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ABSTRACT2

Ocean ecosystems have spatiotemporal variability and dynamic complexity that require a long-3
term deployment of an autonomous underwater vehicle for data collection. A new generation of4
long-range autonomous underwater vehicles (LRAUVs), such as the Slocum glider and Tethys-5
class AUV, has emerged with high endurance, long-range, and energy-aware capabilities. These6
new vehicles provide an effective solution to study different oceanic phenomena across multiple7
spatial and temporal scales. For these vehicles, the ocean environment has forces and moments8
from changing water currents which are generally on the order of velocity of the operational9
vehicle velocity. In this scenario, it is not practical to generate a simple trajectory from an initial10
location to a goal location in an uncertain ocean, as the vehicle can deviate significantly from the11
prescribed trajectory.12

Since state estimation remains challenging in underwater conditions, feedback planning must13
incorporate state uncertainty that can be framed into a stochastic energy-aware path planning14
problem. This article presents an energy-aware feedback planning method for an LRAUV utilizing15
its kinematic model in an underwater environment under motion and sensor uncertainties. Our16
approach uses ocean dynamics from a predictive ocean model to understand the water flow17
pattern and introduces a goal-constrained belief space to make the feedback plan synthesis18
computationally tractable. Energy-aware feedback plans for different water current layers are19
synthesized through sampling and ocean dynamics. The synthesized feedback plans provide20
strategies for the vehicle that drives it from an environment’s initial location toward the goal21
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Figure 1. Two images of a Tethys-class vehicle deployed in the ocean (MBARI, 2009).

location. We validate our method through extensive simulations involving the Tethys vehicle’s22
kinematic model and incorporating actual ocean model prediction data.23

Keywords: feedback planning, energy-aware, long-range autonomous underwater vehicles, predictive ocean model, kinematic model,24
observation model25

1 INTRODUCTION
Ocean ecosystems are complex and have high variability in both time and space. Consequently, ocean26
scientists must collect data over long periods to obtain a synoptic view of ocean ecosystems and understand27
their spatiotemporal variability. To support data collection, autonomous underwater vehicles (AUVs) are28
increasingly being used for studying different oceanic phenomena such as oil spill mapping (Kinsey et al.,29
2011), harmful algal blooms (Das et al., 2010), phytoplankton and zooplankton communities (Kalmbach30
et al., 2017), and coral bleaching (Manderson et al., 2017). These AUVs can be classified into two categories:31
(i) propeller-driven vehicles, such as the Dorado class, which can move fast and gather numerous sensor32
observations but are limited in deployment time to multiple hours; and (ii) minimally-actuated vehicles33
such as drifters, profiling floats, and gliders that move slower, but can remain on deployment for tens of34
days to multiple weeks.35

A new breed of the long-range autonomous underwater vehicle (LRAUV), i.e., Tethys, combines the36
advantages of both minimally-actuated and propeller-driven AUVs (Hobson et al., 2012). The LRAUV37
can move quickly for hundreds of kilometers, float with water currents, and carry a broad range of data38
collection sensors. It can also control its buoyancy for changing depths in the water and the angle at which39
it moves through the water. By mixing modalities, this vehicle can be deployed in the water for weeks at a40
time and navigate challenging ocean current conditions for short time periods. Two images of deployed41
Tethys AUVs are shown in Figure 1. A planning and control technique for this vehicle is critical to increase42
its autonomy and generate mission trajectories during long-range operations. The execution of a planned43
trajectory for this vehicle is also challenging due to ocean currents’ variability and uncertainty. Thus, it44
is not practical to generate a simple navigation trajectory from an initial location to a goal location in a45
dynamic ocean environment because the vehicle can deviate from its trajectory due to motion noise and46
cannot estimate its state accurately in underwater environments due to sensor noise.47

As such, we consider the use of feedback motion planning for an LRAUV by combining its kinematic48
modeling and an ocean dynamic model while also incorporating motion and sensor uncertainties. A49
feedback plan is calculated over each ocean current layer in an underwater environment for a vehicle50
inspired by our previous work (Alam et al., 2020) so that the vehicle can adapt its trajectory from51
any deviated state in the presence of any noise or modeling errors. Furthermore, this feedback plan52
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is crucial when the vehicle state is not fully observable from sensor readings. For such vehicles with53
partially observable states, a Partially Observable Markov Decision Process (POMDP) provides a standard54
mathematical model for vehicle motion planning under uncertainties. Two major factors make solving our55
problem particularly difficult: (a) for the POMDP formulation, finding the optimal solution is formally hard56
(NP-hard or PSPACE-hard), and (b) our objective is to compute stochastic energy-aware feedback plans57
using ocean dynamics in contrast to other prior POMDP feedback planning methods that calculate the58
stochastic shortest path. A large body of existing research focuses on the stochastic shortest path problem59
without considering energy constraints. However, it may be unrealistic to assume that the vehicle has60
unlimited resources in many applications. A more realistic model would consider that an autonomous61
vehicle has limited stored energy, which continually depletes as it operates. Here, we address this constraint62
and propose an extension to the POMDP framework that includes energy awareness. Although energy63
awareness should take into account an initial energy condition, the efficiency of actuation, and the drag64
effect, our method mostly utilizes ocean currents in our calculations.65

