
Ensemble Random Forests Classifier for Detecting
Coincidentally Correct Test Cases

Shuvalaxmi Dass
Department of Computer Science

Texas Tech University
shuva93.dass@ttu.edu

Xiaozhen Xue
Adobe Inc.

Hamden, Connecticut, USA
xxuettu@gmail.com

Akbar Siami Namin
Department of Computer Science

Texas Tech University
akbar.namin@ttu.edu

Abstract—The performance of coverage-based fault localiza-
tion greatly depends on the quality of test cases being executed.
These test cases execute some lines of the given program and
determine whether the underlying tests are passed or failed. In
particular, some test cases may be well-behaved (i.e., passed)
while executing faulty statements. These test cases, also known
as coincidentally correct test cases, may negatively influence the
performance of the spectra-based fault localization and thus be
less helpful as a tool for the purpose of automated debugging. In
other words, the involvement of these coincidentally correct test
cases may introduce noises to the fault localization computation
and thus cause in divergence of effectively localizing the location
of possible bugs in the given code. In this paper, we propose
a hybrid approach of ensemble learning combined with a
supervised learning algorithm namely, Random Forests (RF) for
the purpose of correctly identifying test cases that are mislabeled
to be the passing test cases. A cost-effective analysis of flipping the
test status or trimming (i.e., eliminating from the computation)
the coincidental correct test cases is also reported.

Index Terms—Fault localization, coincidentally correct, ran-
dom forests, ensemble learning

I. INTRODUCTION

Many studies and research have been conducted on improv-

ing the performance of coverage-based fault localization in

spotting faults’ location in programs. The precision of these

automated debugging techniques often get deteriorated by the

presence of “coincidentally correct test cases,” which are test

cases that do not expose the faulty behavior of the program,

even though they are exercising the faulty portion of the given

code. It poses as a hurdle to the testers, who are misled into

effectively localizing the faulty code.

As an instance of the traditional classification problem,

the identification of coincidentally correct test cases can be

modeled using machine learning techniques [9]. Hence, the

problem formulation of coincidentally correct cases through

machine learning techniques can be viewed as those test cases

that are in fact failing but are mistakenly labeled into passing

test cases. Hence, the name given “coincidental” to the test

case in question appears to be passing. In short, the task

at hand is to correctly identify the mislabeled passing test

case and then either 1) re-label them into failing ones (i.e.,

flipping), or 2) completely ignore their contributions to the

fault localization computation (i.e., trimming).

This paper proposes an ensemble-based random forests

approach to identify coincidentally correct test cases. There

are some other machine learning-based approaches to this

problem (i.e., [9]) where a classifier (e.g., Support Vector

Machine (SVM)) is utilized to re-label test cases. However,

what makes ensemble random forests a great classifier is its

ability in building several decision trees and then taking the

majority votes for making the final classification decision.

Given the strong evidence observed in similar studies [6]

and due to ensemble-learning nature of random forests, it

is expected that this machine learning technique outperforms

other classification techniques [1].

To measure the effectiveness of this approach, we conducted

two types of experiments/strategies on the coincidentally cor-

rect test cases identified by random forests model: 1) trim-

ming, and 2) flipping followed by examining and comparing

their effects on fault localization in terms of cost analysis.

According to the results, the trimming strategy, by which

the coincidentally correct test cases are removed 1) one at a

time, and 2) all at once, enhances the performance of fault

localization; whereas, the flipping strategy, did not exhibit

any improvement over some other classification algorithms.

Moreover, the cost analysis results show that the flipping

and trimming coincidentally correct test cases all at once

performed better than doing them one at a time. The results

also show that the proposed ensemble-based random forests

technique performed better as compared to the technique that

used SVM in terms of cost analysis. This paper makes the

following key contributions:

1) Introduce an ensemble-based random forests classifier to

identify test cases with inaccurate or noisy test results.

2) Conduct a performance analysis on the improvement

achieved using ensemble-based random forests over

other classification techniques.

3) Report the results of a comparison of two strategies

in dealing with coincidentally correct test cases (i.e.,

trimming/flipping) in terms of cost metrics.

Section II reviews the related works. The background of

machine learning algorithms used in this paper is presented

in Section III. Section IV describes the methodology of

employing random forests for mislabeled test cases. Section V

illustrates an example to demonstrate the methodology. Section

VI presents the results and evaluations. Section VII concludes

the paper and provides some hints on future work.

