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Sample Complexity of Block-Sparse System
Identification Problem

Salar Fattahi and Somayeh Sojoudi

Abstract—In this paper, we study the system identification
problem for sparse linear time-invariant systems. We propose
a sparsity promoting block-regularized estimator to identify the
dynamics of the system with only a limited number of input-state
data samples. We characterize the properties of this estimator
under high-dimensional scaling, where the growth rate of the
system dimension is comparable to or even faster than that of the
number of available sample trajectories. In particular, using con-
temporary results on high-dimensional statistics, we show that the
proposed estimator results in a small element-wise error, provided
that the number of sample trajectories is above a threshold. This
threshold depends polynomially on the size of each block and the
number of nonzero elements at different rows of input and state
matrices, but only logarithmically on the system dimension. A
by-product of this result is that the number of sample trajectories
required for sparse system identification is significantly smaller
than the dimension of the system. Furthermore, we show that,
unlike the recently celebrated least-squares estimators for system
identification problems, the method developed in this work is
capable of exact recovery of the underlying sparsity structure
of the system with the aforementioned number of data samples.
Extensive case studies on switching networks and power systems
are offered to demonstrate the effectiveness of the proposed
method.

I. INTRODUCTION

With their ever-growing size and complexity, real-world
dynamical systems are hard to model. Today’s systems are
complex and large, often with a massive number of unknown
parameters, which render them doomed to the so-called curse
of dimensionality. Therefore, system operators should rely
on simple and tractable estimation methods to identify the
dynamics of the system via a limited number of recorded
input-output interactions, and then design control policies to
ensure the desired behavior of the entire system. The area of
system identification is created to address this problem.

In this work, our main goal is to characterize the sample
complexity of learning block-sparse linear time-invariant (LTI)
systems from noisy input-output trajectories. More specif-
ically, we study the efficient learning of LTI systems in
high-dimensional settings, where the system dimension is
significantly larger than the number of collected samples. This
type of dynamical system forms the basis of many classical
control problems, such as Linear Quadratic Regulator and
Linear Quadratic Gaussian problems. Our results are built
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upon the fact that, in many practical large-scale systems, the
states and inputs exhibit sparse interactions with one another,
which in turn translates into a block-sparse representation of
the state-space equations of the system. Driven by the existing
non-asymptotic results on the classical Lasso problem, the
main focus of this paper is on the block-regularized estimators
for the system identification problem, where the goal is to
characterize the number of required sample trajectories to
reliably estimate the block-sparse interactions of the system.
To this goal, the `∞-norms of the blocks are penalized instead
of their `1-norms.

In many real-world systems, such as power networks and
multi-agent systems, the local state and input behavior of
the physical agents/subsystems can be captured and charac-
terized via block matrices in their dynamical models. For
instance, in the system identification problem for power sys-
tems, each block of the system matrices corresponds to the
local states/inputs of an individual generator, and the goal
is to learn the sparse interactions among generators given a
limited number of measurements from phasor measurement
units (PMUs) and supervisory control and data acquisition
(SCADA) systems [1], [2]. In this context, it is reasonable
to assume that the unknown dynamical interactions among
the generators enjoy a block-sparse structure. As another
example, consider the problem of planar vertical takeoff and
landing (PVTOL) for a fleet of interconnected aircraft. In
this context, the number of blocks in the state-space equation
of the system corresponds to the number of aircraft that is
known a priori, and the goal is to infer the time-varying and
uncertain interactions among the aerial vehicles based on the
local sensory data [3], [4]. Indeed, such local interactions can
be captured via a block-sparse dynamical model.

A. Related Works

Asymptotic Guarantees: System identification is a well-
established area of research in control theory, with related
preliminary results dating back to 1960s. Standard reference
textbooks on the topic include [5], [6], all focusing on estab-
lishing asymptotic consistency of different types of estimators.
Although these results shed light on the theoretical consistency
of the existing methodologies, they are not applicable in the
finite time/sample settings. In many applications, including
neuroscience and transportation networks, the dimensional-
ity of the system is overwhelmingly large, often surpassing
the number of available input-output data [7], [8]. Under
such circumstances, the classical approaches for checking the
asymptotic consistency of an estimator face major breakdowns.
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Finite-Time Guarantees: Contemporary results in statis-
tical learning as applied to system identification seek to
characterize finite time and finite data rates, relying heavily
on tools from sample complexity analysis and concentration
of measure. Such finite-time guarantees provide estimates of
both system parameters and their uncertainty, which allows
for a natural bridge to robust/optimal control. In [9], it was
shown that under full state observation, if the system is driven
by Gaussian noise, the ordinary least squares estimate of
the system matrices constructed from independent data points
achieves order optimal rates that are linear in the system
dimension. This result was later generalized to the single
trajectory setting for (i) marginally stable systems in [10], (ii)
unstable systems in [11], and (iii) partially observed stable
systems in [12].

Sparse System Identification: Recently, special attention
has been devoted to the sparse system identification problem,
where the states and inputs are assumed to possess localized
or low-order interactions. These methods include, but are not
restricted to, selective `1-regularized estimator [13], identifica-
tion based on compressive sensing [14]–[17], sparse estimation
of polynomial system dynamics [18], kernel-based regular-
ization [19], low rank estimation in frequency domain [20],
and sparse system identification of time-varying systems [21].
On the other hand, with the unprecedented interest in data-
driven control approaches, such as model-free reinforcement
learning [22], a question arises as to what the minimum
number of input-output data samples should be to guarantee
a small error in the estimated model. Answering this question
has been the subject of many recent studies on the sample
complexity of the system identification problem [9], [23]. Most
of these results are tailored to a specific type of dynamics,
depend on the stability of the open-loop system, or do not
exploit the a priori information about the structure of the
system.

Autoregressive processes with sparse graphical models:
Another closely-related line of research studies the inference
of autoregressive processes whose structures can be captured
via sparse graphical models. Earlier works on the inference of
sparse autoregressive graphical models were based on hypoth-
esis testing [24], [25]. More recently, the work [26] proposed
an `1-regularized maximum likelihood estimator for estimating
the precision matrices of autoregressive Gaussian processes.
A similar regularized estimator is also used in [27] to infer
autoregressive processes with sparse latent-variable graphical
models. Alternatively, the work [28] introduced a Bayesian
approach for the inference of autoregressive graphical models.
While being related to our proposed method, these works
rely upon a different underlying generative model for the
system, and hence, are not directly applicable to the system
identification of linear time-invariant (LTI) systems.

B. Contributions:

In this work, we introduce a regularized estimator for recov-
ering the true block-sparsity of an LTI system. In particular,
we use an `1/`∞-regularized estimator, i.e., a least-squares
estimator accompanied by a `∞ regularizer on different blocks.

We show that the required number of sample trajectories to
recover the nonzero blocks of the system matrices and to
guarantee a small estimation error scales polynomially with
the maximum block sizes and the number of row- and column-
wise nonzero elements, but only logarithmically with the
number of blocks in the system.

