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We are interested in testing general linear hypotheses in a high-dimensional multivariate linear

regression model. The framework includes many well-studied problems such as two-sample tests

for equality of population means, MANOVA and others as special cases. A family of rotation-

invariant tests is proposed that involves a flexible spectral shrinkage scheme applied to the

sample error covariance matrix. The asymptotic normality of the test statistic under the null

hypothesis is derived in the setting where dimensionality is comparable to sample sizes, assuming

the existence of certain moments for the observations. The asymptotic power of the proposed

test is studied under various local alternatives. The power characteristics are then utilized to

propose a data-driven selection of the spectral shrinkage function. As an illustration of the

general theory, we construct a family of tests involving ridge-type regularization and suggest

possible extensions to more complex regularizers. A simulation study is carried out to examine

the numerical performance of the proposed tests.

Keywords: General linear hypothesis, Local alternatives, Ridge shrinkage, Random matrix the-
ory, Spectral shrinkage.

1. Introduction
In multivariate analysis, one of the fundamental inferential problems is to test a hy-
pothesis involving a linear transformation of regression coefficients under a linear model.
Suppose Y is a p ˆ N matrix of observations modeled as

Y “ BX ` Σ1{2
p Z , (1.1)

where (i) B is a pˆ k matrix of regression coefficients; (ii) X is a k ˆN design matrix
of rank k; (iii) Z is a pˆN matrix with i.i.d. entries having zero mean and unit variance;
and (iv) Σp, a p ˆ p nonnegative definite matrix, is the population covariance matrix
of the errors, with Σ

1{2
p a “square-root” of Σp so that Σp “ Σ

1{2
p pΣ

1{2
p qT . General linear

hypotheses involving the linear model (1.1) are of the form

H0 : BC “ 0 vs. Ha : BC ‰ 0, (1.2)
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for an arbitrary k ˆ q “constraints matrix” C, subject to the requirement that BC is
estimable. Without loss of generality, C is taken to be of rank q. Throughout, we assume
that q and k are fixed, even as observation dimension p and sample size N increase to
infinity. Henceforth, n “ N ´ k is used to denote the effective sample size, which is also
the degree of freedom associated with the sample error covariance matrix.

With various choices of X and C, the testing formulation incorporates many hypothe-
ses of interest. For example, multivariate analysis of variance (MANOVA) is a special
case. When the sample size N is substantially larger than the dimension p of the obser-
vations, this problem is well-studied. Anderson (1958) and Muirhead (2009) are among
standard references. Various classical inferential procedures involve the matrices

pΣp “
1

n
YpI ´ XT pXXT q´1XqYT , (1.3)

pHp “
1

n
YXT pXXT q´1CrCT pXXT q´1Cs´1CT pXXT q´1XYT , (1.4)

so that pΣp is the residual covariance of the full model, an estimator of Σp, while pHp

is the hypothesis sums of squares and cross products matrix, scaled by n´1. In a one-
way MANOVA set-up, pΣp and pHp are, respectively, the within-group and between-group
sums of squares and products matrices, scaled by n´1. In the rest of the paper, we shall
refer to pΣp as the sample covariance matrix.

The testing problem (1.2) is well-studied in the classical multivariate analysis litera-
ture. Three standard test procedures are the likelihood ratio test (LR), Lawley–Hotelling
trace test (LH) and Bartlett–Nanda–Pillai trace (BNP) test. They are called invariant
tests, since under Gaussianity the null distributions of the test statistics are invariant
with respect to Σp. One common feature is that all test statistics are linear functionals
of the spectrum of pHp

pΣ´1
p . Since this matrix is asymmetric, for convenience, a standard

transformation is applied, giving the expressions of the invariant tests as follows. Define

Qn “ XT pXXT q´1CrCT pXXT q´1Cs´1{2, (1.5)

M0 “
1

n
QT

nY
T

pΣ´1
p YQn.

The matrix QnQ
T
n is the “hat matrix” of the reduced model under the null hypothesis.

Note that the non-zero eigenvalues of pHp
pΣ´1
p “ n´1YQnQ

T
nY

T
pΣ´1
p are the same as

those of M0. The test statistics for the LR, LH and BNP tests can be expressed as

TLR
0 “

q
ÿ

i“1

logt1 ` λipM0qu,

TLH
0 “

q
ÿ

i“1

λipM0q,

TBNP
0 “

q
ÿ

i“1

λipM0q{t1 ` λipM0qu.
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The symbol λip¨q denotes the i-th largest eigenvalue of a symmetric matrix, further using
the convention that λmaxp¨q and λminp¨q indicate the largest and smallest eigenvalue,
respectively.

In contemporary statistical research and applications, high-dimensional data whose
dimension is at least comparable to the sample size is ubiquitous. In this paper, focus
is on the interesting boundary case when dimension and sample sizes are comparable.
Primarily due to inconsistency of conventional estimators of model parameters — such as
pΣp —, classical test procedures for the hypothesis (1.2) — such as the LR, LH and BNP
tests — perform poorly in such settings. When the dimension p is larger than the degree
of freedom n, the invariant tests are not even well-defined because pΣp is singular. Even
when p is strictly less than n, but the ratio γn “ p{n is close to 1, these tests are known
to have poor power behavior. Asymptotic results when γn Ñ γ P p0, 1q were obtained in
Fujikoshi, Himeno and Wakaki (2004) under Gaussianity of the populations, and more
recently in Bai, Choi and Fujikoshi (2017) under more general settings that only require
the existence of certain moments.

Pioneering work on modifying the classical solutions in high dimension is in Bai et al.
(2013), who corrected the scaling of the LR statistic when n ě p but p, k and q are propor-
tional to n. The corrected LR statistic was shown to have significantly more power than
its classical counterpart. In contrast, in this paper, we focus on the setting where k and q
are fixed even as n, p Ñ 8 so that γn “ p{n Ñ γ P p0,8q. In the multivariate regression
problem, this corresponds to a situation where the response is high-dimensional, while the
predictor is finite-dimensional. In the MANOVA problem, this framework corresponds to
high-dimensional observations belonging to one of a finite number of populations.

To the best of our knowledge, when n ă p, the linear hypothesis testing problem has
been studied in depth only for specific submodels of (1.1), primarily for the important
case of two-sample tests for equality of population means. For the latter tests, a widely
used idea is to construct modified statistics based on replacing pΣ´1

p with an appropri-
ate substitute. This approach was pioneered in Bai and Saranadasa (1996) and further
developed in Chen and Qin (2010). Various extensions to one-way MANOVA (Srivas-
tava and Fujikoshi, 2006; Yamada and Himeno, 2015; Srivastava and Fujikoshi, 2006; Hu
et al., 2017) and a general multi-sample Behrens–Fisher problem under heteroscedastic-
ity (Zhou, Guo and Zhang, 2017) exist. Other notable works for the two-sample problem
include Biswas and Ghosh (2014); Chang et al. (2017); Chen, Li and Zhong (2014);
Guo and Chen (2016); Lopes, Jacob and Wainwright (2011); Srivastava, Li and Ruppert
(2016); Wang, Peng and Li (2015). A second approach aims to regularize the matrix pΣp

to address the issue of its near-singularity in high dimensions; see Chen et al. (2011) and
Li et al. (2016) for ridge-type penalties in two-sample settings. Finally, another alterna-
tive line of attack consists of exploiting sparsity; see Cai, Liu and Xia (2014); Cai and
Xia (2014).

In this paper, we seek to regularize the spectrum of pΣp by flexible shrinkage functions.
For a symmetric p ˆ p matrix A and a function gp¨q on R, define

gpAq “ RAdiag
`

gpλ1pAqq, . . . , gpλppAqq
˘

RT
A,
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where RA is the matrix of eigenvectors associated with the ordered eigenvalues of A.
Now, consider any real-valued function fp¨q on R that is analytic over a specific domain
associated with the limiting behavior of the eigenvalues of pΣp, as elaborated in Section 2.
The proposed statistics are functionals of eigenvalues of the regularized quadratic forms

Mpfq “
1

n
QT

nY
T fp pΣpqYQn.

Specifically, we propose regularized versions of LR, LH and BNP test criteria, respectively,
namely

TLRpfq “

q
ÿ

i“1

logt1 ` λipMpfqqu,

TLHpfq “

q
ÿ

i“1

λipMpfqq,

TBNPpfq “

q
ÿ

i“1

λipMpfqq{t1 ` λipMpfqqu.

These test statistics are designed to capture possible departures from the null hypothesis,
when pΣp is replaced by fp pΣpq, while suitable choices of the regularizer f allow for getting
around the problem of singularity or near-singularity when p is comparable to n.

Notice that Mpfq has the same non-zero eigenvalues as fp pΣpq pHp. Thus, the proposed
test family is a generalization of the classical statistics based on pΣ´1

p
pHp. Importantly,

Mpfq — and consequently the proposed statistics — is rotation-invariant, which means if
a linear transformation is applied to the observations with an arbitrary orthogonal matrix,
the statistic remains unchanged. It is a desirable property when not much additional
knowledge about Σp and BC is available. It should be noted that the two-sample mean
tests by Bai and Saranadasa (1996) and Li et al. (2016), together with their generalization
to MANOVA, are special cases of the proposed family with fpxq “ 1 and fpxq “ 1{px`λq,
λ ą 0, respectively.

The present work builds on the work by Li et al. (2016). The theoretical analysis also
involves an extension of the analytical framework adopted by Pan and Zhou (2011) in
their study of the asymptotic behavior of Hotelling’s T 2 statistic for non-Gaussian ob-
servations. However, the current work goes well beyond the existing literature in several
aspects. We highlight these as the key contributions of this manuscript: (a) We propose
new families of rotation-invariant tests for general linear hypotheses for multivariate re-
gression problems involving high-dimensional response and fixed-dimensional predictor
variables that incorporate a flexible regularization scheme to account for the dimension-
ality of the observations growing proportional to the sample size. (b) Unlike Li et al.
(2016), who assumed sub-Gaussianity, here only the existence of finite fourth moments
of the observations is required. (c) Unlike Pan and Zhou (2011), who assumed Σp “ Ip,
Σp is allowed to be fairly arbitrary and subjected only to some standard conditions on
the limiting behavior of its spectrum. (d) We carry out a detailed analysis of the power
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characteristics of the proposed tests. The proposal of a class of local alternatives enables a
clear interpretation of the contributions of different parameters in the performance of the
test. (e) We develop a data-driven test procedure based on the principle of maximizing
asymptotic power under appropriate local alternatives. This principle leads to the defini-
tion of a composite test that combines the optimal tests associated with a set of different
kinds of local alternatives. The latter formulation is an extension of the data-adaptive
test procedure designed by Li et al. (2016) for the two-sample testing problem.

The rest of the paper is organized as follows. Section 2 introduces the asymptotics
of the proposed test family both under the null hypothesis and under a class of local
alternatives. Using these local alternatives, in Section 3 a data-driven shrinkage selec-
tion methodology based on maximizing asymptotic power is developed. In Section 4, an
application of the asymptotic theory and the shrinkage selection method is given for
the ridge-regularization family. An extension of ridge-regularization to higher orders is
also discussed. The results of a simulation study are reported in Section 5. Section 6
contains additional discussion. In the Appendix, proof outlines of the main theorems are
presented, while technical details are collected in the Supplementary Material.

2. Asymptotic theory
After giving necessary preliminaries on Random Matrix Theory (RMT), the asymptotic
theory of the proposed tests under the null hypothesis and under various local alternative
models is presented in this section. For any pˆp symmetric matrix A, define the Empirical
Spectral Distribution (ESD) FA of A by

FApτq “
1

p

p
ÿ

i“1

1tλipAqďτu.

In the following, }¨}max stands for the maximum absolute value of the entries of a matrix.
The following assumptions are employed.

C1 (Moment conditions) The entries zij of Z are i.i.d. such that Erzijs “ 0, Erz2ijs “ 1,
Erz4ijs ă 8;

C2 (High-dimensional setting) k and q are fixed, while p, n Ñ 8 such that γn “ p{n Ñ

γ P p0,8q and
?
n|γn ´ γ| Ñ 0;

C3 (Boundedness of spectral norm) Σp is non-negative definite and lim supp λmaxpΣpq ă

8;
C4 (Asymptotic stability of ESD) There exists a distribution LΣ with compact support

in r0,8q, non-degenerate at zero, such that
?
nDW pFΣp , LΣq Ñ 0, as n, p Ñ 8,

where DW pF1, F2q denotes the Wasserstein distance between distributions F1 and
F2, defined as

DW pF1, F2q “ sup
f

!ˇ

ˇ

ˇ

ˆ
fdF1 ´

ˆ
fdF2

ˇ

ˇ

ˇ
: f is 1-Lipschitz

)

.
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C5 (Asymptotically full rank) X is of full rank and n´1XXT converges to a positive
definite k ˆ k matrix. Moreover, lim supnÑ8 }X}max ă 8;

C6 (Asymptotically estimable) lim infnÑ8 λminpCT pn´1XXT q´1Cq ą 0.

2.1. Preliminaries on random matrix theory

Recall that the Stieltjes transform mGp¨q of any function G of bounded variation on R
is defined by

mGpzq “

ˆ 8

´8

dGpxq

x ´ z
, z P C` :“ tu ` iv : v ą 0u.

Minor modifications of a standard RMT result imply that, under Conditions C1–C6,
the ESD F

pΣp converges almost surely to a nonrandom distribution F8 at all points of
continuity of F8. This limit is determined in such a way that for any z P C`, the Stieltjes
transform mp¨q “ mF8 p¨q of F8 is the unique solution in C` of the equation

mpzq “

ˆ
dLΣpτq

τp1 ´ γ ´ γzmpzqq ´ z
. (2.1)

Equation (2.1) is often referred to as the Marčenko–Pastur equation. Moreover, pointwise
almost surely for z P C`, m

F
xΣp

pzq converges to mF8 pzq. The convergence holds even
when z P R´ (negative reals) with a smooth extension of mF8 to R´. Readers may refer
to Bai and Silverstein (2004) and Paul and Aue (2014) for more details. From now on,
for notational simplicity, we shall write mF8 pzq as mpzq and write m

F
xΣp

pzq as mn,ppzq.
Note that

mn,ppzq “
1

p
trp pΣp ´ zIpq´1

and define
Θpz, γq “ t1 ´ γ ´ γzmpzqu´1. (2.2)

It is known that p pΣp ´ zIpq´1, for any fixed z P C`, has a deterministic equivalent (Bai
and Silverstein (2004); Liu, Aue and Paul (2015); Li et al. (2016)), given by

tΘ´1pz, γqΣp ´ zIu´1,

in the sense that for symmetric matrices A bounded in operator norm, as n Ñ 8,

p´1tr
”

p pΣp ´ zIpq´1A
ı

´ p´1tr
”

tΘ´1pz, γqΣp ´ zIu´1A
ı

Ñ 0, with probability 1.

