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Long-Term Autonomy for AUVs Operating Under
Uncertainties in Dynamic Marine Environments

Abdullah Al Redwan Newaz!, Tauhidul Alam?, Gregory Murad Reis?, Leonardo Bobadilla®, and Ryan N. Smith?

Abstract—There has been significant interest in recent years in
the utility and implementation of autonomous underwater and
surface vehicles (AUVs and ASVs) for persistent surveillance of
the ocean. Example studies include the dynamics of physical
phenomena, e.g., ocean fronts, temperature and salinity profiles,
and the onset of harmful algae blooms. For these studies, AUVs
are presented with a complex planning and navigation problem
to achieve autonomy lasting days and weeks under uncertainties
while dealing with resource constraints. We address these issues
by adopting motion, sensing, and environment uncertainties
via a Partially Observable Markov Decision Process (POMDP)
framework. We propose a methodology with a novel extension of
POMDPs to incorporate spatiotemporally-varying ocean currents
as energy and dynamic obstacles as environment uncertainty.
Existing POMDP solutions such as the Cost-Constrained Partially
Observable Monte-Carlo Planner (POMCP) do not account for
energy efficiency. Therefore, we present a scalable Energy Cost-
Constrained POMCP algorithm utilizing the predicted ocean
dynamics that optimizes energy and environment costs along with
goal-driven rewards. A theoretical analysis, along with simulation
and real-world experiment results is presented to validate the
proposed methodology.

Index Terms—Long-term autonomy, autonomous underwater
vehicle navigation, uncertainties, energy constraints.

I. INTRODUCTION

ARINE robotic systems continue to increase their abil-

ity to operate independently for progressively longer
periods. Existing systems have demonstrated robust, au-
tonomous operations for multiple hours and even days. How-
ever, persistent (long-term) navigation capabilities will be
critically important for future marine robots as they will be
required to operate over periods of days to weeks. While
current navigation and mapping algorithms can function over
substantial spatial extents, it is currently unclear how to extend
these to deal with human-scale spatial and temporal dimen-
sions, as well as deal with the uncertainty of an ever-changing
environment. As we look to extend our understanding of
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the Earth’s changing environment, we require these marine
robots and robotic systems to comprehend variability across
large-scale spatiotemporal dimensions (> 50 km? and days
to weeks) while reacting to a locally dynamic and uncertain
environment.

To enable long-term autonomy for AUVs, we need to
handle three primary sources of uncertainties [1, [2]: i) mo-
tion uncertainty, which stems from the noise that affects
system dynamics; ii) sensing uncertainty, results from noisy
sensor measurements, which is also referred to as imperfect
state information; and iii) environment uncertainty, caused by
uncertain obstacle locations in the dynamic environment as
illustrated in Fig [T}

Reducing these uncertainties in the marine environment
presents several challenges. First, AUVs have a limited energy
budget (limited battery life) to sustain long-term missions and
are generally unable to simply stop and recharge. Second, the
vehicle motion is significantly impacted by ocean currents,
generally on the order of magnitude of the vehicle velocity.
Third, the vehicle state can not be accurately estimated due
to its error-prone underwater sensor measurements. Fourth,
underwater navigation is likely to be affected by many un-
certain dynamic obstacles such as ships, boats, etc. Despite
these challenges, an AUV needs to successfully navigate the
environment while avoiding collisions and maintaining course
under the aforementioned sensing, motion, and environment
uncertainties and resource constraints.

In this paper, we address the long-term autonomy under un-
certainties along with resource constraints through a Partially
Observable Markov Decision Process (POMDP) framework.
We adopt motion, sensing, and environment uncertainties via
the POMDP framework and provide a theoretical analysis.
This idea is motivated through recent research efforts in
AUV navigation [3| 4] that address motion uncertainty by
framing the problem as a Markov Decision Process (MDP).
Extending these works to include planning for vehicles under
both motion and sensing uncertainties can generally be framed
as a POMDP problem. However, very few prior studies (e.g.,
(5L 6]) utilize a POMDP framework for this application. The
referenced research efforts lack rigorous algorithm and theo-
retic analysis, which we address in this study for applications
to the marine environment.