Our work makes a significant improvement over the
recently-studied least-squares estimator whose sample com-
plexity scales linearly with the system dimensions. Most
interconnected systems consist of many smaller subsystems
(blocks) with sparse or localized interactions. Under such
circumstances, it may be costly, if not impossible, to collect
as many samples as the system dimension. Another advantage
of the proposed estimator over its least-squares analog is
its exact recovery property. More specifically, we show that
while the least-squares estimator is unable to identify the
sparsity pattern of the input and state matrices for any finite
number of samples, the proposed estimator recovers the true
sparsity pattern of these matrices with a sublinear number of
sample trajectories. It is worthwhile to mention that this work
generalizes the results in [29], where the authors use a similar
regularized estimator to learn the dynamics of a particular type
of systems. However, [29] ignores the block structure of the
system and assumes autonomy and inherent stability, all of
which will be relaxed in this work.

This work is a significant extension of our previous con-
ference papers on Lasso-type estimators for system identifi-
cation [30] and non-asymptotic analysis of block-regularized
linear regression problems [31]. In particular, by combining
the properties of the block-regularized regression and the
characteristics of LTI systems, we provide a unified sparsity-
promoting framework for estimating the parameters of the
system with arbitrary block structures. To this goal, we have
generalized our theoretical results in [30] and [31] to account
for partially-sparse structures. We explain the effect of differ-
ent parameters of the problem—such as input energy and the
length of the time horizon—on the sample complexity of the
proposed estimator.

Notations: For a matrix M , the symbols ∥M∥F , ∥M∥2,
∥M∥0, ∥M∥1, and ∥M∥∞ denote its Frobenius, operator,
number of nonzero elements, `1/`1, and `∞/`∞ norms, respec-
tively. Furthermore, κ(M) refers to its 2-norm condition num-
ber, i.e., the ratio between its maximum and minimum singular
values. Given integer sets I and J , the notation MIJ refers
to the submatrix of M whose rows and columns are indexed
by I and J , respectively. The symbols M∶,j and Mi,∶ refer
to the jth column and ith row of M , respectively. Given the
sequences f1(n) and f2(n), the notations f1(n) = O(f2(n))
and f1(n) = Ω(f2(n)) imply that there exist c1 < ∞ and
c2 > 0 such that f1(n) ≤ c1f2(n) and f1(n) ≥ c2f2(n),
respectively. Furthermore, f1(n) = Θ(f2(n)) is used to imply
that f1(n) = O(f2(n)) and f1(n) = Ω(f2(n)). Finally,
f1(n) = o(f2(n)) is used to show that f1(n)/f2(n) → 0 as
n→∞. A zero-mean Gaussian distribution with covariance Σ
is shown as N(0,Σ). Given a function f(x), the expression
arg min f(x) refers to its minimizer.
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II. PROBLEM FORMULATION

Consider the LTI system

x[t + 1] = Ax[t] +Bu[t] +w[t], (1a)

where t is the time step, A ∈ Rn×n is the state matrix, and B ∈
Rn×m is the input matrix. Furthermore, x[t] ∈ Rn, u[t] ∈ Rm,
and w[t] ∈ Rn are the state, input, and disturbance vectors at
time t, respectively. The dimension of the system is defined
as m + n. It is assumed that the input disturbance vectors are
identically distributed and independent (i.i.d.) with distribution
N(0,Σw) across different times. In this work, we assume that
the matrices A and B are sparse and the goal is to estimate
them based on a limited number of sample trajectories, i.e. a
sequence {(x(i)[τ], u(i)[τ])}Tτ=0 with i = 1,2, ..., d, where d
is the number of available sample trajectories. The ith sample
trajectory {(x(i)[τ], u(i)[τ])}Tτ=0 is obtained by running the
system from t = 0 to t = T and collecting the input and state
vectors. Note that in general, one may consider two general
approaches to obtain the sample input-output trajectories for
the system identification problem:

Fixed d, and variable T : In this approach, one sets the
number of sample trajectories d to a fixed value (e.g., d = 1)
and instead, chooses a sufficiently long time horizon T to
obtain enough information about the dynamics of the system.
Notice that this is only viable when the system is stable. In
other words, one needs to assume that either the system is
inherently stable, or there exists an initial stabilizing controller
in place to be able to use this approach. Note that this
assumption of stability is necessary, as even a simple least-
squares estimator may not be consistent if the system has
unstable modes [11].

Fixed T , and variable d: In this approach, the length of
the time horizon T is fixed and instead, the number of sample
trajectories is chosen to be sufficiently large to collect enough
information about the dynamics of the system. Notice that in
this method, one needs to reset the initial state of the system
at the beginning of each sample trajectory. However, unlike
the previous method, its applicability is not contingent upon
the stability of the true system.

Due to the aforementioned theoretical and practical limi-
tations, one can only use the second approach for unstable
systems. Such reset-and-run approach is possible and even
crucial in many problems of practical relevance. For instance,
having the ability to reset cyber-physical systems to a zero
or safe state at any given time is deemed crucial to ensure
the safety of the system and to protect it from malicious
attacks [32], [33]. Moreover, the recent advances in Reinforce-
ment Learning (RL) lends itself to the user’s ability to run the
system in different and independent sample trajectories (also
known as rollouts or episodes in the RL literature), each with
a controlled and independent initial state.

Given the sample trajectories {(x(i)[τ], u(i)[τ])}⊺τ=0 for i =
1,2, ..., d, one can obtain an estimate of (A,B) by solving the
following least-squares optimization problem:

min
A,B

d

∑
i=1

T−1

∑
t=0

∥x(i)[t + 1] − (Ax(i)[t] +Bu(i)[t])∥
2

2
. (2)

In order to describe the behavior of the least-squares estimator,
define

Y (i) =
⎡⎢⎢⎢⎢⎢⎣

x(i)[1]⊺
⋮

x(i)[T ]⊺

⎤⎥⎥⎥⎥⎥⎦
, X(i) =

⎡⎢⎢⎢⎢⎢⎣

x(i)[0]⊺ u(i)[0]⊺
⋮ ⋮

x(i)[T −1]⊺ u(i)[T −1]⊺

⎤⎥⎥⎥⎥⎥⎦
,

W (i) =
⎡⎢⎢⎢⎢⎢⎣

w(i)[0]⊺
⋮

w(i)[T − 1]⊺

⎤⎥⎥⎥⎥⎥⎦
, (3)

for every sample trajectory i = 1,2, ..., d. Furthermore, let Y ,
X , and W be defined as vertical concatenations of Y (i), X(i),
and W (i) for i = 1,2, ..., d, respectively. Finally, denote Ψ =
[A B]⊺ as the unknown system parameter and Ψ∗ as its true
value. Based on these definitions, it follows from (1) that

Y =X ⋅Ψ +W. (4)

The system identification problem is then reduced to estimat-
ing Ψ based on the observation matrix Y and the design matrix
X . Consider the following least-squares estimator:

Ψls = arg min
Ψ
∥Y −XΨ∥2F . (5)

One can easily verify the equivalence of (2) and (5). The
optimal solution of (5) can be written as

Ψls = (X⊺X)−1X⊺Y = Ψ∗ + (X⊺X)−1X⊺W. (6)

Notice that Ψls is well-defined and unique if and only if X⊺X
is invertible, which necessitates d ≥ n+m. The estimation error
is then defined as