1326

2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)

978-1-7281-7303-0/20/$31.00 ©2020 IEEE
DOI 10.1109/COMPSAC48688.2020.00-72

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:13:34 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

There are several research work and studies regarding

identification of coincidentally correct test cases. Li et al.

[4] proposed a machine learning-based fuzzy classification

technique to identify coincidentally correct test cases followed

by the application of the KNN algorithm to identify the

remaining passed test cases. Feyzi and Parsa [2] proposed

a SVM-based algorithm with a customized kernel function

to improve fault localization effectiveness by removing the

impact of coincidentally correct test cases. Xue et al. [9]

proposed a technique combining support vector machine and

ensemble learning to detect mislabeled test cases followed by

flipping and trimming their test status in order to improve the

performance of fault localization. Pang et al. [7] also proposed

identifying effective test cases through K-Means Clustering for

enhancing regression testing.

Zhang et al. [10] introduced a test classification technique

to assign labels to the unlabeled test cases based on the

information gathered from their execution traces. This enables

making those newly labeled test cases be utilized in localizing

faults thereby improving on its effectiveness.

Patel [8] empirically evaluated four techniques to mitigate

the coincidental correctness in testing and debugging. The first

technique is called Interlocutory Testing, which is a framework

in which test oracles are developed. The second technique

called the Interlocutory Metamorphic Testing that mitigates

the impact of coincidental correctness when combined with

Interlocutory Testing. The other two techniques, Interlocutory

Testing and the Interlocutory Spectrum-based Fault Localiza-

tion, both work towards alleviating the effects of coincidental

correctness on fault localization.

III. BACKGROUND

A. Ensemble Learning

Ensemble learning is a machine learning technique where

multiple learners are trained to address the same problem. It

is different from other ordinary machine learning approaches

in terms of the different number of models it uses to train

and then combining them in order to make the final decision.

In this technique, different models are employed to train on

the multiple disjoint data subsets obtained from the original

dataset. Each model, after being trained, makes its own pre-

diction when applied on the test data. Each prediction (i.e.,

vote) is then aggregated along with other predictions made by

other models into one final prediction. This process and the

final decision made is called a majority voting. This model is

utilized in random forests to identify the coincidentally correct

test cases, which are mislabeled into passing test cases.

B. Random Forests Classification

In this paper, we made use of the random forests classifica-

tion instead of employing some other types of classifiers with

the goal of achieving better results for detecting coincidentally

correct test cases. The random forests classifiers are supervised

ensemble-learning models used for classification and regres-

sion. The idea behind ensemble learning models is to make use

Fig. 1. A representation of random forest embedded in ensemble learning.

of multiple machine learning models and aggregate them to

obtain overall better performance. The rationale behind this is

every one of the models utilized is frail when used individually,

yet solid when put together in an ensemble. A typical random

forests classifier consists of multiple “weak” decision trees

whose outputs when combined result in a “strong” ensemble.

Figure 1 show a graphical representation of how random

forests works.

C. Principle Component Analysis

Principal component analysis (PCA) is a dimensionality

reduction technique of a dataset.Its basic functionality is to

create principal components, which are basically independent

features that are a combination of a number of dependent

features. The primary principal component being the one that

possess the maximum variation as possible in the dataset and

the components followed represent the significant portion of

the remaining inconstancy and variance as possible.

In our problem domain, we deal with large program files

that contain a huge number of code lines. These individual

statements act as features (i.e., dimensions) which can grow

in size depending on the size of the program and consequently

make the computation complex. Hence after much experi-

mentation, we decided to reduce the dimensionality of our

dataset to 60 percent of the actual number of dimensions,

which would represent the best features. We applied Principal

Component Analysis (PCA) to our dataset setting attribute

n_components = 0.6 that controls the number of best

attributes needed to build a better classifier.

IV. METHODOLOGY

This section presents the methodology of identifying mis-

labeled test cases through random forests.

A. Notations

The overall motive of the technique is to predict the coinci-

dentally correct test cases out of the pool of passing test cases

devised for a faulty program. To begin with, we introduce

some notations for representation and formulation purposes.

• PT = {pt1, pt2,pti}: Passing test cases where pti
represents the i-th passing test case.

