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Abstract—Coastal ports represent a fundamental component
of a country’s critical infrastructure, and their surveillance is
essential to enhance resilience against natural and man-made
disruptions to their operations. Furthermore, the increasing avail-
ability of Unmanned Autonomous Vehicles (e.g., UAVs, UGVs,
and USVs) has paved the way for their use in surveillance
and patrolling tasks. In this paper, we present a patrolling
approach for monitoring ports infrastructure utilizing a group
of heterogeneous vehicles. Our approach has the following steps:
1) Abstractions that capture the valid motions of the vehicles in
a port area are designed; 2) Regions that are visible through line
of sight are computed; and 3) An algorithm that finds patrolling
cycles to monitor critical port locations with existing energy
budgets is developed. We tested our approach through one case
study to validate its practical utility.

I. INTRODUCTION

The Maritime Transportation System (MTS) of coastal
ports is crucial for a country’s economy and enables related
industries to flourish. As such, any disruptions on the ports’
operations can make a tremendous economic impact. The
need to monitor port infrastructure is also motivated by the
presence of adversaries that continuously attempt to penetrate
a port environment under a predictable surveillance system.
Current surveillance operations in ports are carried out with
fixed cameras and scheduled patrols by the Coast Guard [1],
which are limited by being static and predictable. A port is a
large geographical area with several modes of communication
(ground, water, and air), making it challenging to observe
the entire area simultaneously. Nonetheless, an improved,
coordinated port infrastructure surveillance system increases
the resilience against any attacks and operational interruptions.

We believe that the most effective way to patrol and monitor
a large port area is through a combination of autonomous
vehicles’ capabilities. In addition, different patrollers, given
their different kinematic and visibility profiles, can provide
various types of information about a port from several view-
points using their camera or visibility sensors. Therefore,
we utilize an ensemble of heterogeneous patrollers (vehicles
or agents), such as unmanned ground vehicles (UGVs), un-
manned aerial vehicles (UAVs), and autonomous surface water
vehicles (ASVs), to monitor and assess disruptions to ports’

critical infrastructure. Our approach develops strategies for a
fleet of different autonomous vehicles that exploit their joint
visual capabilities in patrolling different regions of a port area,
including water, land, and container yard regions.

In practice, patrolling strategies for heterogeneous vehicles
may be limited by energy and route constraints. First, the
vehicles may have energy limitations (e.g., battery life) that
constrain the duration and scope of their patrolling routes.
To deal with this issue, it is necessary to develop patrolling
routes subject to existing energy capacities. Second, a port
area may have several critical locations that must be monitored
frequently due to their importance and/or utilization. These lo-
cations may vary seasonally depending upon commodity flows.
Finally, a port’s ability to implement patrolling strategies using
autonomous vehicles may vary depending on regulations. For
example, ports may need the Federal Aviation Administration
(FAA) approval to fly UAVs over port facilities. Furthermore,
ports may receive permissions to operate such vehicles in a
limited context.

The main contributions of our paper are as follows:

« We devise motion and visibility models for heterogeneous

vehicles (UAV, UGV, and ASV) as patrollers in ports.

o We develop an algorithm that integrates vehicle motion
and visibility models to find patrolling routes to observe
critical port locations for heterogeneous patrollers subject
to their energy constraints.

The remainder of the paper is organized as follows. The next
section discusses relevant work in environmental patrolling
and monitoring. Section III defines the environment model and
formulates the problems of our interest. Section IV details our
approach for solving the formulated problems. We present our
case study in Section V. Section VI concludes the paper with
discussion and future directions of our work.

II. RELATED WORK

The coastal infrastructure monitoring task through hetero-
geneous vehicles is related to the multi-robot patrolling task,
a group of regions of interest in an environment is visited
repeatedly using multiple robots as patrollers to ensure safety
or for monitoring purposes. A common approach for this
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patrolling task is deterministic based on the optimization of
the frequency of visits to different locations in the environ-
ment. There have been significant studies for deterministic
patrolling [2], [3], [4]. However, these deterministic algorithms
could be learned by an adversary observing them over time.
To address the limitation of the deterministic patrolling strate-
gies, non-deterministic patrolling algorithms in an adversarial
setting were proposed in [5], [6] that attempt to maximize the
probability of detecting an adversary while moving randomly.
In our previous approaches [7], [8], we have developed pa-
trolling policies in the form of Markov chains using convex
optimization to minimize the average expected commute time
for a set of locations allowing robots to patrol an environment
and evaluated the vulnerability of these patrolling policies.

There have been a few studies for the purpose of shipping
port monitoring and assessment motivated by the increased se-
curity issues in ports. A game-theoretic framework called Pro-
tect was deployed by the United States Coast Guard (USCG)
for scheduling their patrols in order to protect ports [9], [1].
The authors also did not consider the use of autonomous
vehicles and the motion model of these vehicles. Moreover,
the Coast Guard cannot patrol some regions of port areas such
as nearby forests and have limited visibility capabilities. These
limitations create a critical gap in the surveillance system of
ports. In [10], an approach measures how disruptions affect
the commodity flows for stakeholders and an entire port.