E = Ψls −Ψ∗ = (X⊺X)−1X⊺W. (7)

Thus, one needs to study the behavior of (X⊺X)−1X⊺W
in order to control the estimation error of the least-squares
estimator. However, since the state of the system at time t is
affected by random input disturbances at times 0,1, ...t−1, the
matrices X and W are correlated, which renders (7) hard to
analyze. In order to circumvent this issue, [9] simplifies the
estimator and considers only the state of the system at time T
in Y (i). By ignoring the first T − 1 rows in Y (i), X(i), and
W (i), one can ensure that the random matrix (X⊺X)−1X⊺ is
independent of W . Therefore, it is assumed in the sequel that

Y =
⎡⎢⎢⎢⎢⎢⎣

x(1)[T ]⊺
⋮

x(d)[T ]⊺

⎤⎥⎥⎥⎥⎥⎦
, X =

⎡⎢⎢⎢⎢⎢⎣

x(1)[T −1]⊺ u(1)[T −1]⊺
⋮ ⋮

x(d)[T −1]⊺ u(d)[T −1]⊺

⎤⎥⎥⎥⎥⎥⎦
,

W =
⎡⎢⎢⎢⎢⎢⎣

w(1)[T − 1]⊺
⋮

w(d)[T − 1]⊺

⎤⎥⎥⎥⎥⎥⎦
. (8)

With this simplification, [9] shows that, with input vec-
tors u(i)[t] chosen randomly from N(0,Σu) for every t =
1,2, ..., T − 1 and i = 1,2, ..., d, the least-squares estimator
requires at least d = Ω(m+n+log(1/δ)) sample trajectories to
guarantee ∥E∥2 = O (

√
(m + n) log(1/δ)/d) with probability

of at least 1 − δ. In what follows, a block-regularized esti-
mator will be introduced that exploits the underlying sparsity
structure of the system dynamics to significantly reduce the
number of sample trajectories for an accurate estimation of the
parameters. To streamline the presentation, the main technical
proofs are deferred to Section A.
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III. MAIN RESULTS

Suppose that A and B can be partitioned as A = [A(i,j)]
and B = [B(k,l)] where (i, j) ∈ {1, ..., n̄} × {1, ..., n̄} and
(k, l) ∈ {1, ..., n̄}× {1, ..., m̄}. A(i,j) is the (i, j)th block of A
with size ni × nj . Similarly, B(k,l) is the (k, l)th block of B
with size nk ×ml. Note that ∑n̄i=1 ni = n and ∑m̄i=1mi = m.
Suppose that it is known a priori that all elements in each
block A(i,j) or B(k,l) are simultaneously zero or nonzero.
This implies that, as long as one element in A(i,j) or B(k,l)

is nonzero, there is no reason to promote sparsity in the
remaining elements of the corresponding block. Clearly, this
kind of block-sparsity constraint is not correctly reflected
in (2). To simplify the presentation, we use the notation
Ψ = [A B]⊺. Note that Ψ(i,j) = (A(j,i))⊺ for i ∈ {1, ..., n̄}
and Ψ(i,j) = (B(j,i−n̄))⊺ for i ∈ {n̄+ 1, ..., n̄+ m̄}. In order to
recover the true block-sparsity of A and B, one can resort
to an `1/`∞ variant of the Lasso problem—known as the
block-regularized least-squares (or simply block-regularized)
problem:

Ψ̂ = arg min
Ψ

1

2d
∥Y −XΨ∥2F + λd∥Ψ∥block, (9)

where ∥Ψ∥block is defined as the summation of ∥Ψ(i,j)∥∞
over (i, j) ∈ {1, ..., n̄ + m̄} × {1, ..., n̄}. D is used to denote
the maximum size of the blocks of Ψ. Under the sparsity
assumption on (A,B), we will show that the non-asymptotic
statistical properties of Ψ̂ significantly outperform those of Ψls.
In particular, the primary objective is to prove that ∥Ψ̂−Ψ∗∥∞
decreases at the rate O(

√
D log(n +m) +D2 log(1/δ)/d)

with probability of at least 1 − δ and with an appropriate
scaling of the regularization coefficient, provided that d =
Ω (k2

max (D log(n̄ + m̄) +D2 log(1/δ))). Here, kmax is the
maximum number of nonzero elements in the columns of
[A B]⊺. Comparing this number with the required lower
bound Ω(n + m + log(1/δ)) on the number of sample tra-
jectories for the least-squares estimator, we conclude that the
proposed method needs significantly fewer samples when A
and B are sparse. The third objective is to prove that this
method is able to find the correct block-sparsity structure
of A and B with high probability. In contrast, it will be
shown that the solution of the least-squares estimator is
fully dense for any finite number of sample trajectories, and
hence, it cannot correctly extract the sparsity structures of A
and B. We will showcase the superior performance of the
block-regularized estimator both in sparsity identification and
estimation accuracy in simulations.

To present the main results of this work, first note that

x(i)[T −1]=AT−2Bu(i)[0]+AT−3Bu(i)[1]+⋯+Bu(i)[T−2]
+AT−2w(i)[0]+AT−3w(i)[1]+⋯+w(i)[T−2]
+AT−1x[0]. (10)

Suppose that u(i)[t] and w(i)[t] are i.i.d samples of N(0,Σu)
and N(0,Σw), respectively. Moreover, we assume that the
initial state is random with a Gaussian distribution N(0,Σx).
Therefore, (10) and (8) imply that

X⊺i,∶ ∼ N (0, Σ̃) , (11)

where Xi,∶ is the ith row of X and

Σ̃ = [C
⊺C 0
0 Σu

] ,C = [F
⊺
T

G⊺T
] (12a)

FT = [AT−2BΣ
1/2
u AT−3BΣ

1/2
u . . . BΣ

1/2
u ] (12b)

GT = [AT−1Σ
1/2
x AT−2Σ

1/2
w AT−3Σ

1/2
w . . . Σ

1/2
w ] .

(12c)

The matrix C is referred to as the combined controllability
matrix in the sequel. Define Aj(Ψ) = {i ∶ Ψ(i,j) /= 0}. Unless
stated otherwise, Aj is used to refer to Aj(Ψ∗). Define Acj as
the complement of Aj . For T ⊆ {1, ..., n̄ + m̄}, denote I(T )
as the index set of rows in Ψ∗ corresponding to the blocks
{Ψ∗(i,∶) ∶ i ∈ T }. For an index set U , define XU as a d × ∣U ∣
submatrix of X after removing the columns with indices not
belonging to U . With a slight abuse of notation, X(i), XAj ,
and XAc

j
are used to denote XI({i}), XI(Aj), and XI(Ac

j)
when there is no ambiguity. Similarly, Σ̃(i),Aj

and Σ̃Aj ,Aj are
used in lieu of Σ̃I({i}),I(Aj) and Σ̃I(Aj),I(Aj), respectively.
Denote kj as the maximum number of nonzero elements in
any column of Ψ∗(∶,j) which is the jth block column of Ψ∗.
Finally, define

nmax = max
1≤i≤n̄

ni, mmax = max
1≤i≤m̄

mi,

pmax =max{nmax,mmax} , kmax = max
1≤j≤n̄

kj ,

σ2
max = max

1≤i≤n+m
Σ̃ii. (13)

