2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)

Ensemble Random Forests Classifier for Detecting
Coincidentally Correct Test Cases

Shuvalaxmi Dass
Department of Computer Science
Texas Tech University
shuva93.dass @ttu.edu

Abstract—The performance of coverage-based fault localiza-
tion greatly depends on the quality of test cases being executed.
These test cases execute some lines of the given program and
determine whether the underlying tests are passed or failed. In
particular, some test cases may be well-behaved (i.e., passed)
while executing faulty statements. These test cases, also known
as coincidentally correct test cases, may negatively influence the
performance of the spectra-based fault localization and thus be
less helpful as a tool for the purpose of automated debugging. In
other words, the involvement of these coincidentally correct test
cases may introduce noises to the fault localization computation
and thus cause in divergence of effectively localizing the location
of possible bugs in the given code. In this paper, we propose
a hybrid approach of ensemble learning combined with a
supervised learning algorithm namely, Random Forests (RF) for
the purpose of correctly identifying test cases that are mislabeled
to be the passing test cases. A cost-effective analysis of flipping the
test status or trimming (i.e., eliminating from the computation)
the coincidental correct test cases is also reported.

Index Terms—TFault localization, coincidentally correct, ran-
dom forests, ensemble learning

[. INTRODUCTION

Many studies and research have been conducted on improv-
ing the performance of coverage-based fault localization in
spotting faults’ location in programs. The precision of these
automated debugging techniques often get deteriorated by the
presence of “coincidentally correct test cases,” which are test
cases that do not expose the faulty behavior of the program,
even though they are exercising the faulty portion of the given
code. It poses as a hurdle to the testers, who are misled into
effectively localizing the faulty code.

As an instance of the traditional classification problem,

Xiaozhen Xue
Adobe Inc.
Hamden, Connecticut, USA
xxuettu@gmail.com

Akbar Siami Namin
Department of Computer Science
Texas Tech University
akbar.namin @ttu.edu

are some other machine learning-based approaches to this
problem (i.e., [9]) where a classifier (e.g., Support Vector
Machine (SVM)) is utilized to re-label test cases. However,
what makes ensemble random forests a great classifier is its
ability in building several decision trees and then taking the
majority votes for making the final classification decision.
Given the strong evidence observed in similar studies [6]
and due to ensemble-learning nature of random forests, it
is expected that this machine learning technique outperforms
other classification techniques [1].

To measure the effectiveness of this approach, we conducted
two types of experiments/strategies on the coincidentally cor-
rect test cases identified by random forests model: 1) trim-
ming, and 2) flipping followed by examining and comparing
their effects on fault localization in terms of cost analysis.
According to the results, the trimming strategy, by which
the coincidentally correct test cases are removed 1) one at a
time, and 2) all at once, enhances the performance of fault
localization; whereas, the flipping strategy, did not exhibit
any improvement over some other classification algorithms.
Moreover, the cost analysis results show that the flipping
and trimming coincidentally correct test cases all at once
performed better than doing them one at a time. The results
also show that the proposed ensemble-based random forests
technique performed better as compared to the technique that
used SVM in terms of cost analysis. This paper makes the
following key contributions:

1) Introduce an ensemble-based random forests classifier to
identify test cases with inaccurate or noisy test results.

the identification of coincidentally correct test cases can be 2) Coqduct a performance analysis on the improvement
. . . . achieved using ensemble-based random forests over
modeled using machine learning techniques [9]. Hence, the . . .
. . other classification techniques.
problem formulation of coincidentally correct cases through . .
3) Report the results of a comparison of two strategies

machine learning techniques can be viewed as those test cases
that are in fact failing but are mistakenly labeled into passing
test cases. Hence, the name given “coincidental” to the test
case in question appears to be passing. In short, the task
at hand is to correctly identify the mislabeled passing test
case and then either 1) re-label them into failing ones (i.e.,
flipping), or 2) completely ignore their contributions to the
fault localization computation (i.e., trimming).

This paper proposes an ensemble-based random forests
approach to identify coincidentally correct test cases. There

in dealing with coincidentally correct test cases (i.e.,
trimming/flipping) in terms of cost metrics.