• FT = {ft1, ft2,ftj}: Failing test cases where ftj
represents the j-th failing test case.

1327

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:13:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Partitioning procedure.

• CT = {ct1, ct2,ctl}: Coincidentally correct test cases.

ctl is the l-th coincidentally correct test case.

B. Partitioning Dataset into Train/Test Sets

The unit test cases corresponding to each faulty program are

first divided into two sets: failing and passing. The passing

data set itself is partitioned into m subsets, out of which

one subset corresponds to the test dataset (Test1) and the

remaining sets m − 1 = l subsets (i.e., Train1, Train2, ...,

Traink) correspond to the training set. The failing test cases

are then added to each training set. In other words, each of

the training set is a combination of selected passing test cases

and all failing test cases. Each of these training sets are then

used to train our random forests-based model. The procedure

of partitioning passing data to build each subset Traini, for

i = 1 to k is depicted in Figure 2.

The train dataset will comprise of both failing and passing

test cases. Hence, each Traini will include subset of data

from passing test case (PT) dataset and all of the data from

the failing test case (FT) dataset. It is important to note that

the number of passing test cases need to be (and usually it is)

more than the failing ones. We included the entire failing test

cases in each of k subsets, as it was generally less than the

passing ones. As a result, each subset Traini comprised of

randomly selected a small subset of passing test cases:

Pti ⊂ PT

and all of the failing test cases (FT). The Train set is:

Traini =
{
Pti ⊂ PT} ∪ {

FT}
In our faulty programs under test, we partitioned each

passing test cases into four subsets out of which one set is

the test set consisting of PT cases. The size of the test data

is based on intuition and is generally taken less than that

taken for the train sets. Whatever left in the passing dataset, is

equally divided into three subsets where each part along with

added FT corresponds to one train sets. A random forests (RF)

classifier is then trained based on these subsets. In total, three

such sets were formed, and three RF classifiers were trained to

do classification on the test set. The algorithm continues this

entire procedure until all the passing test cases are processed

one test set at a time.

C. The Algorithm

Algorithm 1 describes the procedure for employing the

random forests (RF) classifier to identify coincidentally correct

test cases (CC) for a given faulty program.

Algorithm 1: Identifying coincidentally correct test cases.

Input: 1) Passing Test Cases PT = {pt1, pt2, ..ptN}
2) Failing Test Cases FT = {ft1, ft2, ..ftM}
3) Random Forests Learning Algorithm: RF

Output: CT
// Coincidentally correct test cases

1 Choose a random size K ≤ N
test = {} ; CT = {};

2 for (i = 0, i = N , i+ = K) do
3 for (j = i+ 1 to i+K) do
4 test.append(ptj)

5 Randomly divide the (N-K) passing test cases into

’p’ equal partitions

for m = 1 to p do
6 trainm = partitionsm ∪ FT

RFm = L(trainm)
Zm = {} // Initialization of each label

pool

7 for each test data ptk in test do
// label test data as P or F by RF

8 labelk = RFm(ptk)
Zm = Zm ∪ {labelk}

9 for each test data pt in test do
10 ccnum = 0 // # of CT test cases

11 nccnum = 0 // # of non-CT test cases

12 for m = 1 to p do
13 if Zm labels pt == coincidentally correct

then
14 ccnum ++

15 else
16 nccnum ++

17 if ccnum ≥ nccnum then
18 CT = CT ∪ {pt} // Majority Voting

The input to the algorithm is a set of passing (i.e., PT)

and failing (i.e., FT) test cases and the classifier embedded is

random forests. The output is a set of coincidentally correct

test cases (i.e., CT). The algorithm encompasses five steps:

1) Initialization (lines 2-4). It initializes the test dataset

from selecting randomly chosen size K unit test cases

starting from beginning from passing test cases dataset.

2) Portioning (lines 5-6). It builds up three training sets

(i.e., partitions) by merging the entire failing test cases

with each of the partition. A random forests (RF)

1328

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:13:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. An illustrative example.

classifier is also trained on each of the training set.

The L function represents the random forests learning

module.A label pool set Z is also initialized for every

partition to store the labelled test cases.

3) Classification (lines 7-8). The trained RF classifier is

then used to label the status of each test case present

in test set and then store them in the label test case set

Z corresponding to the partition/training data on which

the RF classifier is trained on.