The following set of assumptions plays a key role in deriving
the main result of this paper:

Assumption 1. By fixing the time horizon T , we assume that
the following conditions hold for all finite system dimensions:
A1. (Mutual Incoherency Property): There exists a number

γ ∈ (0,1] such that

max
j=1,...,n̄

{max
i∈Ac

j

∥Σ̃(i),Aj
(Σ̃Aj ,Aj)−1∥

1
} ≤ 1 − γ. (14)

A2. (Bounded eigenvalue): There exist numbers 0 < Λmin <∞
and 0 < Λmax <∞ such that

Λmin ≤ λmin(Σ̃) ≤ λmax(Σ̃) ≤ Λmax. (15)

A3. (Bounded minimum value): There exists a number tmin >
0 such that

tmin ≤ min
1≤j≤n̄

min
i∈Aj

∥Ψ∗(i,j)∥
∞
. (16)

A4. (Block sizes): There exist numbers αn, αm <∞ such that

nmax = O ((n̄ + m̄)αn) , mmax = O ((n̄ + m̄)αm) .
(17a)

The mutual incoherency property in Assumption A1 is a
commonly known condition for the exact recovery of unknown
parameters in compressive sensing and classical Lasso prob-
lems [34], [35]. This assumption entails that the effect of
those submatrices of Σ̃ corresponding to zero (unimportant)
elements of Ψ on the remaining entries of Σ̃ should not be
large. Roughly speaking, this condition guarantees that the
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unknown parameters are recoverable in the noiseless scenario,
i.e. when W = 0. It is also worth noting that this condition
can be further relaxed under additional conditions [36]. If
the recovery cannot be guaranteed in the noise-free setting,
then there is little hope for the block-regularized estimator to
recover the true structure of A and B when the system is
subject to noise.

The bounded eigenvalue condition in Assumption A2 entails
that the condition number of Σ̃ is bounded away from 0 and∞
for all finite system dimensions. Assuming that the eigenvalues
of Σu and Σw do not scale with the system dimension, it
is easy to verify that min{λmin(Σu), λmin(Σw)} ≤ Λmin ≤
λmin(Σw). However, as will be shown later, the value of Λmax

can change with respect to the time horizon T . In particular,
it will be later shown that for highly unstable systems, Σ̃
becomes severely ill-conditioned as the time horizon increases,
which in turn makes the system identification problem difficult
to solve. Furthermore, this assumption implies that there exists
a constant σ̄2

max <∞ such that max1≤i≤n+m Σ̃ii ≤ σ̄2
max.

Assumption A3 implies that, independent of the system
dimensions, there always exists a strictly positive gap between
the zero and nonzero elements of A and B. This assumption
holds in almost all practical settings and will facilitate the
exact sparsity recovery of the parameters of the system.

Finally, Assumption A4 requires that the maximum size of
the blocks in Ψ∗ be polynomially bounded by the number of its
block columns. For instance, n̄ = O(1) and m̄ = O(1) violate
this assumption since it implies that nmax = Ω((n̄ + m̄)logn)
and mmax = Ω((n̄ + m̄)logm). It is worthwhile to mention
that Assumption A4 results in kmax = O((n̄+m̄)αk) for some
number αk <∞; this will be used later in the derivations.

Define D = pmaxnmax, which is the maximum size of the
blocks in Ψ.

Theorem 1 (block-wise regularization). Upon choosing

λd = Θ
⎛
⎝
σmax

√
D log(n̄ + m̄) +D2 log(1/δ)

d

⎞
⎠
, (18a)

d = Ω (κ(Σ̃)2kmax (D log(n̄ + m̄) +D2 log(1/δ))) , (18b)

the following statements hold with probability of at least 1−δ:
1. Ψ̂ is unique and has the same nonzero blocks as Ψ∗.
2. We have

g = ∥Ψ̂−Ψ∗∥∞

=O
⎛
⎝
κ(Σ̃)

⎛
⎝

1+
√

kmax(kmaxnmax+log(n̄ + m̄)+log(1/δ))
d

⎞
⎠

×
√

D log(n̄+m̄)+D2 log(1/δ)
d

⎞
⎠
. (19)

Theorem 1 shows that the minimum number of required
sample trajectories is a quadratic function of the maximum
block size. Therefore, only a small number of samples is
enough to guarantee the uniqueness, exact block-sparsity re-
covery, and small estimation error for sparse systems, assum-
ing that the sizes of the blocks are significantly smaller than
the system dimensions.

Corollary 1. Assume that nmax = O(nβn) and mmax =
O(mβm) for some βn > 0 and βm > 0. Then,

λd = Θ
⎛
⎝
σmax(n +m)(βn+βm)

√
log(1/δ)

d

⎞
⎠
, (20a)

d = Ω(κ(Σ̃)2k2
max(n +m)2(βn+βm) log(1/δ)), (20b)

is enough to guarantee the exact sparsity recovery of Ψ∗ and

∥Ψ̂−Ψ∗∥∞ = O
⎛
⎝
κ(Σ̃)(n +m)(βn+βm)

√
log(1/δ)

d

⎞
⎠
, (21)

with probability of at least 1 − δ.

Proof. The proof follows from Theorem 1. The details are
omitted for brevity. ◻

Corollary 1 analyzes the behavior of the proposed estimator
for the polynomial scaling of the block size. It can be seen that
the size of the required sample trajectories heavily depends on
the growth rate of the maximum block size of Ψ. Although
the sampling rate is still sublinear when βn+βm < 1/2, it may
surpass the system dimension if βn + βm > 1/2. A question
arises as to whether one can resort to the ordinary least-squares
estimator in lieu of the proposed block-regularized estimator
for the cases where βn+βm > 1/2 since the proposed estimator
requires d = Ω((n +m)1+ε log(1/δ)) for some ε > 0 whereas
d = Θ(n+m+log(1/δ)) is enough to guarantee the uniqueness
of the least-squares estimator. This will be addressed in the
next subsection.

Remark 1. In this paper, we assume that A and B are
partitioned into blocks with known sizes, each with a maximum
size of D. If the blocks sizes are unknown, an alternative
approach is to treat A and B as sparse matrices where each
block is of size D = 1. This lack of prior knowledge on the
block sizes of the system matrices can be compensated with
a higher number of collected sample trajectories from the
system. In particular, as it is shown in [30], an element-wise
regularized estimator (i.e. vanilla Lasso) can still recover the
correct sparsity pattern of the true system matrices with no
prior knowledge on the block sizes, albeit with potentially a
higher number of sample trajectories and worse estimation
error. In Section IV, we showcase the performance of these
regularized estimators with and without prior knowledge on
the block sizes.

