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ABSTRACT

Ocean ecosystems have spatiotemporal variability and dynamic complexity that require a long-
term deployment of an autonomous underwater vehicle for data collection. A new generation of
long-range autonomous underwater vehicles (LRAUVs), such as the Slocum glider and Tethys-
class AUV, has emerged with high endurance, long-range, and energy-aware capabilities. These
new vehicles provide an effective solution to study different oceanic phenomena across multiple
spatial and temporal scales. For these vehicles, the ocean environment has forces and moments
from changing water currents which are generally on the order of velocity of the operational
vehicle velocity. In this scenario, it is not practical to generate a simple trajectory from an initial
location to a goal location in an uncertain ocean, as the vehicle can deviate significantly from the
prescribed trajectory.

Since state estimation remains challenging in underwater conditions, feedback planning must
incorporate state uncertainty that can be framed into a stochastic energy-aware path planning
problem. This article presents an energy-aware feedback planning method for an LRAUV utilizing
its kinematic model in an underwater environment under motion and sensor uncertainties. Our
approach uses ocean dynamics from a predictive ocean model to understand the water flow
pattern and introduces a goal-constrained belief space to make the feedback plan synthesis
computationally tractable. Energy-aware feedback plans for different water current layers are
synthesized through sampling and ocean dynamics. The synthesized feedback plans provide
strategies for the vehicle that drives it from an environment’s initial location toward the goal
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Figure 1. Two images of a Tethys-class vehicle deployed in the ocean (MBARI, 2009).

location. We validate our method through extensive simulations involving the Tethys vehicle’s
kinematic model and incorporating actual ocean model prediction data.

Keywords: feedback planning, energy-aware, long-range autonomous underwater vehicles, predictive ocean model, kinematic model,

observation model

1 INTRODUCTION

Ocean ecosystems are complex and have high variability in both time and space. Consequently, ocean
scientists must collect data over long periods to obtain a synoptic view of ocean ecosystems and understand
their spatiotemporal variability. To support data collection, autonomous underwater vehicles (AUVs) are
increasingly being used for studying different oceanic phenomena such as oil spill mapping
2011}, harmful algal blooms (Das et al.,2010), phytoplankton and zooplankton communities
2017), and coral bleaching (Manderson et al., 2017). These AUV can be classified into two categories:
(1) propeller-driven vehicles, such as the Dorado class, which can move fast and gather numerous sensor
observations but are limited in deployment time to multiple hours; and (ii) minimally-actuated vehicles
such as drifters, profiling floats, and gliders that move slower, but can remain on deployment for tens of
days to multiple weeks.

A new breed of the long-range autonomous underwater vehicle (LRAUV), i.e., Tethys, combines the
advantages of both minimally-actuated and propeller-driven AUVs (Hobson et al.,[2012). The LRAUV
can move quickly for hundreds of kilometers, float with water currents, and carry a broad range of data
collection sensors. It can also control its buoyancy for changing depths in the water and the angle at which
it moves through the water. By mixing modalities, this vehicle can be deployed in the water for weeks at a
time and navigate challenging ocean current conditions for short time periods. Two images of deployed
Tethys AUVs are shown in Figure[I] A planning and control technique for this vehicle is critical to increase
its autonomy and generate mission trajectories during long-range operations. The execution of a planned
trajectory for this vehicle is also challenging due to ocean currents’ variability and uncertainty. Thus, it
is not practical to generate a simple navigation trajectory from an initial location to a goal location in a
dynamic ocean environment because the vehicle can deviate from its trajectory due to motion noise and
cannot estimate its state accurately in underwater environments due to sensor noise.

As such, we consider the use of feedback motion planning for an LRAUV by combining its kinematic
modeling and an ocean dynamic model while also incorporating motion and sensor uncertainties. A
feedback plan is calculated over each ocean current layer in an underwater environment for a vehicle
inspired by our previous work (Alam et al., 2020) so that the vehicle can adapt its trajectory from
any deviated state in the presence of any noise or modeling errors. Furthermore, this feedback plan
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is crucial when the vehicle state is not fully observable from sensor readings. For such vehicles with
partially observable states, a Partially Observable Markov Decision Process (POMDP) provides a standard
mathematical model for vehicle motion planning under uncertainties. Two major factors make solving our
problem particularly difficult: (a) for the POMDP formulation, finding the optimal solution is formally hard
(NP-hard or PSPACE-hard), and (b) our objective is to compute stochastic energy-aware feedback plans
using ocean dynamics in contrast to other prior POMDP feedback planning methods that calculate the
stochastic shortest path. A large body of existing research focuses on the stochastic shortest path problem
without considering energy constraints. However, it may be unrealistic to assume that the vehicle has
unlimited resources in many applications. A more realistic model would consider that an autonomous
vehicle has limited stored energy, which continually depletes as it operates. Here, we address this constraint
and propose an extension to the POMDP framework that includes energy awareness. Although energy
awareness should take into account an initial energy condition, the efficiency of actuation, and the drag
effect, our method mostly utilizes ocean currents in our calculations.

