and unique base motion solely from the response spectrum.  Here an 
iterative approach inspired by the work of Preumont [21] was adopted to generate a synthetic time 
history.  By decomposing a time history into a series of ramped sinusoidal motions with different 
amplitudes and frequencies, the iterative method used by Preumont [21] was utilized to adjust the 
amplitudes so the response spectrum of the synthetic motion would match the target.   

1.3. Stochastic Analysis 

As computational tools are advancing in efficiency and precision, numerical methods provide 
a more practical approach for studying the effects of soil variability.  This is especially true since 
field data are scarce and limited while experimental data are expensive and time-consuming.  As 
an analytical tool, the finite element method allows for the analysis of various geo-structural 
systems. Additionally, finite element method could be utilized in the stochastic analysis by 
coupling it with statistical methods.   

There are currently two approaches that apply this concept.  The first is known as the stochastic 
finite element method (SFEM).  In SFEM the finite element method is combined with the truncated 
Taylor series [23–26].   The results obtained from the SFEM are estimates of the mean and variance 
of functions of the random variables analyzed.  The second method is based on coupling the finite 
element method with Monte Carlo simulation.  It is known as the random finite element method 
(RFEM) [27,28].  Similar to the SFEM, the RFEM allows for estimation of the mean and the 
variance of functions of the random variables analyzed.  However, the RFEM allows for obtaining 
the time history of the random variables for each simulation event [29]. 
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The influence of spatial variability on seismic-induced-liquefaction of soil has been studied by 
various researchers [30–36].  Popescu et al. [30,31] studied the seismically-induced settlement of 
liquefiable soils where the soil penetration resistance was treated as a random variable.  The effects 
of soil variability were studied by modeling the free field response of liquefiable soils using both 
2D and 3D finite element models.  Montgomery and Boulanger [35] have recently presented a 
stochastic analysis on a multi-layer sloping ground composed of a liquefiable layer underlying a 
layer of non-liquefiable clay.   The work of Popescu et al. [30,31] showed the influence of soil 
spatial variability on the dynamic excess pore pressures, while the work of Montgomery and 
Boulanger [35] focused on the settlement and lateral spreading in mildly sloping liquefiable 
grounds.   

Lopez-Caballero and Modaressi-Farahmand-Razavi [37] studied the combined effects of base 
motion variability and soil spatial variability on the response of liquefiable soils. Synthetic base 
motions were generated for the MC simulations. Spatial variability of the soil was modeled based 
on the variability in shear modulus degradation, damping and liquefaction strength of the soil. The 
effects of different spatial correlation lengths on the variability of soil parameters and their 
consequences were considered. The study concluded that the soil response is more sensitive to 
base motion variability than spatial variability. 

In the current, the effects of soil spatially variability and the variability of the base excitation 
will be first considered individually and then their combained effects will be presented and 
discussed. 

 
2.  LEAP Centrifuge Experiments 

The Liquefaction Experiments and Analysis Project (LEAP) is a collaborative effort among 
several universities and research institutes across the world to investigate the liquefaction and its 
effects on geo-structures.  The main objectives of LEAP are to generate an extensive database of 
centrifuge experiments which model the consequences of liquefaction on different geo-structures 
and to assess the capability of the current state-of-the-art constitutive/numerical modeling tools to 
predict the response of liquefiable soil.  For the first two phases of the project (LEAP-GWU-2015 
and LEAP-UCD-2017) the theme was lateral spreading of mildly sloping liquefiable ground. 

Figures 1 and 2 show the schematics drawing of the centrifuge experiment model for the 
LEAP-GWU-2015 and LEAP-UCD-2017 projects.  Kutter et al. [38,39] present a summary of the 
observations obtained from the experiments performed in these projects. The centrifuge specimen 
is composed of homogeneous Ottawa sand layer with a 5-degree slope.  A rigid box is used as the 
container of the soil specimen. The height of the soil layer is 4 meter at the center, the length is 20 
meters and the width is at least 9 meters in prototype scale.   

The location of the accelerometers and pore pressure transducers are shown in Figures 1 and 2 
and are specified at Tables 1 and 2.  Three arrays of sensors are placed, at the center and at 3.5 
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meters away from the soil box walls.   Required sensors are shown in bold, highly recommended 
sensors to be used in the centrifuge tests are shown in non-bold dashed lines, and recommended 
sensors are shown as non-bolded solid line symbols. The required sensors include AH11 and AH12 
to measure the achieved base motion and are spaced consistently such that the yaw rotational 
acceleration can be determined. The vertical accelerometers, AV1 and AV2 are sensitive to 
container due to the rocking and Coriolis accelerations which depend on the shaking direction. The 
central vertical array (P1-P4 and AH1-AH4) were located to minimize the boundary effects from 
the rigid walls. The pore pressure transducers and accelerometers are offset 1.5 m in the transverse 
direction (section A-A) for constructability and reduction of sensor-to-sensor interaction.  
Additional surface markers were placed to determine the magnitude of lateral displacement. 

The experiment was designed to be repeatable by all of the centrifuge facilities. Some 
centrifuge facilities have hydraulic shakers that produce 1-D horizontal shaking in the plane of 
spinning, while other facilities perform the shaking along the axis of the centrifuge. To account 
for the differences in orientation of the shaking direction in the radial acceleration field, the 5-
degree slope in the shaking direction is to be superimposed on a curved surface corresponding to 
the centrifuge radius as shown in Figure 2.  If the surface was not curved initially, it would become 
curved to some extent as a result of liquefaction; settlements associated with the forming of the 
curve would be superimposed on settlements due to consolidation and spreading down the 5-
degree slope. The surface curvature is important to minimize differences between experiments at 
different facilities.  Table 3 lists the properties of the participating centrifuge facilities including 
the model scale, shaking direction, centrifuge radius and the length to width ratio of the model 
container.    

 
Figure 1: Baseline schematics of the LEAP Lateral Spreading Centrifuge Experiment for shaking 

parallel to the axis of rotation 
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Figure 2: Baseline schematics and 3D rendering of the LEAP Lateral Spreading Centrifuge 

Experiment for shaking perpendicular to the axis of rotation 

Table 1: Positions of the pore water pressure transducers of LEAP experiments 
Sensor P1 P2 P3 P4 P5 P6 P7 P8 

x-pos. (m) 0.0 0.0 0.0 0.0 -6.5 -6.5 6.5 6.5 
Depth (m) 4.0 3.0 2.0 1.0 2.0 1.0 2.0 1.0 

 
Table 2: Positions of the accelerometers of LEAP experiments 

Sensor AH1 AH2 AH3 AH4 AH5 AH6 AH7 AH8 AH9 AH10 
x-pos. (m) 0.0 0.0 0.0 0.0 -6.5 -6.5 -6.5 6.5 6.5 6.5 
Depth (m) 3.5 2.5 1.5 0.5 2.5 1.5 0.5 2.5 1.5 0.5 