It is worth noting that, based on Theorem 1, one may spec-
ulate that setting D = 1 (i.e., not using the prior information
on the block sizes) may lead to a better statistical guarantee.
However, note that the derived bound is based on a customized
λd that is designed to obtain a logarithmic dependency on
n̄ + m̄. This λd is specifically designed to offer a small value
in terms of n̄+m̄ without optimizing its dependency on D. To
obtain a tighter bound with respect to D (instead of n̄ + m̄),
one may need to select another λd that (1) would depend on
D in a more sophisticated way; and (2) similar to [37], would
potentially depend on the level of “overlap” in the block-wise
support of the unknown parameters. We consider obtaining a
better dependency on D as an enticing challenge for future
research.
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Remark 2. Similar to the classical results on the regularized
linear regression [38], [39], the particular choice of the
regularization coefficient λd in our analysis depends on the
unknown parameters of the true system, such as σw, σmax,
and γ. As will be shown in the next section, in practice we
do not rely on these unknown parameters. In particular, the
chosen value for λd in our simulations will merely depend on
the known parameters of the system, such as d, n̄+ m̄, and D
when we know the block sizes, or d and n+m when the block
sizes are unknown.

Remark 3. Another alternative approach to promote the block
sparsity in the identification of dynamical systems is `1/`2-
regularized estimator (also known as group Lasso), where
the `∞ regularization on different blocks is replaced by a `2
regularization [40], [41]. In Section IV, it is empirically shown
that these estimators offer a similar performance in terms
of the estimation error. However, an important advantage of
the `1/`∞-regularized estimator over the group Lasso is in
terms of its computational complexity. As pointed out in [42],
one of the main benefits of `1/`∞-regularized estimator lies
in the efficient computation of its entire solution path over a
compact range of regularization coefficients (as opposed to a
single regularization coefficient). In particular, contrary to the
group Lasso, the solution path for `1/`∞-regularized estimator
is piecewise linear with easily computable breakpoints. This
in turn can be used in sensitivity analysis and boosting
methods [42], [43].

A. Comparison to Least-Squares

In this subsection, we prove that the least-squares estimator
does not extract the correct sparsity structure of Ψ for any
finite number of sample trajectories.
Theorem 2. If A and B are not fully dense matrices, Ψls

does not recover the support of Ψ∗ for any finite number of
sample trajectories with probability 1.

Proof. The proof is omitted for brevity and can be found
in [44]. ◻

Define h(n,m) =
√
(n +m) log(1/δ)/d and recall that

∥Ψls − Ψ∗∥2 = O(h(n,m)). In the next corollary, we show
that, under additional sparsity conditions, the operator norm
of the estimation error for Ψ̂ becomes arbitrarily smaller than
h(n,m) as the system dimension grows.

Corollary 2. Assume that the number of nonzero elements at
different rows and columns of Ψ∗ is upper bounded by kmax.
Furthermore, suppose that λd satisfies (18a) and

d = Ω (κ(Σ̃)2k2
max (D log(n̄ + m̄) +D2 log(1/δ))) . (22)

Then, we have

∥Ψ̂−Ψ∗∥2=O
⎛
⎝
κ(Σ̃)kmax

√
D log(n̄+m̄)+D2 log(1/δ)

d
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

v(n,m)

⎞
⎠
,

(23)
with probability of at least 1 − δ. Furthermore, we have

v(n,m)
h(n,m)

→ 0 as (n,m)→∞, (24)

provided that

kmaxD = o(
√

n +m
log(n +m)

) . (25)

Proof. The proof is omitted for brevity and can be found
in [44]. ◻

Corollary 2 describes the settings under which our proposed
method significantly outperforms the least-squares estimator in
terms of the operator norm of the errors. This improvement is
more evident for those systems where the states and inputs
have sparse interactions and the block sizes in A and B
are smaller than the system dimensions. A class of such
systems is multi-agent networks where the agents interact only
locally and their total number dominates the dimension of each
individual agent.

B. Controllability and the Effect of T

Notice that the minimum number of required sample trajec-
tories and the element-wise error of the estimated parameters
depend on κ(Σ̃). Recall that min{λmin(Σu), λmin(Σw)} ≤
Λmin ≤ λmin(Σw), independent of T . Therefore, the value
of κ(Σ̃) is governed by the maximum eigenvalue of C⊺C.
Roughly speaking, λmax(C⊺C) quantifies the easiest-to-
identify mode of the dynamical system. Therefore, Theorem 1
imply that the sample complexity of the proposed block-
regularized estimator depends on the modes of the system,
as well as the expected energy of the input and disturbance
noise. In particular, by fixing Σu and Σw, only a small number
of samples is required to accurately identify the dynamics
of the system if all of its modes are easily excitable. The
dependency of the estimation error on the modes of the system
is also reflected in the non-asymptotic error bound of the
least-squares estimator in [9]. This is completely in line with
the conventional results on the identifiability of dynamical
systems: independent of the method in use, it is significantly
harder to identify the parameters of the system accurately if
it possesses nearly-hidden modes.

On the other hand, for fixed σw, the performance of the
estimator deteriorates as the expected energy of the input
decreases. In the extreme case of zero input, we inevitably
have Λmin = 0, which in turn implies that the proposed esti-
mator provides no guarantee on the accuracy of the estimated
parameters.

Furthermore, notice that FT , GT , and, hence, λmax(C⊺C)
depend directly on the length of the time horizon T for each
sample trajectory. In what follows, we will show that for
highly unstable systems, λmax(C⊺C) can grow exponentially
fast in terms of T and, hence, short sample trajectories are
more desirable in estimating the parameters of such unstable
systems. To better understand this, assume that the spectral
radius of A—shown as ρ(A)—is greater than one, it is
diagonalizable, and n is fixed. One can easily verify that the

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 31,2021 at 17:33:08 UTC from IEEE Xplore.  Restrictions apply. 



2325-5870 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2021.3089141, IEEE
Transactions on Control of Network Systems

7

following chain of inequalities holds:

λmax(Σ̃) ≥ λmax(σ2
uFTF

⊺
T + σ

2
wGTG

⊺
T )

≥ λmin(Σw)λmax (AT−2(AT−2)⊺)

≥ λmin(Σw)max
i
{((AT−2 (AT−2)⊺)

ii
)

2
}

≥ λmin(Σw)
n

∥AT−2∥∞ ≥
λmin(Σw)

n
ρ(A)T−2. (26)

This exponential dependency is also empirically observed in
our numerical experiments.

C. Mutual Incoherency

In this subsection, we will analyze the mutual incoherency
condition (14). In particular, we will show that the proposed
mutual incoherency condition is tightly related to the so-called
identifiability condition, and hence, cannot be relaxed for
specific classes of problems. For simplicity of the subsequent
arguments, assume that the size of each block is equal to
1, and that the oracle estimator can measure the disturbance
matrix W . Furthermore, suppose that the estimator can collect
and work with an infinite number of sample trajectories.
Under these assumptions, the oracle estimator should solve the
following optimization problem to estimate the parameters of
the system:

min
Ψ
∥Ψ∥0 (27a)

s.t. XΨ = Y −W. (27b)

Notice that the oracle estimator cannot be obtained in practice
since: 1) the exact value of the disturbance noise is not
available, 2) only a finite number of sample trajectories can be
collected, and 3) the corresponding optimization is non-convex
and NP-hard in its worst case.