Contributions: In this article, we present a method to synthesize feedback plans for an LRAUV in an
underwater environment under motion and sensor uncertainties. First, we develop an ocean dynamic model
from ocean current prediction data. Second, a goal-constrained belief space is introduced to make the
feedback plan synthesis computationally tractable. Finally, energy-aware feedback plans for several water
current layers are synthesized by utilizing sampling and the ocean dynamic model.

A preliminary version of this article appeared in (Orioke et al., 2019). This article is fundamentally
different in that it extends (Orioke et al., 2019) by incorporating motion uncertainty and sensor uncertainty
coupled with energy awareness from water flow of an underwater environment within a modified POMDP
framework.

2 RELATED WORK

The feedback mission control of autonomous underwater vehicles in dynamic and spatiotemporal aquatic
environments has attracted a great deal of interest. A feedback trajectory tracking scheme was developed for
an AUV in a dynamic oceanic environment with modeled and unmodeled uncertainties (Sanyal and Chyba,
2009). An informative feedback plan was generated for AUVs to visit essential locations by estimating
Kriging Errors from spatiotemporal fields (Reis et al., 2018)). An obstacle avoidance method (Kawano,
2006) is presented, where an MDP-based re-planner considers only the geometrical properties of obstacles
and the dynamics and kinematics of an AUV to find and track its target path. An adaptive mission plan
for an AUV according to its available resources, such as battery and memory usage, is proposed to add or
remove locations for data collection tasks in underwater environments (Harris and Dearden, 2012)).

A finite-state automata-based supervisory feedback control (Xu and Feng| 2009)) is presented for obstacle
avoidance by an AUV. A temporal plan is calculated in (Cashmore et al., 2014) for AUV mission
control that optimizes the time taken to complete a single inspection tour. A feedback and replanning
framework (Cashmore et al., 2014) is integrated along with the temporal plan in the Robot Operating
System (ROS). Sampling Based Model Predictive Control (SBMPC) (Caldwell et al.,[2010) is utilized to
simultaneously generate control inputs and feasible trajectories for an AUV in the presence of nonlinear
constraints.

Open-loop trajectory design methods (Smith et al., 2010; Chyba et al., 2009) drive an AUV from a given
initial location to the desired goal location, minimizing a cost in terms of energy and time taken by the
vehicle. The implementation of open-loop trajectories for AUVs works well in environments without any
model uncertainties. In our previous work (Alam et al., 2018a, [2020), we have proposed an open-loop
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approach for solving the problem of deploying a set of minimally-actuated drifters for persistent monitoring
of an aquatic environment. In our another work (Alam et al., 2018b)), we predicted the localized trajectory
of a drifter for a sequence of compass observations during its deployment in a marine environment. We
presented a closed-loop approach (Alam et al., 2018b) when an AUV has a considerable unpredictability of
executing its action in a dynamic marine environment. Moreover, the previous studies (Hobson et al., 2012;
Bellingham et al., 2010) on the Tethys AUV described the mission and other capabilities of the vehicle.
However, there is no work on the development of a planning algorithm for controlling the vehicle.

Various types of rewards modification in POMDPs have been investigated in previous research
efforts (Kim et al., 2019; [Lee et al., 2018). Typically, the reward function in POMDPs is designed
to solve the stochastic shortest path problem, where the goal is to compute a feedback plan that reaches a
target state from a known initial state by maximizing the expected total reward. From a motion planning
point of view, the reward can be replaced by a cost, where the goal is to minimize the expected total cost.
In both cases, the sequence of rewards or costs, however, can be aggregated by considering the discounted
reward (cost) or the average reward (cost).