 

Table 3: Centrifuge facilities participating in LEAP-UCD-2017, [39]  

Facility g* Shaking 
direction 

Radius of 
centrifuge 

(m) 

Container 
Length/Width 

CU 40.0 Tangential 4.125 0.45 
KyU  44.4 Tangential 2.5 0.32 
UCD  43.0 Tangential 1.0 0.63 
NCU  26.0 Axial 3.0 0.45 
RPI  23.0 Axial 3.0 0.42 
ZJU  26.0 Axial 4.5 0.59 

KAIST  40.0 Axial 5.0 0.45 
IFSTTAR  50.0 Axial 5.06 0.50 

Ehime  40.0 Axial 1.184 0.24 
 

While the centrifuge experiments were carefully conducted unavoidable variabilities were 
present in the achieved base motion and soil density.  Figure 7 compares the target void ratio and 
peak ground acceleration (PGA) with measured values in the LEAP-UCD-2017 centrifuge tests.  
The observed variability in the achieved soil properties was also reflected in the measurements of 
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the lateral spreading.  Quantifying the contribution of these two random variables to the variability 
of the lateral spreading is the main goal here.  More details on the experimental results obtained 
from the LEAP-GWU-2015 and LEAP-UCD-2017 could be obtained from the summary papers 
pertaining to these phases of the project by Kutter et al. [38,39].  

 
Figure 3: LEAP-UCD-2017 target test matrix and achieved experiments 

 

3. Simulation of the LEAP Experiments 

Before proceeding with the stochastic finite element analysis it is vital to calibrate, verify, and 
validate the constitutive and numerical modeling components of the analysis platform.  Here, this 
is achieved by simulating the LEAP centrifuge experiments.  First, the calibration process of the 
constitutive model is discussed.  Afterwards, the finite element model is described.  Finally, the 
simulation results are compared with the results of a set of centrifuge experiments that 
demonstrated consistency and repeatability. 

 
3.1. Constitutive Model Calibration 

The critical state two-surface plasticity model [40] is used to model the response of Ottawa 
F65 sand.  The model was first introduced by Manzari and Dafalias [41] and then later revised in 
2004 [40].  The model is based on the critical state soil mechanics framework by incorporating the 
state parameter in the formulations.  This allows for the model to capture the soil response at 
different densities using a single set of model parameters. In the 2004 model (referred to here as 
MD04), a fabric tensor is introduced to account for the effect of fabric evolution during the dilatant 
phase of deformation on the subsequent contractant response of the soil upon load increment 
reversal.  Additional details of the model formulation can be obtained in Dafalias and Manzari 
(2004). 
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The MD04 model has a total of 15 parameters that must be appropriately calibrated to capture 
the soil response in monotonic and cyclic loading conditions. Table 4 lists the model parameters 
which are grouped into five categories based on their functionality.   In addition to conventional 
parameters such as Poisson’s ratio, a few parameter may not appear to have a recognizable physical 
meaning, however, they are fundamental for the model definition. Calibration of these parameters 
is achieved by trial and error to obtain the base fit to the measured responses.  

 In this study, the model was calibrated by using  a set of cyclic triaxial experiments which 
were performed by Vasko [42,43].  These experiments were provided to modelers in the LEAP-
GWU-2015 prediction exercise [44]. The experiments are strain-controlled cyclic triaxial tests 
conducted on samples with a target density that matches the one for the centrifuge experiment of 
1650 kg/m3.  The sample was prepared using dry pluviation with light tapping to reach the target 
density.  The tests were done at confining stress of 200 kPa with cyclic strain amplitudes ranging 
from 0.05% to 0.4%.   The main focus is to capture the liquefaction strength of the soil.  Figure 4 
shows a plot of the number of cycles it took for the soil to reach an excess pore pressure ratio, ru, 
of 0.99 versus the cyclic strain amplitude.  The simulated results are reasonably close to the 
experimentally obtained data points. 

Table 4: MD04 calibrated model parameters for Ottawa F65 sand 
Constant Variable Value 

Elasticity Go 86 
ν 0.15 

Critical state 

M 1.27 
c 0.627 
λc 0.015 
eo 0.745 
ξ 0.52 

Yield surface m 0.05 

Plastic modulus 

ho 8.0 
ch 0.498 
nb 1.68 
Ao 0.49 
nd 0.8 

Fabric-dilatancy tensor zmax 14 
cz 3000 

 
The calibrated model performance is further evaluated by simulating the element tests provided 

during the LEAP-UCD-2017 project [45–47].  The same data was used by modelers in the 
prediction exercise conducted as part of the project [48,49]. Figure 5 shows a comparison between 
the simulation and experiment in terms of the liquefaction strength.  The element tests performed 
were stress-controlled cyclic triaxial tests on samples prepared with void ratio of 0.585 and 
confining stress of 100 kPa.  It is observed that the calibrated model is able to capture the 
liquefaction strengths at higher CSRs but underestimates the liquefaction strength at smaller CSRs.  
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However this was considered to be satisfactory as majority of the centrifuge tests produce larger 
CSRs in the centrifuge soil specimen. 

 
Figure 4: Comparison of the observed and simulated liquefaction strength curves for undrained 

strain-controlled cyclic triaxial tests on Ottawa F65 sand with confining stress of 200 kPa. 

 
Figure 5: Comparison of the observed and simulated liquefaction strength curves for undrained 

stress-controlled cyclic triaxial tests on Ottawa F65 sand with confining stress of 100 kPa. 



12 
 

  Once the calibrated model has satisfactorily simulated the element tests, the model was used 
in the simulation of the centrifuge experiments for further evaluation.   Depending on how well 
the model performs additional recalibration may be necessary.  In this case, the model results were 
compared to the centrifuge experiment performed at RPI during the LEAP-GWU-2015 project.  
As will be discussed in the following sections, the model was able to reasonably capture the excess 
pore pressure generation and the lateral displacements without any changes in the calibrated 
parameters.  Hence, the model parameters shown in Table 4 were considered the finalized and 
were used for all of the simulations presented in the following sections. 

3.2. Finite Element Model Description 

The centrifuge experiment is modeled using the OpenSEES finite element platform (McKenna 
1997). A convergence study is conducted where four different mesh densities are generated (Figure 
6). The coarsest mesh is composed of 128 hydro-mechanically coupled four-node quadrilateral u-
p elements.  To increase the mesh density each element is subdivided into four elements.  Therefore 
the remaining three meshes have the 512, 2048 and 8192 elements.    

The boundary conditions of the models are highlighted in Figure 6. A fully fixed displacement 
boundary condition is assumed at the base. The nodes on the two sides of the model are fixed 
laterally while remaining free to move vertically.  The nodes on the top surface are assumed to 
have complete free drainage.  The simulations are composed of two stages.  The first stage is 
known as the gravity stage, during which the state of stress due to gravitational (or centrifugal) 
acceleration is initialized.  The second stage of the simulation is known as the dynamic stage, 
during this stage the model is subjected to the base motion.   