As a novel extension to the existing literature, we introduce
spatiotemporally-varying ocean currents as energy; an AUV
can save energy by navigating with currents and consume
excessive energy by navigating against currents. As such, we
account for energy costs for ocean currents and introduce
environment costs to avoid collisions with dynamic obstacles
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Fig. 1: An AUV policy execution conducted at North Beach, Miami,
FL, USA. The policy is synthesized while accounting for motion,
sensing, and environment uncertainties.

in our POMDP framework for safe, reliable planning under
uncertainties. To accurately estimate energy costs, we predict
spatiotemporal ocean dynamics using a deep learning model.
Since our POMDP framework optimizes multiple objectives
and it is not straightforward to utilize the Cost-Constrained
POMDP (CC-POMDP) [7], so we extend our POMDP frame-
work to an Energy Cost-Constrained POMDP (ECC-POMDP)
framework that optimizes energy and environment costs along
with goal-driven rewards.

To address the challenges indicated above, we make the
following contributions in this paper: 1) We propose a re-
current neural network (RNN) based learning algorithm for
predicting ocean dynamics in a continuous domain from
real ocean current data; 2) We present an Energy Cost-
Constrained Partially Observable Monte-Carlo Planner (ECC-
POMCP) algorithm for solving the ECC-POMDP problem
in a continuous state space of a marine environment under
motion, sensing, and environment uncertainties that optimizes
the trade-off among the rewards, the energy costs, and the
collision costs; and 3) We analyze the optimality conditions
theoretically for estimating the value function to our presented
ECC-POMCP solution. Our theoretical analysis is validated
extensively through simulations and physical experiments.

II. RELATED WORK

Planning for AUV autonomy under uncertainties and time-
varying ocean currents in marine environments is framed as
a decision-theoretic problem in marine robotics. For instance,
a graph search-based method [8] is presented to plan time
and energy optimal paths in static and time-varying flow
fields. This method did not address uncertainties in ocean
current forecasting and motion. A non-linear robust model
predictive control (NRMPC) [9] method is proposed to com-
pute minimum energy paths subject to time-varying ocean
currents and forecast model uncertainty. This method considers
a bounded uncertainty and depends on the vehicle kinematic
model. Uncertainties in ocean current predictions and navi-
gation are utilized in two stochastic planners that find paths
with minimum risk of collision in an ocean environment [10].
However, these planners lacked a proper uncertainty estimation
method for ocean currents. This limitation was addressed
in their subsequent work [11] by using Gaussian processes
augmented with interpolation variance to measure confidence
in the uncertainty of noisy predictions. They did not minimize
energy consumption in their path planning for AUVs.

The action uncertainty due to ocean currents motivates the
use of MDP for marine vehicles planning [12} [3]]. One of the
methods presented in [4]] is built upon an MDP that computes
a minimum expected energy policy for marine environments
with uncertain and time-varying flow models. This method did
not account for collision-free paths. Time-dependent transition
probabilities and reward values are calculated on tractable
reachable states for a time-varying MDP solution to tackle
ocean disturbances that vary with time [13]. These MDP
solutions are applicable to a discrete state-space representation,
and their accuracy depends on the discretization resolution. To
address this issue, an MDP solution in continuous state space
is proposed in [14] by expressing the value function as a linear
combination of basis functions and approximating the Bellman
equation by a partial differential equation. Nonetheless, these
MDP based solutions do not address sensing and environment
uncertainties in a marine environment.

A sampling-based multi-goal motion planning approach
with Monte-Carlo Tree Search (MCTS) computes roadmap
tours that enable a robot to reach each goal while reduc-
ing the overall distance traveled and the number of times
it recharges [15]]. This discrete planning method accounts
for the energy constraint but does not consider uncertainties
in the robot’s motion and sensing. On the other hand, an
existing POMDP framework in marine robotics [5] considers
only motion and sensor uncertainties in AUV navigation.
In contrast, our work formulates a variant of the POMDP
problem for uncertainties in motion, sensing, and environment
along with energy constraints and plans policies for AUVs.
To the best of our knowledge, this is one of the few studies
that considers dynamic obstacles in marine environments for
planning policies.