A point-based algorithm to calculate approximate POMDP solutions is presented combining the full
and partial observable components of an AUV’s state to reduce the dimension of its belief space (Ong
et al., |2009). An efficient point-based POMDP algorithm for AUV navigation (Kurniawati et al., |2008])
exploiting the optimally reachable states is developed to improve computational efficiency. A point-based
POMDP approach (Kurniawati and Patrikalakis, [2013) is presented, where the original solution is updated
by modifying a set of sample beliefs. The planning for hydrothermal vent mapping problems using
information from plume detections is modeled as a POMDP utilizing the reachable states as the current
state of an AUV (Saigol et al., 2009). In this work, an information likelihood algorithm is proposed turning
the POMDP into an information state MDP. An online POMDP solver (Kurniawati and Yadav), [2016)
based on an adaptive belief tree is proposed to improve the existing solution and update the solution when
replanning is needed in dynamic environments.

To the best of our knowledge, this is the first work for synthesizing energy-aware feedback plans from a
POMDP solution for an underwater vehicle using water flow under motion and sensor uncertainties. In
our work, we utilize an LRAUV’s sensor readings to control its mission operation, taking into account its
several drifting and actuation capabilities.

3 PRELIMINARIES

In this section, we describe a representation of an underwater environment and motion and observation
(sensor) models for our vehicle with relevant definitions. Then, we formulate our problem of interest.

First, we consider a 3-D environment where a workspace is an ocean environment denoted as W C R3.
The workspace is divided into a set of 2-D water current layers at different depths of the environment
which are represented by the third dimension. Let L be the total number of water current layers in the
environment.

DEFINITION 3.1 (Workspace). The workspace is defined as VWV = W1 UWa U ---UWT7. At each current
layer, we model the workspace W; C R?, where | € {1, ..., L}, as a polygonal environment. Let O; C R?
be the land and littoral region of the environment at each layer which is considered an inaccessible region
for the vehicle. The free water space at each current layer is composed of all navigable locations for the
vehicle, and it is defined as E; = W; \ O,. The free water space in the whole workspace is denoted by
E = FE1UEyU---UEL. Wediscretize each workspace layer W as a 2-D grid. Each grid point or location,
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denoted as q, has a geographic coordinate in the form of longitude, latitude, and depth (water current
layer) ¢ = (x,y,l), where x,y € Randl € {1,...,L}.

Second, in our vehicle motion model, we incorporate noise and uncertainty in the vehicle’s movement to
account for the modeling error and unmodeled dynamics.

DEFINITION 3.2 (Motion Model). The state space for the vehicle is defined as X = £ x © in which ©
is the set of angles such that § € ©, and 0 represents the vehicle’s orientation. At time t, the vehicle state
in the state space is represented by xy = (¢, yi, ly, 0;) in which (x4, yt, l;) denotes the vehicle’s position in
the free water space, and 0; provides the vehicle’s orientation.

The motion model f of the vehicle can be written as

X1 = F(x¢, ug, dy), (D)

where x; is the vehicle state, d; is motion noise, and u; is the action belonging to a set of admissible actions
U such that u; € U.

Third, it is assumed that our vehicle can observe its positions and the goal location with uncertainties due
to imperfect sensor readings and the dynamic nature of an underwater environment.

DEFINITION 3.3 (Observation Model). Let Y be the observation space, which is the set of all possible
sensor observations'y €Y, the vehicle receives. The observation model h of the vehicle can be represented
as below.

Yyt = h(Xtth)7 (2)

where w; denotes sensor noise.

It is challenging to plan in an uncertain, stochastic environment when there are motion and observation
uncertainties in a vehicle model. To formulate this planning problem, it is necessary to connect hidden
states and observations of our vehicle. A generic model in this context is Partially Observable Markov
Decision Processes (POMDPs).

DEFINITION 3.4 (POMDP). A POMDP is defined by a tuple P = (X, U,f, R, Y, h,~), where

e X is a finite set of states.

e U is a finite set of actions, available to the vehicle.

o f(x,u,d,x") = p(X'|x,u,d) is a probabilistic transition function, which defines the probability of
moving to a state X' € X after taking an action v € U and sustaining a noise d in a state x € X.

e R(x,u) is a reward function, which defines a real-valued reward after taking an action u € U in a
state x € X.

e Y is a finite set of observations for the vehicle.

e h(x',u,y) = p(y|x',u) is a probabilistic observation function, which defines the probability of
observing y € Y after taking an action u € U and reaching a state x' € X.

v € [0, 1) is a discount factor.