The gravity stage is essential for obtaining accurate results during the dynamic stage.  A steady 
state of stress must be achieved and correct initialization of the internal variables of the constitutive 
model must be reached before the dynamic step commences.  For the simulations presented in this 
paper, the gravity stage was allowed to run for sufficient time to reach a steady state before 
proceeding with the dynamic analysis.  Figure 7 shows the contour plots of the vertical, horizontal 
and shear stresses obtained from the analysis with the densest mesh, respectively.    

The convergence of the simulation results is presented for the excess pore pressure as well as 
the displacement time histories.  Figure 8 shows the excess pore pressure evolution during the 
earthquake at the location of the pore pressure transducer P1 shown in Figure 1.  The results show 
that the rate of generation and the peak excess pore pressure do not change with the mesh density, 
while the dissipation rate slightly increases with the increase in the mesh density.  

Figure 9 shows the plot of the lateral displacement and settlement time histories located near 
the top of the slope where the settlement is more significant.  As the mesh density increased, it can 
be seen that the lateral displacement slightly increased while the soil settlement decreased.  The 
percentage of the error between the different meshes as compared to the finest mesh is shown in 
Table 5.  It can be seen from Table 5 that for the analysis using the mesh with 2048 elements the 
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error in x and y displacement became less than 1%.  Hence this mesh used in the following 
numerical simulations. 

 
Figure 6: Finite Element Models: Coarse, Medium and Fine Mesh Densities 
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Figure 7: Initial state of stress at the end of the gravity stage 

 
Figure 8: Convergence of the excess pore pressure at P1 
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Figure 9: Convergence of the soil displacement at the top of the slope 

Table 5: Displacement Errors 
Constant Error x (%) Error y (%) 

Elem # 128 5.624 3.076 
Elem # 512 2.204 0.6465 
Elem # 2048 0.722 0.337 

 

3.3. Simulation Results of Selected Centrifuge Experiments 

The Rensselaer Polytechnic Institute (RPI) participated in both LEAP-GWU-2015 and LEAP-
UCD-2017 [50,51].  One of the RPI experiments performed during LEAP-UCD-2017 replicated 
the LEAP-GWU-2015 experiment.  These two experiments showed consistency in the sample 
preparation as well as the achieved base motion as shown in Figure 10.  For this reason, these two 
experiments are considered as benchmark experiments for evaluation of the model performance.   

The RPI centrifuge applies the shaking in the direction parallel to the axis of rotation and 
therefore a flat surface model was adopted in all the RPI experiments. The soil was modeled with 
a 2048 element mesh (Figure 6).  
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3.3.1. Numerical Simulations of RPI15 and RPI17-1 Centrifuge Tests 

Figure 10 shows the achieved base motions for RPI15 and RPI17-1 experiments [50,51]. It can 
be clearly seen that the input motion was successfully reproduced.  The simulation results of these 
two experiments are presented herein.   

First, the simulated excess pore water pressure time histories are compared with the 
experimental results.  Figures 11 and 12 show the results of the excess pore water pressure time 
histories at the central sensor array for RPI15 and RPI17-1 experiments, respectively.  The 
experimental results are shown in the top plot while the simulation results in the bottom plot.   
Reasonably good agreements are observed between the simulations and experiments in terms of 
the maximum excess pore pressure generated.  Also, the model was able to predict reasonably well 
both the rate of generation and rate of dissipation of the excess pore pressure across the depth of 
the soil layer. 

 
Figure 10: RPI 2015 and 2017 achieved base motions [50,51] 
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Figure 11: RPI15 excess pore pressure development at the central sensor array 

 

 
Figure 12: RPI17-1 excess pore pressure development at the central sensor array 
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The soil lateral displacements are compared in Figures 13 and 14 for the RPI15 and RPI17-1 
experiments.  Again, the numerical simulations were able to closely capture the final lateral 
displacement for both experiments.  However, the simulations produce much lower dynamic 
displacements than what were measured for both experiments.  While this is an important 
discrepancy and must be addressed in future developments of the model, the trend and maximum 
value of lateral spreading were considered as the key parameters of soil response in this study. 

 
Figure 13: RPI15 Lateral displacement time history at the center of the ground surface 

 

 
Figure 14: RPI17-1 Lateral displacement time history at the center of the ground surface 
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Table 6 shows a summary of the lateral displacement at the end of the dynamic motion for all 
RPI experiments along with the simulation results.  The last column of the table shows the percent 
error between the measured displacement and simulation results.  This provides a measure of how 
well the simulation captured the experiment. 

Table 6: RPI Centrifuge Experiments Summary of Displacements 

Experiment Measured 
Displacement (m) 

Simulation Results 
(m) 

% Error 

RPI15 0.141 0.136 3.5 
RPI17-1 0.145 0.137 5.5 

4. Consequences of Spatial Variability of Soil Density 

The variability of the soil density in the centrifuge specimen was analyzed before the LEAP-
UCD-2017 experiments were conducted.  Therefore the assumed statistics in this study are based 
on the LEAP-GWU-2015. During the LEAP-GWU-2015 the achieved dry densities  had a range 
of variation of 108 kg/m3 [38].  The target dry density was 1650 kg/m3 which corresponded to a 
void ratio of 0.606.  Therefore this void ratio was assumed to be the average void ratio and the 
coefficient of variation was assumed to be 7.8% corresponding to the observed range of variation.  
These assumptions are also supported by the finding of Lacasse and Nadim [2] in which they 
reported that the initial void ratio of soils in the field can be represented with a normal distribution 
with a coefficient of variation ranging from 7 to 30 percent.  Later on, the LEAP-UCD-2017 
experiments showed that the achieved density corresponded to an average void ratio of 0.603 and 
a coefficient of variation of 4.63%. 

There are several ways to model the observed variability in soil density.  The first one 
considered here assumes that the variability density is an epistemic variability which corresponds 
to the accuracy of the measurements and the consistency of the specimen preparation.  In this case, 
the assumed statistics of the void ratio pertains to the void ratios reported for a uniform sample 
with a constant void ratio throughout the soil layer. 

The second approach takes into account the spatial variability that may be present within the 
test specimen.  As mentioned in section 1, the spatial variability could be split into a trend 
component and a random component.  The presence or absence of a trend in the achieved soil 
density depends on the preparation method used to set up the specimen.  In the LEAP tests, the 
specimens were prepared by dry pluviation.  If the sand was poured from the same position until 
the model is setup then it safe to assume that the soil density is higher at the base of the specimen 
and lower at the top surface.  Thus there is a trend present for the soil density and void ratio.  On 
the other hand, if the sand was poured from the same distance to the surface there will be no trend.   
For the cases where a trend is present the following relationship was assumed to describe the mean 
value of the void ratio, 

0.559 0.024e z     (1) 
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Where z is the depth from the soil surface.  Equation -1 assumes a mean void ratio of 0.606 at 
the center of the soil layer while the slope of the trend corresponds to the assumed range of 
variation. 