As mentioned before, there are fundamental limits on the
performance of the introduced oracle estimator. To explain
this, we introduce the mutual-coherence metric for a matrix.
For a given matrix A ∈ Rt1×t2 , its mutual-coherence µ(A) is
defined as

µ(A) = max
1≤i<j≤t2

∣A⊺∶,iA∶,j ∣
∥A∶,i∥2∥A∶,j∥2

. (28)

In other words, µ(A) measures the maximum correlation
between distinct columns of A (with a slight abuse of notation,
we assume that 1

µ(A) = +∞ if µ(A) = 0). Reminiscent of the
classical results in the compressive sensing literature, it is well-
known that the optimal solution Ψ∗ of (27) is unique if the
identifiability condition

∥Ψ∗∶,j∥0 <
1

2
(1 + 1

µ(X)
) (29)

holds for every j = 1,2, ..., n (see, e.g., Theorem 2.5 in [45]).
Furthermore, this bound cannot be tightened, since there exist
instances of the problem for which the violation of ∥Ψ∗∶,j∥0 <
1
2
(1 + 1

µ(X)) for some j results in the non-uniqueness of
the optimal solution. On the other hand, one can invoke the
Central Limit Theorem to show that 1

d
X⊺X = Σ̃ almost

surely as d → ∞. Furthermore, recall the definition of the

combined controllability matrix C in (12a). This, together with
the definition of Σ̃, implies that

µ(X) = max
1≤i<j≤m+n

∣X⊺∶,iX∶,j ∣
∥X∶,i∥2∥X∶,j∥2

= max
1≤i<j≤n

∣C⊺∶,iC∶,j ∣
∥C∶,i∥2∥C∶,j∥2

= µ(C). (30)

According to the above equality, the correlation between
different columns of C plays a crucial role in the identifiability
of the true parameters: as µ(C) becomes smaller, the oracle
estimator can correctly identify the structure of Ψ for a wider
range of sparsity levels.

Revisiting Assumption A1, one can verify that the mutual
incoherency condition is reduced to the following inequality
when the size of each block is equal to one:

∥(C⊺∶,Aj
C∶,Aj)−1C⊺∶,Aj

C∶,k∥
1
≤ 1 − α,

∀k ∈ Acj , j = 1,2, . . . , n (31)

where, with a slight abuse of notation, we use Aj to denote
the set {i ∶ Aij /= 0}. Notice that, similar to (29), the above
condition is expected to be satisfied when different columns of
C are nearly orthogonal, i.e., when the elements in C⊺∶,Aj

C∶,k
have small magnitudes. In particular, we introduce a class of
k-sparse dynamical systems for which the above condition is
equivalent to (29) (modulo a constant factor).

k-sparse systems: Consider a class of problems where each
row or column of A has at most k nonzero entries and B is
diagonal. Without loss of generality and to simplify the sub-
sequent derivations, suppose that the following assumptions
hold:

- B is equal to identity matrix and diagonal entries of A are
equal to 1. Moreover, the magnitude of each off-diagonal
entry of A is upper bounded by ϕ > 0.

- T is set to 3.
- Σu = σ2

uI and Σw = σ2
wI , where σu and σw are less than

or equal to 1. Moreover Σx = 0.

Proposition 1. For k-sparse systems with k ≥ 3, the following
statements hold:

- There exists an instance for which the identifiability
condition fails to hold for the oracle estimator if ϕ ≥ 3

k
.

- The mutual incoherency condition holds if ϕ < σu+σw

9k
.

Proof. The proof is omitted for brevity and can be found
in [44]. ◻

The tightness of the identifiability condition 29 together
with the Proposition 1 implies that for some specific classes
of problems, it is not possible to a have a consistent sparsity
promoting technique with significantly more relaxed condi-
tions than the ones introduced in this paper. However, we point
out that, in general, the mutual incoherency condition may be
improved by resorting to more sophisticated (and potentially
nonconvex) estimators [36]. Moreover, it will be shown in
Section IV that the incoherency condition is expected to hold
in many cases of practical relevance.
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IV. NUMERICAL RESULTS

In this section, we illustrate the performance of the block-
regularized estimator and compare it with its least-squares
counterpart. We consider two case studies on switching net-
works and power systems.

Define the (block) mismatch error as the total number
of false positives and false negatives in the (block) sparsity
pattern of the estimator. Moreover, define relative number
of sample trajectories (RST) as the number of sample tra-
jectories normalized by the dimension of the system, and
relative (block) mismatch error (RME) as the mismatch error
normalized by total number of elements (blocks) in Ψ.

A. Case Study 1: Switching Networks

In this case study, we study a network of multi-agent sys-
tems that are interconnected through a switching information
exchange topology. Recently, a special attention has been
devoted to multi-agent systems with a time-varying network
topology; in many communication networks, each sensor has
access only to the information of its neighbors. Therefore,
when the location of these sensors changes over time, so does
the topology of the interconnecting links [46]. The dwell time
is defined as the time interval in which the network topology is
unchanged. The goal is to identify the structure of the network
within the dwell time. The state-space equation of agent i
admits the following general form:

ẋi(t) = ∑
(i,j)∈Nx(i)

A(i,j)xj(t) + ∑
(i,j)∈Nu(i)

B(i,j)uj(t) +wi(t),

(32)
where, as before, A(i,j) ∈ Rni×ni and B(i,j) ∈ Rni×mi are the
(i, j)th blocks of A and B. Furthermore, Nx(i) and Nu(i)
are the sets of neighbors of agent i whose respective state and
input actions affect the state of agent i.

We consider 200 agents connected through a randomly
generated sparse network. In particular, we assume that each
agent is connected to 5 other agents. If j ∈Nx(i) or j ∈Nu(i),
then each element of A(i,j) or B(i,j) is randomly selected
from [−0.4 − 0.3] ∪ [0.3 0.4]. Moreover, the regularization
coefficient λd is set to

√
2(D2 +D log(n̄ + m̄))

d
. (33)

Note that this choice of λd does not rely on the un-
known parameters of the system, and it does not require
any additional fine-tuning. The behavior of the proposed
block-regularized estimator will be examined for differ-
ent dimensions of the agents. In particular, we investigate
the performance of this estimator in comparison with the
Lasso for which the sparsity of the system matrices is
promoted on different elements independent of the block
structures. In these experiments, (ni,mi) is chosen from
{(5, 5), (8,8), (11,11)}. This entails that D ∈ {25,64,121}
and (n,m) ∈ {(1000,1000), (1600,1600), (2200,2200)}.
Furthermore, T is set to 3 and the system is discretized
using the forward Euler method with the sampling time of 0.2
seconds. This implies that each sample trajectory is collected

within 0.6 seconds. The number of block mismatch and 2-
norm estimation errors are depicted in Figures 1a and 1b with
respect to the dwell time. As can be seen in these figures, the
incorporation of the block sizes in the estimation procedure
can significantly improve the accuracy.

Figure 1a shows the number of block mismatch error for the
block-regularized and Lasso estimators. Evidently, the former
substantially outperforms the latter in terms of the correct
sparsity recovery. In particular, 252, 260, and 302 sample
trajectories are enough to achieve RME ≤ 0.1% when D is
equal to 25, 64, and 121, respectively (notice that the largest
instance has more than 9 million parameters to be estimated).
However, the Lasso estimator cannot achieve this accuracy
with even 2000 sample trajectories.