Contributions: In this article, we present a method to synthesize feedback plans for an LRAUV in an66
underwater environment under motion and sensor uncertainties. First, we develop an ocean dynamic model67
from ocean current prediction data. Second, a goal-constrained belief space is introduced to make the68
feedback plan synthesis computationally tractable. Finally, energy-aware feedback plans for several water69
current layers are synthesized by utilizing sampling and the ocean dynamic model.70

A preliminary version of this article appeared in (Orioke et al., 2019). This article is fundamentally71
different in that it extends (Orioke et al., 2019) by incorporating motion uncertainty and sensor uncertainty72
coupled with energy awareness from water flow of an underwater environment within a modified POMDP73
framework.74

2 RELATED WORK
The feedback mission control of autonomous underwater vehicles in dynamic and spatiotemporal aquatic75
environments has attracted a great deal of interest. A feedback trajectory tracking scheme was developed for76
an AUV in a dynamic oceanic environment with modeled and unmodeled uncertainties (Sanyal and Chyba,77
2009). An informative feedback plan was generated for AUVs to visit essential locations by estimating78
Kriging Errors from spatiotemporal fields (Reis et al., 2018). An obstacle avoidance method (Kawano,79
2006) is presented, where an MDP-based re-planner considers only the geometrical properties of obstacles80
and the dynamics and kinematics of an AUV to find and track its target path. An adaptive mission plan81
for an AUV according to its available resources, such as battery and memory usage, is proposed to add or82
remove locations for data collection tasks in underwater environments (Harris and Dearden, 2012).83

A finite-state automata-based supervisory feedback control (Xu and Feng, 2009) is presented for obstacle84
avoidance by an AUV. A temporal plan is calculated in (Cashmore et al., 2014) for AUV mission85
control that optimizes the time taken to complete a single inspection tour. A feedback and replanning86
framework (Cashmore et al., 2014) is integrated along with the temporal plan in the Robot Operating87
System (ROS). Sampling Based Model Predictive Control (SBMPC) (Caldwell et al., 2010) is utilized to88
simultaneously generate control inputs and feasible trajectories for an AUV in the presence of nonlinear89
constraints.90

Open-loop trajectory design methods (Smith et al., 2010; Chyba et al., 2009) drive an AUV from a given91
initial location to the desired goal location, minimizing a cost in terms of energy and time taken by the92
vehicle. The implementation of open-loop trajectories for AUVs works well in environments without any93
model uncertainties. In our previous work (Alam et al., 2018a, 2020), we have proposed an open-loop94
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approach for solving the problem of deploying a set of minimally-actuated drifters for persistent monitoring95
of an aquatic environment. In our another work (Alam et al., 2018b), we predicted the localized trajectory96
of a drifter for a sequence of compass observations during its deployment in a marine environment. We97
presented a closed-loop approach (Alam et al., 2018b) when an AUV has a considerable unpredictability of98
executing its action in a dynamic marine environment. Moreover, the previous studies (Hobson et al., 2012;99
Bellingham et al., 2010) on the Tethys AUV described the mission and other capabilities of the vehicle.100
However, there is no work on the development of a planning algorithm for controlling the vehicle.101

Various types of rewards modification in POMDPs have been investigated in previous research102
efforts (Kim et al., 2019; Lee et al., 2018). Typically, the reward function in POMDPs is designed103
to solve the stochastic shortest path problem, where the goal is to compute a feedback plan that reaches a104
target state from a known initial state by maximizing the expected total reward. From a motion planning105
point of view, the reward can be replaced by a cost, where the goal is to minimize the expected total cost.106
In both cases, the sequence of rewards or costs, however, can be aggregated by considering the discounted107
reward (cost) or the average reward (cost).108