Resolvent and deterministic equivalent will be used frequently in this paper. They will
appear for example as Cauchy kernels in contour integrals in various places.
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2.2. Asymptotics under the null hypothesis

To begin with, for k ě 1, denote by W “ rwijski,j“1 the Gaussian Orthogonal Ensemble
(GOE) defined by (1) wij “ wji; (2) wii „ N p0, 1q, wij „ N p0, 1{2q, i ‰ j; (3) wij ’s
are jointly independent for 1 ď i ď j ď k. Throughout this paper, fp¨q is assumed to be
analytic in an open interval containing

X :“ r0, lim sup
pÑ8

λmaxpΣpqp1 `
?
γq2s.

Let C to be a closed contour enclosing X such that fp¨q has a complex extension to the
interior of C. Further use C2 to denote C b C “ tpz1, z2q : z1, z2 P Cu. The asymptotic null
distribution is determined in the next theorem.

Theorem 2.1 Suppose C1–C6 hold. Under the null hypothesis H0 : BC “ 0,
?
ntMpfq ´ Ωpf, γqIqu ùñ ∆1{2pf, γqW,

where ùñ denotes weak convergence and Ωpf, γq and ∆pf, γq are as follows. With Θpz, γq

defined in (2.2),

Ωpf, γq “
´1

2πi

˛
C
fpzqpΘpz, γq ´ 1qdz.

For any two analytic functions f1 and f2,

∆pf1, f2, γq “
2

p2πiq2

‹
C2

f1pz1qf2pz2qδpz1, z2, γqdz1dz2,

and ∆pf, f, γq is written as ∆pf, γq for simplicity. The kernel δpz1, z2, γq is such that

δpz1, z2, γq “ Θpz1, γqΘpz2, γq

”z1Θpz1, γq ´ z2Θpz2, γq

z1 ´ z2
´ 1

ı

,

δpz, z, γq “ lim
z2Ñz

δpz, z2, γq “ Θ2pz, γq

”

BzΘpz, γq

Bz
´ 1

ı

“ γt1 ` zmpzquΘ3pz, γq ` γztmpzq ` zm1pzquΘ4pz, γq.

The contour integral is taken counter-clockwise.

Using knowledge of the eigenvalues of the GOE leads to the following statement.

Corollary 2.1 Let the conditions of Theorem 2.1 be satisfied. Assume that ∆pf, γq ą 0
and let

λ̃i “

?
n

∆1{2pf, γq
tλipMpfqq ´ Ωpf, γqu, i “ 1, . . . , q.

Then, the limiting joint density function of pλ̃1, . . . , λ̃qq at y1 ě y2 ě ¨ ¨ ¨ ě yq is given by
´

2q{2
q

ź

i“1

Γpi{2q

¯´1 ź

iăj

pyi ´ yjq exp
´

´
1

2

q
ÿ

i“1

y2i

¯

.
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Although without closed forms, Ωpf, γq and ∆pf, γq do not depend on the choice of C
used to compute the contour integral. With the resolvent as kernel Mpfq can be expressed
as the integral of

fpzqn´1QT
nY

T p pΣp ´ zIpq´1YQn

on any contour C, up to a scaling factor. The quadratic form n´1QT
nY

T p pΣp´zIpq´1YQn

is then shown to concentrate around rΘpz, γq ´ 1sIq, which consequently serves as the
integral kernel in Ωpf, γq. The kernel δpz1, z2, γq of ∆pf, γq is the limit of Ern´1trtp pΣp ´

z1Ipq´1Σpp pΣp ´ z2Ipq´1Σpus.

Remark 2.1 Two sufficient conditions for ∆pf, γq ą 0 are
(1) fpxq ą 0 for x P X ;
(2) fpxq ě 0 for x P X , with fpxq ‰ 0 for some x P X , and lim inf λminpΣpq ą 0.

It would be convenient if Ωpf, γq and ∆pf, γq had closed forms in order to avoid
computational inefficiencies. Closed forms are available for special cases as shown in the
following lemma.

Lemma 2.1 When fpx, ℓq “ px ´ ℓq´1 with ℓ P R´, the contour integrals in Theorem
2.1 have closed forms, namely, for j, j1, j2 “ 0, 1, 2, . . . ,

´1

2πi

˛
C

Bjfpz, ℓq
Bℓj

pΘpz, γq ´ 1qdz “
BjpΘpℓ, γq ´ 1q

Bℓj
,

1

p2πiq2

‹
C2

Bj1fpz1, ℓ1q

Bℓj11

Bj2fpz2, ℓ2q

Bℓj22
δpz1, z2, γqdz1dz2 “

Bj1`j2δpℓ1, ℓ2, γq

Bℓj11 Bℓj22
.

The results continue to hold when ℓ P CzX .

Lemma 2.1 indicates that it is possible to have convenient and accurate estimators of
the asymptotic mean and variance of Mpfq under ridge-regularization. The result easily
generalizes to the setting when fpxq is a linear combination of functions of the form
px ´ ℓjq´1, for any finite collection of ℓj ’s. We elaborate on this in Section 4.

To conduct the tests, consistent estimators of Ωpf, γq and ∆pf, γq are needed.

Lemma 2.2 Let pΘpz, γnq and pδpz1, z2, γnq be the plug-in estimators of Θpz, γq and δpz1,
z2, γq, with pmpzq, γq estimated by pmn,ppzq, γnq. For general f , f1, f2, we can esti-
mate Ωpf, γq and ∆pf1, f2, γq by replacing Θpz, γq and δpz1, z2, γq with pΘpz, γnq and
pδpz1, z2, γnq. Denote the resulting estimators by pΩpf, γnq and p∆pf1, f2, γnq. Then,

?
n|pΩpf, γnq ´ Ωpf, γq|

P
ÝÑ 0,

?
n| p∆pf1, f2, γnq ´ ∆pf1, f2, γq|

P
ÝÑ 0,

where P
ÝÑ indicates convergence in probability. Again, we write p∆pf, f, γnq as p∆pf, γnq.
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For the special case of f pjqpx, ℓq “ Bjpx ´ ℓq´1{Bℓj, j “ 0, 1, 2, . . . and ℓ P CzX , using
Lemma 2.1, natural estimators in closed forms are

pΩpf pjqpx, ℓq, γnq “
BjppΘpℓ, γnq ´ 1q

Bℓj
,

p∆pf pj1qpx, ℓ1q, f pj2qpx, ℓ2q, γnq “
Bj1`j22pδpℓ1, ℓ2, γnq

Bℓj11 Bℓj22
.

In particular, for j, j1, j2 “ 0,

pΩpfpx, ℓq, γnq “ pΘpℓ, γnq ´ 1,

p∆pfpx, ℓ1q, fpx, ℓ2q, γnq “ 2pδpℓ1, ℓ2, γnq.

The estimators are consistent, for any fixed j and ℓ. Given the eigenvalues of pΣp, the
computational complexity of calculating the above estimators is Oppq.

Recall the definitions of TLRpfq, TLHpfq and TBNPpfq from Section 1.

Theorem 2.2 Suppose C1–C6 hold and ∆pf, γq ą 0. Under the null hypothesis H0 :
BC “ 0,

pTLRpfq :“

?
nt1 ` pΩpf, γnqu

q1{2
p∆1{2pf, γnq

rTLRpfq ´ q logt1 ` pΩpf, γnqusùñN p0, 1q,

pTLHpfq :“

?
n

q1{2
p∆1{2pf, γnq

tTLHpfq ´ qpΩpf, γnquùñN p0, 1q,

pTBNPpfq :“

?
nt1 ` pΩpf, γnqu2

q1{2
p∆1{2pf, γnq

!

TBNPpfq ´ q
pΩpf, γnq

1 ` pΩpf, γnq

)

ùñN p0, 1q.

For any of the three tests, the null hypothesis is rejected at asymptotic level α, if
pT pfq ą ξα, where ξα is the 1 ´ α quantile of the standard normal distribution.

2.3. Asymptotic power under local alternatives

This subsection deals with the behavior of the proposed family of tests under a host
of local alternatives. We start with deterministic alternatives, a framework commonly
used in the literature to study the asymptotic power of inferential procedures. Next, we
consider a Bayesian framework, using a class of priors that characterize the structure of
the alternatives. Because the results to follow simultaneously hold for pTLRpfq, pTLHpfq

and pTBNPpfq, the unifying notation pT pfq will be used to refer to each of the test statistics.

2.3.1. Deterministic local alternatives

Consider a sequence of BC such that, as n, p Ñ 8,
?
nCTBT tΘ´1pz, γqΣp ´ zIu´1BC ÝÑ Dpz, γq pointwise, (2.3)
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on an open subset of C containing X .
Observe that YQn “ BCrCT pn´1XXT q´1Cs´1{2 ` Σ

1{2
p ZQn and define

HpD, fq “ T´1{2
”

´1

2πi

˛
C
fpzqDpz, γqdz

ı

T´1{2, (2.4)

where
T “ lim

nÑ8
CT pn´1XXT q´1C. (2.5)

Note that T exists and is non-singular under C5 and C6. If further fpxq ě 0 for any
x P X , HpD, fq is non-negative definite.

Theorem 2.3 Suppose C1–C6 and (2.3) hold, and ∆pf, γq ą 0. Then, as n Ñ 8,
?
n

∆1{2pf, γq
tMpfq ´ Ωpf, γqIquùñW `

HpD, fq

∆1{2pf, γq
.

Denote the power functions of pT pfq at asymptotic level α, conditional on BC, by

ΥpBC, fq “ Pp pT pfq ą ξα | BCq.

The asymptotic behavior of the power functions is described in the following corollary.

Corollary 2.2 Under the assumptions of Theorem 2.3, as n Ñ 8,

ΥpBC, fq ÝÑ Φ
´

´ ξα `
trpHpD, fqq

q1{2∆1{2pf, γq

¯

,

where Φ is the standard normal CDF.

Remark 2.2 Corollary 2.2 indicates the three proposed statistics have identical asymp-
totic powers under the assumed local alternatives. This is because the first-order Taylor
expansions of x, logp1`xq and x{p1`xq coincide at 0. However, the respective empirical
powers may differ considerably for moderate sample sizes.

The following remark provides a sufficient condition under which (2.3) is satisfied.
Denoting the columns of BC by rµ1, . . . , µqs, it follows that

?
nCTBT tΘ´1pz, γqΣp ´ zIu´1BC “

?
n

”

µT
i tΘ´1pz, γqΣp ´ zIpu´1µj

ıq

i,j“1
.

Remark 2.3 (a) Let Em,p denote the eigen-projection associated with λm,p “ λmpΣpq.
Suppose that there exists a sequence (in p) of mappings rBij;ps

q
i,j“1 from r0,8qq

2 to
r0,8qq

2 , satisfying Bij;ppλm,pq “
?
npµT

i Em,pµj, m “ 1, . . . , p, and a mapping
rBij;8s

q
i,j“1 continuous on r0,8qq

2 such that, as p Ñ 8 and for 1 ď i, j ď q,
ˆ

|Bij;ppxq ´ Bij;8pxq|dFΣppxq Ñ 0.
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Then, under C4, it follows that (2.3) holds with Dpz, γq “ rdijpz, γqs
q
i,j“1 and

dijpz, γq “

ˆ
Bij;8pxqdLΣpxq

xΘ´1pz, γq ´ z
“

ˆ
Bij;8pxqdLΣpxq

xt1 ´ γ ´ γzmpzqu ´ z
.

(b) If Σp “ Ip, then (2.3) is satisfied if
?
nµT

i µj Ñ Kij, for some constants Kij,
1 ď i, j ď q. In this case, Dpz, γq “ pΘ´1pz, γq ´ zq´1rKijs

q
i,j“1.

2.3.2. Probabilistic local alternatives

While deterministic local alternatives provide useful information, they are somewhat
restrictive for the purpose of a systematic investigation of the power characteristics.
Therefore, probabilistic alternatives are considered in the form of a sequence of prior
distributions for BC. This has the added advantage of providing flexibility for incorpo-
rating structural information about the regression parameters and the constraints matri-
ces. The proposed formulation of probabilistic alternatives can be seen as an extension
of the proposal adopted by Li et al. (2016) in the context of two-sample tests for equal-
ity of means. One challenge associated with formulating meaningful alternatives to the
hypothesis (1.2), when compared to the two-sample testing problem, is that there are
many more plausible ways in which the null hypothesis can be violated. Considering
this, we propose a class of alternatives, that on one hand can incorporate a multitude of
structures of the parameter BC, while on the other hand retains analytical tractability
in terms of providing interpretable expressions for the local asymptotic power.

Assume the following prior model of BC with separable covariance

BC “ n´1{4p´1{2RVST , (2.6)

where V is a p ˆ m stochastic matrix (m ě 1 fixed) with independent elements νij such
that Erνijs “ 0, Er|νij |2s “ 1 and maxij Er|νij |4s ď pcν for some cν P p0, 1q; R is a p ˆ p
deterministic matrix and S is a fixed q ˆ m matrix. Moreover, let }R}2 ď K1 ă 8 and
suppose there is a nonrandom function hpz, γq such that, as p Ñ 8, on an open subset
of C containing X ,

p´1trtpΘ´1pz, γqΣp ´ zIq´1RRT u Ñ hpz, γq pointwise. (2.7)

Recalling that pΘ´1pz, γqΣp ´ zIq´1 is the deterministic equivalent of the resolvent
p pΣp ´ zIq´1, existence of the limit (2.7) also implies that p´1trtp pΣp ´ zIq´1RRT u con-
verges pointwise in probability to hpz, γq. Notice also that p´1trtp pΣp ´ zIq´1RRT u is
the Stieltjes transform of a measure supported on the eigenvalues of pΣp.