Section II reviews the related works. The background of
machine learning algorithms used in this paper is presented
in Section IIl. Section IV describes the methodology of
employing random forests for mislabeled test cases. Section V
illustrates an example to demonstrate the methodology. Section
VI presents the results and evaluations. Section VII concludes
the paper and provides some hints on future work.

978-1-7281-7303-0/20/$31.00 ©2020 IEEE
DOI 10.1109/COMPSAC48688.2020.00-72

1326

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:13:34 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

There are several research work and studies regarding
identification of coincidentally correct test cases. Li et al.
[4] proposed a machine learning-based fuzzy classification
technique to identify coincidentally correct test cases followed
by the application of the KNN algorithm to identify the
remaining passed test cases. Feyzi and Parsa [2] proposed
a SVM-based algorithm with a customized kernel function
to improve fault localization effectiveness by removing the
impact of coincidentally correct test cases. Xue et al. [9]
proposed a technique combining support vector machine and
ensemble learning to detect mislabeled test cases followed by
flipping and trimming their test status in order to improve the
performance of fault localization. Pang et al. [7] also proposed
identifying effective test cases through K-Means Clustering for
enhancing regression testing.

Zhang et al. [10] introduced a test classification technique
to assign labels to the unlabeled test cases based on the
information gathered from their execution traces. This enables
making those newly labeled test cases be utilized in localizing
faults thereby improving on its effectiveness.

Patel [8] empirically evaluated four techniques to mitigate
the coincidental correctness in testing and debugging. The first
technique is called Interlocutory Testing, which is a framework
in which test oracles are developed. The second technique
called the Interlocutory Metamorphic Testing that mitigates
the impact of coincidental correctness when combined with
Interlocutory Testing. The other two techniques, Interlocutory
Testing and the Interlocutory Spectrum-based Fault Localiza-
tion, both work towards alleviating the effects of coincidental
correctness on fault localization.

I1I. BACKGROUND
A. Ensemble Learning

Ensemble learning is a machine learning technique where
multiple learners are trained to address the same problem. It
is different from other ordinary machine learning approaches
in terms of the different number of models it uses to train
and then combining them in order to make the final decision.
In this technique, different models are employed to train on
the multiple disjoint data subsets obtained from the original
dataset. Each model, after being trained, makes its own pre-
diction when applied on the test data. Each prediction (i.e.,
vote) is then aggregated along with other predictions made by
other models into one final prediction. This process and the
final decision made is called a majority voting. This model is
utilized in random forests to identify the coincidentally correct
test cases, which are mislabeled into passing test cases.

B. Random Forests Classification

In this paper, we made use of the random forests classifica-
tion instead of employing some other types of classifiers with
the goal of achieving better results for detecting coincidentally
correct test cases. The random forests classifiers are supervised
ensemble-learning models used for classification and regres-
sion. The idea behind ensemble learning models is to make use

1327

-1

Fig. 1. A representation of random forest embedded in ensemble learning.

of multiple machine learning models and aggregate them to
obtain overall better performance. The rationale behind this is
every one of the models utilized is frail when used individually,
yet solid when put together in an ensemble. A typical random
forests classifier consists of multiple “weak” decision trees
whose outputs when combined result in a “strong” ensemble.
Figure 1 show a graphical representation of how random
forests works.

C. Principle Component Analysis

Principal component analysis (PCA) is a dimensionality
reduction technique of a dataset.Its basic functionality is to
create principal components, which are basically independent
features that are a combination of a number of dependent
features. The primary principal component being the one that
possess the maximum variation as possible in the dataset and
the components followed represent the significant portion of
the remaining inconstancy and variance as possible.

In our problem domain, we deal with large program files
that contain a huge number of code lines. These individual
statements act as features (i.e., dimensions) which can grow
in size depending on the size of the program and consequently
make the computation complex. Hence after much experi-
mentation, we decided to reduce the dimensionality of our
dataset to 60 percent of the actual number of dimensions,
which would represent the best features. We applied Principal
Component Analysis (PCA) to our dataset setting attribute
n_components 0.6 that controls the number of best
attributes needed to build a better classifier.

IV. METHODOLOGY

This section presents the methodology of identifying mis-
labeled test cases through random forests.