A point-based algorithm to calculate approximate POMDP solutions is presented combining the full109
and partial observable components of an AUV’s state to reduce the dimension of its belief space (Ong110
et al., 2009). An efficient point-based POMDP algorithm for AUV navigation (Kurniawati et al., 2008)111
exploiting the optimally reachable states is developed to improve computational efficiency. A point-based112
POMDP approach (Kurniawati and Patrikalakis, 2013) is presented, where the original solution is updated113
by modifying a set of sample beliefs. The planning for hydrothermal vent mapping problems using114
information from plume detections is modeled as a POMDP utilizing the reachable states as the current115
state of an AUV (Saigol et al., 2009). In this work, an information likelihood algorithm is proposed turning116
the POMDP into an information state MDP. An online POMDP solver (Kurniawati and Yadav, 2016)117
based on an adaptive belief tree is proposed to improve the existing solution and update the solution when118
replanning is needed in dynamic environments.119

To the best of our knowledge, this is the first work for synthesizing energy-aware feedback plans from a120
POMDP solution for an underwater vehicle using water flow under motion and sensor uncertainties. In121
our work, we utilize an LRAUV’s sensor readings to control its mission operation, taking into account its122
several drifting and actuation capabilities.123

3 PRELIMINARIES
In this section, we describe a representation of an underwater environment and motion and observation124
(sensor) models for our vehicle with relevant definitions. Then, we formulate our problem of interest.125

First, we consider a 3-D environment where a workspace is an ocean environment denoted asW ⊂ R3.126
The workspace is divided into a set of 2-D water current layers at different depths of the environment127
which are represented by the third dimension. Let L be the total number of water current layers in the128
environment.129

DEFINITION 3.1 (Workspace). The workspace is defined asW = W1 ∪W2 ∪ · · · ∪WL. At each current130
layer, we model the workspace Wl ⊂ R2, where l ∈ {1, . . . , L}, as a polygonal environment. Let Ol ⊂ R2131
be the land and littoral region of the environment at each layer which is considered an inaccessible region132
for the vehicle. The free water space at each current layer is composed of all navigable locations for the133
vehicle, and it is defined as El = Wl \ Ol. The free water space in the whole workspace is denoted by134
E = E1∪E2∪ · · · ∪EL. We discretize each workspace layer Wl as a 2-D grid. Each grid point or location,135
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denoted as q, has a geographic coordinate in the form of longitude, latitude, and depth (water current136
layer) q = (x, y, l), where x, y ∈ R and l ∈ {1, . . . , L}.137

Second, in our vehicle motion model, we incorporate noise and uncertainty in the vehicle’s movement to138
account for the modeling error and unmodeled dynamics.139

DEFINITION 3.2 (Motion Model). The state space for the vehicle is defined as X = E ×Θ in which Θ140
is the set of angles such that θ ∈ Θ, and θ represents the vehicle’s orientation. At time t, the vehicle state141
in the state space is represented by xt = (xt, yt, lt, θt) in which (xt, yt, lt) denotes the vehicle’s position in142
the free water space, and θt provides the vehicle’s orientation.143

The motion model f of the vehicle can be written as144

xt+1 = f(xt, ut, dt), (1)

where xt is the vehicle state, dt is motion noise, and ut is the action belonging to a set of admissible actions145
U such that ut ∈ U .146

Third, it is assumed that our vehicle can observe its positions and the goal location with uncertainties due147
to imperfect sensor readings and the dynamic nature of an underwater environment.148

DEFINITION 3.3 (Observation Model). Let Y be the observation space, which is the set of all possible149
sensor observations y ∈ Y , the vehicle receives. The observation model h of the vehicle can be represented150
as below.151

yt = h(xt, wt), (2)

where wt denotes sensor noise.152

It is challenging to plan in an uncertain, stochastic environment when there are motion and observation153
uncertainties in a vehicle model. To formulate this planning problem, it is necessary to connect hidden154
states and observations of our vehicle. A generic model in this context is Partially Observable Markov155
Decision Processes (POMDPs).156

DEFINITION 3.4 (POMDP). A POMDP is defined by a tuple P = (X,U, f , R, Y,h, γ), where157

• X is a finite set of states.158

• U is a finite set of actions, available to the vehicle.159

• f(x, u, d,x′) = p(x′|x, u, d) is a probabilistic transition function, which defines the probability of160
moving to a state x′ ∈ X after taking an action u ∈ U and sustaining a noise d in a state x ∈ X .161

• R(x, u) is a reward function, which defines a real-valued reward after taking an action u ∈ U in a162
state x ∈ X .163