To include the random component of the spatial variability, the effect of the spatial correlation 
needs to be considered.  Two cases are considered here.  The first case assumes no spatial 
correlation within the random field.  The second one considers the presence of spatial correlation. 

A correlated multivariate Gaussian process has a probability density function as shown in Eq.-
2.0 [7]: 
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Where, the random variables vector x has a mean of vector μ and a covariance matrix C that 
are computed as, 
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Since a stationary random process is assumed, the covariance matrix is independent of position 
and can be represented in terms of the correlation coefficient ρ, 

2
 XC ρσ  (4) 

In this work, the correlation coefficient is modeled using an exponential function as shown in 
Eq. -5.0 [7]: 
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Where x and y represent the coordinate position for the ith and jth random variable. θx and θy 
are the correlation lengths in the x and y directions, respectively. 

The random field generation relies on the use of the eigenvector and eigenvalues of the 
covariance matrix. A correlated random field can be modified to a series of uncorrelated random 
variables, 

T
Q C Q ψ  (6) 

Where Q is the eigenvector for the covariance matrix C and ψ is a diagonal matrix of the 
variances of the uncorrelated random vector Z=QX. Using this principle a generated series of 
uncorrelated random field Z ~ N (0, I) can be transformed into a correlated random filed X=QZ+μ 
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~ N (μ, C). The formulation for the correlated random field generation has been implemented in 
Matlab by Constantine and Wang [52]. 

Table 7 shows the different cases that were analyzed.  The first case is called epistemic 
variability. This case represents the study of the uncertainty pertaining to the errors in 
measurements. In the LEAP-2015 centrifuge tests, the specimens were prepared by dry pluviation.  
The difficulty in preparing a sloped soil profile, the inaccuracy in the measurement of the final 
geometry of the specimen, and the ability of the experimenter to keep the height of fall constant 
during the pluviation process usually leads to variability in the reported achieved dry density.  
Hence, the first set of stochastic simulations investigates the effects of the epistemic variability in 
the soil dry density (or void ratio). In this case, the initial void ratio is considered as a random 
variable that is uniformly assigned to the elements within the finite element model. 

The remaining four cases in Table 7 consider the effect of spatial variability in the centrifuge 
specimen.  Although centrifuge specimens are prepared in a closed and controlled environment, 
preparing a specimen with a void ratio that is constant with the depth is rather difficult. For the 
second stochastic analysis, Spatial–1 case, the initial void ratio is considered to be a Gaussian 
random field. The mean value of the initial void ratio is assumed to be dependent on depth with a 
higher void ratio closer to the surface representing looser soil conditions and a lower void ratio at 
the base representing a denser soil.  A constant coefficient of variation is considered (the same 
value as the one used in the first stochastic analysis). The random field is considered to be spatially 
uncorrelated. Figure 15, shows the contour plot for the distribution of the initial void ratio for a 
single realization of Spatial–1 case. The empirical cumulative probability distributions of the initial 
void ratio for all the realizations in this case are presented in Figure 16. 

Table 7: Spatial Variability Stochastic Analysis Cases 
Analysis Mu C.O.V θx θy 
Epistemic 0.606 7.78% Uniform 
Spatial–1 0.5588+0.0244y 7.78% 0 0 
Spatial–2 0.5588+0.0244y 7.78% 5.0 0.5 
Spatial–3 0.606 7.78% 5.0 0.5 
Spatial–4 

0.601<μg<0.611 0.606 7.78% 5.0 0.5 

 
Figure 15: Distribution of Initial Void Ratio of a Single Realization of the Spatial- Analysis 
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Figure 16: Cumulative Distribution of Initial Void Ratios for Spatial-1 Analysis 

For Spatial–1 case, the random field is taken to be spatially uncorrelated. Although this 
assumption is unrealistic for soil properties, it is a reasonable starting point when no additional 
information is available on the spatial correlation of the random field. The spatial correlation of 
the initial void ratio is influenced by many factors. In the field, the initial void ratio is influenced 
by the weathering, sedimentation, and transportation as well as the stress history of the soil deposit 
among other factors. While in a centrifuge experiment, the initial void ratio is influenced by the 
sample preparation technique, saturation, and consolidation processes as well as proximity to the 
soil box boundaries. Since each of these factors affect the spatial correlation, estimating the spatial 
correlation of void ratio is rather difficult and any estimation requires experimental data for it to 
be validated. 

While it remains difficult to model the exact degree of spatial correlation in the initial void 
ratio, in this study the effects of the presence of spatial correlation is investigated. In case 3, Spatial 
– 2, the initial void ratio is assumed as a stationary Gaussian random field with the same mean and 
coefficient of variation as Spatial–1 case. However, in this case, spatial correlation is considered. 
For Spatial–2 case, Figure 17 shows the contour plot of the initial void ratio for a single realization. 
Figure 18 shows the empirical cumulative probability distribution for all the realizations in this 
case. 

 
Figure 17: Distribution of Initial Void Ratio of a Single Realization of the Spatial-2 Analysis 
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Figure 18: Cumulative Distribution of Initial Void Ratios for Spatial-2 Analysis 

In the spatial–3 case, the random field is assumed to have a constant mean. This case resembles 
the situation in which a constant drop height dry pluviation is used for sample preparation. The 
same method of random field generation is used as in spatial–2 case.  While a constant mean of 
0.606 is assumed, the same spatial correlation lengths of 5.0 and 0.5 were assumed in the x and y 
directions respectively.  Figure 19 shows the contour plot of the initial void ratio for a single 
realization.  Figure 20 shows the empirical cumulative probability distribution for all the 
realizations in this case. 

 
Figure 19: Distribution of Initial Void Ratio of a Single Realization of the Spatial -3 Analysis 

 
Figure 20: Cumulative Distribution of Initial Void Ratios for Spatial-3 Analysis 
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The mean and coefficient of variability in Table 7 pertain to the random variables within the 
Gaussian random field. While these parameters apply to each random variable separately during 
the random field generation, it is not guaranteed that the global mean and coefficient of variation 
for each realization to be the same. This can be observed in Figures 16, 18 and 20 where the 
cumulative distributions have different bandwidths reflecting variability in the mean and 
coefficient of variation of the centrifuge model specimen due to the spatial correlation. However, 
in a laboratory condition, the global mean and standard deviation are more controlled. In the last 
case, spatial–4, the global mean of the initial void ratio of the model, μg is controlled by limiting 
it to the range of 0.601<μg<0.611. With this limitation, the rest of the parameters were set to be 
equal to those used in spatial – 3 case. Figure 21 shows the contour plot initial void ratio for a 
single realization.  Figure 22, shows the empirical cumulative probability distribution for all the 
realizations in this case. It can be seen from Figure 22 that by setting a limit on the global mean, 
the bandwidth of the cumulative distribution became narrower. 