4) Ensemble (lines 9-16). It counts the number of coinci-

dentally and non-coincidentally correct labels for each

test case that are produced by the implicit decision tress

generated by the RF classifier.

5) Decision and Voting (lines 17-18). If the number

of coincidentally correct labels are more than non-

coincidentally ones, then by majority voting, the cor-

responding test case is stored in the CT .

D. Metrics

We measured the effectiveness of the machine learning

algorithm, RL based on the fault localization cost metric,

which is calculated as the percentage of statements that must

be examined before reaching the first faulty statement in a

faulty program [9]. Once we get the the coincidentally correct

test case labels returned by the algorithm, we perform the

two strategies: 1) Flipping and 2) Trimming on those cases,

and then the fault localization procedure is re-performed to

compare the cost of fault localization for each strategy to that

of no strategy (original cost). Reduction in the cost from the

original is indicative of the the algorithm performing well.

V. AN ILLUSTRATIVE EXAMPLE

This section presents an illustrative example to demonstrate

the mechanic of the presented ensemble-based random forests.

Consider a faulty Java program of eight lines of code given in

Figure 3. This Java snippet consists of a class Math in which

two methods are defined. The first method getFact() takes

in an integer number and computes the factorial value of a

number. This class also implements another method namely,

getAbs(), which takes double value as a parameter. A fault

is injected at line 6 where the logic condition in the “if” loop

is incorrectly set to ’a <=2’ instead of ’a<=0’.

The test pool consists of eight passing and two failing test

cases. The passing test cases TC4 and TC7 both execute the

Fig. 4. Training data sets.g g

Fig. 5. Vectors For test cases: ’-1’ for passing, ’+1’ for failing.

faulty statement without exhibiting any faulty behavior. Hence,

TC4 and TC7 are apparent coincidentally correct test cases.

The purpose is to spot such coincidentally correct test cases

using ensemble-based random forests as a classifier. To begin

with, the algorithm splits the passing test cases into N groups

and then add all the failing test cases to each group. Here, we

divided the test cases into 10 (i.e., N = 10) random groups .

Each group is composed of three passing test cases (chosen in

random) along with two failing test cases. Figure 4 represents

what each data set comprises of.

Using each training set, a single RF classifier is built

and trained on each training set. In this example, ten such

classifiers were built for predicting the test status of the

passing test cases. Figure 5 shows the prediction results of the

10 classifiers. Then, the majority votes were taken for each

passing test case as shown in in Figure 6.

For example, in case of test TC1, 7 out of 10 classifiers

labeled this test case as ’-1’. Hence, the majority decision

for TC1 was ’−1’ and therefore TC1 was labeled as a

true passing test case and it was not a coincidentally correct

test case. On the other hand, in case of TC4, 6 out of

10 predictions were ’+1’. Therefore TC4 was labeled as a

coincidentally correct test case.

Fig. 6. Majority Voting: ’-1’ for passing, ’+1’ for failing.

1329

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:13:34 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SUBJECT PROGRAMS AND THE NUMBER OF COINCIDENTAL CORRECT

TEST CASES.

Programs Version(Fault No.) Combo1 Combo2 Combo3
Jmeter V1(F1) 3 3 3
Jmeter V3(F2) 2 4 1
Nano V1(F1) 31 4 20
Nano V1(F2) 32 24 25
Nano V1(F4) 17 16 15
Xml V2(F3) 7 8 7
Jtop V3 1 1 1

VI. EXPERIMENTAL EVALUATION

This section reports the performance of the introduced

approach on improving fault localization. The improvement

is measured through the reduction of debugging cost achieved

through 1) no removal, 2) flipping, and 3) trimming of the

coincidentally correct test cases identified by the methodology.

A. Subject Programs

Table I lists the subject programs studied in this research.

We obtained these widely-studied programs through the SIR

repository (Software-artifact Infrastructure Repository).

B. Data Collection

For each faulty program used for testing purposes, there

are three files namely: Combo1, Combo2, and Combo3 each

pertaining to 1, 2 and 3 number of statements (i.e., execution

trace) that the test cases execute at a time, respectively. These

statements act as features. In other words, Combo1, Combo2,

and Combo3 comprise a combination of single, double and

triple statements as features that are executed by test cases at

once, respectively.