In addition, a group of ASVs can be used on the water
surface to monitor ports and harbors from disruptions [11]. In
monitoring a port, ASVs can prevent common scenarios, such
as hidden bombs, explosives, gas attacks, and so on [12]. Fur-
thermore, ASVs can inspect pipelines for cracks and increase
awareness of contraband in the area [13]. An unmanned port
security vessel was designed for the use of maritime security
and port resilience [14]. Therefore, this paper investigates
models and an algorithm to develop patrolling strategies for a
robotic team consisting of different types of autonomous ve-
hicles that can collectively monitor water, land, and container
yard regions of a large port area with critical infrastructure.

III. PROBLEM FORMULATION

We examine a 2-D environment where the workspace is
a port environment denoted as W = R2. Let O refer to an
obstacle region consisting of all locations in WV that lie in one
or more obstacles in the port environment. We also assume
that a group of heterogeneous autonomous vehicles monitor
the environment. Each vehicle is modeled as a point robot.
Each vehicle has also an omnidirectional visibility sensor
or camera with a particular visibility range. Let r be the
visibility range of a vehicle. Different vehicles have different
visibility and motion capabilities, coupled with differential and
energy constraints. Therefore, we take advantage of different
sensing and motion capabilities of heterogeneous vehicles for
monitoring of a port area in an adversarial setting. Both
obstacles and vehicles are considered as subsets of W. The
free space in WV is composed of all navigable locations for

vehicles, which is defined as F' = W \ O. Let D be the set
of critical locations in the environment.

We define x; as an initial deployment location in F'. Let
a patrolling route of a vehicle be 7 : [0,¢] — F such that
7(0) = z1 and 7(¢t) = x; for a finite time interval ¢. Let [ be
the energy budget for a vehicle that represents the maximum
length of the route.

To calculate patrolling routes for monitoring port infrastruc-
ture, we first build motion map representations for heteroge-
neous vehicles. In this context, we formulate our first problem.

Problem 1. Building map representations: ~ Given a map
of the environment and the types of vehicles, build the
representations of the environment F’ as a set of motion graphs
for different types of vehicles.

Once we have the relevant motion map representations, we
obtain the patrolling route’s visibility locations. To attain that,
we formulate our second problem below.

Problem 2. Obtaining the visibility of a patrolling route:
Given a patrolling route of the robot 7 and a visibility range r
for a vehicle, find the set of all locations that the vehicle can
observe following that route.

Finally, we generate a set of patrolling cycles utilizing a
motion map representation and a vehicle’s visibility model.
Therefore, we formulate our third problem as follows.

Problem 3. Generating patrolling cycles for visibility-based
coverage of critical environment locations: ~ Given an initial
location of a vehicle z;, a set of critical locations D, and an
energy budget [, generate a set of patrolling routes or cycles
that cover D in F' through visibility.

IV. APPROACH

In this section, we present an information processing
pipeline by which a patrolling scheme for heterogeneous
vehicles is developed. To solve the problems formulated in
Section III, we model the motion and visibility profiles of
underwater, aerial, and ground vehicles to ensure that the re-
sulting patrolling strategies can be executed by these vehicles.
This information is then used as input to an algorithm for
computing patrolling routes. The components of our overall
pipeline are detailed in the remainder of this section.

A. Building Map Representations

First, a discrete map representation for a vehicle’s motion
can be obtained from an aerial view picture of a port area.
For each type of autonomous vehicle (UAV, UGV, or ASV),
we represent its motion capabilities in the port area as an
undirected weighted graph G = (V, E/, w). Each vertex v € V'
represents a coordinate for a location in W, and it is connected
to 8 neighboring locations. The four horizontal and vertical
edges have the same weight wy, and the diagonal edges have a
weight of w; v/2. The vertices that correspond to untraversable
locations in O are removed from the graph along with all their
adjacent edges. The output of this step is a motion graph G
for a specific type of autonomous vehicle. Different types of
vehicles yield disparate types of motion graphs. For instance,
an ASV can monitor water-side coastal port operations, a UGV



can monitor land-side operations, and a UAV can monitor
container yard regions along with other locations that are not
easily traversable such as nearby forests.

B. Visibility Modeling

Next, we model a vehicle’s visibility as a circular region
with a radius r centered at a vertex v of the graph G. This line
of sight visibility is captured by an omnidirectional camera of
the vehicle. For each vertex v, the visibility subgraph V G (v, )
is all the vertices within a distance r from the center vertex v.
Given a vehicle’s path that visits k£ nodes 7 = (v, va, ..., V),
the subgraphs monitored by the path 7 can be calculated
as VISIBLELOCATIONS(7,7) = (J,c, VG(v,7). These sub-
graphs can be used to check which locations have been visited
while monitoring a number of critical locations.