 
Figure 21: Distribution of Initial Void Ratio of a Single Realization of the Spatial-4 Analysis 

 
Figure 22: Cumulative Distribution of Initial Void Ratios for Spatial-4 Analysis 

The above five cases of stochastic analyses were performed using the same finite element setup 
used in the deterministic analysis. The variability is introduced in each simulation through initial 
void ratio, soil density, and permeability of each element. The permeability was obtained using 
the relationship between the void ratio and permeability, Eq. 7, obtained from the hydraulic 
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conductivity tests performed on Ottawa F65 sand [46,47]. Each analysis consisted of 500 
simulations.  

( / ) 0.0207 0.0009ok cm s e   (7) 

The results of the above mentioned analyses are presented in the following sections. 

 

4.1.1. Excess Pore Pressure Development 

Figures 23 to 27 show the excess pore water pressure time histories computed at a point near 
the bottom and at the center of the soil specimen where the pore pressure sensors P1 and P3 are 
placed. The results are illustrated in terms of the mean, the mean plus (or minus) one standard 
deviation, and the range of the simulations results for the Epistemic case. The dashed horizontal 
line on each plot indicates the initial vertical effective stress at the locations of P1 and P3.  The 
initial vertical effective stresses were computed based on the reported average density of Ottawa 
sand, i.e. 1650 kg/m3. Since the initial void ratio is variable within the soil specimen, the 
corresponding density is variable and the actual initial vertical stress will vary accordingly. 

 

Figure 23: Excess Pore Pressure computed at the Location of P1 and P3 for Epistemic Analysis 
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Figure 24: Excess pore pressure computed at the location of P1 and P3 for Spatial–1 Analysis 

 
Figure 25: Excess Pore Pressure computed at the Location of P1 and P3 for Spatial–2 Analysis 

 
Figure 26: Excess Pore Pressure computed at the Location of P1 and P3 for Spatial–3 Analysis 
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Figure 27: Excess Pore Pressure computed at the Location of P1 and P3 for Spatial–4 Analysis 

4.1.2. Surface Displacement 

Figures 28 to 32 show the surface settlement and lateral displacement time histories at the top 
of slop (3.5 meters away from the walls of the soil box) and at the center of slope, respectively. 
Table 8 shows a summary of the statistics of the final displacements for these time histories. 

 
Figure 28: a) Surface Lateral Displacement at the Center of Slope b) Surface Settlement at the 

Top of Slope for the Epistemic Analysis 
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Figure 29: a) Surface Lateral Displacement at the Center of Slope b) Surface Settlement at the 

Top of Slope for the Spatial–1 Analysis 

 
Figure 30: a) Surface Lateral Displacement at the Center of Slope b) Surface Settlement at the 

Top of Slope for the Spatial–2 Analysis 

 
Figure 31: a) Surface Lateral Displacement at the Center of Slope b) Surface Settlement at the 

Top of Slope for the Spatial–3 Analysis 
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Figure 32: a) Surface Lateral Displacement at the Center of Slope b) Surface Settlement at the 

Top of Slope for the Spatial–4 Analysis 

Table 8: Statistics of the Final Displacements 
 Lateral Displacement Settlement 

Analysis μ (m) COV (%) μ (m) COV 
(%) 

Epistemic 0.1440 26.18 0.05860 29.59 
Spatial – 1 0.1395 3.50 0.05398 8.06 
Spatial – 2 0.1427 16.75 0.05554 20.90 
Spatial – 3 0.1438 16.69 0.05941 20.82 
Spatial - 4 0.1418 4.80 0.05830 11.66 

 

4.1.3. Lateral Spreading Soil Profile 

Figures 33 to 37 show the lateral displacements of the points located on the central line of the 
soil specimen. The results of the finite element analyses for soil specimens with uniform initial 
void ratios corresponding to various percentiles of the target distribution are also shown in these 
plots. 
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Figure 33: Comparison of Soil Lateral Displacements at the Center of the Model computed for 
the Epistemic Analysis and the Uniform Models corresponding to different percentiles of the 

initial void ratio for the target distribution 

 
Figure 34: Comparison of Soil Lateral Displacements at the Center of the Model computed for 

the case with Spatial – 1 Analysis and the Uniform Models corresponding to different percentiles 
of the initial void ratio for the target distribution 
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Figure 35: Comparison of Soil Lateral Displacements at the Center of the Model computed for 

the case with Spatial – 2 Analysis and the Uniform Models corresponding to different percentiles 
of the initial void ratio for the target distribution 

 
Figure 36: Comparison of Soil Lateral Displacements at the Center of the Model computed for 

the case with Spatial – 3 Analysis and the Uniform Models corresponding to different percentiles 
of the initial void ratio for the target distribution 
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Figure 37: Comparison of Soil Lateral Displacements at the Center of the Model computed for 

the case with Spatial – 4 Analysis and the Uniform Models corresponding to different percentiles 
of the initial void ratio for the target distribution 

4.1.4. Discussion 

The results shown in Figures 23 to 27 indicate that the mean excess pore water pressure 
obtained for the epistemic and spatial variability analyses are similar in terms of the maximum 
excess pore pressure generated, and the rates of generation and dissipation.  However, the range 
of variability in these cases is different especially during the dissipation phase. A clear comparison 
can be seen in Figures 38 and Error! Reference source not found.39 in which the mean and 
standard deviation of excess pore pressure time histories for each of the analysis cases are plotted.  
These plots confirm the observed trend of the mean excess pore pressure time history shown in 
Figures 23 to 27. The standard deviation plots show that the epistemic analysis exhibits larger 
variability during the pore pressure generation phase.  However, the epistemic analysis showed the 
smallest variability during the dilative and dissipation phases.  For the spatial variability analyses, 
higher variability was observed in the dilative phase. During the generation phase, the average 
void ratio of the centrifuge specimen has an effect on the degree of variability. The cases of Spatial 
– 1 and Spatial–4 have a smaller variability in the mean void ratio which is reflected in the narrower 
bandwidth of the CDF plots shown in Figures 16 and 22. These cases have smaller variability 
during the generation phase as can be seen in Figures 38 and 39. For the dissipation phase, the 
Figures show that the presence of a trend in the definition of the random field results in lower 
variability, while the presence of spatial correlation results in more variability in the excess pore 
pressure.   It can also be seen that the average void ratio of the centrifuge specimen does not affect 
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the rate of dissipation since both the Spatial–3 and Spatial–4 cases have the same standard 
deviation during this phase. 

