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Inferringmolecular structure fromNuclear Magnetic Resonance (NMR) measurements requires an accurate

forward model that can predict chemical shifts from 3D structure. Current forward models are limited to

specific molecules like proteins and state-of-the-art models are not differentiable. Thus they cannot be

used with gradient methods like biased molecular dynamics. Here we use graph neural networks (GNNs)

for NMR chemical shift prediction. Our GNN can model chemical shifts accurately and capture important

phenomena like hydrogen bonding induced downfield shift between multiple proteins, secondary

structure effects, and predict shifts of organic molecules. Previous empirical NMR models of protein

NMR have relied on careful feature engineering with domain expertise. These GNNs are trained from

data alone with no feature engineering yet are as accurate and can work on arbitrary molecular

structures. The models are also efficient, able to compute one million chemical shifts in about 5

seconds. This work enables a new category of NMR models that have multiple interacting types of

macromolecules.

Introduction

NMR chemical shis of a molecule provide detailed structural

information without the sample preparation requirements of X-

ray crystallography.1 This means that NMR can provide detail at

room temperature and reasonable concentrations, in a physio-

logically relevant ensemble of conformations and even in situ.2,3

Thus there is continued interest in methods to resolve protein

structure from NMR. A key step in this process is being able to

predict the NMR chemical shis from molecular structure in

a forward model. A forward model is used to infer the ensemble

of structures that contribute towards the experimentally

observed NMR chemical shis. In this work, we nd that graph

neural networks (GNNs) have good properties as a forward

model and expand the types of molecular structures that can be

resolved. The process of inferring the conformational ensemble

with the forward model can be done via experiment directed

simulation,4,5 metadynamics meta-inference,6 targeted meta-

dynamics,7,8 Monte Carlo/optimization,9,10 biasing with

restraints,11,12 Bayesian ensemble renement,13 or other

simulation-based inference methods.14–16 A direct method like

a generative model that outputs structure directly would be

preferred,17,18 but a forward model that can connect the chem-

ical shi to structure would still be part of this training.

An ideal NMR chemical shi predictor should be transla-

tionally and rotationally invariant, be sensitive to both chemi-

cally bonded and non-bonded interactions, be able to handle

thousands of atoms, predict shis for multiple atom types, and

be differentiable which is required for most of the inference

methods mentioned above. There are two broad classes of deep

learning architectures that might satisfy these requirements: 3D

point cloud neural networks methods that have these equivar-

ianaces built-in,19,20 GNNs.21–23‡ The conceptual difference

between these two approaches is that the 3D point cloud

networks rst build the local environment of each atom to

compute atom features and then operate and pool the atom

features without considering the molecular graph, whereas the

graph neural networks compute atom features using the

molecular graph at each layer. Here we use graph neural

networks for two reasons. The rst is their exibility of how

molecular graphs can be specied: with or without distances,

with or without covalent bonds, and as a sparse graph.

Secondly, our goal is to apply this model in molecular simula-

tion, where the sparse molecular graph (i.e., a neighbor list) is

available as input.

GNNs are now a common approach for deep learning with

molecules due to their intuitive connection to molecular graphs

and good performance.24 Early examples of graph neural

networks can be found in Sperduti and Starita,25 Scarselli

et al.,26 Gori et al.27 and recent surveys can be found in Bronstein

et al.,21 Dwivedi et al.,22 Wu et al.,28 Battaglia et al.29 The unifying

idea of a “graph” neural network is that it takes a graph as input

and its output is permutation equivariant. Namely, if you swap

two nodes in the input graph, the predicted node labels will
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swap. In most circumstances, outputs of GNNs are node labels,

edge labels, or graph labels. Battaglia et al.29 proposed

a unifying notation that encompasses all graph neural networks

as a series of nodes, edges, and graph feature operations. Unlike

convolutional layers in traditional deep learning,30 there are still

numerous competing ideas about GNNs. Wu et al.28 tested

about 20 GNN across seven tasks, including chemistry datasets

and found no consistently best type. They did nd thatmessage-

passing methods31 worked well with other deep-learning layers

and building blocks.