Frontiers 5
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Due to sensor noise, observations of our vehicle provide only partial information over the states. Planning
with partial information can be framed as a search problem in a belief space. Let B be the belief space.

DEFINITION 3.5 (Belief). A belief state by € B of the vehicle is defined as a posterior distribution over
all possible states given the past actions and sensor observations by = (x¢|ug, . .., ut—1,y0,---,y¢). The
belief state by can be recursively updated with the following transition function T (Kim et al., 2019)

bt = T(btfluutflayt)u (3)

in which the next belief state depends only on the current belief state, action, and observation.

Typically, the POMDP solution can be found by solving the equivalent belief MDP where every belief is
a state.

DEFINITION 3.6 (Belief MDP). An equivalent belief MDP is defined by a tuple P = (B, U, T, R,7),
where

e B is the set of belief states over the POMDP states.
e U is a finite set of actions, available to the vehicle as for the original POMDP.

T is the belief state transition function.

R(b,u) is the reward function on belief states.

v € [0, 1] is a discount factor equivalent to the -y in the original POMDP.

A feedback plan is called a solution to a belief MDP problem if it causes the goal state to be reached
from every belief state in B. Let b, € B be a goal belief state of the vehicle at any water current layer of
the environment. Our objective of the article is to compute a feedback plan for our vehicle.

DEFINITION 3.7 (Feedback Plan). A feedback plan m is defined as a function over the belief space
7 : B — U to produce an action w(b) = u € U, for a belief state b € B, to reach the goal belief state by.

The value function of a feedback plan 7 is computed from the expected discounted reward at the current
belief state b as follows:

Va(h) = E(ZM@ w(bt>|bo>), @

t=0
where 7 is the discount factor, and bg is the initial belief state. This value function is maximized for the
optimal feedback plan 7* as follows:

7 (b) = argmax V;(b), Vb€ B. 5)

3.1 Problem Formulation

In our 3-D workspace W, we account for different localization uncertainties due to sensor noise for its
divided 2-D water current layer at different depths. Specifically, we consider an almost reliable localization
on the water surface layer (first water current layer) since the GPS information is accessible to the vehicle
on the water surface. As the vehicle goes deeper in the water column, its localization uncertainty is assumed
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to increase due to the implied time increase between potential GPS fixes, as illustrated in Figure [2 In
that circumstance, the vehicle’s state is estimated using dead-reckoning only, and the vehicle is required
to navigate to the water surface periodically to keep the localization uncertainty tractable. Thus, the
localization uncertainty for the vehicle decreases with its upward motion in the water column; it could
conceivably quickly surface for a GPS fix with minimal time and/or energy consumption.

Figure 2. Localization uncertainty of a vehicle increases as it goes down along different water current
layers.

When the vehicle is uncertain about its state due to sensor noise and has also motion uncertainty, it is
crucial to compute a feedback plan that maps every belief state to an action. In computing a feedback
plan, we take the environmental water flow into account as an ocean dynamic model. We assume that
this ocean dynamic model and the reward function are known a-priori. Our reward function is strictly
positive, monotonically increasing toward the goal belief state, and additive. Unlike many prior POMDP
feedback planning algorithms that compute the stochastic shortest path, our goal is to compute the stochastic
energy-aware path using the ocean dynamic model. Due to the curse of dimensionality of the belief space,
it is computationally intractable to synthesize feedback plans for multiple water current layers concurrently.
Therefore, we assume that a high-level planner provides an intermediate goal at each water current layer.
This motivates us to formulate the following problem to synthesize water current layer-wise feedback plans
for our vehicle.

Problem Statement: Given an ocean environment £ and its dynamic model, the action set of our vehicle
U, the vehicle motion model, and a goal belief state by, compute a feedback plan 7 for each water current
layer that drives the vehicle from a belief state b of the environment to reach the goal belief state b, of the
same water current layer.