We built three separate data sets each corresponding to the

combo files and performed the partitioning as discussed in

the previous section on each dataset to eventually identify

coincidentally correct test cases present in each combo files.

Building Feature Vectors. Coming to the contents of dataset

part, where features represent the statements executed by each

test case, the value under each feature represents the count of

number of times a test case is executing that statement. For

instance, consider a faulty program with seven lines of code

each executable in nature and suppose an execution trace of a

test case t1 in the form of a vector that looks like

ExecutionTracet1 :
〈
1, 2, 5, 6, 5, 2

〉

where each value represents statement number executed by

that test case. Each statement number of that test case would

have a vector of values of the form that can be represented as:

FeatureV ectort1 :
〈
0, 2, 2, 1, 2, 0

〉

where each value represents the count of times the test case

executed the underlying statement number.

C. Partitioning Passing and Failing Test Cases

We partitioned total number of N passing test cases into

1) one test data file containing K = 10 (randomly chosen)

number of passing test cases for prediction , 2) three train

dataset files each containing (N−10)/3 number of test cases,

3) add all the failing test cases from the failing dataset file into

each of the three train files in order to build and train three

models. The models then are used to obtain three different

classifications for a single passing test case. Out of these

three predicted labels, the majority voting would be the final

status (i.e., passing or failing) of the underlying test case. We

recursively followed the above steps until we cover all the test

cases in the passing dataset file and in the end, we obtain the

final majority voting.

Table I also lists the number of coincidentally correct test

cases identified in each of the three combo files corresponding

to the faulty programs under test. We identified the coinci-

dental correct test cases by majority voting which were then

subjected to flipping and trimming procedure.

D. Fault Localization Cost Analysis

We applied the aforementioned techniques (i.e., flipping and

trimming) to our dataset and identified the final list of coinci-

dentally correct test cases for each program. We developed and

ran our python script to find the cost of localizing a fault first

by trimming and then by flipping the coincidentally correct

test cases and report the results.

We ran python scripts which took as input the trace, test

status and the instrumentation files for each program under

test to calculate the cost of localizing fault. Two variants of

cost of fault localization were evaluated to observe which one

is offering the best results. The results also were compared

with the original cost, which is the cost calculated when

no changes were done to the test suite. In the first variant,

we calculated the cost of flipping/trimming the coincidentally

correct test cases one at a time; whereas, in the second variant

we calculated the cost after trimming/flipping all the identified

coincidentally correct test cases at once.

Tables II and III report the cost analysis of flipping and

trimming procedure. We observe that for most of the subject

programs, the second variant, i.e, doing the changes to the test

suite all at once exhibited lesser than or equal cost value to

the original cost as compared to the first variant.

E. Flipping and Trimming Cost Analysis

In Table II, some of the combo files under the first cost

variant have two cost values representing the values in which

the coincidentally correct test cases fluctuated in. The values

marked in bold indicated the corresponding subject programs

incurred lesser or equal cost of fault localization when its

coincidentally correct test cases were flipped all at once. A

similar trend was seen in the case of trimming in Table III.

We observe that adopting our technique of ensemble-based

random forests mechanism can prove to be beneficial in terms

of fault localization cost as it is pretty evident from the results

reported that when the cost-evaluating python scripts ran on

1330

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:13:34 UTC from IEEE Xplore. Restrictions apply.

TABLE II
COST ANALYSIS WITH FLIPPING.

Flipping Cost One a Time (Variant 1) All at Once (Variant 2) Original Cost
Programs combo1 combo2 combo3 combo1 combo2 combo3
Jmeter V3F2 0.022 {0.022,0.933} 0.022 0.022 0.022 0.022 0.022
Jmeter V1F1 {0.08, 0.06} {0.08, 0.06} {0.08, 0.06} 0.06 0.06 0.06 0.16
Nano V1F1 {0.093, 0.140} {0.093, 0.140} 0.047 0.062 0.078 0.047 0.171
Nano V1F2 0.562 0.562 0.562 0.218 0.262 0.265 0.562
Nano V1F4 0.70312 0.703 0.509 0.703 0.703 0.509 0.703
Xml V2F3 {0.058, 0.098} {0.058, 0.098} {0.058, 0.098} 0.098 0.058 0.098 0.058
Jtop V3 0.172 0.172 0.172 0.172 0.172 0.172 0.172

TABLE III
COST ANALYSIS WITH TRIMMING.