IIT. PRELIMINARIES AND PROBLEM FORMULATION

This section begins by defining a decision-theoretic plan-
ning problem called POMDP. This definition leads to the
formulation of our ECC-POMDP problem that tackles motion,
sensing, and environment uncertainties along with energy
constraints.

Planning under sensing and motion uncertainties for an
AUV in a stochastic, dynamic marine environment is generally
framed as a POMDP problem. This POMDP is defined by a
tuple P = (X,U,Y, f,R, h,v), where X is a finite set of
states x of the vehicle in the environment, U is a finite set
of actions uw of the vehicle, Y is a finite set of sensor ob-
servations y the vehicle may receive, f(z,u,2') = p(2/|z, u)
is a probabilistic state transition function, h(z) = p(y|z,u)
is a probabilistic observation function, R(z,u) € R is an
immediate reward for taking an action u in a state x, and
v € ]0,1) is a discount factor. Since the states are not fully
observable in POMDPs, the vehicle keeps track of a finite set
of belief states b € B, where B is the belief space. A belief
state b of the vehicle is defined as a posterior distribution
over all possible states given all past actions and sensor
observations b:(z) = p(zt|ug,...,ut—1,Yo0,-..,Yt), Which
can be updated recursively via the Bayes rule: by (') =
p(ylz’,u) >, p(a'|z, u)bs(x). The POMDP can be considered
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as the equivalent belief-state MDP (B, U, T, R,~), where B
represents the set of reachable beliefs over states in an MDP,
TE'b,u) = 32, 0Pyl w)p(@|z, u)b(x)d(V',b) is the
belief transition function, and R(b,u) = ) _ b(x)R(x,u) is
the immediate reward function on belief states. The solution
to a POMDP problem is an optimal policy, 7, that maximizes
expected discounted reward as follows [16]:

max Vi (b) = Ex [Z 7 R(b, 7T(bt)|b0)] ‘ ey
t=0

Our problem entails to optimize multiple objectives such
as goal-driven rewards, costs for dynamic obstacle avoidance,
and energy awareness using ocean currents. The ECC-POMDP
framework [7] is a generalized variant of POMDP for multi-
objective problems. This ECC-POMDP is formally defined by
atuple C = (X,U,Y, f,R,h,C,¢,&,é,7,by), where C' is a
non-negative cost function with an individual threshold ¢ and
£ is a non-negative energy function with an individual thresh-
old é. Similarly, an ECC-POMDP can be converted into an
equivalent belief-state CMDP (B, U, T, R, C, ¢, &, é,~y), where
C(b,u) = >, b(x)C(z,u) and £(b,u) = >, b(x)é(z,u).
Our objective is to compute an optimal policy (solution)
to an ECC-POMDP framework that maximizes the expected
cumulative reward while bounding the expected cumulative
costs and energies:

max Vi (b) = Ex [thR(bt, W(bt)|bo)} @
subject to . =0
Ve (b) = Ex [Z C(be, 7T(bzt)|bo)] <¢
t=0

V) = Be| Y el mlblin)| <
t=0

To solve the formulated problem above, our methodology
first learns to predict ocean dynamics in Section [[V]|and then
synthesizes an optimal policy for the ECC-POMDP framework
in marine environments under uncertainties in Section [V

IV. LEARNING OCEAN DYNAMICS

We rely on predicting ocean dynamics for a given time,
depth, and geographical location to plan efficiently in marine
environments. The existing Regional Ocean Model System
(ROMS) [17] provides water current forecasts, which is a
sparse prediction over our region of interest [9, [10, [11I].
We use a historical dataset here, but this can be applied
to recent predictions to enable operations going forward.
Effective planning also requires continuous prediction and
evaluation of ocean dynamics for which rewards and costs
are computed. Therefore, we train a deep neural network to
estimate ocean dynamics based on the ROMS dataset and
use this model for evaluating the future cost of an action.
We frame learning ocean dynamics as a multivariable time
series prediction problem in a continuous domain and design
a Recurrent Neural Network (RNN) to handle a sequence
dependence among the input variables [18]].