 
Figure 38: Mean and Standard Deviation of Excess Pore Pressure Time History at P1 

Figures 28 to 32 show smaller variability for the lateral displacement and settlement in the 
Spatial – 1 and Spatial – 4 cases. The largest variability is seen in the epistemic analysis. Table 8 
shows a summary of the statistics of the final lateral displacement and settlement for each case. 
The results summarized in this Table confirm that the mean responses are similar to those observed 
in Figures 28 to 32. The coefficient of variation shown in Table 8 confirms the observation of the 
variability of responses in each case. From these results, it can be seen that the variability in the 
average void ratio of the centrifuge specimen has the most significant effect on the final lateral 
displacements of the soil.  Spatial–1 and Spatial–4 cases showed smaller coefficient of variation 
as they had the smallest variation in the initial void ratio. The results of Spatial –2 and Spatial–3 
cases show that the dependency of the mean void ratio on depth does not affect the final lateral 
displacement.   
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Figure 39: Mean and Standard Deviation of Excess Pore Pressure Time History at P3 

Figures 33 to 37 show the average response of the soil profile for the different cases analyzed 
in this work. Figure 34 shows that the average response of the soil profile in the spatial–1 analysis 
corresponds to the response of a soil specimen with a uniform initial void ratio that falls between 
the 20th and 30th percentile of the target distribution for the locations deeper than 2.5 m. For 
depths of 1.3m to 2.5m the soil response corresponds to response of a soil with a uniform initial 
void between the 30th and 40th percentile of the target distribution. Similarly for the soil with 
depth less than 1.3m the soil response corresponds to that with a uniform initial void ratio between 
the 40th and 50th percentile of the target distribution. Figure 35 shows that the average response 
of the soil profile in the spatial – 2 analyses corresponds to the response of a soil specimen with a 
uniform initial void ratio of 30th percentile of the target distribution for the locations deeper than 
3.0 m. For depths of 1.75m to 3.0m the soil response corresponds to the response of a soil with a 
uniform initial void between the 30th and 40th percentile of the target distribution. Similarly for 
the depths less than 1.75m the soil response corresponds to that with a uniform initial void ratio 
between the 40th and 50th percentile of the target distribution.  Figures 33, 36 and 37 show that 
the average responses of the soil profile for the epistemic, spatial–3 and spatial–4 cases are similar 
to that of a soil specimen with a uniform initial void ratio corresponding to the 50th percentile of 
the target distribution. Although the mean response is the same for these analyses the standard 
deviation showed significant variations.  

The presented results show that a relatively small variation in the soil density can have 
significant effects on the response of liquefiable ground. High variability in the lateral 
displacement and settlement of the soil can be observed depending on how the variation of density 
is modeled. Hence a more detailed knowledge of density variation is necessary if a more accurate 
prediction of the soil response is desired. 

5. Consequences of Variability in Base Excitation 
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During the LEAP-GWU-2015 and LEAP-UCD-2017, a total of 27 centrifuge experiments 
were conducted.  The target base motion consisted of a ramped sinusoidal motion with a frequency 
of 1Hz.  For the majority of the experiments, the target PGA of the input motion was 0.15g.  
However, the achieved base motion showed variability in the magnitude and frequency content.  
Figure 40 shows the variations observed in the base motions achieved for 15 of the LEAP 
centrifuge experiments with a target PGA of 0.15g.  Here the base motion was treated as a random 
process defined by the mean response spectrum (shown in red) and the covariance matrix of the 
spectral acceleration of the achieved base motions.  The achieved PGA for these experiments had 
a mean value of 0.176 g and a coefficient of variation of 14.4 %. 

 
Figure 40: Spectral acceleration of the achieved base motions in LEAP-2015 and 2017 tests 

(Damping ratio = 5%) 

For Monte Carlo simulations, random response spectra were generated using the obtained 
mean and covariance.  Once a random response spectrum was obtained, a corresponding time 
history base motion was generated iteratively.  The generated time history consisted of a set of 
ramped sinusoidal waves with a frequency in the range of 0.01 to 50 HZ covering the frequencies 
in the response spectra.  The peak amplitude of each wave was obtained iteratively to match the 
generated response spectrum.  The phase angle for each sinusoidal wave was treated as a normally 
distributed random variable with a zero mean and a standard deviation of π/3.  A sample of 500 
base motions was generated. Figure 41 shows two realizations of the generated synthetic base 
motions.  The left figure shows the generated time history, while the right figure shows how the 
response spectrum of the generated motion compares to the target realization. Figure 42 shows 
that the response spectra of the generated time histories (Synt.) closely match the response spectra 
of the base motions achieved in LEAP-2015 and 2017 (exp.).   
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Figure 41: Two realizations of the synthetic input motions generated and their comparison with 
the target response spectrum 

Three cases of the stochastic analysis were conducted depending on how the soil is modeled.  
The first case studies the effect of the base motion variability solely, therefore the soil was treated 
as a homogenous layer with a void ratio of 0.606 corresponding to a dry density of 1650 kg/m3.  
The second case considers the spatial variability of the soil.  In this case, the soil is modeled in the 
same way as case Spatial-4, Table 7.  This case assumes that the average void ratio remains within 
1 percent of 0.606.  This allows for isolating the effect of the spatial variability from the effect of 
the variation in the soil density.  Finally, the third case considers the combined effect of the soil 
spatial variability and the mean void ratio variability along with the base motion variability.  This 
case is simulated using the Spatial-3 assumptions in generation of the soil random fields. 
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Figure 42: Spectral acceleration of the generated random base motions 

5.1.1. Excess Pore Pressure 

Figure 43 shows the excess pore pressure at the locations of the pore pressure transducers P1 
and P4 (Figure 1) for the homogeneous soil case.  The results are presented in terms of the mean, 
the mean +/- one standard deviation of the results, and the range. The initial vertical effective stress 
is shown by a dashed line in the figure. Figure 44 shows the development of excess pore pressures 
for the spatial variability case at the same locations as those shown in Figure 43.  Figure 45, shows 
the excess pore water pressure development for the spatial and mean void ratio variability case. 

 
Figure 43: Excess pore pressure ratio for homogeneous case 
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Figure 44: Excess pore pressure ratio for spatial variability case 

 
Figure 45: Excess pore pressure ratio for spatial and mean void ratio variability case 

5.1.2. Soil Surface Response 

Figure 46 shows the spread of lateral displacement time histories on the ground surface right 
above the central array of pore pressure sensors (Figure 1), as well as the time histories of the soil 
settlement on the ground surface right above the left array of pore pressure sensors.  In this figure, 
the mean, mean +/- one standard deviation and range of displacements for the homogenous case 
are presented. In a similar fashion, Figure 47 shows the lateral and vertical displacements for the 
spatial variability case, while Figure 48 shows the results obtained by considering the spatial and 
mean void ratio variability. 
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Figure 46: Time History of Displacement for Homogeneous Case 

 
Figure 47: Time History of Displacement for Spatial Variability Case 

 
Figure 48: Time History of Displacement for Spatial and Mean Void Ratio Variability Case 
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5.1.3. Lateral Spreading Soil Profile 

The variations of the lateral displacement profile at the central portion of the soil specimen 
(where P1 to P4 sensors are located) for the homogeneous, spatially variable cases as well as the 
case considering the spatial and mean variability are shown in Figure 49.   