A. Notations

The overall motive of the technique is to predict the coinci-
dentally correct test cases out of the pool of passing test cases
devised for a faulty program. To begin with, we introduce
some notations for representation and formulation purposes.

o PT = {pt1,pta,....pt;}: Passing test cases where pt;

represents the i-th passing test case.

o FT = {ft1, fto,....ft;}: Failing test cases where ft;

represents the j-th failing test case.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:13:34 UTC from IEEE Xplore. Restrictions apply.

PARTITION]
T PASSINGSET Ty

T
P Test1

Build Models

Pass 1 U Failing = Train_datal ‘

PASS 1

PASS2 ——— Ppags 2 UFailing = Train_data2
: PASS3
Tre

PASSING
Towar

|

|
; " Pass 3U Failing = Train_data3 ‘
FAILING ! |

T Tve
BACKTO
PARTITION STEP.
WITH ROTATING
THE PARTITIONS |

;‘;g’gﬁ/ﬁ Estimation1].\

MODEL 2

| st
| Final Estimation << Estimation2 o ?:x{;m Forest
iy / o MODEL 2
— oDt o
- Estimation3 * TESTDATA "\ Random Forest
ey

Fig. 2. Partitioning procedure.

o CT = {cty,cta,....ct;}: Coincidentally correct test cases.
ct; is the [-th coincidentally correct test case.

B. Fartitioning Dataset into Train/Test Sets

The unit test cases corresponding to each faulty program are
first divided into two sets: failing and passing. The passing
data set itself is partitioned into m subsets, out of which
one subset corresponds to the test dataset (7T'est;) and the
remaining sets m — 1 = [subsets (i.e., Trainy, Trains, ...,
Traing) correspond to the training set. The failing test cases
are then added to each training set. In other words, each of
the training set is a combination of selected passing test cases
and all failing test cases. Each of these training sets are then
used to train our random forests-based model. The procedure
of partitioning passing data to build each subset Train;, for
i =1 to k is depicted in Figure 2.

The train dataset will comprise of both failing and passing
test cases. Hence, each Train; will include subset of data
from passing test case (P7') dataset and all of the data from
the failing test case (F"I") dataset. It is important to note that
the number of passing test cases need to be (and usually it is)
more than the failing ones. We included the entire failing test
cases in each of k subsets, as it was generally less than the
passing ones. As a result, each subset Train; comprised of
randomly selected a small subset of passing test cases:

Pt; C PT

and all of the failing test cases (FT). The Train set is:

Train; = {Pt; C PT} U {FT}

In our faulty programs under test, we partitioned each
passing test cases into four subsets out of which one set is
the test set consisting of PT cases. The size of the test data
is based on intuition and is generally taken less than that
taken for the train sets. Whatever left in the passing dataset, is
equally divided into three subsets where each part along with
added F'T" corresponds to one train sets. A random forests (RF)
classifier is then trained based on these subsets. In total, three
such sets were formed, and three RF classifiers were trained to
do classification on the test set. The algorithm continues this

entire procedure until all the passing test cases are processed
one test set at a time.

C. The Algorithm

Algorithm 1 describes the procedure for employing the
random forests (RF) classifier to identify coincidentally correct
test cases (CC) for a given faulty program.

Algorithm 1: Identifying coincidentally correct test cases.

Input: 1) Passing Test Cases PT = {pty, pta,..ptn}
2) Failing Test Cases F'T = { ft1, fta,..ftam}
3) Random Forests Learning Algorithm: RF
Output: CT
// Coincidentally correct test cases
1 Choose a random size K < N
test = {} ; CT = {};

2for (1=0,i=N, i+ =K) do

3 for (j=i14+1toi+ K) do

4 L test.append(pt;)

5 Randomly divide the (N-K) passing test cases into
’p’ equal partitions

for m =1 to p do

6 train,, = partitions,, U FT

RF,, = L(train,,)

ZTIL - {}

// Initialization of each label

pool
7 for each test data pty, in test do
// label test data as P or F by RF
3 labely, = RF,,(pty)

T = Zmy U {labely}

9 for each test data pt in test do

10 CCrum =0 // # of CT test cases

11 NCCnym = 0 // # of non-CT test cases

12 for m =1 to p do

13 if Z,, labels pt == coincidentally_correct
then

14 | cCnum ++

15 else

16 L NCChum + +

17 if ccpum > nccpym then

18 L CT = CT U {pt} // Majority Voting

The input to the algorithm is a set of passing (i.e., PT)
and failing (i.e., F'T) test cases and the classifier embedded is
random forests. The output is a set of coincidentally correct
test cases (i.e., C'T"). The algorithm encompasses five steps:

1) Initialization (lines 2-4). It initializes the test dataset

from selecting randomly chosen size K unit test cases
starting from beginning from passing test cases dataset.