• Y is a finite set of observations for the vehicle.164

• h(x′, u,y) = p(y|x′, u) is a probabilistic observation function, which defines the probability of165
observing y ∈ Y after taking an action u ∈ U and reaching a state x′ ∈ X .166

• γ ∈ [0, 1) is a discount factor.167
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Due to sensor noise, observations of our vehicle provide only partial information over the states. Planning168
with partial information can be framed as a search problem in a belief space. Let B be the belief space.169

DEFINITION 3.5 (Belief). A belief state bt ∈ B of the vehicle is defined as a posterior distribution over170
all possible states given the past actions and sensor observations bt = (xt|u0, . . . , ut−1,y0, . . . ,yt). The171
belief state bt can be recursively updated with the following transition function τ (Kim et al., 2019)172

bt = τ(bt−1, ut−1,yt), (3)

in which the next belief state depends only on the current belief state, action, and observation.173

Typically, the POMDP solution can be found by solving the equivalent belief MDP where every belief is174
a state.175

DEFINITION 3.6 (Belief MDP). An equivalent belief MDP is defined by a tuple P = (B,U, τ, R, γ),176
where177

• B is the set of belief states over the POMDP states.178

• U is a finite set of actions, available to the vehicle as for the original POMDP.179

• τ is the belief state transition function.180

• R(b, u) is the reward function on belief states.181

• γ ∈ [0, 1] is a discount factor equivalent to the γ in the original POMDP.182

A feedback plan is called a solution to a belief MDP problem if it causes the goal state to be reached183
from every belief state in B. Let bg ∈ B be a goal belief state of the vehicle at any water current layer of184
the environment. Our objective of the article is to compute a feedback plan for our vehicle.185

DEFINITION 3.7 (Feedback Plan). A feedback plan π is defined as a function over the belief space186
π : B → U to produce an action π(b) = u ∈ U , for a belief state b ∈ B, to reach the goal belief state bg.187

The value function of a feedback plan π is computed from the expected discounted reward at the current188
belief state b as follows:189

Vπ(b) = E

( ∞∑
t=0

γtR(bt, π(bt)|b0)
)
, (4)

where γ is the discount factor, and b0 is the initial belief state. This value function is maximized for the190
optimal feedback plan π∗ as follows:191

π∗(b) = arg max
π

Vπ(b), ∀b ∈ B. (5)

3.1 Problem Formulation192

In our 3-D workspaceW , we account for different localization uncertainties due to sensor noise for its193
divided 2-D water current layer at different depths. Specifically, we consider an almost reliable localization194
on the water surface layer (first water current layer) since the GPS information is accessible to the vehicle195
on the water surface. As the vehicle goes deeper in the water column, its localization uncertainty is assumed196
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to increase due to the implied time increase between potential GPS fixes, as illustrated in Figure 2. In197
that circumstance, the vehicle’s state is estimated using dead-reckoning only, and the vehicle is required198
to navigate to the water surface periodically to keep the localization uncertainty tractable. Thus, the199
localization uncertainty for the vehicle decreases with its upward motion in the water column; it could200
conceivably quickly surface for a GPS fix with minimal time and/or energy consumption.

Figure 2. Localization uncertainty of a vehicle increases as it goes down along different water current
layers.

201

When the vehicle is uncertain about its state due to sensor noise and has also motion uncertainty, it is202
crucial to compute a feedback plan that maps every belief state to an action. In computing a feedback203
plan, we take the environmental water flow into account as an ocean dynamic model. We assume that204
this ocean dynamic model and the reward function are known a-priori. Our reward function is strictly205
positive, monotonically increasing toward the goal belief state, and additive. Unlike many prior POMDP206
feedback planning algorithms that compute the stochastic shortest path, our goal is to compute the stochastic207
energy-aware path using the ocean dynamic model. Due to the curse of dimensionality of the belief space,208
it is computationally intractable to synthesize feedback plans for multiple water current layers concurrently.209
Therefore, we assume that a high-level planner provides an intermediate goal at each water current layer.210
This motivates us to formulate the following problem to synthesize water current layer-wise feedback plans211
for our vehicle.212

Problem Statement: Given an ocean environment E and its dynamic model, the action set of our vehicle213
U , the vehicle motion model, and a goal belief state bg, compute a feedback plan π for each water current214
layer that drives the vehicle from a belief state b of the environment to reach the goal belief state bg of the215
same water current layer.216

4 METHODOLOGIES
In this section, we detail an energy-aware feedback planning method that utilizes sampling and the ocean217
dynamic model for solving the problem formulated in Section 3.218