To learn a multivariable time series ocean dynamics, given
an input sequence time series signal g = (pg, p2, -+ , pur)

with py € R™ , where n is the input variable dimension, our
goal is to predict corresponding outputs v = (v1, v, - ,vr)
at each time with 1, € R™, where m is the output variable
dimension. The learning task is to train a deep RNN to obtain
a feed-forward mapping, F, of the prediction sequence from
the current state as:

7VT>' (3)

To predict time-varying ocean currents, we utilize the Long
Short-Term Memory (LSTM) neural network, one of the RNN
variants. Particularly, we design an LSTM network with a
simple yet effective architecture to forecast ocean currents
based on time-varying water current data. Our LSTM network
reduces the time consumption overhead.

The proposed network structure is composed of LSTM
blocks in two layers, followed by a fully connected out-
put layer. Each LSTM block consists of 32 neurons fol-
lowed by 2 neurons in the output layer. The input shape
comprises 1 time step with 3 features such that p; =
(timestamp, depth, latitude,longitude), and the out-
put is ocean current forecasts in R? such that v, =
(horizontal_current,vertical_current). To train the
network, we first frame the raw ROMS dataset to be used for
a supervised learning problem and then transform this dataset
into a trainable dataset by normalizing the input variables. We
use the Mean Absolute Error (MAE) loss function and the
Adam optimizer for stochastic gradient descent.

The training lasts for 50 epochs with a mini-batch of 72.
Fig. shows the training and testing losses on the ROMS
dataset. After training, we use the trained model to forecast
for the entire test dataset. To understand prediction over the
test dataset, we invert the output from the normalization scale
back into the original scale. Fig. and Fig. |2c| demonstrate
the performance of our model. It is obvious from this result
that our model can predict as close to ground truth ocean
dynamics.

(/j/la,U/27'” 7/1/T) :J:<Vl7y27'"

V. PLANNING IN MARINE ENVIRONMENTS UNDER
UNCERTAINTIES

Our proposed planning framework consists of two inter-
connected elements to solve the constrained-POMDP problem
with a continuous or large-scale state space. We initially trans-
form this constrained-POMDP problem into an unconstrained
problem via the introduction of Linear Programming (LP).
Then we approximate the value function of this unconstrained-
POMDP by an importance sampling-based algorithm. Once
the importance distribution for sampling state transitions is
determined, we can find a near-optimal policy for our multi-
objective problem.

To find an optimal policy of our constrained-POMDP,
we extend the Cost-Constrained POMCP (CC-POMCP) al-
gorithm [7] to an Energy Cost-Constrained POMCP (ECC-
POMCP) algorithm that handles both cost and energy in
continuous POMDPs. The original CC-POMCP provides a
guideline to formulate a constrained-POMDP to an uncon-
strained belief-state MDP with the scalarized reward function.
Therefore, we can leverage a linear program (LP) to obtain an
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learns to predict ocean dynamics accurately.

optimal stochastic policy. Unfortunately, we cannot directly
use the CC-POMCP for our problem since the CC-POMCP
action selection rule does not have any notion of energy
constraints. In particular, we have three primary factors in
action selection: the expected total discounted reward R(b, ),
the expected total cost C'(b,u) and the expected total energy
consumption £(b, u). For example, in marine navigation tasks,
the distance between the vehicle and the goal location is a
useful factor because the vehicle gets a higher discounted
reward as it approaches the goal location. The distance be-
tween the vehicle and the nearest obstacle is another useful
factor, as opposed to rewards, the vehicle gets higher costs
when its probability of hitting obstacles is higher. Finally, the
vehicle’s endurance improvement utilizing ocean currents is
another important factor since going against the flow requires
more energy consumption than usual. Thus, the derivation of
our algorithm starts from optimizing the value function by
looking for a policy taking the current belief state as input as
follows

min » ~8(b,bo)V (b) = AVE (b) = AV (D) + Al + Acé (4)
b

subject to
V(b) > R(b,u) — C(b,u)Ac — &(b, u)A¢

+ ST | bV (),
b
where (b, bg) is a Dirac delta function that has the value
of 1if b = by and O otherwise. By treating A. and \¢ as
constants, we can solve the above problem as an unconstrained
belief-state MDP with the reward function R (b, a) — A.é— A¢é.
To handle the curse of dimensionality, our proposed policy
iteration algorithm utilizes Monte-Carlo Tree Search (MCTS)
to find the optimal action selection strategy effectively.