2) Portioning (lines 5-6). It builds up three training sets

(i.e., partitions) by merging the entire failing test cases
with each of the partition. A random forests (RF)

1328

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:13:34 UTC from IEEE Xplore. Restrictions apply.

Faulty Code TC1 | TC2 | TC3 | TCA | TC5 | TC6 | TC7 | TC8 | TC9 | TC10

[E) (2) (0) |25 |(L5)| (3 | 36) | (05) | (4) (5)

public class Math{ v v v v v

Public int getFactfint a){
5 int factorial =1; v v o v v v
3. for(isLicsail] v ' 4 v 4
factorial *= i]

4. return factorial; } v v |- - P - - e g

5. Public double getAbs(double 3) { s | v/ = I | W

6. iffa<2) (Correct: if(a £ 0]} v v v '

T a=-a v/ - '

8. return 3} v v v v
P P P i i 5 A F P i

Fig. 3. An illustrative example.

classifier is also trained on each of the training set.
The L function represents the random forests learning
module.A label pool set Z is also initialized for every
partition to store the labelled test cases.

Classification (lines 7-8). The trained RF classifier is
then used to label the status of each test case present
in fest set and then store them in the label test case set
Z corresponding to the partition/training data on which
the RF classifier is trained on.

Ensemble (lines 9-16). It counts the number of coinci-
dentally and non-coincidentally correct labels for each
test case that are produced by the implicit decision tress
generated by the RF classifier.

Decision and Voting (lines 17-18). If the number
of coincidentally correct labels are more than non-
coincidentally ones, then by majority voting, the cor-
responding test case is stored in the C'T".

D. Metrics

We measured the effectiveness of the machine learning
algorithm, RL based on the fault localization cost metric,
which is calculated as the percentage of statements that must
be examined before reaching the first faulty statement in a
faulty program [9]. Once we get the the coincidentally correct
test case labels returned by the algorithm, we perform the
two strategies: 1) Flipping and 2) Trimming on those cases,
and then the fault localization procedure is re-performed to
compare the cost of fault localization for each strategy to that
of no strategy (original cost). Reduction in the cost from the
original is indicative of the the algorithm performing well.

3)

4)

5)

V. AN ILLUSTRATIVE EXAMPLE

This section presents an illustrative example to demonstrate
the mechanic of the presented ensemble-based random forests.
Consider a faulty Java program of eight lines of code given in
Figure 3. This Java snippet consists of a class Math in which
two methods are defined. The first method getFact () takes
in an integer number and computes the factorial value of a
number. This class also implements another method namely,
getAbs (), which takes double value as a parameter. A fault
is injected at line 6 where the logic condition in the “i f” loop
is incorrectly set to a <=2’ instead of "a<=0’.

The test pool consists of eight passing and two failing test
cases. The passing test cases T'C'4 and T'C7 both execute the

1329

*TC1,TC2,TC3 *TC2,TC3,TC4 *TC3,TC4,TC7 *TC4,TC1,TC6 *TC2,TC6,TC7
*TC5,TC8 *TC5,TC8 *TC5,TC8 *TC5,TC8 *TC5,TC8
*TC6,TC7,TC2 *TCY,TC2,TC3 *T7,TC10,TC3 #TC9,TC1,TC6 T7,TC10,TC1
TC5,TC8 *TC5,TC8 *TC5,TC8 *TC5,TC8 «TC5,TC8
Fig. 4. Training data sets.
QOccurrence Frequency Vector Label
1 z 3 4 5 6 7 8
T | 1 1 1 1 0 0 0 0 (1,1,1,1,0,0,0,0 1
Te2 | 1 1 1 1 0 0 o 0 (1,1,1,1,0,0,0,0 1
T3 | 1 1 i 1 0 0 0 0 (1,1,1,1,0,0,0,0) 1
Tca | o 0 o 0 1 1 0 1 (0,0,0,0,1,1,0,1) -1
TGs | 0 0 0 0 1 1 1 1 10,0,0,0,1,1,1,13 +1
TeE | 1 1 1 1 0 0 o o (1,1,1,1,0,0,0,05 1
7| o o 0 0 1 1 0 1 (0,0,0,0,1,1,0,1) 4
Tea | o 0 0 0 1 1 1 i 0,0,0,0,1,1,1,1) +1
Tee | 1 1 1 1 0 0 0 0 (1,1,1,1,0,0,0,05 1
Tew | 1 1 1 1 0 0 o 0 (1,1,1,1,0,0,0,0 1
Fig. 5. Vectors For test cases: *-1” for passing, *+1’ for failing.