4.1 Ocean Dynamic Model219

4.1.1 Data Acquisition220

We utilize the Regional Ocean Modeling System (ROMS) (Shchepetkin and McWilliams, 2005) predicted221
oceanic current data in the Southern California Bight (SCB) region, CA, USA, as illustrated in Figure 3(a),222
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which is contained within 33◦17′60′′ N to 33◦42′ N and −117◦42′ E to −118◦15′36′′ E. ROMS is a free-223
surface, split-explicit, terrain-following, nested-grid mode, and an extensively used ocean model. ROMS224
is also an open-source ocean model that is widely accepted and supported throughout the oceanographic225
and modeling communities. ROMS primarily assimilates surface velocities from HF radar data, and it is226
assumed that the forecasting for near-surface velocities is accurate in direction and magnitude.227

The four dimensions of 4-D ROMS current prediction data are longitude, latitude, depth, and time. The228
ROMS current prediction data are given at depths from 0 m to 125 m and with 24 hours forecast for each229
day. Each ROMS current velocity prediction is given at depths from 0 m to 4000 m, with a 12-h hindcast, a230
12-h nowcast, and a 48-h forecast each day. The first 24-h comprising hindcasts and nowcasts of each day231
are the most accurate ocean current prediction in the ROMS model. In our work, we utilize a concatenation232
of the earliest 24-h of each prediction for each day for 30 days of predictions. The three components of233
oceanic currents are northing current (α), easting current (β), and vertical current (λ). These components234
are given based on the four dimensions (time, depth, longitude, and latitude).235
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Figure 3. (a) The area of interest in the SCB region, California. (b) Flow fields generated from ROMS
oceanic current prediction data.

4.1.2 Water Flow Characterization236

We create flow fields at several water current layers from the ROMS ocean current prediction data. Ocean237
current prediction data for a specific time and at a particular water current layer can be represented as a238
flow field. Let the flow field on a location q at a particular water current layer of the environment El be239
F (q). For a location q at a particular water current layer, the easting component along the latitude axis is240
denoted by α(q), the northing component along the longitude axis is denoted by β(q), and the vertical241
component at that water current layer is denoted by λ(q). The flow field based on two components for a242
location q at that water current layer is specified as:243

F (q) = α(q)i+ β(q)j, (6)

where i and j are unit vectors along the latitude and longitude axes, respectively.244

The vertical component of the ocean current λ(q) at several water current layers is considered zero. Thus,245
we create flow fields for three water current layers as illustrated in Figure 3(b). Then, we find flow lines of246
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the water flow from these flow fields. Flow lines of the water flow over the flow field F are the trajectories247
or paths traveled by an omnidirectional vehicle at the given water current layer whose vector field is the248
flow field.249

4.2 Goal-Constrained Belief Space250

It is computationally expensive to compute a feedback plan for a given goal belief state bg of a water251
current layer under a finite horizon because of the high dimensional belief space B (Papadimitriou and252
Tsitsiklis, 1987). Therefore, we utilize a reachable belief space R(b0) containing belief states from an253
initial belief state b0 to compute the plan for the water current layer Wl. The reachable belief spaceR(b0)254
is much smaller than B in terms of the number of belief states. Then, we construct a goal-constrained255
belief spaceR∗(b0, bg) containing belief states from an initial belief state b0 that drive the AUV to the goal256
belief state bg of the same water current layer Wl. The goal-constrained belief spaceR∗(b0, bg) is much257
smaller than the reachable belief space R(b0) since R∗(b0, bg) is pruned from B. This goal-constrained258
belief space R∗(b0, bg) leads to a computationally efficient synthesis of the optimal feedback plan π∗259
for the water current layer Wl because any vehicle state sample x in π∗ is taken within R∗(b0, bg). The260
representation of R∗(b0, bg) is represented as an ellipse with x0 ∼ b0 and xg ∼ bg as focal points. This261
R∗(b0, bg) can be expressed as262

R∗(b0, bg) = {b ∈ B
∣∣ ||x0 − x||2 + ||xg − x||2 < δ}, (7)

where x0 ∼ b0, xg ∼ bg, x ∼ b, and δ is a threshold value which can be tuned to obtain a desiredR∗(b0, bg).263
An exampleR∗(b0, bg) is illustrated in Figure 4.264
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Figure 4. The blue elliptical goal-constrained belief spaceR∗(b0, bg) is given as prior knowledge for the
green goal belief state bg from the red initial belief state b0 of the vehicle.