In this work, we introduce the ECC-POMCP, an approxi-
mate policy iteration algorithm, summarized in Algorithm
This ECC-POMCEP utilizes MCTS in the belief space and the
particle representation of belief states. In MCTS, each belief
node contains a set of particles that resembles the correspond-
ing approximated belief. MCTS is governed by two policies: a
tree policy and a rollout policy. In the policy evaluation step,
we apply the rollout policy to compute the intermediate belief-
action function, or Q-value by simulating a look-ahead search
on the POMDP model. The rollout policy guides the Monte

Algorithm 1 ECC-POMCP: Policy Iteration with Ocean Dy-
namics and Dynamic Obstacles

Input: Belief-state CMDP,
learned ocean model F
Output: Optimal Policy, 7}
1: Initialize A\, and A¢
2: repeat
3:  Policy Evaluation for 7(u | b)
4. For a given belief b and an action wu, compute
QR(ba u)7 QC(b7 u), and Q§ (bv Uu; -7:)
Obtain the joint belief-action value QF (b, u)
Policy Improvement on (B, U, T, R — A\.¢é — A¢é, )
Update the policy based on the joint action-value as:

(B,U.T,R,C,¢,¢,é,7) and

74 = argmax QY (b, u)
ueU (h)

8: until Converge()

Carlo simulation toward a promising subspace by utilizing
domain knowledge. After each simulation, the belief-action
pairs for reward, cost, and energy are updated as follows:

Qr(b,u) = Qr(b,u) + W
o) =Qe(bw) + W )
QWWH:%W%H+&£$gﬂ,

where N (b) is the number of simulations performed through
b, N(b,u) is the number of times action u is selected in b, In
contrast, in the policy evaluation step, the tree policy selects
an action utilizing the Partially Observable Upper Confidence
Bounds for Trees (PO-UCT) algorithm [16] as follows:

arg max Q? (bv ’LL) = QR(bv u) - )\CQC(b» u)

ueU(b)

ogN@p) @

—AeQe(byus; F) + € Nbu)

where € is a constant that balances exploration and exploitation
for a search algorithm.

It is important to note that our algorithm is scalable since it
inherits the scalability of the CC-POMCP algorithm. Like the
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CC-POMCP, we generate samples for rewards and collision
costs from the POMDP model. However, unlike the original
CC-POMCP, we generate samples for energy costs from our
learned ocean dynamics model F.

VI. THEORETICAL ANALYSIS

The computational load of Algorithm [I] can be divided into
three parts. First, during policy evaluation, a POMCP tree of
depth D contains only O(|U|P|Y|P) nodes, where |U| and |Y|
are the sizes of the action subset and the observation subset
suchthat U CcUandY C Y, respectively. Second, after learn-
ing the ocean dynamics, the prediction over ocean dynamics
can be obtained with a constant O(1) time complexity. Finally,
the selection of joint action-value can be obtained using linear
programming which has O(|U|) time complexity [7].

Next, we will analyze the optimality conditions for esti-
mating the value function using Linear Programming and the
approximation errors of our algorithm to provide a bound on
its performance.

Lemma 1. Let M; = (B,UT Ry,y), Mz =
(B,U,T, Ra,7), and M3 = (B,U, T, Rs,7) be three (belief-
state) MDPs differing only in the reward function, and V", V'
and V3" be their corresponding value functions under a fixed
policy m, respectively. Then, the value function of the joint
MDP M = (B,U,T,qRy + GRs + qRs,~), with the policy ®
is V™(b) = ¢V (b) + ¢V (b) 4+ gV (b) for all b € B.

Proof. We use the mathematical induction to prove this
Lemma motivated by the idea in [7].