faulty statement without exhibiting any faulty behavior. Hence,
TC4 and TC7T are apparent coincidentally correct test cases.
The purpose is to spot such coincidentally correct test cases
using ensemble-based random forests as a classifier. To begin
with, the algorithm splits the passing test cases into N groups
and then add all the failing test cases to each group. Here, we
divided the test cases into 10 (i.e., N = 10) random groups .
Each group is composed of three passing test cases (chosen in
random) along with two failing test cases. Figure 4 represents
what each data set comprises of.

Using each training set, a single RF classifier is built
and trained on each training set. In this example, ten such
classifiers were built for predicting the test status of the
passing test cases. Figure 5 shows the prediction results of the
10 classifiers. Then, the majority votes were taken for each
passing test case as shown in in Figure 6.

For example, in case of test TC'1, 7 out of 10 classifiers
labeled this test case as ’-1°. Hence, the majority decision
for TC1 was *—1’ and therefore T'C'l was labeled as a
true passing test case and it was not a coincidentally correct
test case. On the other hand, in case of T'C4, 6 out of
10 predictions were *+1’°. Therefore T'C4 was labeled as a
coincidentally correct test case.

Training Data Test Data

TC4 | TCS

TC1 | TC2 | TC3 TC6 | TC?7 | TCB | TC

o

TC10

RF1
RF2

(TC1,7€2,TC3,-1,-1,-1), {TC5,TCB,+1,+1)
(TC2,TC3,TC4,-1,-1,-1), {TC5,TC8,+1,+1)
(TC3,7C4,1C7,-1,-1,-1), {TCS,TC8,+1,+1)
(T€4,TC1,TC6,-1,1,-1), {TC5,TCB,+1,+1)
(TC2,TC6,1C7,-1,-1,41), {TC5,TC8,+1,+1)
(TC6,TC7,TC2,-1,-1,-1), {TCS,TC8,+1,+1)
(T€8,T€2,T€3,-1,1,-1), {TCS,TCB,+1,+1)

| RF3
RF4
[res
RF&
RF7
[RF8

|+]

(77,7C10,TC3,-1,-1,-1), (TC5,TC8,+1,+1)
R | (TC9,TC1,TCE,-1,-1,-1), {TCS,TC8,+1,+1)
RF10 | (TC10,TC1,7C?,-1,-1,-1), (TCS,TC8,+1,+1)
[Majority Voting

e[+]+]+]+

Fig. 6. Majority Voting: ’-1’ for passing, *+1° for failing.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:13:34 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SUBJECT PROGRAMS AND THE NUMBER OF COINCIDENTAL CORRECT
TEST CASES.

Programs | Version(Fault No.) | Combol | Combo2 | Combo3
Jmeter VI(F1) 3 3 3
Jmeter V3(F2) 2 4 1
Nano V1(F1) 31 4 20
Nano V1(F2) 32 24 25
Nano V1(F4) 17 16 15

Xml V2(F3) 7 8 7
Jtop V3 1 1 1

VI. EXPERIMENTAL EVALUATION

This section reports the performance of the introduced
approach on improving fault localization. The improvement
is measured through the reduction of debugging cost achieved
through 1) no removal, 2) flipping, and 3) trimming of the
coincidentally correct test cases identified by the methodology.

A. Subject Programs

Table I lists the subject programs studied in this research.
We obtained these widely-studied programs through the SIR
repository (Software-artifact Infrastructure Repository).

B. Data Collection

For each faulty program used for testing purposes, there
are three files namely: Combol, Combo2, and Combo3 each
pertaining to 1, 2 and 3 number of statements (i.e., execution
trace) that the test cases execute at a time, respectively. These
statements act as features. In other words, Combol, Combo2,
and Combo3 comprise a combination of single, double and
triple statements as features that are executed by test cases at
once, respectively.