GNNs are being widely applied in chemistry, especially in

quantum machine learning.24,31–33 In this work, we have chosen

message passing GNNs due to their similarity to other deep

learning layers,28 simplicity, and good performance.24,28 Our

models take themolecular graph as input where the features are

the atom identities and the edges are feature vectors encoding

the edge type (covalent bond or nearby neighbor) and distance.

The output is the predicted NMR chemical shi for C, N, or H

atoms. This approach is sometimes referred to as enn-s2s.23,34

Our model is trained with three datasets: the RefDB dataset of

cross-referenced protein structures with NMR chemical shis,35

the SHIFTX dataset,36 and a database of organic molecules.37

There are numerous existing NMR chemical shi prediction

models. We rst review those which are for protein structures.

ProShi is a dense neural network with one hidden layer that

uses 350 expert chosen input features like electronegativity or

dihedral angle with neighbors.38 SPARTA+ uses dense neural

networks with 113 expert-chosen input features.39 ShiX+ uses

an ensemble approach with boosting and uses 97 expert-chosen

input features.36 ShiX2 combines ShiX+ with homology data

with a database of known proteins with chemical shi. Note

that ProShi, SPARTA+, ShiX+ and ShiX2 are not differen-

tiable with respect to atom positions due to the use of input

features and homology data. They are also restricted to proteins

due to the use of protein-specic features that are not dened

for general molecules. CamShi uses a polynomial expansion of

the pair-wise distances between an atom and its neighbors to

approximate the NMR chemical shi40 and thus is differen-

tiable. This has made it a popular choice41–43 and it is imple-

mented in the PLUMED plugin.44 However, CamShi does not

treat side-chains and is insensitive to effects like hydrogen

bonding. Of these select methods discussed, ShifX2 is typically

viewed as most accurate and CamShi as the most useful for

use in inferring protein structure in a molecular simulation.

Our goal is to combine the high-accuracy approach of methods

like ShiX2 with the differentiable nature of CamShi.

Furthermore, our approach does not require hand-engineered

features and instead uses only the elements of the atoms and

distances as input. This enables it to be used on both ligands

and proteins.

Outside of protein structure, NMR prediction is a classic

machine learning problem in chemistry. Paruzzo et al.45 devel-

oped a Gaussian process regression framework for prediction of

NMR chemical shis for solids. They used smooth overlap of

atomic positions (SOAP) kernel to represent the molecular

structural environment. Liu et al.46 used convolutional neural

network (CNN) for chemical shi prediction for atoms in

molecular crystals. They utilize an atom-centered Gaussian

density model for the 3D data representation of a molecule.

Rupp et al.47 used kernel learning methods to predict chemical

shis from a small molecule training set with DFT shis. Jonas

and Kuhn48 used graph convolutional neural network to predict
1H and 13C chemical shis along with the uncertainties. Ger-

rard et al.49 used kernel ridge regression withmolecular features

(e.g., angles) and were able to distinguish 3D conformers. Kang

et al.50 did similar work, again with a GNN andmessage passing.

This is probably the most similar to our message passing GNN,

but they considered small molecules and not 3D structure. An

NMR scalar couplings prediction Kaggle competition in 201951

received 47 800 model entries, among which many top per-

forming approaches utilized message passing GNNs. The data

was small organic molecules and so the model tasks was less

focused on macromolecules and conformational effects than

this work. Examples of others' work using message passing

GNNs in chemistry include Raza et al.52 who predicted partial

charges of metal organic frameworks, the original message

passing paper by Gilmer et al.31 which predicted energies of

molecules, and St. John et al.53 who predicted bond disassoci-

ation energies. There are also rst-principles methods for

computing NMR chemical shis, however we do not compare

with these since their computational speed and accuracy are not

comparable with empirical methods.54–56

Model

Our GNN consists of 3 parts: (i) a dense network F ðE0Þ ¼ E

whose input is a rank 3 (omitting batch rank) edge tensor E0

with shape atom number � neighbor number � edge embed-

ding dimension and output E is a rank 3 tensor with shape atom

number � neighbor number � edge feature dimension; (ii)