Model (2.6) leads to a fairly broad covariance design for multi-dimensional random
elements, encompassing structures commonly encountered in many application domains,
especially in spatio-temporal statistics. We give some representative examples by consid-
ering various functional forms of the matrix S. Denote by µj the columns of BC and by
Vj the columns of V .

Example 2.1 In all that follows j takes values in 1, . . . , q.
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(a) Independent: µj “ n´1{4p´1{2RVj ;
(b) Longitudinal: µj “ n´1{4p´1{2RpV1 ` V2j ` ¨ ¨ ¨ ` Vmjm´1q;
(c) Moving average: µj “ n´1{4p´1{2RrVj`t ` θ1Vj`t´1 ` ¨ ¨ ¨ ` θtVjs for constants

θ1, . . . , θt.

Taking the MANOVA problem to illustrate, suppose that the columns of B represent
group mean vectors, and suppose C is the matrix that determines successive contrasts
among them. Then, µj is the difference between the means of group j and group j `

1. Parts (a)–(c) of Example 2.1 correspond then to µ1, . . . , µq respectively following
an independent, a longitudinal and a moving average process. The row-wise covariance
structure is assumed to be such that each µj has a covariance matrix proportional to
n´1{2p´1RRT . The factor n´1{2p´1 provides the scaling for the tests to have non-trivial
local power.

A sufficient condition that leads to (2.7), similar to Remark 2.3, is to postulate the
existence of functions B̃p satisfying B̃ppλj,pq “ trtEj,pRRT u, j “ 1, . . . , p, and

ˆ
|B̃ppxq ´ B̃8pxq|dFΣppxq Ñ 0

for some function B̃8 continuous on r0,8q, where λj,p is the jth eigenvalue of Σp and
Ej,p is the eigen-projection associated with λj,p. Then

hpz, γq “

ˆ
B̃8pxqdLΣpxq

xt1 ´ γ ´ γzmpzqu ´ z
. (2.8)

Equations (2.7) and (2.8) indicate that hpz, γq effectively captures the distribution of the
total spectral mass of RRT across the spectral coordinates of Σp, also taking into account
the dimensionality effect through the aspect ratio γ. Later, we shall discuss specific
classes of the matrices R that lead to analytically tractable expressions for hpz, γq, with
the structure of R linking the parameter BC under the alternative through (2.6) to the
structure of Σp.

Another important feature of the probabilistic model is that it incorporates both dense
and sparse alternatives through different specifications of the innovation variables νij . We
consider two special cases.

1. Dense alternative: νij „ N p0, 1q;
2. Sparse alternative: νij „ Gη, for some η P p0, 1q, whereGη is the discrete probability

distribution assigning mass 1 ´ p´η to 0 and mass p1{2qp´η to the points ˘pη{2.

Note that the usual notion of sparsity corresponds to the setting where in addition,
R “ Ip. More generally, the second specification above formulates a prior model for BC
that is sparse in the coordinate system determined by R. In particular, if RRT is a
polynomial in Σp (see Section 3.2 for a discussion), BC can be seen as sparse in the
spectral coordinates of Σp.

Theorem 2.4 Suppose that C1–C6 hold and ∆pf, γq ą 0. Also suppose that, under Ha,
BC has a prior distribution given by (2.6). Then, the power function of each of the three
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test statistics satisfies

ΥpBC, fq
L1

ÝÑ Φ
´

´ ξα `
trpSSTT´1q

q1{2∆1{2pf, γq

˛
C

´1

2πi
fpzqhpz, γqdz

¯

, (2.9)

as n Ñ 8, where T is as in (2.5) and L1
ÝÑ indicates L1-convergence (with respect to the

prior measure of BC).

Remark 2.4 Even if the quantity hppz, γq “ p´1trtpΘ´1pz, γqΣp ´zIq´1RRT u does not
converge, it can be verified that the difference between the left- and right-hand sides of
(2.9) still converges to zero in L1 if hpz, γq is replaced by hppz, γq.

Observe that the matrices R and S decouple in the expression (2.9) for the asymptotic
power. Dependence on the unknown error covariance matrix Σp, besides ∆1{2pf, γq, is
only through the function hpz, νq, which incorporates the structure of the matrix RRT .
It is also noticeable that distributional characteristics of the variables νij do not affect
the asymptotic power. Indeed, the proposed tests have the same local asymptotic power
under both sparse and dense alternatives.

3. Data-driven selection of shrinkage
In this section, we introduce a data-driven procedure to select the “optimal” f from a
parametric family F of shrinkage functions. The strategy is to maximize the local power
function ΥpBC, fq over f , given a class of probabilistic local alternatives as in (2.6). In
designing the classes of alternatives, we focus our attention only on the specification of
R. This is because, as the expression (2.9) shows, the dependence on the matrix S is
only through a multiplier involving a “known” matrix T , while the effect of the unknown
covariance Σp (and its interaction with R) manifests itself through the function hpz, γq.
Another reason for focusing on R is that the choice of S is closely related to the specific
type of linear model being considered, while the choice of R is associated with the
structure of the error distribution.

We present some settings of BC for which hpz, γq can be computed explicitly. We
also verify that the standardized test statistic with the data-driven selection of f is still
asymptotically standard normal under suitable conditions. Hence, the Type 1 error rate
of the tests is asymptotically not inflated, although the same data is used for both shrink-
age selection and testing. Lastly, we present a composite test procedure that combines
the optimal tests corresponding to different prior models of BC and thereby improves
adaptivity to various kinds of alternatives.

3.1. Shrinkage family

Suppose the family of shrinkage functions is such that

F “ tfℓ : ℓ P Lu,
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(i) L is a compact subset of Rr, r P N`;
(ii) There is a closed, connected subset Z of C such that X “ r0, lim supp λmaxpΣpqp1`

?
γq2s Ă Z, and the third-order partial derivatives of fℓ with respect to ℓ are

continuous on L b Z;
(iii) The gradient ∇ℓfℓ and the Hessian ∇2

ℓfℓ of fℓ with respect to ℓ have analytic
extensions to Z for all ℓ P L;

(iv) infℓPL ∆pfℓ, γq ą 0.

Under the probabilistic prior model (2.6) with hpz, γq in (2.7) given, define

Ξpℓ, h, γq “
´1

2πi∆1{2pfℓ, γq

˛
C
fℓpzqhpz, γqdz.

Theorem 2.4 suggests that ℓ should be chosen such that Ξpℓ, h, γq is maximized, that is,

ℓopt “ argmax
ℓPL

Ξpℓ, h, γq.

The test with the selected shrinkage will then be the locally most powerful test under
the alternatives specified by (2.6) and (2.7) for any given choice of S. Since Ξpℓ, h, γq is
continuous with respect to ℓ under condition (i)–(iv), ℓopt exists. Importantly, Ξpℓ, h, γq

does not rely on S. In other words, different column-wise covariance structures of BC
are uniform in terms of selecting the optimal shrinkage. This significantly simplifies the
selection procedure.

Recall that hpz, ℓq is the limit of p´1trtpΘ´1pz, γqΣp ´ zIq´1RRT u. We next present
two possible settings of RRT under which hpz, γq and consequently Ξpℓ, h, γq can be
accurately estimated:

(1) Suppose RRT is specified. Then, hpz, γq is estimated by phpz, γnq “ p´1trtp pΣp ´

zIq´1RRT u and

pΞpℓ,ph, γnq :“
´1

2πip∆1{2pfℓ, γnq

˛
C
fℓpzqphpz, γnqdz

is a consistent estimator of Ξpf, h, γq. As an example of this scenario, assume that
the p components of µj admit a natural ordering such that the dependence between
their coordinates is a function of the difference between their indexes. Then we may
set RRT to be a Toeplitz matrix (stationary auto-covariance structure).

(2) Only the spectral mass distribution of RRT in the form of B̃8 described in (2.8)
is specified.

The remainder of this section is devoted to dealing with the second scenario.

3.2. Polynomial alternatives

Even if B̃8 is given, the estimation of hpz, γq is still challenging since it involves the
unknown limiting population spectral distribution LΣ. In order to estimate hpz, γq, it is
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convenient to have it in a closed form. This is feasible if B̃8 is a polynomial, which is true
if RRT is a matrix polynomial in Σp. Since any smooth function can be approximated by
polynomials, this formulation is quite flexible and practically beneficial. Assume therefore
that

RRT “

s
ÿ

j“0

tjΣ
j
p, (3.1)

where t0, . . . , ts are pre-specified weights such that
řs

j“0 tjΣ
j
p is nonnegative definite.

Under the model,

hpz, γq “ lim
pÑ8

1

p
tr

”

pΘ´1pz, γqΣp ´ zIq´1
s

ÿ

j“0

tjΣ
j
p

ı

“

s
ÿ

j“0

tjρjpz, γq,

where the functions ρjpz, γq satisfy the recursive formula (see Ledoit and Péché, 2011)

ρ0pz, γq “ mpzq, ρj`1pz, γq “ Θpz, γq

”

ˆ
xjdLΣpxq ` zρjpz, γq

ı

.

For any j P N,
´
xjdLΣpxq, and consequently ρjpz, γq, can be estimated consistently

(Bai, Chen and Yao, 2010, Lemma 1). Specifically, p´1trp pΣpq is a consistent estimator
of
´
xdLΣpxq.

In practice, we restrict to the case s “ 2. There are several considerations that guided
this choice of s as stated in Li et al. (2016). First, for s “ 2, all quantities involved
can be computed explicitly without requiring knowledge of higher-order moments of the
observations. Also, the corresponding estimating equations for hpz, γq are more stable as
they do not involve higher-order spectral moments. Second, the choice of s “ 2 yields
a significant, yet nontrivial, concentration of the prior covariance of µj , j “ 1, . . . , q,
(that is RRT up to a scaling factor) in the directions of the leading eigenvectors of Σp.
Finally, the choice s “ 2 allows for both convex and concave shapes of the spectral mass
distribution B̃8 since the latter becomes a quadratic function.

With s “ 2, we estimate ρ0pz, γq, ρ1pz, γq, and ρ2pz, γq by

pρ0pz, γnq “ mn,ppzq,

pρ1pz, γnq “ pΘpz, γnqr1 ` zmn,ppzqs,

pρ2pz, γnq “ pΘpz, γnq
“

p´1trp pΣpq ` zpρ1pz, γnq
‰

(3.2)

and hpz, γq by

phpz, γnq “

2
ÿ

j“0

tj pρjpz, γnq.

The algorithm for the data-driven shrinkage selection is stated next.

Algorithm 3.1 (Data-driven shrinkage selection)
1. Specify prior weights t̃ “ pt0, t1, t2q. The canonical choices are p1, 0, 0q, p0, 1, 0q,

p0, 0, 1q;
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2. Compute phpz, γnq “
ř2

j“0 tj pρjpz, γnq;
3. For any ℓ P L, numerically compute the integral

pΞpℓ,ph, γnq “
´1

2πip∆1{2pfℓ, γnq

˛
C
fℓpzqphpz, γnqdz;

4. Select ℓoptpt̃q “ argmaxℓPL pΞpℓ,ph, γnq.

The behavior of the tests applied with the data-driven shrinkage selection is described
in the following theorem.

Theorem 3.1 Suppose C1–C6 hold and F satisfies conditions (i)–(iv). Then,

(1) supℓPL
?
n|pΞpℓ,ph, γnq ´ Ξpℓ, h, γq|

P
ÝÑ 0 as n Ñ 8.

(2) Let ℓ˚ be any local maximizer of Ξpℓ, h, γq in the interior of L. Assume there exists
a neighborhood of ℓ˚ such that for all feasible points ℓ P L within the neighborhood,
there exists a constant K ą 0 such that

Ξpℓ, h, γq ´ Ξpℓ˚, h, γq ď ´K}ℓ ´ ℓ˚}22. (3.3)

Then, there exists a sequence (ℓ˚
n : n P N) of local maximizers of ppΞpℓ,ph, γnq : n P Nq

satisfying
n1{4}ℓ˚

n ´ ℓ˚}2 “ Opp1q pn Ñ 8q. (3.4)

Further, recalling notation in Section 2, under the null hypothesis,
?
n

p∆1{2pfℓ˚
n
, γnq

tMpfℓ˚
n

q ´ pΩpfℓ˚
n
, γnqIqu ùñ W. (3.5)

(3) Let ℓ˚ be any local maximizer of Ξpℓ, h, γq on the boundary of L. Assume there exists
a neighborhood of ℓ˚ such that for all feasible points ℓ P L within the neighborhood,
there is a constant K1 ą 0 satisfying

Ξpℓ, h, γq ´ Ξpℓ˚, h, γq ď ´K1}ℓ ´ ℓ˚}2. (3.6)

Then, (3.4) and (3.5) still hold.

The two conditions (3.3) and (3.6) ensure that the parameter ℓ˚ is locally identifiable in
a neighborhood of ℓ˚. In general, the two conditions depend on the structure of LΣ.

3.3. Combination of prior models

An extensive simulation analysis revealed that there is considerable variation in the shape
of the power functions and the values of t̃ “ pt0, t1, t2q, especially when the condition
number of Σp is relatively large. In this subsection, we consider a convenient collection
of priors that are representative of certain structural scenarios. A composite test, called
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pTmax, is defined as the maximum of the standardized statistics pT pfℓ˚
i

q where ℓ˚
i is obtained

from Algorithm 3.1 under prior t̃i, i “ 1, . . . ,m. The following strategy is applicable to
LR, LH and BNP. We therefore continue to use pT pfq to denote the general test statistic.
In summary, we propose to test the hypothesis by rejecting for large values of the statistic

pTmax “ max
t̃P rΠ

pT pfℓ˚
i

q,

where rΠ “ tt̃1, . . . , t̃mu, m ě 1, is a pre-specified finite class of weights. A simple but
effective choice of rΠ consists of the three canonical weights t̃1 “ p1, 0, 0q, t̃2 “ p0, 1, 0q,
t̃3 “ p0, 0, 1q.