We built three separate data sets each corresponding to the
combo files and performed the partitioning as discussed in
the previous section on each dataset to eventually identify
coincidentally correct test cases present in each combo files.

Building Feature Vectors. Coming to the contents of dataset
part, where features represent the statements executed by each
test case, the value under each feature represents the count of
number of times a test case is executing that statement. For
instance, consider a faulty program with seven lines of code
each executable in nature and suppose an execution trace of a
test case t1 in the form of a vector that looks like

ExecutionTracey, : <1, 2,5,6,5, 2>
where each value represents statement number executed by

that test case. Each statement number of that test case would
have a vector of values of the form that can be represented as:

FeatureVectory, : <07 2,2,1,2, 0>

where each value represents the count of times the test case
executed the underlying statement number.

1330

C. Partitioning Passing and Failing Test Cases

We partitioned total number of N passing test cases into
1) one test data file containing K = 10 (randomly chosen)
number of passing test cases for prediction , 2) three train
dataset files each containing (/N — 10)/3 number of test cases,
3) add all the failing test cases from the failing dataset file into
each of the three train files in order to build and train three
models. The models then are used to obtain three different
classifications for a single passing test case. Out of these
three predicted labels, the majority voting would be the final
status (i.e., passing or failing) of the underlying test case. We
recursively followed the above steps until we cover all the test
cases in the passing dataset file and in the end, we obtain the
final majority voting.

Table I also lists the number of coincidentally correct test
cases identified in each of the three combo files corresponding
to the faulty programs under test. We identified the coinci-
dental correct test cases by majority voting which were then
subjected to flipping and trimming procedure.

D. Fault Localization Cost Analysis

We applied the aforementioned techniques (i.e., flipping and
trimming) to our dataset and identified the final list of coinci-
dentally correct test cases for each program. We developed and
ran our python script to find the cost of localizing a fault first
by trimming and then by flipping the coincidentally correct
test cases and report the results.

We ran python scripts which took as input the trace, test
status and the instrumentation files for each program under
test to calculate the cost of localizing fault. Two variants of
cost of fault localization were evaluated to observe which one
is offering the best results. The results also were compared
with the original cost, which is the cost calculated when
no changes were done to the test suite. In the first variant,
we calculated the cost of flipping/trimming the coincidentally
correct test cases one at a time; whereas, in the second variant
we calculated the cost after trimming/flipping all the identified
coincidentally correct test cases at once.

Tables II and III report the cost analysis of flipping and
trimming procedure. We observe that for most of the subject
programs, the second variant, i.e, doing the changes to the test
suite all at once exhibited lesser than or equal cost value to
the original cost as compared to the first variant.

E. Flipping and Trimming Cost Analysis

In Table II, some of the combo files under the first cost
variant have two cost values representing the values in which
the coincidentally correct test cases fluctuated in. The values
marked in bold indicated the corresponding subject programs
incurred lesser or equal cost of fault localization when its
coincidentally correct test cases were flipped all at once. A
similar trend was seen in the case of trimming in Table III.

We observe that adopting our technique of ensemble-based
random forests mechanism can prove to be beneficial in terms
of fault localization cost as it is pretty evident from the results
reported that when the cost-evaluating python scripts ran on

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:13:34 UTC from IEEE Xplore. Restrictions apply.

TABLE II

COST ANALYSIS WITH FLIPPING.

Flipping Cost One a Time (Variant 1) All at Once (Variant 2) Original Cost
Programs combol combo2 combo3 combol | combo2 | combo3

Jmeter V3F2 0.022 {0.022,0.933} 0.022 0.022 0.022 0.022 0.022
Jmeter VIF] {0.08, 0.06} {0.08, 0.06} {0.08, 0.06} 0.06 0.06 0.06 0.16
Nano VIFI {0.093, 0.140} | {0.093, 0.140} 0.047 0.062 0.078 0.047 0.171
Nano VIF2 0.562 0.562 0.562 0.218 0.262 0.265 0.562
Nano VIF4 0.70312 0.703 0.509 0.703 0.703 0.509 0.703
Xml V2F3 {0.058, 0.098} | {0.058, 0.098} | {0.058, 0.098} 0.098 0.058 0.098 0.058
Jtop V3 0.172 0.172 0.172 0.172 0.172 0.172 0.172

TABLE III

COST ANALYSIS WITH TRIMMING.