4 METHODOLOGIES

In this section, we detail an energy-aware feedback planning method that utilizes sampling and the ocean
dynamic model for solving the problem formulated in Section

4.1 Ocean Dynamic Model
4.1.1 Data Acquisition

We utilize the Regional Ocean Modeling System (ROMS) (Shchepetkin and McWilliams, 2005) predicted
oceanic current data in the Southern California Bight (SCB) region, CA, USA, as illustrated in Figure a),
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which is contained within 33°17'60” N to 33°42' N and —117°42" E to —118°15'36” E. ROMS is a free-
surface, split-explicit, terrain-following, nested-grid mode, and an extensively used ocean model. ROMS
is also an open-source ocean model that is widely accepted and supported throughout the oceanographic
and modeling communities. ROMS primarily assimilates surface velocities from HF radar data, and it is
assumed that the forecasting for near-surface velocities is accurate in direction and magnitude.

The four dimensions of 4-D ROMS current prediction data are longitude, latitude, depth, and time. The
ROMS current prediction data are given at depths from 0 m to 125 m and with 24 hours forecast for each
day. Each ROMS current velocity prediction is given at depths from 0 m to 4000 m, with a 12-h hindcast, a
12-h nowcast, and a 48-h forecast each day. The first 24-h comprising hindcasts and nowcasts of each day
are the most accurate ocean current prediction in the ROMS model. In our work, we utilize a concatenation
of the earliest 24-h of each prediction for each day for 30 days of predictions. The three components of
oceanic currents are northing current («), easting current (), and vertical current (\). These components
are given based on the four dimensions (time, depth, longitude, and latitude).

St : i g 0

Long'Beach

Depth (meters)

-117.6

-117.8

-118

_ ees)
118.2 4o (8%

332 1184 | oogV

(a) (b)

Figure 3. (a) The area of interest in the SCB region, California. (b) Flow fields generated from ROMS
oceanic current prediction data.

4.1.2 Water Flow Characterization

We create flow fields at several water current layers from the ROMS ocean current prediction data. Ocean
current prediction data for a specific time and at a particular water current layer can be represented as a
flow field. Let the flow field on a location ¢ at a particular water current layer of the environment £; be
F(q). For alocation ¢ at a particular water current layer, the easting component along the latitude axis is
denoted by «a(q), the northing component along the longitude axis is denoted by ((q), and the vertical
component at that water current layer is denoted by A(¢). The flow field based on two components for a
location ¢ at that water current layer is specified as:

F(q) = a(q)i+ B(q)J, (6)
where 7 and j are unit vectors along the latitude and longitude axes, respectively.

The vertical component of the ocean current A(g) at several water current layers is considered zero. Thus,
we create flow fields for three water current layers as illustrated in Figure [3(b). Then, we find flow lines of
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the water flow from these flow fields. Flow lines of the water flow over the flow field F' are the trajectories
or paths traveled by an omnidirectional vehicle at the given water current layer whose vector field is the
flow field.

4.2 Goal-Constrained Belief Space

It is computationally expensive to compute a feedback plan for a given goal belief state b, of a water
current layer under a finite horizon because of the high dimensional belief space B (Papadimitriou and|
Tsitsiklis, |1987). Therefore, we utilize a reachable belief space R (by) containing belief states from an
initial belief state by to compute the plan for the water current layer ;. The reachable belief space R (bg)
is much smaller than B in terms of the number of belief states. Then, we construct a goal-constrained
belief space R*(bo, by) containing belief states from an initial belief state by that drive the AUV to the goal
belief state b, of the same water current layer ;. The goal-constrained belief space R* (b, by) is much
smaller than the reachable belief space R(bg) since R*(bg, by) is pruned from B. This goal-constrained
belief space R*(bg, by) leads to a computationally efficient synthesis of the optimal feedback plan 7*
for the water current layer IV} because any vehicle state sample x in 7* is taken within R*(bg, by). The
representation of R*(bg, by) is represented as an ellipse with 2y ~ by and x4 ~ b, as focal points. This
R*(bo, by) can be expressed as

R*(bo,bg) = {b € B | ||zo — z||2 + ||z — 2|2 < 6}, (7)

where zg ~ by, x4 ~ by, x ~ b, and 0 is a threshold value which can be tuned to obtain a desired R* (b, by).
An example R*(bo, by) is illustrated in Figure 4]

33.71
33.65F
33.61
33.55F
33.5¢
33.45F

Latitude (degrees)

33.4¢
33.35F

33.3¢

33.25 ‘ ‘ s ‘ ‘ ‘
-118.3 -118.2 -118.1 -118 -117.9 -117.8 -117.7
Longitude (degrees)

Figure 4. The blue elliptical goal-constrained belief space R*(bo, by ) is given as prior knowledge for the
green goal belief state b, from the red initial belief state by of the vehicle.