Figure 1b demonstrates the 2-norm of the estimation error
for these estimators. Although the Lasso has a smaller estima-
tion error for d < 200, it is strictly dominated by that of the
block-regularized estimator when d ≥ 200.

Finally, we compare the proposed estimator with group
Lasso, where the `∞ regularization is replaced by a `2 regular-
ization. Suppose that D = 25, and the regularization coefficient
for the group Lasso (i.e. `1/`2-regularized estimator) is chosen

as λ =
√

0.5(D2+D log(n̄+m̄))
d

(the constant factor is fine-tuned
for this case study). According to Figure 1c, the proposed
`1/`∞ slightly outperforms group Lasso in terms of the
mismatch error. On the other hand, Figure 1d illustrates that
neither of the estimators is superior in terms of the estimation
error. As a future research direction, we plan to conduct a more
comprehensive study on the group Lasso, and its statistical
performance in the context of system identification.

B. Case Study 2: Power Systems

For the second case study, we consider the frequency control
problem for power systems, where the goal is to control the
governing frequency of the entire network based on the so-
called swing equations [47]. Assume that there exist Ng gen-
erators in the system. It is easy to describe the swing equations
using the well-known direct current (DC) approximation:

Miθ̈i +Diθ̇i = PMi − PEi ,

where θi is the voltage angle at generator i, PMi is the
mechanical power input at generator i, and PEi denotes the
active power injection at the bus connected to generator i. Fur-
thermore, Mi and Di are the inertia and damping coefficients
at generator i, respectively. Under the DC approximation, the
relationship between active power injection and voltage can
be written as:

PEi = ∑
j∈Ni

Bij(θi − θj),

where Ni collects the neighbors of generator i, and Bij is
the susceptance of the line (i, j). After discretization with the
sampling time dt, the system of swing equations is reduced
to the following dynamical system:

xi[t + 1] =
⎛
⎝
Aiixi[t] + ∑

j∈Ni

Aijxj[t]
⎞
⎠
+Biiui[t] +wi[t],
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Fig. 1: (a) The block mismatch error for the block-regularized (abbreviated as BR) and Lasso (abbreviated as L) estimators, (b) the estimation error for the
block-regularized and Lasso estimators, (c) the block mismatch error for the block-regularized and Lasso estimators, (d) the normalized estimation error for
the block-regularized and Lasso estimators.

where xi = [θi θ̇i]
⊺
, ui(t) = PMi , and

Aii=[
1 dt

−∑j∈Ni
Bij

Mi
dt 1 − Di

Mi
dt
] ,Aij =[

0 0
Bij

Mi
dt 0

] ,Bii=[
0
1
] .

Realistic power systems are often equipped with an initial
distributed controller whose sensing and actuation communi-
cation topology is limited by the underlying physical structure
of the system [48]. In particular, consider a static distributed
controller as follows:

ui[t] =Kiixi[t] + ∑
j∈Ni

Kijxj[t] + vi[t], (34)

where K is a matrix with (i, j)th block equal to zero if the
generators i and j are not connected. Moreover, vi[t] is an
exogenous input. Therefore, the closed-loop dynamics of the
power system can be written as

xi[t + 1] =
⎛
⎝
Aciixi[t] + ∑

j∈Ni

Acijxj[t]
⎞
⎠
+Biivi[t] +wi[t],

where

Acii=[
1 dt

−∑j∈Ni
Bij

Mi
dt +K1

ii 1 − Di

Mi
dt +K2

ii

] ,

Acij =[
0 0

Bij

Mi
dt +K1

ij K2
ij
] , (35)

and Kij = [K1
ij K2

ij] for every block (i, j)th. Our goal is
to identify the closed-loop dynamics of the power system

and the underlying topology of the network, based on the
sample trajectories collected from the system. Note that the
underlying topology structure of the network can be naturally
obtained from the block-sparsity structure of Ac: the block
Acij is equal to zero if and only if the generators i and j
are not connected. Therefore, the topology inference problem
reduces to obtaining the correct block-sparsity pattern of the
system matrices Ac and Bc. To assess the performance of
the proposed method, we generate different instances of the
problem according to the following rules:

- the generators are connected via a randomly generated
graph with the average degree of 6.

- the parameters Bij , Mi, Di are uniformly chosen from
the intervals [0.5, 1], [1,2], [0.5, 1.5], respectively.

- The nonzero elements of K are uniformly chosen from
the interval [0.1, 0.2].

The sampling time dt is set to 0.1. We assume that the
disturbance noise has a zero-mean Gaussian distribution with
variance 0.01. The mechanical input vi(t) is randomly gen-
erated according to a zero-mean Gaussian distribution with
variance 0.05. In this case study, we compare the perfor-
mance of the block-regularized and Lasso estimators. The
regularization coefficients for these estimators are chosen as√

0.1(D2 +D log(n̄ + m̄))/d with D = 4 (i.e., the maximum
block size), and

√
0.01(1 + log(n +m))/d, respectively.

Figure 2a illustrates the mismatch error of these estima-
tors for different numbers of generators Ng chosen from
{100,300,600}. Not surprisingly, the learning time needed to
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Fig. 2: (a) The block mismatch error for the block-regularized and Lasso estimators, (b) the estimation error for the block-regularized and Lasso estimators,
(c) The distribution of mutual incoherency parameter γ over 1000 instances of the problem.

achieve a small mismatch error for both estimators increases
as the dimension of the system grows. Conversely, a smaller
value for RLT is needed to achieve infinitesimal RME for
larger systems. In particular, when Ng is equal to 100, 300,
and 600, the minimum RLT for the proposed block-regularized
estimator to guarantee RME ≤ 0.1% is equal to 0.67, 0.45, and
0.29, respectively. On the other hand, the minimum RLT for
the Lasso to achieve the same RME is on average 2.45 times
larger than that of the block-regularized estimator.

Figure 2b depicts the 2-norm of the estimation error of
the block-regularized and Lasso estimators. In can be seen
that the estimation error of the block-regularized estimator is
strictly smaller than that of the Lasso, highlighting its superior
performance in the block-sparse systems.

Finally, 2c illustrates the distribution of the mutual inco-
herency parameter γ for 1000 randomly generated instances
of power systems with 300 generators. It can be seen that
only 1.2% of the instances violate the mutual incoherency
condition 14 due to the negative values of γ. This highlights
the nonconservativeness of this condition in practice.