a message passing neural network GðV0;EÞ whose input is

a rank 2 tensor V0 with shape atom number � node feature

dimension and E. Its output is a rank 2 tensor VK with the same

shape as V0; (iii) a dense network H ðVK Þ whose output is the

chemical shis. The architecture is shown in Fig. 1. Hyper-

parameters were optimized on a 20/80 validation/train split of

the ShiX training dataset. The hyperparameters were layer

number (1–6 explored), node/edge feature dimensions (16–256,

1–32 respectively), L2 regularization,30 dropout,57 residue,58 and

the use of Schütt et al.23 continuous radial basis convolutions on

distance (or distance binning), choice of loss, and the use of

non-linear activation in nal layers. L2 regularization and

dropout were found to be comparable to early-stopping on

validation, so early-stop was used instead. Model training was

found to diverge without residue connections, which others

have seen.59 Final layer numbers are K ¼ 4, L ¼ 3, J ¼ 3. The

neighbor ðF ðE0ÞÞ feature dimension is 4 and atom feature

dimension is 256. Embeddings are used for inputs. Edges use

a 1D embedding for type and distance was tiled 31 times to

make a 32 size input. Binning these distances seemed to have

negligible affect on performance. The atom element identities

were converted to a tensor with 256 dimension embedding look-

up.

Chem. Sci. © 2021 The Author(s). Published by the Royal Society of Chemistry
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F ðE0Þ ¼ E uses ReLU activation60 except in the last layer,

where tanh is used. We use the general graph neural network

equations from Battaglia et al.29 to dene our message passing

update function G
kðVk�1;EÞ ¼ Vk, where k indicates the kth MP

layer. We rst compute an intermediate edge message based on

the edge feature vector and node feature vector of the sender

(fe):

e
0
si j ¼ esi jW

kvsi j
k�1 (1)

where vsij is the node feature vector of the jth neighbor of node i,

esij is the edge feature vector of the edge between node i and its

jth neighbor. si means message senders to node i. Wk is the

weight matrix in the kth MP layer. The edge aggregation func-

tion r
e/v denes how to aggregate the edges whose receiver is

node i:

ei
0
¼

X

j

e
0
si j (2)

The node update function f
v gives the new output feature

vectors using the aggregated message from eqn (2)

vi
k ¼ sðei

0
Þ þ vi

k�1 (3)

where s is the ReLU activation function. The addition of vi is

a residue connection. v
0
i denes the new node features which

are the output of the message passing layers. Our choice of

message passing and lack of node update function (e.g.,. GRUs

in Gilmer et al.31) makes it one of the simplest message passing

variants.

H ðVKÞ uses a tanh in the penultimate layer and the last layer

used linear activation and output dimension Z. Z is the number

of unique elements in the dataset. Both F and H have bias.

Output chemical shis d
!

are computed as

d
!

¼ H

�

VK
�

1Z
�

V 0
�

~sþ m! (4)

where 1Z(V
0) is a one-hot indicator for atom element with Z

columns, ~s; m! are Z pre-computed standard deviation and

means of the refDB chemical shis for each element. This

chosen done to make labels be approximately from �1 to 1 for

training. This also has the effect of making any chemical shi

for a non-trained element (e.g., N) be 0.

The loss function combined correlation and root mean

squared deviation (RMSD):

L ¼
g

N

X

�

yi � ŷi

�2

þ1�
Covðy; ŷÞ

sy; sŷ

(5)

where g ¼ 0.001 for models trained on H only and 0.01 for

models trained on all data. Training on correlation in addition

to RMSD was found to improve model correlation. The +1 is to

prevent loss from being negative and has no effect on gradients.