Theorem 3.2 Suppose C1–C6 hold and F satisfies condition (i)–(iv). For each i “

1, . . . ,m, assume that ℓ˚
in is a sequence of local maximizers of the empirical power function

pΞpℓ,ph, γnq under prior model with weight t̃i such that

n1{4}ℓ˚
in ´ ℓ˚

i }2 “ Opp1q.

(See (3.4)). Then, under the null hypothesis H0 : BC “ 0,
`

pT pfℓ˚
1n

q, . . . , pT pfℓ˚
mn

q
˘

ùñ N
`

0,∆˚

˘

,

where ∆˚ is an m ˆ m matrix with diagonal entries 1 and pi, jq-th off-diagonal entry

∆´1{2pfℓ˚
i
, γq∆pfℓ˚

i
, fℓ˚

j
, γq∆´1{2pfℓ˚

j
, γq.

Theorem 3.2 shows that pTmax has a non-degenerate limiting distribution under H0. It is
worth mentioning that LR, LH and BNP share the covariance matrix ∆˚. Theorem 3.2
can be used to determine the cut-off values of the test by deriving analytical formulas
for the quantiles of the limiting distribution. Aiming to avoid complex calculations, a
parametric bootstrap procedure is applied to approximate the cut-off values. Specifically,
∆˚ is first estimated by p∆˚, and then bootstrap replicates are generated by simulating
from N p0, p∆˚q, thereby providing an approximation of the null distribution of pTmax.
Replacing ∆pfℓ˚

i
, fℓ˚

j
, γq with p∆pfℓi , fℓj , γnq yields the natural estimator.

Remark 3.1 Observe that p∆˚ defined above may not be nonnegative definite even though
it is symmetric. If such a case occurs, the resulting estimator can be projected onto its
closest non-negative definite matrix simply by setting the negative eigenvalues to zero.
This covariance matrix estimator is denoted by p∆`

˚ and it is used for generating the
bootstraps samples.

4. Ridge and higher-order regularizers
4.1. Ridge regularization

One of the most commonly used shrinkage procedures in statistics is ridge regularization,
corresponding to choosing fℓpxq “ 1{px ´ ℓq, ℓ ă 0, so that fℓp pΣpq “ p pΣp ´ ℓIpq´1. It is
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an effective way to shift pΣp away from singularity by adding a ridge term ´ℓIp. In this
subsection, we apply the results of Sections 2 and 3 using the ridge-shrinkage family

Fridge :“ tfℓpxq “ px ´ ℓq´1, ℓ P rℓ, ℓsu, ´8 ă ℓ ă ℓ ă 0.

In the literature, ridge-regularization was applied to high-dimensional one- and two-
sample mean tests in Chen, Li and Zhong (2014) and Li et al. (2016). Hence, this sub-
section is a generalization of their methods to general linear hypotheses.

From the aspect of population covariance estimation, ridge-regularization can be
viewed as an order-one estimation where Σp is estimated by a weighted average of pΣp

and Ip, namely α0Ip ` α1
pΣp. The estimator is equivalent to ridge-regularization with

ℓ “ ´α0{α1 for testing purposes. Within a restricted region of pα1, α2q, the large eigen-
values of pΣp are shrunk down and the small ones are lifted upward. It is a desired
property since in high-dimensional settings, large sample eigenvalues are systematically
biased upward and small sample eigenvalues downwards.

An important advantage of ridge regularization is that the test procedure is com-
putationally efficient due to the fact that Ωpfℓ, γq and ∆pfℓ, γq admit closed forms as
shown in Lemma 2.1. These quantities can be estimated by pΩℓpγnq “ pΘpℓ, γnq ´ 1 and
p∆ℓpγnq “ 2pδpℓ, ℓ, γnq, respectively. A closed-form estimator pΞℓpph, γnq is then also avail-
able for Ξpℓ, h, γq. This leads to the following algorithm.

Algorithm 4.1 (Ridge-regularized test procedure)
1. Specify prior weights t̃ “ pt0, t1, t2q;
2. With mn,ppℓq “ p´1trp pΣp ´ ℓIpq´1, compute, for any ℓ P rℓ, ℓs,

pΘpℓ, γnq “ t1 ´ γn ´ γnℓmn,ppℓqu´1,

pΩℓpγnq “ pΘpℓ, γnq ´ 1,

p∆ℓpγnq “ 2γnt1 ` ℓmn,ppℓqupΘ3pℓ, γnq ` 2γnℓtmn,ppℓq ` ℓm1
n,ppℓqupΘ4pℓ, γnq;

3. For any ℓ P rℓ, ℓs, compute phpℓ, γnq “
ř2

j“0 tj pρjpℓ, γnq as defined in (3.2) and

pΞℓpph, γnq “
phpℓ, γnq

p∆
1{2
ℓ pγnq

;

4. Select ℓ˚ “ argmaxℓPrℓ, ℓs
pΞℓpph, γnq;

5. Use one of the standardized statistics

pTLRpℓ˚q :“

?
nt1 ` pΩℓ˚ pγnqu

q1{2
p∆
1{2
ℓ˚ pγnq

rTLRpℓ˚q ´ q logt1 ` pΩℓ˚ pγnqus,

pTLHpℓ˚q :“

?
n

q1{2
p∆
1{2
ℓ˚ pγnq

rTLHpℓ˚q ´ qpΩℓ˚ pγnqs,

pTBNPpℓ˚q :“

?
nt1 ` pΩℓ˚ pγnqu2

q1{2
p∆
1{2
ℓ˚ pγnq

”

TBNPpℓ˚q ´
qpΩℓ˚ pγnq

1 ` pΩℓ˚ pγnq

ı

,
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where

TLRpℓ˚q “

q
ÿ

i“1

logp1 ` λiq, TLHpℓ˚q “

q
ÿ

i“1

λi, TBNPpℓ˚q “

q
ÿ

i“1

λi

1 ` λi
,

and λ1, . . . , λq are the eigenvalues of n´1QT
nY

T p pΣp ´ ℓ˚Ipq´1YQn. Reject the null
at asymptotic level α if the test statistic value exceeds ξα.

Although in theory any negative ℓ˚ is allowed in the test procedure, in practice,
meaningful lower and upper bounds ℓ and ℓ are needed to ensure stability of the test
statistics when p « n or p ą n and also to carry out the search for optimal ℓ at a
low computational cost. In our simulation settings we use ℓ “ ´p´1trp pΣpq{100 and
ℓ “ ´20λmaxp pΣpq, which generally lead to quite robust performance.

The composite test procedure with ridge-regularization is summarized in Algoritm
4.2.

Algorithm 4.2 (Composite ridge-regularized test procedure)
1. Select prior weights rΠ “ pt̃1, . . . , t̃mq. The canonical choice is pp1, 0, 0q, p0, 1, 0q,

p0, 0, 1qq;
2. For each t̃j in rΠ, run Algorithm 4.1, get the standardized test statistic pT pℓ˚

j q and
compute pTmax “ max1ďjďm

pT pℓ˚
j q;

3. With the selected tuning parameters pℓ˚
1 , ℓ

˚
2 , ℓ

˚
3 q compute the matrix p∆˚ whose di-

agonal elements are equal to one and whose pi, jq-th entry for i ‰ j is

p∆
´1{2

ℓ˚
i

pγnq p∆ℓ˚
i ,ℓ˚

j
pγnq p∆

´1{2

ℓ˚
j

pγnq,

where p∆ℓ˚
i

pγnq is defined in Step 2. of Algorithm 4.1 and

p∆ℓ˚
i ,ℓ˚

j
pγnq “ 2pΘpℓ˚

i , γnqpΘpℓ˚
j , γnq

”ℓ˚
i

pΘpℓ˚
i , γnq ´ ℓ˚

j
pΘpℓ˚

j , γnq

ℓ˚
i ´ ℓ˚

j

´ 1
ı

;

4. Project p∆˚ to its closest non-negative definite matrix p∆`
˚ by setting the negative

eigenvalues to zero. Generate ε1, . . . , εG with εb “ max1ďiďm Z
pbq
i with Zpbq “

rZ
pbq
i smi“1 „ N p0, p∆`

˚ q.
5. Compute the p-value as G´1

řG
b“1 1tεb ą pTmaxu.

4.2. Extension to higher-order regularizers

Through an extensive simulation study in a MANOVA setting, it is shown in Section 5
that the ridge-regularized tests compare favorably against a host of existing test proce-
dures. This is consistent with the findings in Li et al. (2016) in the two-sample mean
test framework. Ridge-shrinkage rescales pHp by p pΣp ´ ℓIpq´1 instead of pΣ´1

p . Broader
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classes of scaling matrices have been studied extensively (see Ledoit and Wolf, 2012, for
an overview). They can be set up in the form fp pΣpq. When fp¨q is analytic, such scaling
falls within the class of the proposed tests.

The flexibility provided by a larger class of scaling matrices can be useful to design test
procedures for detecting a specific kind of alternative. The choice of the test procedure
may for example be guided by questions such as Which f leads to the best asymptotic
power under a specific sequence of local alternatives, if H0 is rejected based on large
eigenvalues of Mpfq? While a full characterization of this question is beyond the scope
of this paper, a partial answer may be provided by restricting to functions f in the
higher-order class

Fhigh “

!

fℓpxq “

”

κ
ÿ

j“0

ljx
j
ı´1

: ℓ “ pl0, . . . , lκqT P G
)

,

where G is such that fℓ is uniformly bounded and monotonically decreasing on X , for
any ℓ P G. These higher-order shrinkage functions are weighted averages of ridge-type
shrinkage functions. To see this, suppose the polynomial

řκ
j“0 ljx

j has roots r1, . . . , rκ0 P

CzX with multiplicity s1, . . . , sκ0 P N`. Via basic algebra, fℓ can be expressed as

fℓpxq “

”

κ
ÿ

j“0

ljx
j
ı´1

“

κ0
ÿ

j“1

sκ0
ÿ

i“1

wjipx ´ rjq´i, (4.1)

with some weights wji P C. If all roots are simple, fℓ is a weighted average of ridge-
regularization with κ different parameters. Heuristically, it is expected that a higher order
fℓ yields tests more robust against unfavorable selection of ridge shrinkage parameter.

The design of G is not easy when κ is large. Here, we select κ “ 3, which is the
minimum degree that allows f´1

ℓ to be both locally convex and concave. In this case,
the complexity of selecting the optimal regularizer is significantly higher than for ridge-
regularization. Due to space limitations, we move the design of G and the test procedure
when κ “ 3 to Section S.1 of the Supplementary Material.

5. Simulations
In this section, the proposed tests are compared by means of a simulation study to two
representative existing methods in the literature, Zhou, Guo and Zhang (2017) (ZGZ)
and Cai and Xia (2014) (CX). We focus on one-way MANOVA, a set-up for which both
competing methods are applicable. It is worth mentioning that CX requires a good es-
timator of the precision matrix Σ´1

p , that is typically unavailable when both Σp and
Σ´1

p are dense. In the simulations, the true Σ´1
p is utilized for CX, thus making it

an oracle procedure. In the following, LRridge, LHridge, and BNPridge denote the ridge-
regularized tests presented in Algorithm 4.1. LRhigh, LHhigh, and BNPhigh denote the
tests with higher-order shrinkage introduced in Section 4.2 with κ “ 3. LRcomp, LHcomp

and BNPcomp denote the composite tests of Algorithm 4.2 with the canonical choice of
rΠ “ pp1, 0, 0q, p0, 1, 0q, p0, 0, 1qq.
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5.1. Settings

The observation matrix Y was generated as in (1.1) with normally distributed Z. Specifi-
cally, we selected k “ 3 or 5, and N “ 300. For k “ 3, the three groups had 75, 90 and 135
observations, respectively. For k “ 5, the design was balanced with each group containing
60 observations. The dimension p was 150, 600, 3000, so that γn “ p{n « 0.5, 2 and 10.
The columns of B were the k group mean vectors. Accordingly, the columns of X were
the group index indicators of observation subjects. We selected C to be the successive
contrast matrix of order q “ k ´ 1. This is a standard one-way MANOVA setting.

Under the null, B is the zero matrix. Under the alternative, for each setting of the
parameters and each replicate, B is generated using one of the following models.

(i) Dense alternative: The entries of B are i.i.d. N p0, c2q with c “ Opn´1{4p´1{2q used
to tune signal strength to a non-trivial level.

(ii) Sparse altenative: B “ cRV with c “ Opn´1{4p´1{2q, where R is a diagonal p ˆ p
matrix with 10% randomly and uniformly selected diagonal entries being

?
10 and

the remaining 90% being equal to 0, and V is a p ˆ p matrix with i.i.d. standard
normal entries.

The following four models for the covariance matrix Σ “ Σp were considered. All models
were further scaled so that trpΣpq “ p.

(i) Identity matrix (ID): Σ “ Ip.
(ii) Dense case Σden: Here Σ “ PΣp1qP

T with a unitary matrix P randomly generated
from the Haar measure and resampled for each different setting, and a diagonal
matrix Σp1q whose eigenvalues are given by λj “ p0.1 ` jq6 ` 0.05p6, j “ 1, . . . , p.
The eigenvalues of Σ decay slowly, so that no dominating leading eigenvalue exists.

(iii) Toeplitz case Σtoep: Here Σ is a Teoplitz matrix with the pi, jq-th element equal to
0.5|i´j|. It is a setting where Σ´1 is sparse but Σ is dense.

(iv) Discrete case Σdis: Here Σ “ PΣp2qP
T with P generated in the same way as in

(ii), and Σp2q is a diagonal matrix with 40% eigenvalues 1, 40% eigenvalues 3 and
20% eigenvalues 10.