Base step for all b

VOb) = w(al] b)[gRy(b,u) + GRa(b,u) + GRs(b,u)]

=q» m(u|b)Ry(bu)+q Y m(u|b)Ra(b,u)
+q Y m(u|b)Rs(b,u)

= qV(b) + V5 (b) + qV5 (b)
Inductive step for all b
VL B) = " w(u | b)[gRy (b, u) + GRa(b, u) + GRs(b,u)

u

+ AT (¥ [b,u)VED))]
=
=q» m(u|b)

+Gy m(u|b)

Ry(b,u) + 4T > _(b'[b,u)VF(V)
m

Ra(bu) +4T Y (6o, u)V*(b)
m

+qYy m(ulb)
= qV?’“”(b) + VT (b) + qVi T (b)
V7(b) = lim V¥(b)

Jim (VF(0) +V5(0) + V3 (1)
=qVi"(b) + qV5"(b) + qV35' (b)

Rs(bu) ++T Y (0o, u)V*(b)
"

Thus,

O

Theorem 1. For a given belief set B and a piecewise-linear
and convex (PWLC) value function V¥ (b) of the belief b such
that for all b € B, the optimal policy w5 can be obtained
using Linear Programming (LP).

Sketch of the proof. An important property of PWLC func-
tions is that sum and max operators also preserve the convexity
property. The value function V' (b) can be decomposed into
three parts: an approximated piecewise linear reward function,
an approximated piecewise linear cost function and an ap-
proximated piecewise linear energy function. Since the value
function V{7 (b) is computed using sum and max operations
over these PLWC functions, the value function Vi (b) also
preserves the convexity property. Thus, given the PWLC
representations of reward, cost and energy functions, for any
A, we can obtain a corresponding unique 7y by maximizing
VT (b) using LP [7, [19]. O

We approximate our value function V7 (b) utilizing a
weighted particle filter. To formally prove the error bound
of the approximated value function, we modify a generic
convergence result for particle filtering introduced in [20} 21].

Theorem 2. Let c,,(¢) be the random perturbation function
with a constant error €. Let VY be the value function of
the optimal policy m*. The error introduced by the proposed
algorithm is bounded as follows

1
~ 212 /M /egp(e)
U _ T < A A LN *

B| (7w - o) | < VI ),
where 1) is a constant, f/f (b) is the approximate value function,
and N is the sample size.

Proof. One has
VI(b) = VT (b) = VT (b) = VT (b) + VT (b) = VT (B). (D)

Then the Minkowski’s inequality gives

B |(70) - vgf(b)ﬂé

<B|(0-17w) ] <2 | (o - o) :

®)

Let G; be the o—field generated by {xg‘lz_l}fil particles,
then using multinomial resampling we can obtain

E[(7rm)|e] =17 w) ©)

o

nd E [ Vr(b) —E [f/f(b)’GtDQ

(10)

A
zls ==
>

By substituting the right hand side of Eqn. (§)), we can get
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Fig. 3: Simulation of our ECC-POMCEP algorithm: Executed trajectories delineated with the green lines of the vehicle (red circle) from
its initial location to the goal location (green circle) applying the synthesized policies for the first water current layer (0 m depth) in the
top row and for the sixth water current layer (30 m depth) in the middle row and for the eleventh water current layer (100 m depth) in the
bottom row. The blue circles correspond with dynamic obstacles and magenta circles are potential collidable obstacles. The red lines around

the vehicle represent a set of preferred actions of a belief state.
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VII. EXPERIMENTS

To validate the effectiveness of our methodology this section
presents experiments in both simulated and real-world marine
environments under uncertainties. We conduct our simulations
using a general-purpose laptop with an Intel Core i7 (Eight
Generation) with 16GB DDR4 RAM, running the Ubuntu
20.04 LTS operating system.

A. Simulation Results

We use the ROMS [1I7] ocean current data observed in
the Southern California Bight (SCB) region to evaluate our
method. We learn our predicted ocean model at continuous
locations from the ROMS data that provides ocean currents at
discrete locations. The 3-D ocean environment is taken into
account as a simulated environment for the vehicle movements
having 2-D ocean surfaces at different water current layers or

depths (e.g., 0 m, 5 m, 10 m, 15 m, 20 m, 30 m, 40 m,
and so on). Each 2-D ocean current layer is tessellated into
a grid map. Each tessellated water current layer is a 21 x 29
grid map with a horizontal spatial resolution of 1 kmx1 km.
We assume that the AUV is equipped with ultrasonic range
sensors and capable of detecting near obstacles. Thus, the
AUV detects obstacles based on the sensor measurements,
where the Gaussian white noise is incorporated to encapsulate
sensing uncertainty.