Trimming Cost One a Time (Variant 1) All at Once (Variant 2) Original Cost
Programs combol combo2 combo3 | combol | combo2 | combo3

Jmeter V3F2 0.022 {0.022,0.9} 0.022 0.81 0.022 0.022 0.022
Jmeter VIFI 0.16 0.16 0.16 0.08 0.08 0.08 0.16
Nano V1F1 0.171 0.171 0.156 0.156 0.171 0.156 0.171
Nano VIF2 0.562 0.562 0.562 0.218 0.218 0.218 0.562
Nano V1F4 0.70312 0.703 0.478 0.703 0.70312 0.478 0.703
Xml V2F3 {0.058, 0.176} 0.058 0.058 0.176 0.058 0.058 0.058
Jtop V3 0.172 0.172 0.172 0.172 0.172 0.172 0.172

the test suite of the subject programs under test in which
the RF-identified coincidentally correct test cases’ status was
flipped/trimmed, it gave better(read lesser) or equal cost results
thereby making this mechanism a useful tool in reducing the
expense incurred for fault localization.

VII. CONCLUSION AND FUTURE WORK

This paper proposed an random forests-based ensemble
technique to identify coincidentally correct test cases. The
motive behind this proposal was to mitigate the high cost
incurred in the localizing fault in a faulty program due to the
presence of coincidentally correct test cases. As a result, two
strategies, namely, flipping and trimming were discussed and
their performance in terms of incurred fault localization were
analyzed. The results show that the proposed technique fared
well in achieving the motive. There exist some other avenues
in the field of machine learning that can be explored to work
towards attaining this goal. In this paper, we worked on subject
programs available in the SIR repository. It is important to
replicate the experiment reported here on a larger set of
programs (e.g. Defects4] [3]) so to observe the true benefit
of ensemble learning approaches to this problem. Moreover,
in order to choose the best value for K, the model might need
some exploration on the optimization aspects of the problem
and particularly performing some uncertainty reasoning [5].

ACKNOWLEDGMENT

This research work is supported in part by National Science
Foundation under Grant No: 1821560.

REFERENCES

[1] F. Al Constantin A. Statnikov, L. Wang. A comprehensive comparison
of random forests and support vector machines for microarray-based
cancer classification. BMC Bioinformatics, 9(316), 2008.

1331

Farid Feyzi and Saeed Parsa. Kernel-based detection of coincidentally
correct test cases to improve fault localisation effectiveness. Interna-
tional Journal of Applied Pattern Recognition, 5:119, 01 2018.

Rene Just, Darioush Jalali, , and Michael D. Ernst. Defects4]J: A database
of existing faults to enable controlled testing studies for java programs.
In ACM ISSTA, 2014.

Z.Li, M. Li, Y. Liu, and J. Geng. Identify coincidental correct test cases
based on fuzzy classification. In International Conference on Software
Analysis, Testing and Evolution (SATE), pages 72-77, 2016.

Akbar Siami Namin and Mohan Sridharan. Bayesian reasoning for
software testing. In Workshop on Future of Software Engineering
Research, pages 349-354, 2010.

Y. Pang, X. Xue, and A. Siami Namin. Early identification of vulnerable
software components via ensemble learning. In JEEE ICMLA, 2016.
Yulei Pang, Xiaozhen Xue, and Akbar Siami Namin. Identifying
effective test cases through k-means clustering for enhancing regression
testing. In IEEE ICMLA, pages 78-83, 2013.

Krishna Patel. The Interlocutory Tool Box: Techniques for Curtailing
Coincidental Correctness. PhD thesis, 2017.

X. Xue, Y. Pang, and A. Siami Namin. Trimming test suites with
coincidentally correct test cases for enhancing fault localization. In 38th
Annual Computer Software and Applications Conference, 2014.

Xiaoyi Zhang, Zheng Zheng, and Kai-Yuan Cai. Exploring the useful-
ness of unlabelled test cases in software fault localization. Journal of
Systems and Software, 07 2017.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:13:34 UTC from IEEE Xplore. Restrictions apply.