All tests were conducted at significance level α “ 0.05. Empirical sizes for the various tests
are shown in Tables 5.1 and 5.2. Empirical power curves versus expected signal strength
n1{4p1{2c are reported in Figures 5.1–5.3. To better compare the power of each test,
curves are displayed after size adjustment where the tests utilize the size-adjusted cut-
off values based on the actual null distribution computed by simulations. Counterparts
of Figures 5.1–5.3 that utilize asymptotic (approximate) cut-off values are reported in
Section S.9. The difference between the two types is limited. LR, LH and BNP criteria
behave similarly across simulation settings, as indicated by Theorem 2.4. Therefore, only
one of them is displayed in each figure for ease of visualization. More figures can be
found in Section S.8 of the Supplementary Material. Note that, in some of the settings,
several of the power curves nearly overlap, creating an occlusion effect. Then, power
curves corresponding to the composite tests are plotted as the top layer.
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Σ “ Ip Σ “ Σden

k “ 3 k “ 5 k “ 3 k “ 5
n “ 300, p “ 150 600 3000 150 600 3000 150 600 3000 150 600 3000

LRridge

t̃1 5.4 5.2 5.1 5.2 5.1 5.1 4.9 4.4 4.7 4.4 3.3 4.2
t̃2 5.4 5.2 5.1 5.2 5.1 5.1 4.9 5.2 4.9 4.4 4.9 4.7
t̃3 5.3 5.2 5.1 5.2 5.1 5.1 5.8 5.9 5.1 5.3 5.2 4.9

LHridge

t̃1 5.4 5.2 5.1 5.3 5.1 5.2 6.2 7.2 5.7 6.2 7.7 6.0
t̃2 5.4 5.2 5.1 5.3 5.1 5.2 6.2 5.9 5.2 6.2 5.9 5.1
t̃3 5.3 5.2 5.1 5.3 5.1 5.2 5.8 5.9 5.2 5.4 5.2 5.0

BNPridge

t̃1 5.3 5.2 5.0 5.2 5.0 5.0 4.0 2.5 3.7 2.9 1.3 3.1
t̃2 5.4 5.2 5.0 5.2 5.0 5.0 4.0 4.7 4.6 2.9 3.9 4.4
t̃3 5.3 5.2 5.0 5.2 5.0 5.0 5.8 5.8 5.0 5.3 5.1 4.7

LRhigh

t̃1 6.5 6.3 5.3 6.5 5.3 5.5 6.0 5.8 5.1 6.5 5.9 4.5
t̃2 6.5 6.3 5.3 6.5 5.3 5.5 8.3 6.8 5.5 8.4 7.2 5.2
t̃3 6.6 6.3 5.3 6.6 5.3 5.5 6.7 6.7 5.5 6.4 7.1 5.2

LHhigh

t̃1 6.7 6.4 5.4 6.8 5.5 5.7 6.1 5.9 5.7 6.7 6.2 5.5
t̃2 6.7 6.4 5.4 6.8 5.4 5.7 8.3 6.8 5.6 8.5 7.3 5.5
t̃3 6.7 6.4 5.4 6.8 5.4 5.7 6.7 6.7 5.6 6.5 7.2 5.5

BNPhigh

t̃1 6.2 6.3 5.2 6.1 5.3 5.2 5.9 5.7 4.6 6.4 5.5 3.7
t̃2 6.3 6.3 5.2 6.1 5.2 5.2 8.3 6.7 5.3 8.3 7.0 4.9
t̃3 6.3 6.3 5.1 6.1 5.2 5.2 6.6 6.6 5.3 6.4 6.9 4.9

LRcomp 5.1 5.1 5.0 5.4 5.3 5.0 6.0 5.1 5.5 5.6 5.0 5.1
LHcomp 5.1 5.1 5.1 5.5 5.3 5.1 6.7 5.8 5.9 6.9 6.2 5.7
BNPcomp 5.1 5.0 5.0 5.4 5.2 5.0 5.4 4.5 5.1 4.7 4.4 4.6
ZGZ 5.6 5.7 5.2 5.6 4.8 5.2 5.9 5.5 5.4 5.4 5.4 5.3
CX (Oracle) 5.6 6.3 7.0 7.3 6.9 8.6 5.8 5.9 6.8 6.0 7.2 9.0

Table 5.1. Empirical sizes at level 5%. Σ “ ID and Σden; t̃1 “ p1, 0, 0q, t̃2 “ p0, 1, 0q, t̃3 “ p0, 0, 1q.
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Σ “ Σdis Σ “ Σtoep

k “ 3 k “ 5 k “ 3 k “ 5
n “ 300, p “ 150 600 3000 150 600 3000 150 600 3000 150 600 3000

LRridge

t̃1 4.8 5.0 4.6 4.7 4.5 5.0 5.4 4.4 4.8 4.5 4.6 4.6
t̃2 5.1 5.2 4.9 5.2 4.6 5.1 5.4 4.9 4.9 4.9 4.8 5.0
t̃3 5.6 5.5 5.1 5.7 5.3 5.3 5.8 5.2 5.0 5.7 5.4 5.1

LHridge

t̃1 5.8 6.0 5.2 6.6 6.3 5.6 6.4 5.3 5.2 6.2 6.3 5.3
t̃2 5.7 5.7 5.1 6.3 5.6 5.5 5.9 5.3 5.0 5.8 5.6 5.3
t̃3 5.6 5.5 5.2 5.8 5.3 5.4 5.8 5.3 5.1 5.7 5.4 5.2

BNPridge

t̃1 3.9 4.1 4.3 3.1 3.1 4.1 4.4 3.7 4.4 3.2 3.4 3.9
t̃2 4.6 4.8 4.8 4.1 4.0 4.9 4.9 4.4 4.8 4.1 4.3 4.7
t̃3 5.5 5.5 5.0 5.7 5.2 5.1 5.8 5.2 5.0 5.6 5.4 5.1

LRhigh

t̃1 6.3 6.4 4.8 5.9 7.0 5.5 7.1 7.0 5.3 7.5 6.9 5.2
t̃2 7.9 6.5 4.8 8.3 7.1 5.5 7.6 7.2 5.3 7.8 7.0 5.2
t̃3 6.1 5.6 4.8 6.4 6.1 5.5 6.7 6.5 5.3 6.6 6.4 5.2

LHhigh

t̃1 6.6 6.5 5.0 6.2 7.2 5.7 7.2 7.2 5.5 7.7 7.0 5.5
t̃2 8.0 6.6 5.0 8.5 7.2 5.7 7.8 7.2 5.5 8.0 7.1 5.5
t̃3 6.2 5.6 5.0 6.5 6.2 5.7 6.7 6.5 5.5 6.7 6.5 5.5

BNPhigh

t̃1 6.1 6.3 4.7 5.6 6.8 5.3 7.1 7.0 5.2 7.2 6.8 5.1
t̃2 7.9 6.4 4.7 8.2 7.0 5.3 7.5 7.1 5.2 7.7 7.0 5.1
t̃3 6.1 5.5 4.7 6.4 6.0 5.3 6.6 6.4 5.2 6.5 6.3 5.1

LRcomp 6.2 5.2 5.0 5.2 5.3 5.5 5.9 5.0 5.1 5.5 4.9 4.9
LHcomp 7.0 5.9 5.3 6.5 6.4 6.0 6.6 5.6 5.3 6.6 5.7 5.3
BNPcomp 5.5 4.6 4.8 4.4 4.6 5.0 5.4 4.6 4.9 4.8 4.4 4.6
ZGZ 5.5 4.7 4.6 5.7 5.1 5.3 6.0 5.5 5.0 5.9 5.6 5.0
CX (Oracle) 5.3 5.9 6.6 6.8 7.2 8.6 5.3 6.2 6.8 6.8 7.2 8.4

Table 5.2. Empirical sizes at level 5%. Σ “ Σdis and Σtoep; t̃1 “ p1, 0, 0q, t̃2 “ p0, 1, 0q, t̃3 “ p0, 0, 1q.
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Figure 5.1: Size-adjusted power with Σ “ Σden, k “ 5. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. BNPcomp (red, solid);
ZGZ (green, solid); oracle CX (purple, solid); BNPridge (black, dashed) and BNPhigh

(blue, dotted-dashed) with t̃ “ p1, 0, 0q.
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Figure 5.2: Size-adjusted power with Σ “ Σden, k “ 5. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. LHcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LHridge (black, dashed) and LHhigh (blue, dotted-
dashed) with t̃ “ p0, 0, 1q.
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Figure 5.3: Size-adjusted power with Σ “ Σtoep, k “ 3. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. LRcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LRridge (black, dashed) and LRhigh (blue, dotted-
dashed) with t̃ “ p0, 1, 0q.

5.2. Summary of simulation results

Tables 5.1 and 5.2 show the empirical sizes of the proposed tests are mostly controlled
under 7.5%. The slight oversize is caused by the fact that Mpfq behaves like a quadratic
form, therefore the finite sample distribution is skewed. LR and BNP tests are more
conservative than LH tests because the former two calibrate the statistics by transforming
eigenvalues of Mpfq. Ridge-regularized tests are slightly more conservative under higher-
order shrinkage.

Note that in both simulation settings, B consists of independent entries. There-
fore, t̃1 “ p1, 0, 0q is considered as a correctly specified prior, while t̃2 “ p0, 1, 0q and
t̃3 “ p0, 0, 1q are considered as moderately and severely misspecified, respectively. The
composite tests combine t̃1, t̃2 and t̃3, and are therefore considered as consistently cap-
turing the correct prior. We shall treat the composite tests as a baseline to study the
effect of prior misspecification, by comparing them to tests using a single t̃.

For each simulation configuration considered in this study, the proposed procedures
are as powerful as the procedure with the best performance, except for the cases when B
is sparse, p is small, and priors are severely misspecified in the proposed tests; see Figure
S.8.6 in the Supplementary Material. We highlight the following observations based on
the simulation results.
(1) The composite tests are slightly less efficient than BNPridge and BNPhigh when the

correct prior t̃1 is used, as in Figure 5.1. However, as in Figure 5.2, when the prior is
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severely misspecified, the composite test is significantly more powerful. It suggests
that the composite tests are robust against prior misspecification, although losing
some efficiency against tests with correctly specified priors.

(2) Although ridge-shrinkage and higher-order shrinkage behave similarly under the
correct prior, the latter outperforms the former when the prior is misspecified;
see Figure 5.2. This provides evidence for the robustness of high-order shrinkage
against unfavorable ridge shrinkage parameter selection.

(3) ZGZ is a special case of the proposed test family with fpxq “ 1 for all x, which
amounts to replacing pΣp with Ip. When Σp “ Ip, ZGZ appears to be the reasonable
option at least intuitively. Note, both Fridge and Fhigh contain functions close to
fpxq “ 1. Figures for Σp “ Ip displayed in Section S.8 of the Supplementary
Material show that the proposed tests perform as well as ZGZ in that case. It may
be viewed as evidence of the effectiveness of the data-driven shrinkage selection
strategy detailed in Section 3.

(4) Comparing to ZGZ, when the eigenvalues of Σp are disperse, the proposed tests are
significantly more powerful when p “ 150 and 600, but behave similarly as ZGZ
when p “ 3000. On the other hand, as in Figure 5.2, the ridge-regularized test with
a severely misspecified prior t̃3, is close to ZGZ.

(5) CX is a test specifically designed for sparse alternatives. The procedure shows
its advantage in favorable settings, especially when p “ 150. Simulation results
suggest that the proposed tests are still comparable to CX even under sparse BC
and Σ´1

p , as long as the prior in use is not severely misspecified. When p is large,
the proposed tests are significantly better when Σp “ Ip. Evidence may be found
in Figures S.8.10, S.8.11 and S.8.12 of the Supplementary Material.

6. Discussion
In this paper, we addressed the problem of testing general hypotheses in a high-dimensional
setting by proposing a family of rotation-invariant tests that generalizes well-studied tests
in the literature through utilization of a shrunken version of the empirical error covari-
ance matrix. The shrinkage function is an analytic function on the support of the limiting
spectrum of the empirical error covariance matrix. The asymptotic null distribution was
built under finite fourth-moment assumption of the observations and a regime where the
dimension of the observations (response) is proportional to the sample sizes, while the
dimension of the regressors remains fixed. This class encompasses the MANOVA problem
with a finite number of populations, and multivariate regression involving a finite number
of predictors. We studied the asymptotic power of the proposed tests under a Bayesian
framework involving a flexible class of local alternatives that determines the structure
of the parameter of interest. We proposed a data-driven procedure for selection of the
shrinkage function that relies on maximizing the asymptotic power of the test under spe-
cific classes of local alternatives. We also extended the procedure to propose a composite
test that combines the optimally chosen tests associated with a finite collection of dis-
tinct local alternatives. Finally, we illustrated the test procedures by focusing on specific
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shrinkage functions including the ridge-regularization and a higher-order generalization.
Simulation studies were conducted to show both the ridge and high-order regularizers
have good power under various settings of population covariance and alternatives.

There are several future research directions that can be pursued. On the technical
side, the analytic requirement of the shrinkage is still somewhat restrictive. One aim is
to seek a generalization from analyticity to fourth-order continuous differentiability. A
decision-theoretic selection of the shrinkage parameter that is optimal with respect to a
broad class of local alternatives is an interesting theoretical challenge. Another challenge
is to find suitable modifications to the tests that enable improvement of their power
characteristics even when the dimension is an order of magnitude larger than the sample
size, a setting that is outside the analytical framework adopted here.
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Appendix
This appendix contains the proofs of the main theorems. Additional proofs of supporting
lemmas can be found in the Supplementary Material. The arguments used here build on
those in Bai and Silverstein (2010) and Pan and Zhou (2011) but contain considerable
innovations. First, the key assumption C4 on the spectrum of Σp is different from its
counterpart in Bai and Silverstein (2010). Therefore, additional results regarding the
Stieltjes transforms mn,ppzq and mpzq are needed here. We also need the uniform conver-
gence of derivatives of mn,ppzq on a contour, which was not part of Bai and Silverstein
(2010). These results are detailed in Section S.2 of the Supplementary Material. Sec-
ond, Pan and Zhou (2011) only considered the case Σp “ Ip because of the invariance
of Hotelling’s T 2 statistic with respect to Σp. Important arguments in their paper, for
example their Lemma 6, no longer hold under general covariance structures. Addition-
ally, the calculation of the asymptotic variance and covariance of the quadratic form
n´1QT

nY
T p pΣp ´ zIpq´1YQn is significantly more involved than for Hotelling’s T 2 statis-

tic. Third, our proof includes an important transformation of the quadratic form to deal
with the complex correlation structure between YQn and pΣp. We believe the trick can
be used to generalize existing work in the literature, for example Bai, Choi and Fujikoshi
(2017).