We implement the particle filter for planning under uncer-
tainties and constraints for many water current layers from our
ROMS ocean current prediction data. The particle filter utilizes
a dead-reckoning method in the absence of sensor measure-
ments. However, we consider that the AUV periodically visits
the water surface to keep the uncertainty tractable. From our
algorithm implementation, we obtain a set of policies as output
from the layer-wise policy synthesis. Fig. [3] illustrates the
executed trajectories of the vehicle applying the synthesized
policies that avoid dynamic obstacles for the same pair of
given initial and goal locations at different water current layers.

We examine the trajectories of an AUV under different
ocean current layer, time, and strength. In Fig. EL the red circle,
the green circle, and the green lines represent the AUV, the
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goal location, and the executed trajectories, respectively. We
overlay flow fields for demonstrating ocean currents, where the
sky-blue region represents the navigable water area, and the
gray region represents the land area. The blue dots represent
unknown obstacles, navigating randomly in the area. The pink
dots represent the states when obstacles are detected by the
AUV with a higher confidence. As we increase the number of
obstacles in the scene, the AUV spends more time to navigate
to the goal location on the same flow field.

Our method attempts to balance the travel time, avoiding
possible collisions and energy consumptions under uncer-
tainties. It prioritizes safety by avoiding collisions and then
leverages the ocean current to advance to the goal location. As
we can also observe from Fig. [3| the ECC-POMCP policies
usually take a longer path instead of taking a straight direct
path toward the goal location. This is because it is preferable
to utilize the direction of ocean currents to minimize energy
consumption. Furthermore, the ECC-POMCP policies can
leverage the fact that following in the same direction of the
ocean current allows the AUV to obtain a faster net speed,
resulting in a shorter time to reach the goal location.

B. Performance Analysis

We compare our ECC-POMCP algorithm with the baseline
CC-POMCP algorithm [7]. Table [] demonstrates the efficacy

Traj. Length Avg. Velocity Mission Time
Exp. (m) (m/s) (min)
ECC CC ECC CC ECC CcC
1 469.75 | 456.76 | 0.547 | 0.452 | 14.30 | 16.82
2 685.38 | 456.76 | 0.624 | 0.375 | 18.28 | 20.28
3 523.60 | 456.76 | 0.559 | 0.440 | 15.59 | 17.29

TABLE I: Trajectory length, average velocity, and mission completion
time for different water current layers (depths) in absence of obsta-
cles. In contrast to the CC-POMCP, the AUV can navigate with higher
velocity while following the ECC-POMCP policy. Hence, even if the
trajectory is longer, the overall mission completion time is faster.

of the proposed ECC-POMCP algorithm. To understand how
the ECC-POMCEP can help energy efficiency via minimizing
the mission time, we perform three experiments for different
water current layers or depths (0 m, 30 m, and 100 m) in the
absence of obstacles. We use a constant acceleration controller
for this purpose. Therefore, the AUV navigates with a lower
average speed when it moves against the water current and
vice-versa. We observe that the trajectories generated by the
ECC-POMCP avoid navigating against the strong current and
follow longer but energy-efficient paths based on the Eqn. (6).
Hence, the AUV is capable of navigating with higher velocity
while utilizing the water currents to reach the goal location,
resulting in faster mission completion times. Fig. f] demon-
strates the trajectories of the CC-POMCP and ECC-POMCP
algorithms under varying water current layers and strengths.
As we can see in Fig[4] the CC-POMCP algorithm generates a
shorter trajectory while the ECC-POMCP algorithm generates
a longer but energy-efficient trajectory utilizing water currents.