Methods
Data preparation

Our model was trained with three datasets. The rst is a paired

dataset of 2405 proteins with both X-ray resolved crystal struc-

tures and measured NMR chemical shis created by Zhang

et al.35 This was segmented into a fragment dataset of

131 015 256 atom fragments with approximately 1.25 million

NMR chemical shis. To prepare the fragments, each residue in

each protein was converted into a fragment. All atoms in prior

and subsequent residues were included along with residues

which had an atom spatially close to the center residue, but

their labels (chemical shis) were not included. Residue i is

close to residue j if an atom from residue i is one of the 16

closest non-bonded atoms of an atom in residue j (i.e., they

share a neighbor). We did not use distance cutoffs because

neighbor lists are used in subsequent stages and if an atom is

not on the neighbor list, it need not be included in the frag-

ment. Additional preprocessing was omitting fragments with

missing residues, xing missing atoms, removing solvent/

heteroatoms, ensuring the NMR chemical shis sequenced

aligned with the X-ray structures, and matching chains. This

was done with PDBFixer, a part of the OpenMM framework.61

About 5% of residues were excluded due to these constraints

and 0.93% were excluded because the resulting fragments could

not t into the 256 atom fragment. Some X-ray resolved crystal

structures have multiple possible structures. We randomly

sampled 3 of these (with replacement) so that some fragments

may be duplicated. The number of fragments including these

possible duplicates is 393 045. This dataset will be called RefDB

dataset.

Fig. 1 Graph neural network architecture. E0 is the input molecular

graph edge features which is inverse distance and chemical bond type

(covalent or non-bonded). E is the output neighbor features tensor

used for MP layers. V0 is the input feature matrix, consisting only of

element types. MP layers have residue connections which are defined

in eqn (3). There are K MP layers and L output FC layers. Output is

passed through eqn (4) to account for element NMR differences.

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci.
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The second dataset was prepared identically and contains

197 in the training and 62 proteins in test. It is the SHIFTX

dataset and contains 21 878 fragments for training.36 This

dataset is higher-quality (see training curves results) due to

careful processing by Han et al.36 and does not have multiple

possible structures. The SHIFTX test dataset of 62 proteins

(7494 fragments) was used for calculation of all test data and

was not included in training. These PDB IDs were also removed

from the RefDB dataset so that they did not inadvertently enter

training. These protein datasets contain C, N and H chemical

shis.

The third dataset was 369 “metabolites” (biologically rele-

vant organic molecules) from the human metabolome 4.0

database.37 These were converted into 3D conformers with

RDKit using the method of Riniker and Landrum.62 Here, each

molecule is a fragment and no segmenting of molecules was

done. This is referred to as the metabolome dataset.

Each molecular fragment is 256 atoms represented as inte-

gers indicating element and each atom has up to 16 edges that

connect it to both spatial and covalent neighbors. The edges

contain two numbers: an encoding of the type of edge (covalent

or spatial) and the distance. These two items encode the

molecular graph. An example of a fragment from RefDB dataset

is shown in Fig. 2. This approach of using covalent bonds and

spatial neighbors is somewhat analogous to attention, which is

an open area of research in GNNs because its effect is not always

positive.63

Training

Training was done in the TensorFlow framework.64 Variables

were initialized with the Glorot initializer65 and optimized with

Adam optimizer66 with a learning rate schedule of [10�3, 10�3,

10�4, 10�5j10�4, 10�5, 10�5j10�5] where j indicates a switch to

a new dataset, except the last which was joint training (see

below). Early stopping with patience 5 was done for training.

The rst dataset was trained with 5 epochs, the second with 50,

and the third was combined with the second for nal training

again with 50 epochs. The second and third dataset when

combined have large class imbalance so rejection sampling was

used at the residue level where metabolites were counted as

a residue. Therefore, each amino acid and metabolites were

seen with equal probability. Each epoch was one complete

iteration through the dataset. Batch size was 16 fragments (16�

256 atoms). Training and inference were found to take about

0.0015 seconds per fragment (5.7 ms per shi) with the full

model on a single Tesla V100 GPU. Timing was averaged on the

SHIFTX dataset (21 878 fragments) with loading times

excluded.

GNN results

Unless indicated, models were trained only on H chemical

shis for assessing features and training curves. Training on all

types requires the metabolome dataset and more complex joint

training with rejection sampling. A log–log training curve is

shown in Fig. 3 which shows Ha accuracy on the SHIFTX test

dataset as a function of amount of training data. 100% here

means all training data excluding validation. The SHIFTX

dataset is about one tenth the size of RefDB dataset but can

provide nearly the same accuracy as shown (0.29 vs. 0.26 RMSD).