C. Generating Patrolling Routes

Finally, we generate patrolling routes for a vehicle to
monitor critical locations D of the port area through visibility
subject to its energy constraint. Algorithm 1 generates a set of
patrolling routes (cycles) of a vehicle from its initial location
and for its specific energy budget. To achieve this, Algorithm 1
takes as input the motion graph of a vehicle G, the critical
port locations (vertices) D, an initial vertex (location) vs on
G, an energy budget [, and a visibility range of the vehicle
r. It gives us as output a set of patrolling routes to visit D
locations through the cumulative visibility of these routes.

Algorithm 1: PATROLLINGROUTES(G, D, v, [, 1)
Input: G, D, v, [, r — Motion Graph, Critical Locations,
Initial Location, Energy Budget, Visibility Range
Output: 7' — Set of All Patrolling Routes
1 a4 vs
2T+
3 while D # () do
4 P, < SINGLESOURCEDUKSTRA(G, a, D)
b < FIRSTCANDIDATE(P, a, 1)
P, < SINGLESOURCEDIKSTRA(G, b, D)
¢ <~ SECONDCANDIDATE( Py, b, 1)
7 < FINDROUTE(q, b, ¢)
D < D\ {VISIBLELOCATIONS(T,7)}
10 T < T U {ROUTELOCATIONS(7)}

return 7'

// Initialize the set of patrolling routes

R-2E- R B N |

—
—

We initialize the set of patrolling routes 7" (line 2). We
compute all the shortest paths P; using Dijkstra’s algorithm
from the single source initial vertex a = v to all other vertices
on G toward critical locations D (line 4). The initial vertex
v represents the initial configuration of the vehicle x;. Then,
we find the candidate vertices of a patrolling route based on
the end vertices of 30% of the longest paths from P; within
the distance of [/3 (line 5). We keep only those candidate
vertices from which critical locations of the environments are
visible and randomly select the first candidate b from those
candidate vertices. Again, we compute all the shortest paths

P5 from the single source first candidate vertex b to all other
vertices on GG toward critical locations D (line 6). Following
the same process as before, the second candidate c is selected
from the candidate vertices away from a and b based on the
computed paths P, and the energy budget [ (line 7). Once
we have the two candidate vertices b and c¢ along with the
initial vertex a, we find the patrolling route 7 from the lists
of calculated shortest paths P, and P, and the longest path
between a and ¢ within the distance of /3 (line 8). A pictorial
representation of a patrolling route (cycle) combining a~b,
b~c, and c~»a is depicted in Fig. 1. We exclude the set of
visible critical locations along the computed patrolling route
7 from D (line 9). We accumulated all the patrolling routes
until the remaining visible critical locations are empty. Finally,
Algorithm 1 returns the set of all patrolling routes 7T'.

Fig. 1. A patrolling cycle representation with three vertices (locations) within
an energy budget [.

V. RESULTS

To validate our approach, we used one study case for
monitoring the Port of Caddo-Bossier, LA, USA, using its
satellite maps. This study case can serve as a guideline to
apply our approach to other port areas. In our study case, we
accounted for a set of critical locations and different energy
constraints and visibility ranges for UAVs, UGVs, and ASVs.

We gathered preliminary simulation results of patrolling
routes for heterogeneous vehicles by developing their motion
graphs based on satellite images representing the port envi-
ronment and then calculating the patrolling routes with their
visible locations within specific ranges. The calculated routes
took into account critical locations of the port environment
for its security and productivity, energy constraints of different
vehicles, and their motion graphs. Different sets of patrolling
routes for heterogeneous vehicles that monitor critical lo-
cations in different regions (water, land, and infrastructure
regions) of the Port of Caddo-Bossier area within their energy
constraints are illustrated in Fig 2-4. In these figures, red pa-
trolling routes or cycles from green square initial deployment
locations cover red square critical locations along with other
locations of the port area through blue visible locations or
routes themselves.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have considered the problem of monitoring
a coastal port environment using a group of heterogeneous



Fig. 2. Three red patrolling routes in the Port of Caddo-Bossier, LA from the
green square initial location for a UAV along with its blue visible locations
within a certain range covering red square locations on its motion graph.

Fig. 3. Two red patrolling routes in the Port of Caddo-Bossier, LA from the

green square initial location for a UGV along with its blue visible locations
within a certain range covering red square locations on its motion graph.
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Fig. 4. Two red patrolling routes in the Port of Caddo-Bossier, LA from the
green initial location for an ASV along with its blue visible locations within
a certain range covering red square locations on its motion graph.

vehicles and presented a system that could be used to plan
patrol routes for such vehicles. Our approach constructed
motion maps that represent the valid motions of the vehicles,
found the regions that are visible through line of sight, and
developed strategies to find patrolling cycles for monitoring

critical port locations with existing energy budgets. Several
directions are open for future work.

In our future research, our patrolling strategies could be
synchronized to limit their overlapping areas. We also plan
to design richer kinematics and adversary models for hetero-
geneous patrollers and utilize them for developing patrolling
strategies. The developed patrolling strategies will be evaluated
to detect an adversary. In addition, we would like to validate
our patrolling policies through realistic simulations and phys-
ical experiments.
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