4.3 Energy-Aware Feedback Plan Synthesis265

We develop our energy-aware feedback planning algorithm based on the Partially Observable Monte266
Carlo Planning (POMCP) algorithm (Silver and Veness, 2010). The POMCP algorithm assumes that the267
optimal plan can be synthesized by aggregating rewards of the available actions from each state using the268
Monte-Carlo Tree Search (MCTS) algorithm. It is an approximate method that does not consider energy269
awareness, but it is known to extract near-optimal policies in finding the stochastic shortest path where270
optimal rewards depend on the distance from the goal state. Furthermore, the POMCP algorithm allows us271

Frontiers 9



Alam et al. Towards Energy-Aware Feedback Planning

Algorithm 1: PREFERRED ACTION(h, x, U, F,R∗)
Input: h, x, U, F,R∗ – History of belief states, State, Actions, Flow field, Goal-constrained belief space
Output: A – A set of preferred actions

1 A ← ∅
2 for each u ∈ U do
3 (x′, y, r) ∼ G(x, a, F ) // enforcing the goal-constrained belief space

4 if x′ ∈ R∗ then
5 A ← A∪ {u}

6 return A

Algorithm 2: SEARCH (h, F,R∗)
Input: h, F,R∗ – History of belief states, Flow field, Goal-constrained belief space
Output: π∗ – An optimal feedback plan

1 for t← 1 to T do
2 if h == ∅ then
3 x ∼ b0
4 else
5 x ∼ B(h)

6 Simulate (x, h, 0, F,R∗)
7 π∗ = arg max

b
V (b)

8 return π∗

to utilize the domain knowledge. In our work, we use the domain knowledge of the reachable belief space272
R∗ to reduce the search space for choosing actions. Instead of searching actions over all possible events273
that could happen with low probabilities, the reachable belief space constraints the action search space for274
the most likely events.275

To overcome the challenges associated with solving belief space planning, we first define a set of discrete276
actions and a set of discrete outcomes. For an LRAUV planning to reach a goal location, we consider nine277
actions that include actions toward eight compass directions, i.e., N, NE, E, SE, S, SW, W, NW along278
with drift (idle). The outcomes of actions could be three observations, i.e., goal, intermediate, and outside.279
In other words, the goal observation refers to the vehicle reaches to the goal location, the intermediate280
observation refers to it moves toward the goal location, and the outside observation refers to it goes beyond281
the goal-constrained belief space. Since the outcome of any action is not deterministic, the LRAUV must282
consider all three observations when simulating an action. For a given state x, Algorithm 1 provides a set283
of preferred actions A based on the goal-constrained belief state. Algorithm 2 returns the optimal feedback284
plan π∗ for a water current layer from a history of belief states.285

Algorithm 3 simulates an action and keeps track of its outcome. We refer to a complete simulated trial as286
a rollout where we keep track of actions and their outcomes as history h. To plan with energy-awareness,287
we incorporate the ocean dynamic model F in Algorithm 4 as a prior to the simulator G. Therefore, during288
a rollout, the set of available preferred actions and their outcomes take advantage of the prior knowledge.289
In Algorithm 4, we compute the reward values of actions by considering the flow field. The reward value is290
calculated high when a simulated action takes advantage of the flow field. Otherwise, the reward value291
is calculated low. For instance, if the vehicle simulates a particular action in a rollout, using transition292
probabilities and the ocean dynamic model, we first generate a simulated trajectory and then evaluate the293
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Algorithm 3: SIMULATE (x, h, β, F,R∗)
Input: x, h, β,R∗ – State, History of belief states, Depth, Flow field, Goal-constrained belief space
Output: R – Reward

1 if γβ < ε then
2 return 0

3 if h 6∈ T then
4 A ← PREFERRED ACTION(h, x, U, F,R∗)
5 for each a ∈ A do
6 T (ha)← (Ni(ha), Vi(ha), ∅)
7 return ROLLOUT(x, h, β, F )

8 a← arg max
b
V (hb) + c

√
logN(h)

N(hb)

9 (x′, y, r)← G(x, a, F ) // considering energy awareness from the flow field

10 R← r + γ · SIMULATE(x′, hay, β + 1, F,R∗)
11 B(h)← B(h) ∪ {x}
12 N(h)← N(h) + 1
13 N(ha)← N(ha) + 1

14 V (ha)← V (ha) +
R− V (ha)

N(ha)
15 return R

Algorithm 4: ROLLOUT (x, h, β, F )
Input: x, h, β, F – State, History of belief states, Depth, Flow field
Output: r – Step reward