V. CONCLUSION

We consider the problem of identifying the parameters of
linear time-invariant (LTI) systems. In many real-world prob-
lems, the state-space equation of the system admits a block-
sparse representation due to localized or internally limited
interactions of its states and inputs. In this work, we leverage
this property and introduce a block-regularized estimator to
identify the sparse representation of the system. We derive
sharp non-asymptotic bounds on the minimum number of
input-state data samples to guarantee a small element-wise
estimation error. In particular, we show that the number of
available sample trajectories can be significantly smaller than
the system dimension and yet, the proposed block-regularized
estimator can correctly recover the block-sparsity of the state
and input matrices and result in a small element-wise error.
Through different case studies on switching networks and
power systems, we demonstrate the performance of the pro-
posed estimator.
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APPENDIX

A. Proof of Main Theorem
Let ŜA and ŜAc be obtained by removing those blocks of

Ŝ with indices not belonging to A and Ac, respectively. The
equation (4) can be reformulated as the set of linear equations

Y (∶,j) =XΨ(∶,j) +W (∶,j) ∀j ∈ {1, ..., n̄}, (36)

where Y (∶,j), Ψ(∶,j), and W (∶,j) are the jth block column of
Y , Ψ, and W , respectively. Based on this definition, consider
the following set of block-regularized subproblems:

Ψ̂(∶,j) = arg min
1

2d
∥Y (∶,j)−XΨ(∶,j)∥22+λd∥Ψ(∶,j)∥block. (37)

Define Dj = pmaxnj . The next two lemmas are at the core of
our proof for Theorem 1. Due to space restrictions, we have
deferred their proofs to the extended version of the paper [44].

Lemma 1 (No false positives). Given arbitrary constants
c1, c2 > 1, suppose that λd and d are chosen such that

λd ≥

¿
ÁÁÀ32c1λmax(Σw)2σ2

max

γ2
⋅
(Dj)2 +Dj log(n̄ + m̄)

d
,

(38a)

d ≥ 72c2σ
2
max

γ2Λmin
⋅ kj(D2

j +Dj log(n̄ + m̄)). (38b)

Then, with probability of at least

1 − 3 exp ( − (c1 − 1)(Dj + log(n̄ + m̄)))
− 4 exp ( − (c2 − 1)(Dj + log(n̄ + m̄)))

(39)

Ψ̂(∶,j) is unique and its nonzero blocks exclude the zero blocks
of Ψ∗(∶,j).

Due to Assumption A4, we have nmax = O ((n̄ + m̄)αn)
and kmax = O ((n̄ + m̄)αk) for some αn ≥ 0 and αk ≥ 0.

Lemma 2 (Element-wise error). Given arbitrary constants
c3 > 0 and c4 > 1, suppose that Ψ̂ is unique and the set
of its nonzero blocks excludes the zero blocks of Ψ∗. Then,
with probability of at least

1 − 2 exp(−(kjnj + c3 log(n̄ + m̄))/2) − 2 exp (−d/2)
− 2 exp ( − 2(c4 − 1)(αn + αk) log(n̄ + m̄)))

(40)
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we have

∥Ψ̂(∶,j)−Ψ∗(∶,j)∥∞ ≤
√

36c4(αn+αk)λmax(Σw)2 log(n̄ + m̄)
Λmind

+ λd
Λmin

⎛
⎝

8
√
kj

√
kjnj + c3 log(n̄ + m̄)

d
+ 1
⎞
⎠
=gj . (41)

Furthermore, the zero blocks of Ψ̂(∶,j) exclude the nonzero
blocks of Ψ∗(∶,j) if mini∈Aj ∥Ψ(i,j)∥∞ > gj .

Most existing block-sparsity methods in linear regression
focus on the problems where the blocks have row or column
dimension of one [39], [41], [49]–[51], and hence, are not
applicable to problems with arbitrary block sizes. On the
other hand, recall that many large-scale dynamical systems are
composed of interacting subsystems, each with its own local
states/inputs with potentially different sizes. This imposes a
general block structure on different rows and columns of the
matrices A and B, and hence, the existing results on block-
regularized estimators cannot be readily used in these settings.
Lemmas 1 and 2 are precisely aimed to address this issue, and
will play key roles in proving the main theorem of this paper.
The proofs of Lemmas 1 and 2 are based on the extended
version of the so-called primal-dual witness (PDW) approach,
which was initially proposed in [38] for element- or row-wise
sparse structures. The details of this generalization can be
found in the extended version of the paper [44].

B. Proof of Theorem 1:

First, we present the proof in a few steps:
Step 1: (9) can be rewritten as follows:

Ψ̂ = arg min
Ψ

n

∑
j=1

( 1

2d
∥Y (∶,j) −XΨ(∶,j)∥22 + λ∥Ψ(∶,j)∥block) .

(42)
The above optimization problem can be decomposed into n̄
disjoint block-regularized subproblems in the form of (37).

Step 2: Assume that (38b) and (38a) hold for every 1 ≤ j ≤
n̄. Upon defining Tj as the event that Lemmas 1 and 2 hold,
one can write:

P(Tj) ≥ 1 − 5 exp ( − (c1 − 1)(Dj + log(n̄ + m̄)))
− 4 exp ( − (c2 − 1)(Dj + log(n̄ + m̄)))
− 2 exp(−(kjnj + c3 log(n̄ + m̄))/2)
− 2 exp ( − 2(c4 − 1)(αn + αk) log(n̄ + m̄))),

(43)
for every 1 ≤ j ≤ n̄.

Step 3: Assume that c1, c2, c4 > 2 and c3 > 1. Consider the
event T = T1 ∩T2 ∩⋯∩Tn. Based on (43) and a simple union
bound, one can write:

P(T )≥1−K1(n̄ + m̄)−(c1−2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(a)

−K2(n̄ + m̄)−(c2−2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(b)

−K3(n̄ + m̄)−(
c3
2 −1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(c)

−K4(n̄ + m̄)−(2(αn+αk)(c4−1)−1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(d)

(44)

for some constants K1,K2,K3,K4. One can easily verify that
the following equalities are enough to guarantee that the right
hand side of (44) is equal to 1 − δ:

c1 =
log(4K1/δ)
log(n̄ + m̄)

+ 2, c2 =
log(4K2/δ)
log(n̄ + m̄)

+ 2,

c3 =
2 log(4K3/δ)
log(n̄ + m̄)

+ 2,

c4 =
log(4K4/δ)

2(αn + αk) log(n̄ + m̄)
+ 1

2(αn + αk)
+ 1. (45)

Substituting (45) in Lemmas 1 and 2 leads to two observations:
- If λd and d satisfy (18a) and (18b), then they also

satisfy (38a) and (38b).
- The parameter g defined in (19) is greater than or equal

to gj for every j = 1, ..., n̄.
Therefore, (18a) and (18b) guarantee that: 1) Ψ̂ is unique
and does not have any false positive in its blocks, and 2)
its element-wise error is upper bounded by (19). Now, it only
remains to show that Ψ̂ excludes false negatives (the blocks
that are mistakenly estimated to have nonzero values). To
this goal, it suffices to show that (18b) guarantees g < tmin.
Suppose that

d = Ω (CΨκ(Σ̃)2kmax (D log(n̄ + m̄) +D2 log(1/δ))) . (46)

In what follows, we will show that CΨ = O(1) is enough to
have g < tmin. The lower bound on d in (18b) yields that

g ≤K ( 1√
CΨkmax

+ 1

CΨκ(Σ̃)
) , (47)

for some constant K. Therefore,

CΨ =
2/K

tminκ(Σ̃)
+ 4/K
t2minkmax

= O(1) (48)

is enough to ensure g < tmin. This completes the proof.
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