4.3 Energy-Aware Feedback Plan Synthesis

We develop our energy-aware feedback planning algorithm based on the Partially Observable Monte
Carlo Planning (POMCP) algorithm (Silver and Veness, [2010). The POMCP algorithm assumes that the
optimal plan can be synthesized by aggregating rewards of the available actions from each state using the
Monte-Carlo Tree Search (MCTS) algorithm. It is an approximate method that does not consider energy
awareness, but it is known to extract near-optimal policies in finding the stochastic shortest path where
optimal rewards depend on the distance from the goal state. Furthermore, the POMCP algorithm allows us
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Algorithm 1: PREFERRED_ACTION(h, z, U, F, R*)

Input: h, x, U, F, R* — History of belief states, State, Actions, Flow field, Goal-constrained belief space
Output: A — A set of preferred actions

1 A0

2 for each v € U do

(.’L'/, Yy, T) ~ g(T, a, F) // enforcing the goal-constrained belief space

if 2/ € R* then
L A — AU {u}

6 return A

wn A W

Algorithm 2: SEARCH (h, F, R*)
Input: h, F, R* — History of belief states, Flow field, Goal-constrained belief space
Output: 7% — An optimal feedback plan
1 fort <+ 17T do
if h == () then
| T ~by
else
|z~ B(h)

¢ Simulate (z, h,0, F, R*)
7 T = arg max V(b)

wn A W N

8 return 7*

to utilize the domain knowledge. In our work, we use the domain knowledge of the reachable belief space
R* to reduce the search space for choosing actions. Instead of searching actions over all possible events
that could happen with low probabilities, the reachable belief space constraints the action search space for
the most likely events.

To overcome the challenges associated with solving belief space planning, we first define a set of discrete
actions and a set of discrete outcomes. For an LRAUV planning to reach a goal location, we consider nine
actions that include actions toward eight compass directions, i.e., N, NE, E, SE, S, SW, W, NW along
with drift (idle). The outcomes of actions could be three observations, i.e., goal, intermediate, and outside.
In other words, the goal observation refers to the vehicle reaches to the goal location, the intermediate
observation refers to it moves toward the goal location, and the outside observation refers to it goes beyond
the goal-constrained belief space. Since the outcome of any action is not deterministic, the LRAUV must
consider all three observations when simulating an action. For a given state =, Algorithm [I| provides a set
of preferred actions .A based on the goal-constrained belief state. Algorithm [2]returns the optimal feedback
plan 7* for a water current layer from a history of belief states.

Algorithm [3|simulates an action and keeps track of its outcome. We refer to a complete simulated trial as
a rollout where we keep track of actions and their outcomes as history /. To plan with energy-awareness,
we incorporate the ocean dynamic model F' in Algorithm @ as a prior to the simulator G. Therefore, during
a rollout, the set of available preferred actions and their outcomes take advantage of the prior knowledge.
In Algorithm 4, we compute the reward values of actions by considering the flow field. The reward value is
calculated high when a simulated action takes advantage of the flow field. Otherwise, the reward value
is calculated low. For instance, if the vehicle simulates a particular action in a rollout, using transition
probabilities and the ocean dynamic model, we first generate a simulated trajectory and then evaluate the
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Algorithm 3: SIMULATE (x, h, 3, F,R*)

Input: x, h, 5, R* — State, History of belief states, Depth, Flow field, Goal-constrained belief space
Output: R — Reward

1 if v# < e then
2 | return(
3 if h ¢ T then
4 A < PREFERRED_ACTION(h, z, U, F, R*)
5 for each a € A do
6 | T(ha) < (Ni(ha), Vi(ha),0)
7 return ROLLOUT(z, h, 3, F)
log N(h
8 @ ¢ argmax V(hb) + O]%f(—hl()))
9 (l’/,y,T) < Q(La, F) // considering energy awareness from the flow field
10 R < 7+ - SIMULATE(2, hay, B+ 1, F, R*)
u B(h) « B(h) U {«}
12 N(h) <= N(h) +1
13 N(ha) < N(ha)+1
h
1 V(ha) < V(ha) + —RN(ZEL)G)

15 return R

Algorithm 4: ROLLOUT (x, h, 8, F)
Input: x, h, 5, F' — State, History of belief states, Depth, Flow field
Output: r — Step reward