1 if γβ < ε then
2 return 0

3 a ∼ πrollout(h, .)
4 (x′, y, r)← G(x, a, F ) // evaluating an action with energy awareness from the flow field

5 return r + γ · ROLLOUT(x′, hay, β + 1, F )

trajectory with respect to the goal location. To evaluate a simulated trajectory, we employ the particle294
filter, where each state on the trajectory is considered as a particle and the goal location can be thought295
of as a landmark (see this work (Kim et al., 2019) for a detailed explanation of particle filter in the robot296
localization). When considering the next step of this rollout, the LRAUV knows which action from the set297
of available actions is more likely to drive it to the goal location by computing the reward associated with298
each action. The changes from the standard POMCP are highlighted in blue in our algorithms.299

5 EXPERIMENTAL RESULTS
In this section, we examine a Tethys-like LRAUV’s kinematic model and evaluate its navigation solution in300
an underwater environment under motion and sensing uncertainties. The experiments are conducted on a301
Unix/Linux computer with Intel Core i7 4.5GHz processor and 32GB memory.302

5.1 LRAUV Kinematic Model303

The vehicle motion is noisy due to the inherent dynamic nature of water flow of the underwater304
environment. The vehicle observation model suffers uncertainty in measuring distances and locations in305
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sensor-denied, such as GPS, underwater environments. We modeled our vehicle motion and observation306
models under Gaussian noise. This setup also makes our Tethys navigation problem a POMDP problem.307

Let El ∈ Rn be the state space of a water current layer Wl and U ∈ Rm be the action space of the vehicle,308
where m ≤ n. Let Y ∈ Rp be the observation space of the vehicle sensors. The state transition model of309
our vehicle similar to a unicycle-model can be written as310

xt+1 = xt + utcos(θt) (8)

yt+1 = yt + utsin(θt) (9)

θ̇t = ωt. (10)

We incorporate water flow fields as prior knowledge in our motion model for the vehicle. In other words,311
the next transition state of the vehicle is influenced by the water flow field of a current layer as well as its312
actions. The unicycle motion and observation models for the vehicle can be expressed as313

ẋ = f(xt, ut, dt) = Atxt +Btut + dt dt ∼ N (0, Dt) (11)

ẏ = h(xt, wt) = Ctyt + wt wt ∼ N (0,Wt), (12)

in which A is the state transition matrix of dimension n×n, B is the action transition matrix of dimension314
n ×m, C is the sensor observation matrix of dimension p × n, and dt and wt represent the motion and315
sensor noise from a zero-mean Gaussian with variance Dt and Wt respectively.316

The importance of incorporating water flow fields as the ocean dynamics in our motion model is that317
a Tethys-like vehicle is deployed to navigate through the water flow. However, the vehicle can leverage318
pressure, velocity, and acceleration of flow fields at times to perform a drifting action and save energy319
in its long-term mission. It is also important to note that motion and sensor noises provide motion and320
observation uncertainties but flow fields can be utilized for performing a passive action (drift) with no321
actuation and thus saving energy.322

The updated observation model with energy awareness from the ocean dynamics can be expressed as323

ẏ = h(xt, wt) = Ctyt + wt +Dũ, (13)

in which the energy awareness ũ = [φ, ψ] and its weight D = diag(ku, kw), where ku, kw > 0. The energy324
awareness for a specific location q on the water current is expressed as325

ψ = arctan (β(q), α(q)) (14)

φ = tanh(x2 + y2), (15)

where φ is the angular velocity and ψ is the linear velocity of the flow field.326

5.2 Simulation Results327

A simulated Tethys-like LRAUV with the above kinematics model can take nine actions that include328
actions toward eight compass directions, i.e., N, NE, E, SE, S, SW, W, NW along with drift (idle). The329
task for the vehicle is to reach a designated goal state with an energy-aware trajectory by utilizing water330
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currents as much as possible. In our simulation, when LRAUV takes an action, the outcome of that action331
could be any of three observations, i.e., goal, intermediate, and outside.332

To incorporate the water flow pattern in our simulation, we used the ROMS (Shchepetkin and McWilliams,333
2005) predicted ocean current data observed in the SCB region. The 3-D ocean environment was taken334
into account as a simulated environment for the Tethys movements having six 2-D ocean surfaces at six335
different water current layers or depths (e.g., 0 m, 5 m, 10 m, 15 m, 20 m, and 25 m). Each 2-D ocean336
current layer is tessellated into a grid map. Each tessellated water current layer is a 21× 29 grid map with337
a spatial resolution of 1 km×1 km.338