Trimming Cost One a Time (Variant 1) All at Once (Variant 2) Original Cost
Programs combo1 combo2 combo3 combo1 combo2 combo3
Jmeter V3F2 0.022 {0.022,0.9} 0.022 0.81 0.022 0.022 0.022
Jmeter V1F1 0.16 0.16 0.16 0.08 0.08 0.08 0.16
Nano V1F1 0.171 0.171 0.156 0.156 0.171 0.156 0.171
Nano V1F2 0.562 0.562 0.562 0.218 0.218 0.218 0.562
Nano V1F4 0.70312 0.703 0.478 0.703 0.70312 0.478 0.703
Xml V2F3 {0.058, 0.176} 0.058 0.058 0.176 0.058 0.058 0.058
Jtop V3 0.172 0.172 0.172 0.172 0.172 0.172 0.172

the test suite of the subject programs under test in which

the RF-identified coincidentally correct test cases’ status was

flipped/trimmed, it gave better(read lesser) or equal cost results

thereby making this mechanism a useful tool in reducing the

expense incurred for fault localization.

VII. CONCLUSION AND FUTURE WORK

This paper proposed an random forests-based ensemble

technique to identify coincidentally correct test cases. The

motive behind this proposal was to mitigate the high cost

incurred in the localizing fault in a faulty program due to the

presence of coincidentally correct test cases. As a result, two

strategies, namely, flipping and trimming were discussed and

their performance in terms of incurred fault localization were

analyzed. The results show that the proposed technique fared

well in achieving the motive. There exist some other avenues

in the field of machine learning that can be explored to work

towards attaining this goal. In this paper, we worked on subject

programs available in the SIR repository. It is important to

replicate the experiment reported here on a larger set of

programs (e.g. Defects4J [3]) so to observe the true benefit

of ensemble learning approaches to this problem. Moreover,

in order to choose the best value for K, the model might need

some exploration on the optimization aspects of the problem

and particularly performing some uncertainty reasoning [5].

ACKNOWLEDGMENT

This research work is supported in part by National Science

Foundation under Grant No: 1821560.

REFERENCES

[1] F. Al. Constantin A. Statnikov, L. Wang. A comprehensive comparison
of random forests and support vector machines for microarray-based
cancer classification. BMC Bioinformatics, 9(316), 2008.

[2] Farid Feyzi and Saeed Parsa. Kernel-based detection of coincidentally
correct test cases to improve fault localisation effectiveness. Interna-
tional Journal of Applied Pattern Recognition, 5:119, 01 2018.

[3] Rene Just, Darioush Jalali, , and Michael D. Ernst. Defects4J: A database
of existing faults to enable controlled testing studies for java programs.
In ACM ISSTA, 2014.

[4] Z. Li, M. Li, Y. Liu, and J. Geng. Identify coincidental correct test cases
based on fuzzy classification. In International Conference on Software
Analysis, Testing and Evolution (SATE), pages 72–77, 2016.

[5] Akbar Siami Namin and Mohan Sridharan. Bayesian reasoning for
software testing. In Workshop on Future of Software Engineering
Research, pages 349–354, 2010.

[6] Y. Pang, X. Xue, and A. Siami Namin. Early identification of vulnerable
software components via ensemble learning. In IEEE ICMLA, 2016.

[7] Yulei Pang, Xiaozhen Xue, and Akbar Siami Namin. Identifying
effective test cases through k-means clustering for enhancing regression
testing. In IEEE ICMLA, pages 78–83, 2013.

[8] Krishna Patel. The Interlocutory Tool Box: Techniques for Curtailing
Coincidental Correctness. PhD thesis, 2017.

[9] X. Xue, Y. Pang, and A. Siami Namin. Trimming test suites with
coincidentally correct test cases for enhancing fault localization. In 38th
Annual Computer Software and Applications Conference, 2014.

[10] Xiaoyi Zhang, Zheng Zheng, and Kai-Yuan Cai. Exploring the useful-
ness of unlabelled test cases in software fault localization. Journal of
Systems and Software, 07 2017.

1331

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:13:34 UTC from IEEE Xplore. Restrictions apply.