The RefDB dataset and SHIFTX dataset contain the same

proteins, but the SHIFTX dataset are more carefully processed.

This shows more careful processing of data is more important

than number of structures.

The nal model performance with all training data is shown

in Table 1. A complete breakdown per amino acid and atom

name for all models is given in ESI.† Comparisons were done

using the SHIFTX+ webserver§ and the latest implementation of

CS2Backbone in Plumed.44 We also include the reported

performance of SHIFTX+ on their website that had better

performance, which could be because in our training and

comparisons we did not set pH and temperatures and instead

used pH¼ 5, temperature¼ 298 K (default for SHIFTX+ model).

Our rationale for this decision is that we wanted a model whose

input is only molecular structure, and not experimental details

such as buffer, pH, temperature etc. Thus we compare to other

models with the same restriction. Overall, both the models (H-

Fig. 2 An example graph used as input to the GNN. The atoms in

greens will have their chemical shifts predicted and are connected to

neighboring atoms by edges, which includes both bonded and non-

bonded edges. The edges are encoded as feature vectors which

contains both an embedding representing the type of edge (e.g.,

covalent) and distance.

Fig. 3 A log–log plot of training root mean squared deviation of labels

with model predicted chemical shift of Ha as a function of elements in

dataset. 100% means all data excluding validation and test data is

provided. The number of RefDB dataset examples is 131 015 (716 164

shifts) and SHIFTX dataset is 21 878 examples (88 392 shifts).

Chem. Sci. © 2021 The Author(s). Published by the Royal Society of Chemistry
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shi only and all elements) have comparable performance as

the state-of-the-art methods. The advantage of our GNN based

approach is its efficiency and its applicability to any input

molecule type. Table 1 also shows the effect of changing

parameter number. There seems to be a sharp transition at the

million parameters, meaning models that are much smaller can

be used for intermediate accuracy. Some of the major choices of

architecture design are also shown: including using dropout

ðin F ;G;H Þ; example weighting by class (amino acid), and

without non-linear activation. The label variance is computed

by comparing repeat measurements of the same protein struc-

ture in the RefDB dataset and should be taken as the upper-

limit beyond which experimental error is more important.

This non-linear scaling of accuracy with parameter number has

been previously observed in GNNs.67

Fig. 4 shows the effect of input features on the model. Good

model performance is observed even when the input had no

distance information and only indicated if atoms are covalently

bonded or are non-bonded spatial adjacent neighbors. Knowing

the distance provides a small improvement in accuracy.

Knowing which atoms are spatially near provides a larger

improvement, as shown in the only chemical bonded model.

None of the models are close to the label variance, which is the

upper-bound of what is possible.

Multitype model

Aer training on all element types and with metabolome data-

set, model accuracy decreased slightly (Table 1). However, the

model has the desired features as shown in Fig. 5. It is able to

predict C, N, and H chemical shis with good correlation and

good RMSDs (N: 2.982, C: 1.652, 0.368). The correlation on the

important Ha is 0.844 vs. 0.878 in the H model. Including

metabolome dataset into training gives a 0.872 correlation on

the withheld 20% test (74 molecules). No validation was used

for this data because hyperparameters were not tuned. Training

on only metabolome dataset gives 0.92 correlation on withheld

data and could be taken as an approximate upper-bound

because the ratio of trainable parameters (1 million) to data

(369) is extreme.

Fig. 6 shows phenomenological validation of the GNNmodel

on two untrained properties: sensitivity of chemical shis to

secondary structure and hydrogen bonding. The le panel

shows the average predicted chemical shis of each amino acid

and secondary structure combination. As expected based on

model performance, it does well at predicting the effect of

secondary structure on chemical shi. Disagreement is seen on

less frequently observed combinations like cystein b-sheets and

tryptophan. Most comparable models like ProShi or

ShiX36,38,39 have secondary structure (or dihedral angles) as

inputs for computing chemical shis. The end-to-end training

of the GNN captures this effect. The results are consistent with

previous studies68–70 which showed downeld shi of Ha
d for b-

sheet and upeld shi for a-helix. The right panel shows the

effect of breaking a salt bridge (ionic hydrogen bond) between

an arginine and glutamic acid on the H3 chemical shi. This

atom was chosen because it is observable in solution NMR.