The feedback plan synthesis using the MCTS algorithm depends not only on the distance between initial339
and goal locations but also on the ocean dynamics. In our experiments during the rollout step of the MCTS340
algorithm, we use 50 trials for each action over an approximated belief state. We then employ the particle341
filter to evaluate the rollout outcomes with respect to the goal location. When selecting the next best action342
using Algorithm 3, we utilize a simple PID controller to follow the high-level action.343

We implement our energy-aware feedback planning algorithm for many water current layers from our344
ROMS ocean current prediction data. We obtain a set of feedback plans as an output from our layer-345
wise feedback plan synthesis. Figure ?? illustrates the executed trajectories of the vehicle applying the346
synthesized feedback plans for the same pair of given initial and goal locations. For these experiments,347
we use longitude and latitude coordinates to represent the vehicle locations. We first set the vehicle’s348
initial location at (−117.84, 33.54) and the vehicle needs to reach within 1 km radius of the goal location349
(−118.22, 33.54). We then show the results for the different water current layers subject to time-varying350
ocean currents taking 3 hours of water currents into account. A couple of videos related to these experiments351
can be found at https://youtu.be/FEk6QghDwgI and at https://youtu.be/9dnCam8JFTg. Table 1 shows the352
execution statistics of our synthesized feedback plans in terms of trajectory lengths and plan synthesis353
times. We assume that our vehicle operates at a constant velocity of 4.5 km/h.354

We also execute trajectories applying the synthesized feedback plan for the same water current layer355
for the varying pairs of initial and goal locations that are illustrated in Figure ??. We observe that the356
trajectories of our feedback plans are not straight lines. This is because our energy-aware feedback plan357
chooses an action using the ocean dynamics in Algorithm 4. Therefore, the actions are selected to facilitate358
drifting through water currents, as mentioned in Section 4.3.359

Water current Hour Initial location Goal location Trajectory Plan synthesis
layer (longitude, latitude) (longitude, latitude) length (km) time (s)

2 1 (-117.84, 33.54) ( -118.22, 33.54) 4.33 0.61
2 (-117.84, 33.54) ( -118.22, 33.54) 4.05 0.49

4 1 (-117.84, 33.54) ( -118.22, 33.54) 4.06 0.36
3 (-117.84, 33.54) ( -118.22, 33.54) 3.44 0.42

6 1 (-117.84, 33.54) ( -118.22, 33.54) 4.38 0.41
2 (-117.84, 33.54) ( -118.22, 33.54) 4.38 0.45

Table 1. Comparison of executed trajectory lengths using synthesized feedback plans for several water
current layers along with plan synthesis times for a number of hours.
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6 CONCLUSION AND DISCUSSION
This article presents an energy-aware feedback planning method for an LRAUV utilizing its kinematic360
model in an underwater environment under motion and sensor uncertainties. First, we generated flow fields361
for several water current layers from a concatenated ROMS ocean current prediction data to introduce362
the ocean dynamic model. Our method then synthesizes energy and computationally efficient feedback363
plans on goal-constrained belief spaces for many water current layers using the ocean dynamic model and364
sampling. Our simulation results of the execution of synthesized feedback plans demonstrated our method’s365
practical and potential application. There are several exciting directions to follow up on this research.366

Our POMDP solution approach uses nine actions (eight neighboring cells and drift) for planning, which367
fits the scales of the ROMS resolutions (kilometers) and allows us to treat the LRAUV as a unicycle vehicle.368
We believe that our approach can be easily generalized to incorporate modeling AUV dynamics in shorter369
spatial scales. We are currently using our planner, but a realistic AUV simulator (Manhães et al., 2016),370
could be used as a black box to generate the next states. Paring our planner with a physically realistic371
simulation will help us avoid complicated system identification issues and extend our methodology’s372
range of applications. Additionally, we would like to incorporate an initial amount of available energy, the373
actuator efficiency, and the drag effect in our energy model.374

One desirable feature of AUV deployments in many scenarios is avoiding constant resurfacing due to375
energy, stealth, and collision safety constraints. The vehicle can collide with ships and jeopardize its376
mission. We are currently extending our framework to incorporate dynamic obstacles on the surface,377
representing, for example, boats and other vessels. We are interested in the short term to generalize this idea378
to other external motion fields that can be used by autonomous vehicles to use their resources efficiently.379
Aerial platforms such as blimps and balloons (Wolf et al., 2010; Das et al., 2003) can provide another380
exciting study case for our ideas.381
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