A.1. Proof of Theorem 2.1

Recall that

Qn “ XT pXXT q´1CrCT pXXT q´1Cs´1{2,

Mpfq “
1

n
QT

nY
T fp pΣpqYQn,

pΣp “
1

n
YpI ´ XT pXXT q´1XqYT .
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Introduce the product Qn “ UnVn with

Un “ XT pXXT q´1{2 , (A.1)
Vn “ pXXT q´1{2CrCT pXXT q´1Cs´1{2 . (A.2)

This decomposition will aid the analysis of the correlation between YQn and pΣp.
From now on, use Σ

T {2
p to denote pΣ

1{2
p qT . Under the null hypothesis, the following

representations hold:

Mpfq “
1

n
V T
n UT

n ZTΣT {2
p fp pΣpqΣ1{2

p ZUnVn,

pΣp “
1

n
Σ1{2

p ZpI ´ UnU
T
n qZTΣT {2

p .

Observe that the joint asymptotic normality of entries in
?
nMpfq is equivalent to the

asymptotic normality of

n´1{2αTV T
n UT

n ZTΣT {2
p fp pΣpqΣ1{2

p ZUnVnη

for arbitrary (but fixed) vectors α and η P Rq .
Recall that X “ r0, lim supp λmaxpΣpqp1 `

?
γq2s. Let C be any contour enclosing X

such that fp¨q is analytic on its interior. With slight modifications, all arguments in the
following hold for arbitrary such C. For convenience, select C as rectangle with vertices
u ˘ iv0 and u ˘ iv0, such that

v0 ą 0; u ą lim supλmaxpΣpqp1 `
?
γq2; u ă 0.

Such a rectangle must exist.
By Cauchy’s integral formula, if λmaxp pΣpq ă u,

n´1{2αTV T
n UT

n ZTΣT {2
p fp pΣpqΣ1{2

p ZUnVnη

“
´1

2πi

˛
C
fpzqn´1{2αTV T

n UT
n ZTΣT {2

p p pΣp ´ zIq´1Σ1{2
p ZUnVnηdz.

(A.3)

If λmaxp pΣpq ě u, the above equality may not hold. However, if we can show that
Ppλmaxp pΣpq ě uq converges to 0, we can still acquire the weak limit of the left-hand
side by deriving the weak limit of the right-hand side. Yin, Bai and Krishnaiah (1988,
Theorem 3.1) implies that

Ppλmaxp pΣpq ě uq Ñ 0. (A.4)

Hence, it suffices to show the asymptotic normality of the process

ξnpz, α, ηq “ n´1{2αTV T
n UT

n ZTΣT {2
p p pΣp ´ zIq´1Σ1{2

p ZUnVnη, z P C.

Clearly, ξpz, α, ηq is continuous with respect to z. All asymptotic results are derived in
the space of continuous functions on C with uniform topology. In the following, study the
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k ˆ k matrix process UT
n ZTΣ

T {2
p p pΣp ´ zIq´1Σ

1{2
p ZUn, that is a component of ξpz, α, ηq.

Note that a k ˆ k complex-valued matrix can be viewed as a 2k2-variate real-valued
random element. To unify dimensionality and avoid potential ambiguity, all objects are
treated as random elements in the metric space CpC,R2k2

q in the following. For dealing
with matrices of dimension q ˆ q (with q ă k), note that a q ˆ q matrix can be viewed as
the q-th order leading submatrix of a kˆk matrix whose other entries equal 0. Similarly,
univariate functions may be viewed as 1 ˆ 1 submatrices. Therefore, results in Chapter
2 of Billingsley (1968) apply with Euclidean distance replaced by Frobenius norm of a
matrix, that is }A}F “ p

řm
i“1

řr
j“1 |aij |2q1{2, where A “ raijsij .

We may proceed to prove the asymptotic normality of ξnpz, α, ηq on z P C directly.
However, several technical challenges need to be addressed. First, in view of the spectral
norm of p pΣp ´zIq´1 being unbounded when z is close to the real axis and extreme eigen-
values of pΣp exceed lim supλmaxpΣpqp1`

?
γq2, the tightness of the process ξnpz, α, ηq is

unclear. Secondly, pΣp is not a summation of independent terms, but contains ZUnU
T
n ZT ,

a component containing cross product terms between pairs of columns of Z. These terms
entangle the analysis of the correlation between pΣp and each single column of Z. For
these technical reasons, we avoid directly working on ξnpz, α, ηq under C1 on z P C,
but start with n´1{2UT

n ZTΣ
T {2
p p rΣp ´ zIq´1Σ

1{2
p ZUn, a component of ξnpz, α, ηq with pΣp

replaced by an uncentered counterpart

rΣp “
1

n
Σ1{2

p ZZTΣT {2
p . (A.5)

The relationship between rΣp and pΣp is given by

pΣp “ rΣp ´
1

n
Σ1{2

p ZUnU
T
n ZTΣT {2

p . (A.6)

Next, we modify the process and the distribution of Z as follows.
Process smoothing. Select a sequence of positive numbers ρn decaying to 0 with a rate

such that for some ω P p1, 2q,

nρn Ó 0, ρn ě n´ω.

Let C` “ C X tu ` iv : |v| ě ρnu. Define

rQnpzq “ n´1UT
n ZTΣT {2

p p rΣp ´ zIq´1Σ1{2
p ZUn, if z P C`,

rQnpzq “
ρn ´ v

2ρn
rQnpu ` iρnq `

v ` ρn
2ρn

rQnpu ´ iρnq, if z P CzC`.

To understand this definition better, note that if z is too close to the real axis, rQnpzq is
modified to be the linear interpolation of its values at u` iρn and u´ iρn. Observe that
Vn appearing in ξnpz, α, ηq was left out when defining rQnpzq. This trick that helps trans-
forming back to pΣp from rΣp; see (A.8). Note also that Vn is a sequence of deterministic
matrices of fixed dimensions, having a limit under C5 and C6. The reason to smooth the
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process is to guarantee a bound of order Opρ´1
n q on the spectral norm of p rΣp ´ zIpq´1.

It is crucial in the proof of tightness.
Variable truncation. C1 will be temporarily replaced by the following truncated vari-

able condition. Select a positive sequence εn such that

εn Ñ 0 and ε´4
n Erz4111p|z11| ě εnn

1{2qs Ñ 0.

The existence of such a sequence is shown in Yin, Bai and Krishnaiah (1988). We then
truncate zij to be zij1p|zij | ď εnn

1{2q. After that, we re-standardize the truncated vari-
able to maintain zero mean and unit variance. Since we will mostly work on the truncated
variables in the following sections, for notational simplicity, we shall use zij to denote
the truncated random variables and z̆ij to denote the original random variable satisfying
C1. That is,

zij “
z̆ij1p|z̆ij | ď εnn

1{2q ´ Ez̆ij1p|z̆ij | ď εnn
1{2q

tErz̆ij1p|z̆ij | ď εnn1{2q ´ Ez̆ij1p|z̆ij | ď εnn1{2qs2u1{2
.

For some constant K, when n is sufficiently large,

|zij | ď Kεnn
1{2, Erzijs “ 0, Erz2ijs “ 1, Erz4ijs ă 8. (A.7)

The reason to truncate z̆ij is to obtain a bound on the probability of extreme eigen-
values of pΣp exceeding lim supp λmaxpΣpqp1 `

?
γq2. A tail bound decaying fast enough

is critical when proving tightness of the smoothed random processes on C. Under the
original condition C1, although (A.4) holds, such a tail bound is not available. After the
truncation, the following lemma holds.

Lemma A.1 (Yin, Bai and Krishnaiah (1988); Bai and Silverstein (2004))
Suppose the entries of Z satisfy (A.7). For any positive ℓ and any D P plim supp
λmaxpΣpqp1 `

?
γq2, uq,

Ppλmaxp rΣpq ě Dq “ opn´ℓq.

It is argued later that the process smoothing and variable truncation steps do not change
the weak limit of objects under consideration.

For arbitrary vectors a and b P Rk, define

Gnpz, a, bq “ aT rQnpzqb.

Theorem A.1 Suppose Z satisfies (A.7) and suppose C2–C6 in Section 2 hold. Then,

n1{2
!

Gnpz, a, bq ´ aT b
Θpz, γq ´ 1

Θpz, γq

)

D
ÝÑ Ψp1qpzq, z P C,

where D
ÝÑ denotes weak convergence in CpC,R2k2

q, and Ψp1qpzq is a Gaussian process
with zero mean and covariance function

Γp1qpz1, z2q “ δpz1, z2, γqΘ´2pz1, γqΘ´2pz2, γqr}a}2}b}2 ` paT bq2s.
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See Section S.3 of the Supplementary Material for proof of the theorem.
Notice that aT bpΘpz, γq ´ 1q{Θpz, γq is the pointwise asymptotic mean of Gnpz, a, bq.

This expression suggests that in order to establish Theorem A.1 we might need to smooth
Θpz, γq when the imaginary part of z in absolute value is smaller than ρn, in the same
way as in the process smoothing strategy. Similar considerations apply to the treatment
of the pointwise asymptotic covariance δpz1, z2, γq of Gnpz, a, bq. However, notice that
Θpz, γq and δpz1, z2, γq are smooth functions of z, z1 and z2 with bounded derivatives on
C. Therefore, when z P CzC`, Θpz, γq “ Θpu ˘ iρn, γq ` Opρnq and

?
nρn Ñ 0. Similar

results hold for δpz1, z2, γq when z1 and/or z2 are close to the real axis. We provide
details in Section S.2 of the Supplementary Material, where the behavior of Θpz, γq

and δpz1, z2, γq on C (correspondingly, C2) is discussed. Notably, pΘpz, γq ´ 1q{Θpz, γq is
bounded away from 1 on C. These results help in applying the delta-method for proving
asymptotic normality.

The following result is an immediate consequence of Theorem A.1.

Lemma A.2 Suppose Z satisfies (A.7) and suppose C2–C6 in Section 2 hold. Then,

n1{2
!

rQnpzq ´
Θpz, γq ´ 1

Θpz, γq
Ik

)

D
ÝÑ Ψp2qpzq, z P C,

where Ψp2qpzq “ rΨp2qpzqsij is a kˆk symmetric Gaussian matrix process with zero mean
and covariance, such that for i ď j, i1 ď j1,

ErΨp2qpz1qsiirΨ
p2qpz2qsii “ 2δpz1, z2, γqΘ´2pz1, γqΘ´2pz2, γq ,

ErΨp2qpz1qsijrΨp2qpz2qsij “ δpz1, z2, γqΘ´2pz1, γqΘ´2pz2, γq, if i ‰ j ,

ErΨp2qpz1qsijrΨp2qpz2qsi1j1 “ 0, if i ‰ i1 or j ‰ j1.

Next, transforming back to pΣp, define

pQnpzq “ n´1UT
n ZTΣT {2

p p pΣp ´ zIq´1Σ1{2
p ZUn, z P C`,

pQnpzq “
ρn ´ v

2ρn
pQnpu ` iρnq `

v ` ρn
2ρn

pQnpu ´ iρnq, z P CzC`.

Using the identity (A.5), and Lemma S.6 (Woodbury matrix identity) in the Supplemen-
tary Material, we get

pQnpzq “ rQnpzqrIk ´ rQnpzqs´1. (A.8)
Lemma A.3 now follows from Lemma A.2 and the delta method.

Lemma A.3 Suppose Z satisfies (A.7) and suppose C2–C6 in Section 2 hold. Then,

n1{2t pQnpzq ´ tΘpz, γq ´ 1uIku
D

ÝÑ Ψp3qpzq, z P C,

where Ψp3qpzq “ rΨp3qpzqsij is a kˆk symmetric Gaussian matrix process with zero mean
and covariance, such that for i ď j, i1 ď j1,

ErΨp3qpz1qsiirΨ
p3qpz2qsii “ 2δpz1, z2, γq,
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ErΨp3qpz1qsijrΨp3qpz2qsij “ δpz1, z2, γq, if i ‰ j,

ErΨp3qpz1qsijrΨp3qpz2qsi1j1 “ 0, if i ‰ i1 or j ‰ j1.

The asymptotic normality of pQnpzq follows since it is a smooth function of rQnpzq. The
calculation of the covariance kernel of Ψp3qpzq is basic, though tedious, and hence details
are omitted.

To smooth ξnpz, α, ηq in the same way as pQnpzq, define

pξnpz, α, ηq “ ξnpz, α, ηq, z P C`,

pξnpz, α, ηq “
ρn ´ v

2ρn
ξnpu ` iρn, α, ηq `

v ` ρn
2ρn

ξnpu ´ iρn, α, ηq, z P CzC`.

Note that pξnpz, α, ηq “ n1{2αTV T
n

pQnpzqVnη and that Vn has orthonormal columns.

Lemma A.4 Suppose that Z satisfies (A.7) and C2–C6 hold. Then,

pξnpz, α, ηq ´ n1{2pΘpz, γq ´ 1qαT η
D

ÝÑ Ψp4qpzq,

where Ψp4qpzq is a Gaussian process with zero mean and covariance function

Γp2qpz1, z2q “ δpz1, z2, γqr}α}2}η}2 ` pαT ηq2s.

The following result is an immediate consequence of the foregoing:
˛
C

fpzqpξnpz, α, ηq

´2πi
dz ´ n1{2Ωpf, γqαT ηùñN p0, r}α}2}η}2 ` pαT ηq2s∆pf, γqq.

In Section S.6 of the Supplementary Material (see Lemma S.4 and (S.6.2) for details),
we verify that, if we replace pξnpz, α, ηq with ξnpz, α, ηq, and (A.7) with C1, the above
result continues to hold.