White et al.71 computed the chemical shi change to be 0.26

Dd ppm for breaking this hydrogen bond based on single-amino

acid mixture NMR. The molecular graph was xed here to avoid

Table 1 A comparison of the GNN presented here, other similar NMR

models, and how model size affects performance

HRMSD Hr Ha
RMSD Ha

r # Para

Label variance 0.176 0.965 0.138 0.967

Model (H) 0.459 0.781 0.264 0.878 1 185 437

Model (all) 0.527 0.718 0.293 0.844 1 185 437
Medium 0.511 0.712 0.290 0.848 297 181

Small 0.501 0.726 0.288 0.849 42 123

No RefDB data 0.514 0.711 0.306 0.838 1 185 437

No non-linearity 0.594 0.580 0.338 0.802 1 185 437
Weighted 0.471 0.766 0.274 0.865 1 185 437

SHIFTX+ 0.455 0.787 0.248 0.890

SHIFTX+a 0.378 0.836 0.197 0.932
UCBShiX 0.695 0.436 0.474 0.595

CS2Backbone 0.716 0.418 0.417 0.708

a Reported by SHIFTX+ developers, which includes temperature and pH
effects. All others were computed independently in this work.

Fig. 4 Parity plots comparing edge features in the GNN. No distances

means that non-bonded neighbors are included, but with no

distances. Only chemical bonded means distance is included but only

neighbors directly covalently bonded with an atom are included. Label

variance is the variation between repeat measured NMR chemical

shifts in the RefDB dataset35 and should be taken as the upper-limit

beyond which experimental errors are more significant than model fit.

32 520 points are displayed in the top row, with most points lying on

the diagonal. 5031 are shown in the bottom row. r is correlation

coefficient, so for example r ¼ 0.966 corresponds to an R2 ¼ 0.933.

Fig. 5 Parity plots for the multitype model, which can treat C, N, H

atoms and organic molecules. Multitype all is the combined plot for

C, N, and H in test proteins and includes 65 163 points. Multitype atom

Ha shows the performance of this model on the important Ha atom

type. Metabolites is the model performance on metabolites.37 Corre-

lation coefficients are rounded to three digits of precision.

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci.

Edge Article Chemical Science

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 0

9
 J

u
ly

 2
0
2
1
. 
D

o
w

n
lo

ad
ed

 o
n
 7

/3
1
/2

0
2
1
 6

:5
6
:4

0
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



effects of neighbor lists changing. The model gets a similar

upeld shi and thus shows it could be used to model protein–

protein interfaces where side-chain–side-chain interactions are

critical. It is also consistent with previous reports72,73 where an

increasing strength of hydrogen bond was associated with

greater deshielding and subsequent downeld shi of Ha
d.

Discussion

The GNN is able to compute chemical shis for arbitrary

molecules, is sensitive to both covalent and non-bonded inter-

actions, can parse a million chemical shis in 5 seconds, and is

differentiable with respect to pairwise distances. Model accu-

racy is comparable to state-of-the-art performance. There is

a trade-off between model accuracy and model capacity

(number of elements able to predict), leaving an unanswered

question of if more trainable parameters are required to

diminish the gap. Training is complex since there are three

datasets and they are of varying quality and sizes. Effort should

be invested in better quality protein structure data. Finally,

there is a large number of message passing choices and more

exploration could be done.

Conclusion

This work presents a new class of chemical shi predictors that

requires no a priori knowledge about what features affect

chemical shi. The GNN input is only the underlying molecular

graph and elements and requires no details about amino acids,

protein secondary structure or other features. The GNN is close

to state of the art in performance and able to take arbitrary

input molecules, including organic molecules. The model is

highly-efficient and differentiable, making it possible to use in

molecular simulation. Important physical properties also arise

purely from training: b-sheets formation causes downeld

shis and breaking salt bridges causes upeld shis. This work

opens a new direction for connecting NMR experiments to

molecular structure via deep learning.

All code available at https://github.com/whitead/graphnmr.
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