1 if 77 < e then
L return 0

3ar 71'rollout(hy )
4 (l’/,y,T) < Q(La, F) // evaluating an action with energy awareness from the flow field

5 return r + v - ROLLOUT (2, hay, f + 1, F)

trajectory with respect to the goal location. To evaluate a simulated trajectory, we employ the particle
filter, where each state on the trajectory is considered as a particle and the goal location can be thought
of as a landmark (see this work (Kim et al., 2019) for a detailed explanation of particle filter in the robot
localization). When considering the next step of this rollout, the LRAUV knows which action from the set
of available actions is more likely to drive it to the goal location by computing the reward associated with
each action. The changes from the standard POMCP are highlighted in blue in our algorithms.

5 EXPERIMENTAL RESULTS

In this section, we examine a Tethys-like LRAUV’s kinematic model and evaluate its navigation solution in
an underwater environment under motion and sensing uncertainties. The experiments are conducted on a
Unix/Linux computer with Intel Core 17 4.5GHz processor and 32GB memory.

5.1 LRAUV Kinematic Model

The vehicle motion is noisy due to the inherent dynamic nature of water flow of the underwater
environment. The vehicle observation model suffers uncertainty in measuring distances and locations in
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sensor-denied, such as GPS, underwater environments. We modeled our vehicle motion and observation
models under Gaussian noise. This setup also makes our Tethys navigation problem a POMDP problem.

Let E; € R™ be the state space of a water current layer W; and U € R be the action space of the vehicle,
where m < n. Let Y € RP be the observation space of the vehicle sensors. The state transition model of
our vehicle similar to a unicycle-model can be written as

Tiy1 = @ + ugcos(0y) @)
Yt+1 = Y+ utsin(ﬁt) (9)
ét = Wt. (10)

We incorporate water flow fields as prior knowledge in our motion model for the vehicle. In other words,
the next transition state of the vehicle is influenced by the water flow field of a current layer as well as its
actions. The unicycle motion and observation models for the vehicle can be expressed as

T = f(.l’t, Ut dt) = Ayxy + Byug + dy d ~ N(O, Dt) (11)
v = h(z, w) = Cyyr + wy wy ~ N (0, W), (12)

in which A is the state transition matrix of dimension n X n, B is the action transition matrix of dimension
n x m, C is the sensor observation matrix of dimension p X n, and d; and w; represent the motion and
sensor noise from a zero-mean Gaussian with variance D; and W} respectively.

The importance of incorporating water flow fields as the ocean dynamics in our motion model is that
a Tethys-like vehicle is deployed to navigate through the water flow. However, the vehicle can leverage
pressure, velocity, and acceleration of flow fields at times to perform a drifting action and save energy
in its long-term mission. It is also important to note that motion and sensor noises provide motion and
observation uncertainties but flow fields can be utilized for performing a passive action (drift) with no
actuation and thus saving energy.

The updated observation model with energy awareness from the ocean dynamics can be expressed as
g = h(zt, w) = Cry + wi + D, (13)

in which the energy awareness 4 = [¢, 1| and its weight D = diag(ky, k), where k,,, k,, > 0. The energy
awareness for a specific location ¢ on the water current is expressed as

¢ = arctan (5(q), a(q)) (14)
¢= tanh(z®+9?), (15)

where ¢ is the angular velocity and 1 is the linear velocity of the flow field.

5.2 Simulation Results

A simulated Tethys-like LRAUV with the above kinematics model can take nine actions that include
actions toward eight compass directions, i.e., N, NE, E, SE, S, SW, W, NW along with drift (idle). The
task for the vehicle is to reach a designated goal state with an energy-aware trajectory by utilizing water

This is a provisional file, not the final typeset article 12
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currents as much as possible. In our simulation, when LRAUYV takes an action, the outcome of that action
could be any of three observations, i.e., goal, intermediate, and outside.

To incorporate the water flow pattern in our simulation, we used the ROMS (Shchepetkin and McWilliams,
2005) predicted ocean current data observed in the SCB region. The 3-D ocean environment was taken
into account as a simulated environment for the Tethys movements having six 2-D ocean surfaces at six
different water current layers or depths (e.g., 0 m, 5 m, 10 m, 15 m, 20 m, and 25 m). Each 2-D ocean
current layer is tessellated into a grid map. Each tessellated water current layer is a 21 x 29 grid map with
a spatial resolution of 1 kmx 1 km.