Table [lI| presents the performance comparison between CC-
POMCP and ECC-POMCP algorithms in terms of trajectory
lengths, policy synthesis times, and average step rewards.
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Fig. 4: Yellow and green lines represent trajectories of CC-POMCP
and ECC-POMCEP policies, respectively. A CC-POMCP policy gen-
erates a shorter trajectory while an ECC-POMCP policy generates an
energy efficient trajectory utilizing water current.

Here we quantitatively evaluate the average step rewards over
trajectories, trajectory lengths, and policy synthesis times of
two algorithms subject to different water current strengths and
different numbers of dynamic obstacles. The resultant policies
of the ECC-POMCP algorithm achieve higher average rewards
with the cost of spending more synthesis time to utilize water
currents to reach the goal location. Conversely, the resultant
policies of the CC-POMCP algorithm take a shorter path with
lower average rewards due to the lack of energy efficiency.

C. From Simulation to Physical Implementation

We extend our marine navigation simulations in a real-
world scenario using the YSI Ecomapper [22], an AUV that
can navigate up to 7.408 km/h in speed and up to 100
meter depth. The AUV performs its trajectory at the bay
surface in January 2021 starting from the initial location (lat.
25.9128625°, long. —80.1378406666667°) to the goal location
(lat. 25.9115051396367°, long. —80.1371944635927°). The
experiment is conducted off the coast of North Beach, Mi-
ami Beach, FL, USA, in a region surrounded by mangroves
with shallow and clear water. The environment consists of
navigable water areas and virtual obstacles, representing dy-
namic obstacles such as boats, shipwrecks, tree debris, and
so on. The AUV also conducts its mission at 3.704 km/h,
for around 30 minutes. We use a DJI Mavic Pro drone to
track the trajectory of the AUV autonomously. As the AUV
navigates, it localizes with a noisy GPS sensor and its belief
states are estimated using a particle filter. We compute an
offline policy in the presence of dynamic obstacles and water
current. Fig. [5] demonstrates our policy on the water surface
layer and overlays the AUV trajectory applying the policy
on a GeoTIFF image. In Fig. 5] the top row represents a
simulated trajectory from our computed offline policy, and
the bottom row represents the real-world execution of the
trajectory through an AUV mission.

VIII. CONCLUSION

We present a methodology with a novel extension of
the POMDP framework for AUVs with resource constraints
operating under motion, sensing, environment uncertainties
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Water
Current Layer | Number of Obstacles | Average Step Reward | Trajectory Lengths (km) | Policy Synthesis Time (s)
or Depth (m)
ECC CC ECC CC ECC CC
1 (0) 3 0.695391 | 0.626621 | 70.701 53.047 11.8763 8.6283
1 (0) 4 0.641426 | 0.626165 | 64.123 51.011 13.2603 9.0808
6 (30) 4 0.646165 | 0.490734 | 86.306 51.012 14.5801 9.058
6 (30) 8 0.618052 | 0.445625 | 79.030 83.022 14.3976 15.3926
11 (100) 4 0.646165 | 0.586158 | 55.253 51.012 9.7763 8.9387

TABLE II: Trajectory lengths, average step rewards, and policy synthesis times for different numbers of obstacles and ocean current
variability at different depths. Even though synthesizing optimal policies using the CC-POMCP algorithm takes less times and trajectory
lengths, the policies generated by our ECC-POMCP algorithm outperform the CC-POMCP’s policies in terms of average step rewards. This
is because the CC-POMCP algorithm ignores energy costs while synthesizing policies.

Fig. 5: (top) A simulated trajectory (red line) from a synthesized offline policy on the water surface layer with virtual dynamic obstacles
(blue circles). (bottom) The trajectory execution of the offline policy with an AUV mission off the coast of Miami Beach, FL, USA.

in dynamic marine environments. First, a recurrent neural
network based learning algorithm is proposed to predict ocean
dynamics in a continuous domain. Second, an ECC-POMCP
algorithm in a continuous state space utilizing the predicted
ocean dynamics is presented to synthesize the optimal policy
as a solution to the ECC-POMDP problem. Third, we provide
a complexity analysis of the value function to guarantee its
optimality along with an approximation error bound for the
ECC-POMCP algorithm. Finally, we validate the effectiveness
of our methodology through simulations and experiments.
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