Since
?
nαTMpfqη “ p´2πiq´1

¸
C fpzqξnpz, α, ηqdz when λmaxp pΣpq ă u and (A.4)

holds, the proof of Theorem 2.1 is complete.

A.2. Proof of Theorem 2.3

Define Tn “ CT pn´1XXT q´1C. Then,

?
nMpfq “

1
?
n
QT

nZ
TΣT {2

p fp pΣpqΣ1{2
p ZQn

` QT
nZ

TΣT {2
p fp pΣpqBCT´1{2

n `

´

QT
nZ

TΣT {2
p fp pΣpqBCT´1{2

n

¯T

`
?
nT´1{2

n CTBT fp pΣpqBCT´1{2
n .
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In view of Theorem 2.1 and Lemma 2.2 (whose proof is presented in Section S.5 of the
Supplementary Material), we only need to show that under C1,

›

›

›
QT

nZ
TΣT {2

p fp pΣpqBCT´1{2
n

›

›

›

2

P
ÝÑ 0, (A.9)

›

›

›

?
nT´1{2

n CTBT fp pΣpqBCT´1{2
n ´ HpD, fq

›

›

›

2

P
ÝÑ 0. (A.10)

For future use, we also show that the convergence is uniform over the class

tB P Rpˆk, C P Rkˆq :
?
n}BC}22 ď Ku, for arbitrary K ą 0.

Similar to the strategy in the proof of Theorem 2.1, we first consider zij ’s satisfying
(A.7). Observe when λmaxp rΣpq ă D for any D P plim supp λmaxpΣpqp1 `

?
γq2, uq,

}QT
nZ

TΣT {2
p fp pΣpqBCT´1{2

n }2

“

›

›

›

˛
C

´1

2πi
fpzqQT

nZ
TΣT {2

p p pΣp ´ zIq´1BCT´1{2
n dz

›

›

›

2

ď

›

›

›

˛
C`

´1

2πi
fpzqQT

nZ
TΣT {2

p p pΣp ´ zIq´1BCT´1{2
n dz

›

›

›

2
` w1,n}BC}2,

where w1,n Ñ 0 is a deterministic sequence. The last step is due to
›

›

›

ˆ
CzC`

´1

2πi
fpzqQT

nZ
TΣT {2

p p pΣp ´ zIq´1BCT´1{2
n dz

›

›

›

2

ď Kρn}T´1{2
n }2 }ZTΣT {2

p }2

”

pu ´ Dq´1 ` |u|´1
ı

}BC}2

ď Kρnn
1{2 }T´1{2

n }2 D1{2
”

pu ´ Dq´1 ` |u|´1
ı

}BC}2,

where K is a universal constant.
Next, using Lemma S.6 of the Supplementary Material,

QT
nZ

TΣT {2
p p pΣp ´ zIq´1BC “ V T

n pI ´ rQnpzqq´1UT
n ZTΣT {2

p p rΣp ´ zIq´1BC.

In the following, |dz| refers to the differential form of the integral with respect to the
length of a contour.

For any ε ą 0,

P
´

}QT
nZ

TΣT {2
p fp pΣpqBCT´1{2

n }2 ą ε
¯

ď P
´!

}QT
nZ

TΣT {2
p fp pΣpqBCT´1{2

n }2 ą ε
)

č

!

λmaxp rΣpq ă D
)¯

` P
´

λmaxp rΣpq ě D
¯

ď P
´›

›

›

˛
C`

´1

2πi
fpzqV T

n pI ´ rQnpzqq´1UT
n ZTΣT {2

p p rΣp ´ zIq´1BCT´1{2
n dz

›

›

›

2

ą ε ´ w1,n}BC}2

¯

` w2,n
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ď P
´

˛
C`

}pI ´ rQpzqq´1}2F |dz|

˛
C`

}UT
n ZTΣT {2

p p rΣp ´ zIq´1BCT´1{2
n }2F |dz|

ą K1tε ´ w1,n}BC}2u2
¯

` w2,n

ď P
´

˛
C`

}UT
n ZTΣT {2

p p rΣp ´ zIq´1BCT´1{2
n }2F |dz| ą

K1

K2
tε ´ w1,n}BC}2u2

¯

` P
´

˛
C`

}pI ´ rQpzqq´1}2F |dz| ą K2

¯

` w2,n

ď
supzPC` E}UT

n ZTΣ
T {2
p p rΣp ´ zIq´1BCT

´1{2
n }2F

K4tε ´ w1,n}BC}2u2
` w3,n ` w2,n.

Here, K1,K2,K3,K4 are appropriately large constants independent of BC, and

w2,n “ P
´

λmaxp rΣpq ě D
¯

Ñ 0, due to Lemma A.1,

w3,n “ P
´

˛
C`

}pI ´ rQpzqq´1}2F |dz| ě K2

¯

Ñ 0. (A.11)

Note that (A.11) follows because pI ´ rQpzqq´1 P
ÝÑ Θpz, γqIp (Lemma A.2) and that

Θpz, γq is bounded on C (shown in Bai and Silverstein (2004)).
We claim, with proof presented in Section S.4 of the Supplementary Material, that

sup
zPC`

E
”

}UT
n ZTΣT {2

p p rΣp ´ zIq´1BCT´1{2
n }2F

ı

ď K}BC}22, (A.12)

for a sufficiently large K.
Now (A.9) follows when zij ’s satisfy (A.7), since (2.3) implies }BC}22 Ñ 0, as n Ñ 8. In

Section S.6 of the Supplementary Material, we will show that the difference between the
left-hand side of (A.9) with and without variable truncation converges to 0 in probability.
The convergence is also uniform on BC P t

?
n}BC}22 ď Ku. It completes the proof of

(A.9).
As for (A.10), again using Lemma S.6 of the Supplementary Material,

CTBT p pΣp ´ zIq´1BC “ CTBT p rΣp ´ zIq´1BC

`
1

n
CTBT p rΣp ´ zIq´1Σ1{2

p ZUnpI ´ rQpzqq´1UT
n ZTΣT {2

p p rΣp ´ zIq´1BC.

Using analogous arguments, for some deterministic sequence w4,n Ñ 0 and constants
K5,K6,

P
´

}
?
nT´1{2

n CTBT fp pΣpqBCT´1{2
n ´ HpD, fq}2 ą ε

¯

ď P
´›

›

›

˛
C`

´1

2πi
fpzq

?
nT´1{2

n CTBT p pΣp ´ zIq´1BCT´1{2
n dz ´ HpD, fq

›

›

›

2

ą ε ´ w4,n}BC}22

¯

` w2,n
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ď P
´

˛
C`

›

›

›

?
nCTBT p rΣp ´ zIq´1BC ´ Dpz, γq

›

›

›

2
|dz| ą

K5

2
tε ´ w4,n}BC}22u

¯

` P
´ 1

?
n

˛
C`

}pI ´ rQpzqq´1}2}UT
n ZTΣT {2

p p rΣp ´ zIq´1BC}22|dz| ą
K5

2
tε´

w4,n}BC}22u

¯

` w2,n

ď P
´

˛
C`

›

›

›

?
nCTBT p rΣp ´ zIq´1BC ´ Dpz, γq

›

›

›

2
|dz| ą

K5

2
tε ´ w4,n}BC}22u

¯

` P
´ 1

?
n

˛
C`

}UT
n ZTΣT {2

p p rΣp ´ zIq´1BC}22|dz| ą
K5

2K6
tε ´ w4,n}BC}22u

¯

` P
´

sup
zPC`

}pI ´ rQpzqq´1}2 ě K6

¯

` w2,n.

The same arguments as those in proving (A.11) imply that, for sufficiently large K6,

P
´

sup
zPC`

}pI ´ rQpzqq´1}2 ě K6

¯

Ñ 0.

We only need to show

sup
zPC`

E
”

›

›

?
nCTBT p rΣp ´ zIq´1BC ´ Dpz, γq

›

›

2

F

ı

ď K}BC}42, (A.13)

The proof is given in Section S.4 of the Supplementary Material. That (A.10) holds under
C1 (without variable truncation) will be addressed in Section S.6 of the Supplementary
Material. The results indicate the convergence in (A.10) is uniform on BC P t

?
n}BC}22 ď

Ku.

A.3. Proof of Theorem 2.4

Throughout this section, P˚ is the prior probability measure of µ, PBC the probability
measure of the observations conditional on BC, and PZ the probability measure of Z.

Under the probabilistic local alternative model (2.6),
?
n}BC}22 “ Opp1q. (A.14)

Using Lemma S.13 and Lemma S.17 of the Supplementary Material, we can prove
?
nCTBT rΘ´1pz, γqΣp ´ zIs´1BC ´ DP˚ pz, γq

P˚
ÝÑ 0, pointwise for z P C, (A.15)

where DP˚ pz, γq “ hpz, γqSST .
In what follows, we only consider the (regularized version of) the LR criterion and

show the convergence of ΥLR. The convergence of ΥLH and ΥBNP can be proved using
analogous arguments. To verify the theorem, it suffices to show that for any ϵ ą 0 and
any ζ ą 0, there exists a sufficiently large N0, such that when n ą N0,

P˚

´ˇ

ˇ

ˇ
ΥLRpBC, fq ´ Φ

´

´ ξα `
trpHpDP˚ , fqq

q1{2∆1{2pf, γq

¯ˇ

ˇ

ˇ
ą ϵ

¯

ă ζ.
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Define g “ t1 ` Ωpf, γqu∆´1{2pf, γq and its empirical counterpart gn “ t1 ` pΩpf, γnqu
p∆´1{2pf, γnq. Lemma 2.2 implies that gn Ñ g in probability. Recall

HpD, fq “ T´1{2rp´2πiq´1

˛
C
fpzqDpz, γqdzsT´1{2.

Write

Mpfq “
1

n
QT

nZ
TΣT {2

p fp pΣpqΣ1{2
p ZQn `

g

gn
?
n
HpDP˚ , fq `

1

gn
?
n
σnpBCq

`
1

gn
?
n

4
ÿ

i“1

ηpiqpBC,Zq,

where with notation Wpf,Σp, γq “ p´2πiq´1
¸
C fpzqpΘpz, γqΣp ´ zIq´1dz,

σnpBCq “ g
”?

nT´1{2
n CTBTWpf,Σp, γqBCT´1{2

n ´ HpDP˚ , fq

ı

,

ηp1qpBC,Zq “ rgn ´ gs
?
nT´1{2

n CTBTWpf,Σp, γqBCT´1{2
n ,

ηp2qpBC,Zq “ gn
?
nT´1{2

n CTBT
”

fp pΣpq ´ Wpf,Σp, γq

ı

BCT´1{2
n ,

ηp3qpBC,Zq “ gnQ
T
nZ

TΣT {2
p fp pΣpqBCT´1{2

n ,

ηp4qpBC,Zq “ gnT
´1{2
n CTBT fp pΣpqΣ1{2

p ZQn.

Therefore, by Lemma S.7, for i “ 1, 2, . . . , q,
ˇ

ˇ

ˇ
λipMpfqq ´ λi

´ 1

n
QT

nZ
TΣT {2

p fp pΣpqΣ1{2
p ZQn `

g

gn
?
n
HpDP˚ , fq

¯ˇ

ˇ

ˇ

ď
1

gn
?
n

}σnpBCq}2 `
1

gn
?
n

4
ÿ

i“1

}ηpiqpBC,Zq}2.

Since the function logp1 ` xq is 1-Lipschitz when x ą 0,

?
n

gn
q1{2

ˇ

ˇ

ˇ
TLRpfq ´

q
ÿ

i“1

log
”

1 ` λi

´ 1

n
QT

nZ
TΣT {2

p fp pΣpqΣ1{2
p ZQn

g

gn
?
n
HpDP˚ , fq

¯ıˇ

ˇ

ˇ

(A.16)

ď q1{2}σnpBCq}2 ` q1{2
4

ÿ

i“1

}ηpiqpBC,Zq}2. (A.17)

Define

Υ̃pξq “ PZ

´?
n

gn
q1{2

q
ÿ

i“1

log
”

1 ` λi

´ 1

n
QT

nZ
TΣT {2

p fp pΣpqΣ1{2
p ZQn `

g

gn
?
n
HpDP˚ , fq

¯ı
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´
?
ngnq

1{2 logp1 ` pΩpf, γqq ą ξ
¯

and note that this quantity is independent of BC. By Theorem 2.1, Lemma 2.2 and an
application of the delta method, for any fixed ξ,

Υ̃pξq Ñ Φ

ˆ

´ξ `
trpHpDP˚ , fqq

q1{2∆1{2pf, γq

˙

.

Hence, for any ϵ ą 0, we can find a sufficiently large N1 such that when n ą N1,

Υ̃pξα ´ 5q1{2ϵq ă Φ

ˆ

´ξα `
trpHpDP˚ , fqq

q1{2∆1{2pf, γq
` 5q1{2ϵ

˙

` ϵ,

Υ̃pξα ` 5q1{2ϵq ą Φ

ˆ

´ξα `
trpHpDP˚ , fqq

q1{2∆1{2pf, γq
´ 5q1{2ϵ

˙

´ ϵ.

Due to (A.14) and (A.15), there exists a constant Kζ and a sufficiently large N2 such
that when n ą N2, P˚pKp1qq ą 1 ´ ζ, where

Kp1q “ tBC :
?
n}BC}22 ď Kζu X tBC : |σnpBCq| ď ϵu.

Using the arguments in the proof of Theorem A.2, we have, for i “ 2, 3, 4, uniformly on
Kp1q,

ηpiqpBC,Zq
PBC

ÝÝÝÑ 0.

This convergence to zero is also valid for ηp1qpBC,Zq, since gn
PZ

ÝÝÑ g due to Lemma 2.2
and gn is independent of BC. Therefore, we can find a sufficiently large N3, such that
when n ą N3, for any BC P Kp1q, the event

Kp2qpBCq “ tZ : max
i“1,...,4

}ηpiqpBC,Zq}2 ď ϵu

has measure at least 1´ ϵ, that is, PBCpKp2qpBCqq ą 1´ ϵ. Therefore, when BC P Kp1q,
and n ą maxpN1, N2, N3q, (A.17) implies

ΥLRpBC, fq ď PBC

´!

pTLRpfq ą ξα

)

X Kp2qpBCq

¯

` PBCpKp2qpBCqcq

ď Υ̃pξα ´ 5q1{2ϵq ` ϵ

ď Φ
´

´ ξα `
trpHpDP˚ , fqq

q1{2∆1{2pf, γq
` 5q1{2ϵ

¯

` 2ϵ.