The feedback plan synthesis using the MCTS algorithm depends not only on the distance between initial
and goal locations but also on the ocean dynamics. In our experiments during the rollout step of the MCTS
algorithm, we use 50 trials for each action over an approximated belief state. We then employ the particle
filter to evaluate the rollout outcomes with respect to the goal location. When selecting the next best action
using Algorithm 3| we utilize a simple PID controller to follow the high-level action.

We implement our energy-aware feedback planning algorithm for many water current layers from our
ROMS ocean current prediction data. We obtain a set of feedback plans as an output from our layer-
wise feedback plan synthesis. Figure ?? illustrates the executed trajectories of the vehicle applying the
synthesized feedback plans for the same pair of given initial and goal locations. For these experiments,
we use longitude and latitude coordinates to represent the vehicle locations. We first set the vehicle’s
initial location at (—117.84, 33.54) and the vehicle needs to reach within 1 km radius of the goal location
(—118.22,33.54). We then show the results for the different water current layers subject to time-varying
ocean currents taking 3 hours of water currents into account. A couple of videos related to these experiments
can be found at https://youtu.be/FEk6QghDwgl and at https://youtu.be/9dnCam8JFTg. Table 1| shows the
execution statistics of our synthesized feedback plans in terms of trajectory lengths and plan synthesis
times. We assume that our vehicle operates at a constant velocity of 4.5 km/h.

We also execute trajectories applying the synthesized feedback plan for the same water current layer
for the varying pairs of initial and goal locations that are illustrated in Figure ??. We observe that the
trajectories of our feedback plans are not straight lines. This is because our energy-aware feedback plan
chooses an action using the ocean dynamics in Algorithm [ Therefore, the actions are selected to facilitate
drifting through water currents, as mentioned in Section 4.3

Water current Hour Initial location Goal location Trajectory | Plan synthesis
layer (longitude, latitude) | (longitude, latitude) | length (km) time (s)
’ 1 (-117.84, 33.54) (-118.22, 33.54) 4.33 0.61
2 (-117.84, 33.54) (-118.22, 33.54) 4.05 0.49
4 1 (-117.84, 33.54) (-118.22, 33.54) 4.06 0.36
3 (-117.84, 33.54) (-118.22, 33.54) 3.44 0.42
6 1 (-117.84, 33.54) (-118.22, 33.54) 4.38 0.41
2 (-117.84, 33.54) (-118.22, 33.54) 4.38 0.45

Table 1. Comparison of executed trajectory lengths using synthesized feedback plans for several water
current layers along with plan synthesis times for a number of hours.
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6 CONCLUSION AND DISCUSSION

This article presents an energy-aware feedback planning method for an LRAUV utilizing its kinematic
model in an underwater environment under motion and sensor uncertainties. First, we generated flow fields
for several water current layers from a concatenated ROMS ocean current prediction data to introduce
the ocean dynamic model. Our method then synthesizes energy and computationally efficient feedback
plans on goal-constrained belief spaces for many water current layers using the ocean dynamic model and
sampling. Our simulation results of the execution of synthesized feedback plans demonstrated our method’s
practical and potential application. There are several exciting directions to follow up on this research.

Our POMDP solution approach uses nine actions (eight neighboring cells and drift) for planning, which
fits the scales of the ROMS resolutions (kilometers) and allows us to treat the LRAUV as a unicycle vehicle.
We believe that our approach can be easily generalized to incorporate modeling AUV dynamics in shorter
spatial scales. We are currently using our planner, but a realistic AUV simulator (Manhaes et al., 2016),
could be used as a black box to generate the next states. Paring our planner with a physically realistic
simulation will help us avoid complicated system identification issues and extend our methodology’s
range of applications. Additionally, we would like to incorporate an initial amount of available energy, the
actuator efficiency, and the drag effect in our energy model.

One desirable feature of AUV deployments in many scenarios is avoiding constant resurfacing due to
energy, stealth, and collision safety constraints. The vehicle can collide with ships and jeopardize its
mission. We are currently extending our framework to incorporate dynamic obstacles on the surface,
representing, for example, boats and other vessels. We are interested in the short term to generalize this idea
to other external motion fields that can be used by autonomous vehicles to use their resources efficiently.
Aerial platforms such as blimps and balloons (Wolf et al., 2010; Das et al., 2003) can provide another
exciting study case for our ideas.
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