 
Figure 49: Soil profile lateral displacement at the center of the soil 

5.1.4. Discussion 

The results obtained from the MC simulations provide the following observations.  First, a 
wide range of variation is observed in the generated excess pore pressures.  The maximum excess 
pore pressure ratio ranged from 0.32 to 1.0 for the location of the pore pressure transducer P1 in 
the homogeneous case (Figure 43).  For the location of P4, the range was from 0.45 to 1.0.  A 
similar range can be seen in the spatial variability cases (Figures 44 and 45).  While the average 
rate of excess pore pressure generation is similar for the homogeneous and spatial variability cases, 
a slightly higher peak is observed in the spatial variability case.  Additionally, the range of variation 
of the rate of excess pore pressure dissipation is wider in the spatial variability cases. Figures 46 
to 48 show the lateral displacement and settlement results at two different locations on the soil 
surface.   In Figure 46, it can be seen that the soil response has a mean value of 10 and 4.05 cm for 
the lateral displacement and settlement of the homogenous case, respectively. While the coefficient 
of variation for the lateral displacement and settlement are 50.6 and 54.7%, respectively.  For the 
spatial variability case the lateral displacement has a mean of 10.18 cm and coefficient of variation 
of 47.5% and the settlement has a mean of 4.07 cm and a coefficient of variation of 52.3%.  Finally 
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the spatial and mean variability case show a mean lateral displacement of 10.33 cm with a 
coefficient of variation of 55.4% and a mean settlement of 4.19 cm with a coefficient of variation 
of 61.1%.  

 While the differences are small, it can be seen that smaller deformations are observed for the 
spatial variability case in both the mean and range of variation. Ultimately, it appears that the soil 
response is more sensitive to the base motion variability than to the spatial variability under the 
assumed conditions.  This agrees with the observations made by Lopez-Caballero and Modaressi-
Farahmand-Razavi [37]. Similar observations can be obtained from the results shown in Figure  of 
the soil profile lateral displacement.  A small difference between the mean response and coefficient 
of variation of the lateral displacements between the homogeneous and spatial variability cases is 
observed.   

With such large range of variability in the computed soil displacements, it may be argued that 
the same level of uncertainty is present in the simplified methods used for lateral spreading 
estimation [53–55].  However, the types of uncertainty influencing the results of the two different 
analysis methods are quite different.  The uncertainty present in the simplified method is an 
epistemic uncertainty that is based on the lack of information.  On the other hand, the uncertainty 
studied here is the aleatory uncertainty that is based on the inherent variability of the soil.   

5.1.5. Lateral Spreading, Penetration Resistance and Base Motion Intensity Correlation 

The correlation between the magnitude of the soil lateral spreading and the soil penetration 
resistance (representing the soil density) and the base motion intensity is evaluated here.  The peak 
ground acceleration (PGA), the cumulative average velocity (CAV5) and the arias intensity (Ia) 
are the three different intensity measures considered in this evaluation.  Figures 50 to 52 compare 
the lateral spreading magnitudes obtained from the stochastic analysis in terms of the soil 
penetration resistance at the depth of 2 meters qc (z=2.0m) and selected measures of the base 
motion intensity, i.e. PGA, CAV5 and Arias intensity (Ia).  It is noted that qc2 is measured in each 
centrifuge tests by using a miniaturized cone penetrometer (Kutter et al, 2020).  The simulation 
results presented here were obtained from the stochastic analysis case investigating the effects of 
the base motion variability and the spatial and average void ratio variability.   A best-fit surface 
trend was obtained for the data. The equation representing the best fit surface is shown along with 
the coefficient of determination for each case.   From this trend, it is clear that the Arias intensity 
provides a reasonable representation of the base motion intensity as opposed to the PGA. The CAV 
is also significantly better representative of the base motion intensity than the GPA (Fig. 51). 
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Figure 50: Correlation between Lateral Displacement, Penetration Resistance and PGA 

 
Figure 51: Correlation between Lateral Displacement, Penetration Resistance and CAV5 
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Figure 52: Correlation between Lateral Displacement, Penetration Resistance and Arias Intensity 

 

 
5.1.6. Discussion 

Figure 53 shows the joint probability density of the peak ground acceleration and the maximum 
excess pore pressure ratio. These results correspond to the maximum excess pore water pressure 
at the location of pore pressure transducer P1 for the homogeneous MC simulations.  It can be seen 
that the joint probability density reaches a peak at maximum excess pore pressure ratio of 0.94 and 
a peak ground acceleration (PGA) of 0.177 g for the homogeneous case.   The peak densities at 
two additional PGA magnitudes are also shown in the figure. 
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Figure 53: Joint probability density of PGA and maximum excess pore pressure 

 

  

It is clear that the choice of the appropriate intensity measure can affect the correlation between 
the soil response and the base motion intensity.  The PGA, as the peak value of the base motion 
time history, does not include sufficient information of the base motion characteristics and does 
not correlate well with the maximum excess pore pressure and lateral displacements developed in 
the sloping ground.  The Arias intensity, on the other hand, is a more reasonable representation of 
the base motion characteristics and shows a better correlation with the maximum excess pore 
pressure and lateral displacements in the soil.  

 
6. Comparison with Observed Variability in LEAP Experimental Results 

In this section, the variability in the lateral spreading obtained from the stochastic analysis is 
compared to the variability observed in the centrifuge experiments performed during the LEAP-
UCD-2017 project.  The previously conducted analyses were performed by using assumed values 
obtained before the completion of the centrifuge testing for LEAP-UCD-2017.  In order to have a 
proper comparison a more careful consideration of the assumed values is necessary.  Therefore an 
additional set of simulations was performed. Previously, the variability in the soil density was 
considered based on the assumption that the mean density was 1.650 Mg/m3 and a COV 
corresponding to the observed of +/- 100 kg/m3.  Here, the mean and coefficient of variation are 
assumed based on the reported test densities for the LEAP-UCD-2017 that are 1.651 Mg/m3 and 
1.82%, respectively.   
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 While the previous simulations considered only the base motions with a target PGA of 0.15 
g, the full suite of base motions obtained from LEAP-UCD-2017 is used in generating the synthetic 
base motion realizations in this simulation.   Figure 54 shows the distribution of the response 
spectra of the base motions achieved in the LEAP-UCD-2017 centrifuge experiments.  Figure 55 
shows the distribution of the response spectra of the synthetic base motions generated for this 
study.  The new set of realizations were generated in a fashion similar to the previous analyses.  
The figure shows how the mean and the mean +/- one standard deviation compare with what was 
observed in the centrifuge experiments.  

 
Figure 54: Distribution of the response spectra for the LEAP-UCD-2017 achieved base motions 
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Figure 55: Distribution of the response spectra of generated synthetic base motion 

In this study, a finer mesh was considered for the finite element model of the soil layer.  This 
was considered to reduce the effects of the numerical error that may contribute to the variability 
of the results.  Figure 56 shows a contour plot of the distribution of the initial void ratio of a single 
realization over the finite element mesh used in this study.  

 
Figure 56: Distribution of Initial Void Ratio of a Single Realization 

6.1.1. Excess Pore Pressure 

Figure 57 shows the distribution of the excess pore pressure time history.  The results are 
presented in the same manner as before, where the range, mean and mean +/- one standard 
deviation are plotted at the locations of pore pressure transducers P1 and P4.  It can be seen that 
the larger range of variation in the base motions resulted in a much larger range of variation in the 
generated excess pore pressure.   

 
Figure 57: Excess Pore Pressure Distribution 

6.1.2. Soil Surface Response 
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Figure 58 shows a plot of the time history of the lateral displacement at the center of the slope 
and the settlement at the top of the slope.  The results show a mean lateral displacement of 13.5 
cm with a COV of 59% and a mean settlement of 5.3 cm with a COV of 67%.  It is important to 
note that the LEAP experiment reported a lateral displacement with a median of 13.3 cm, a mean 
of 18.1 cm and a COV of 66.4%.   

 
Figure 58: Time History of Displacement 

6.1.3. Comparison of the stochastic analyses with  experiment variabilities 

The results obtained from the stochastic analysis are compared to the lateral displacements 
obtained from the centrifuge experiments.  In order to properly compare the two sets of results, it 

is more appropriate to compare the results with respect to the achieved soil density and the 
magnitude of the achieved base motion.  As it was shown in the previous section, presenting the 

results in terms of a soil penetration resistance at depth of 2 meters and the Arias intensity 
provides a better trend for correlating the soil density and magnitude of the base motion to the 
resulting displacement.  In a similar fashion, the results obtained from this stochastic analysis 

and the LEAP centrifuge experiments are plotted in Figure 59.  The 3D plot in this figure shows 
the variation of the measured and simulated lateral displacements in terms of the qc2 (MPa) and 

the arias intensity Ia (m/sec).   The simulation results are plotted with black dots.  A best-fit 
surface was obtained for the simulation data. The surface is a cubic polynomial and its 

coefficient of determination (r2) is 0.85.  The measured lateral displacement of each centrifuge 
experiment is shown with a distinct marker.  The LEAP-UCD-2017 results are plotted with red 
markers.  Additional tests were performed later for the LEAP-Asia 2019.  These new results are 
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shown with blue markers. Figure 60 shows the same results in 2D plots.  

 
Figure 61 shows where the experimental data fall with respect to the bounds of the stochastic 

analysis. It can be seen that the variability observed in the stochastic simulations reasonably 
captures the variability observed in the experiments.  Except for the centrifuge experiments 
performed at Cambridge University (CU1 and CU2), the simulation results envelop the 
experimental results.    
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Figure 59: Comparison of the stochastic analysis results with the centrifuge experiments 

 
Figure 60: Lateral displacement versus arias intensity and penetration resistance in 2D 
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Figure 61: Comparison of the centrifuge experiments with the bounds of the stochastic analysis 

 

7. Concluding Remarks: 

The effects of two sources of variability on the lateral spreading of soil were investigated.  The 
first source is the inherent spatial variability of the soil density and the second source is the 
variability in the magnitude and frequency of the base motion.  The study was conducted using the 
random finite element method, where nonlinear finite element analysis coupled with Monte Carlos 
simulation is used.  The soil behavior was modeled using a critical state soil plasticity model, 
which allows for modeling the spatial random fields independent of the model calibration.  The 
variability in the base motion was modeled by generating synthetic acceleration time histories to 
match the distribution of the base motion response spectra achieved during LEAP-UCD-2017 
project.   

First, the effects of small variability of soil density on the response of liquefiable sloping 
ground were investigated.  By considering the initial void ratio as a random variable with a normal 
distribution, a series of stochastic analyses were performed. The first case investigates the effects 
of epistemic variability of the initial void ratio caused by the inability to achieve the target density.  
The remaining cases investigate the effects of the spatial variability in the initial void ratio due to 
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the soil inherent heterogeneity and imperfections in specimen preparations. These cases 
demonstrate the effects of the presence of a trend in the definition of the mean, the effects of spatial 
correlation and the effects of the presence of a global constraint such as a specific average model 
density. 

The results show that while the average excess pore pressure response is similar for all the five 
cases, the variations in the rate of excess pore pressure generation, maximum excess pore pressure 
and the rate of dissipation are different. The lateral displacements and surface settlements show a 
degree of variation that is dependent on how the random field is defined. The observed variability 
in the response would constitute the error in the results obtained from a uniformly modeled soil 
analysis. Therefore, in the cases where the variability is significant, the validity of the simulation 
may be compromised. The results showed that the variation in displacement is highly influenced 
by the average density of the centrifuge specimen. It was also shown that the lateral displacements 
and settlements can be modeled using normal as well as log-normal distributions, with the log-
normal distribution proving to be more representative based on the goodness of fit test. Finally, 
the lateral displacements of the soil profile for the spatial variability cases were compared to the 
responses of different soil specimens prepared with uniform initial void ratios corresponding to 
various percentiles of the target distribution. It was shown that depending on the source of 
variability, the average response of the soil profile may correspond to that of a soil denser than the 
target density.  

The variability in the achieved base motions of LEAP-2015 and LEAP-UCD-2017 centrifuge 
experiments was modeled as a random process and two cases of Monte Carlo simulations were 
performed to study the effects of this variability on the response of soil specimen in a homogeneous 
and a spatially variable conditions.  The analysis results revealed a significant variation in the 
generated excess pore pressures and displacements due to the variability in the base motion.  A 
coefficient of variation of about 50% in the soil deformations emphasizes the high level of 
sensitivity of the response of the liquefiable soil to variations in the input motions.  On the contrary, 
a very small difference in the response is observed between the homogeneous case and spatial 
variability case.   Moreover, a Monte Carlo simulation was performed to model the combined 
effect of mean and spatial variability in the soil density along with the variability in the base 
motion. Similar observations were obtained from this case. 

Finally, the variability observed in the LEAP-UCD-2017 experiment was modeled using the 
same modeling technique used in the previous stochastic analyses.  The corresponding mean and 
coefficient of variation of the soil density as well as the complete suite of achieved base motions 
were used in the latter analyses.  The variability obtained from the simulation was compared to the 
observed variability in the results of the centrifuge experiments.  It was shown that with proper 
modeling of the variability in the soil density and base motion excitations, the stochastic analysis 
could reasonably predict the variability observed in the experiment.   
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