Conversely,

ΥLRpBC, fq ě PBC

´!

pTLRpfq ą ξα

)

X Kp2qpBCq

¯

ě Υ̃pξα ` 5q1{2ϵq

ě Φp´ξα `
trpHpDP˚ , fqq

q1{2∆1{2pf, γq
´ 5q1{2ϵq ´ ϵ.

This completes the proof, since P˚pKp1qq ą 1 ´ ζ.
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Proof of Theorem 3.1

To show Result (1), first note that ∆pfℓ, γq is a continuous function of ℓ under Condition
(ii) of F. It is also assumed that infℓPL ∆pfℓ, γq ą 0 in Condition (iv). Hence, ∆pfℓ, γq is
bounded away from infinity and 0 on L. Moreover, Conditions (i)–(iii) of F imply

sup
zPC

sup
ℓPL

|fℓpzq| ă 8.

In the proof of Lemma 2.2, presented in Section S.5 of the Supplementary Material,
it is shown that

sup
zPC`

?
n|mn,ppzq ´ mpzq|

P
ÝÑ 0,

sup
zPC`

?
n|m1

n,ppzq ´ m1pzq|
P

ÝÑ 0.

It follows that
sup
zPC`

?
n|phpz, γnq ´ hpz, γq|

P
ÝÑ 0.

Hence,
sup
ℓPL

?
n

ˇ

ˇ

ˇ

˛
C`

fℓpzqrphpz, γnq ´ hpz, γqsdz
ˇ

ˇ

ˇ

P
ÝÑ 0.

The boundedness of Θpz, γq is deduced in Section S.2 of the Supplementary Material. It
can be checked thatmn,ppzq and pΘpz, γnq are also bounded on C when λmaxp pΣpq ă D ă u.
Since

?
nρn Ñ 0, it follows that

sup
ℓPL

?
n

ˇ

ˇ

ˇ

˛
CzC`

fℓpzqphpz, γnqdz
ˇ

ˇ

ˇ

P
ÝÑ 0,

sup
ℓPL

?
n

ˇ

ˇ

ˇ

˛
CzC`

fℓpzqhpz, γnqdz
ˇ

ˇ

ˇ

P
ÝÑ 0.

The convergence of p∆pfℓ, γnq is stated in Lemma 2.2. The proof of Lemma 2.2 reveals
that the convergence of p∆pfℓ, γnq follows from the uniform convergence of pδpz1, z2, γnq

on pC`q2. It implies that the convergence of p∆pfℓ, γnq is uniform on fℓ P F, because

?
n| p∆pfℓ, γnq ´ ∆pfℓ, γq| ď K sup

zPC
sup
ℓPL

|fℓpzq|

˛
C2

?
n|pδpz1, z2, γnq ´ δpz1, z2, γq||dz1||dz2|.

We therefore have
sup
ℓPL

?
n| p∆pfℓ, γnq ´ ∆pfℓ, γq|

P
ÝÑ 0

and the proof of result (1) is complete.
As for (3.3), we only need to show for any ε ą 0, there exists a constant Kε ą 0 and

an integer nε, such that for t “ Kεn
´1{4 and any n ě nε,

P
´

pΞpℓ˚,ph, γnq ´ pΞpℓ˚ ` tδ,ph, γnq ě 0 for all δ s.t. }δ}2 “ 1 and ℓ˚ ` tδ P L
¯

ě ε.
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Under condition (3.3),

pΞpℓ˚,ph, γnq ´ pΞpℓ˚ ` tδ,ph, γnq “ Ξpℓ˚, h, γq ´ Ξpℓ˚ ` tδ, h, γq ` oppn´1{2q

ě Kt2}δ}22 ` oppn´1{2q.

The remainder oppn´1{2q is uniform for any t and δ. Therefore, if t “ Opn´1{4q,
pΞpℓ˚,ph, γnq ´ pΞpℓ˚ ` tδ,ph, γnq is positive with high probability for any δ with L2-norm 1.

As for (3.5), write ℓ “ pl1, . . . , lrqT for any ℓ P L. Similarly denote the local maximizer
of pΞpℓ,ph, γnq by ℓ˚

n “ pl˚1n, . . . , l
˚
rnqT and let ℓ˚ “ pl˚1 , l

˚
2 , . . . , l

˚
r qT . Since the partial

derivatives of fℓ˚ are analytic under Condition (iii) of F, due to Theorem 2.1 and (S.5.1),

n1{4
”

M
´

Bfℓ˚

Bl˚j

¯

´ pΩ
´

Bfℓ˚

Bl˚j
, γn

¯

Iq

ı

“ opp1q, j “ 1, . . . , r.

”

M
´

B2fℓ˚

Bl˚j Bl˚j1

¯

´ pΩ
´

B2fℓ˚

Bl˚j Bl˚j1
, γn

¯

Iq

ı

“ opp1q, j, j1 “ 1, . . . , r.

Because the third-order derivatives are continuous functions on L b Z, we can find a
constant K∇ such that

max
1ďj,j1,j2ďr

sup
ℓPL

sup
zPZ

ˇ

ˇ

ˇ

B3fℓpzq

BljBlj1 Blj2

ˇ

ˇ

ˇ
ď K∇.

Since for the constant function f0pxq “ K∇, Mpf0q “ Opp1q,

max
1ďj,j1,j2ďr

sup
ℓPL

›

›

›
M

´

B3fℓ
BljBlj1 Blj2

¯›

›

›

2
“ Opp1q.

Similarly, we have

max
1ďj,j1,j2ďr

sup
ℓPL

ˇ

ˇ

ˇ

pΩ
´

B3fℓ
BljBlj1 Blj2

, γn

¯ˇ

ˇ

ˇ
“ Opp1q.

A Taylor expansion shows that
›

›

›

?
nMpfℓ˚

n
q ´ pΩpfℓ˚

n
, γnqIq

)

´
?
n

!

Mpfℓ˚ q ´ pΩpfℓ˚ , γnqIq

›

›

›

2

ď
?
n

›

›

›
M

´

pℓ˚
n ´ ℓ˚qT∇ℓfℓ˚

¯

´ pΩ
´

pℓ˚
n ´ ℓ˚qT∇ℓfℓ˚ , γn

¯

Iq

›

›

›

2

`
?
n

›

›

›
M

´

pℓ˚
n ´ ℓ˚qT∇2

ℓfℓ˚ pℓ˚
n ´ ℓ˚q

¯

´ pΩ
´

pℓ˚
n ´ ℓ˚qT∇2

ℓfℓ˚ pℓ˚
n ´ ℓ˚q, γn

¯

Iq

›

›

›

2

`
?
n}ℓ˚

n ´ ℓ˚}32 ¨ Opp1q

“opp1q.

Moreover, p∆pfℓ˚
n
, γnq

P
ÝÑ ∆pfℓ˚ , γq and (3.5) follows.

When ℓ˚ is on the boundary of L, we can prove (3.4) and (3.5) along similar lines and
details are consequently omitted.



42 H. Li, A. Aue and D. Paul

Proof of Theorem 3.2

Following from the argument in the proof of Theorem 3.1,
pT pfℓ˚

in
q “ pT pfℓ˚

i
q ` opp1q,

by Slutsky’s Theorem, we only need to show
´

pT pfℓ˚
1

q, . . . , pT pfℓ˚
m

q

¯

ùñ N
´

0,∆˚
¯

.

Observe that the asymptotic normality of pT pfℓ˚
i

q follows from that of the un-standardized

statistic, T pfℓ˚
i

q. It suffices to show that
´

T pfℓ˚
1

q, . . . , T pfℓ˚
m

q

¯

is asymptotically normal.
If the (regularized version) of LH criterion is being adopted, that is,

T pfℓ˚
i

q “ TLHpfℓ˚
i

q “

q
ÿ

j“1

λjpMpfℓ˚
i

qq,

the joint normality of
´

T pfℓ˚
1

q, . . . , T pfℓ˚
m

q

¯

follows from Theorem 2.2 and the fact that,

for any linear combination of
´

T pfℓ˚
1

q, . . . , T pfℓ˚
m

q

¯

, say with coefficients a1, . . . , am,

m
ÿ

i“1

aiT
LHpfℓ˚

i
q “ TLH

´

m
ÿ

i“1

aifℓ˚
i

¯

.

Since ∆p
řm

i“1 aifℓ˚
i
, γq “

řm
i“1

řm
j“1 aiaj∆pfℓ˚

i
, fℓ˚

j
, γq, the asymptotic covariance

kernel of
´

pT pfℓ˚
1

q, . . . , pT pfℓ˚
m

q

¯

can be verified to be ∆˚ via elementary calculation.
If LR or BNP criterion with regularization is being adopted, due to delta-method,

TLRpfℓ˚
i

q “ q logp1 ` pΩpfℓ˚
i
, γnqq `

TLHpfℓ˚
i

q ´ qpΩpfℓ˚
i
, γnq

1 ` pΩpfℓ˚
i
, γnq

` oppn´1{2q,

TBNPpfℓ˚
i

q “
qpΩpfℓ˚

i
, γnq

1 ` pΩpfℓ˚
i
, γnq

`
TLHpfℓ˚

i
q ´ qpΩpfℓ˚

i
, γnq

t1 ` pΩpfℓ˚
i
, γnqu2

` oppn´1{2q.

It implies that any linear combination of TLRpfℓ˚
i

q or TBNPpfℓ˚
i

q can be expressed as a
linear combination of TLHpfℓ˚

i
q with a negligible remainder. The proof is complete.

Supplementary Material
Supplementary Material includes additional simulation results and detailed proofs of the
main theoretical results presented in this paper.
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Haoran Li, Alexander Aue and Debashis Paul

University of California, Davis

S.1. Additional material to Section 4.2
Recall notation in Section 2–Section 3 of the manuscript and recall the higher order
shrinkage family proposed in Section 4.2,

Fhigh “

!

fℓpxq “

”

κ
ÿ

j“0

ljx
j
ı´1

, ℓ “ pl0, . . . , lκqT P G
)

.

In this section, we introduce the selection of G and the application of Section 2 and
Section 3 with f P Fhigh when κ “ 3.

If fℓ has three distinct roots r1, r2, r3 and non-zero leading coefficient l3, we have the
following representation

fℓpxq “

”

3
ÿ

j“0

ljx
j
ı´1

“

3
ÿ

j“1

ωjpx ´ rjq´1

where ωj “ l´1
3

ś

i‰jprj ´ riq
´1. With Lemma 2.1, we have the following closed forms of

Ωpfℓ, γq and ∆pfℓ, γq.

Ωpfℓ, γq “

3
ÿ

j“1

ωjtΘprj , γq ´ 1u;

∆pfℓ, γq “ 2
3

ÿ

j“1

3
ÿ

j1“1

ωjωj1δprj , rj1 , γq “ 2
3

ÿ

j“1

3
ÿ

j1“1

ωjωj1δprj , rj1 , γq.

where ω is the complex conjugate of ω and r is analogous.
The case that fℓ has a multiple root, say r1, is the limit when r2 and/or r3 converges to

r1. As shown in (4.1), in that situation, the decomposition of fℓ involves g1pxq “ px´r1q´2

or g2pxq “ px ´ r1q´3. Although similar closed forms of Ωpfℓ, γq and ∆pfℓ, γq are also
available, they involve first-order or second-order derivatives of Θpz, γq and δpz, z1, γq

with respect to z. The estimation of Ωpfℓ, γq and ∆pfℓ, γq will be less precise. However,
the test procedure wouldn’t benefit much from allowing the existence of a multiple root.
Because the asymptotic power ΥpBC, fℓq under the local alternatives is smooth with
respect to r1, r2, r3. In the following, we shall simply restrict G to exclude the case where
fℓ has a multiple root by forcing Restriction R3 shown below.
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As stated in Section 4.2, it is reasonable to require fℓ being strictly positive and
monotonically decreasing on X for any ℓ P G. Moreover, since multiplying fℓ by a constant
leads to an equivalent test procedure, we can fix l0 “ fℓp0q “ 1.

In summary, we set G to be the set of coefficients ℓ “ p1, l1, l2, l3q such that

R1 (Compactness): |li| ď ci, i “ 1, 2, and 0 ă c3 ď |l3| ď c3 ;
R2 (Monotonicity): 3l3x

2 ` 2l2x ` l1 ě 0 for all x P r0, λ̄s;

R3 (Distinct roots):
ˇ

ˇ

ˇ
18l3l2l1 ´ 4l32 ` l22l

2
1 ´ 4l3l

3
1 ´ 27l23

ˇ

ˇ

ˇ
ě c4;

where c1, c2, c3, c3, c4 are pre-specified positive constants and λ̄ is a constant such that
λ̄ ě lim supp λmaxpΣpqp1`

?
γq2. In practice, we choose λ̄ ě rλmaxp pΣpqs`0.01p´1trp pΣpq.

Under R1 and R2, there exists a constant K such that

inf
ℓPG

inf
xPr0,λs

min
j“1,2,3

|x ´ rj | ą K.

Under R3, the roots r1, r2, r3 are mutually exclusive and we can find a constant K1 such
that

inf
ℓPG

min
1ďj‰j1ď3

|rj ´ rj1 | ą K1.

The considerations lead to the following algorithm to determine the shrinkage function
f P Fhigh given G and the test procedure with the selected shrinkage. The practical
suggestion of G is provided after.

Algorithm S.1.1 (Test procedure with higher order shrinkage) Perform the fol-
lowing steps.

1. Specify prior weights t̃ “ pt0, t1, t2q. Canonical choices are p1, 0, 0q, p0, 1, 0q, p0, 0, 1q.
2. For each ℓ “ pl3, l2, l1, l0q P G, calculate roots r1, r2, r3 of

ř3
j“0 ljx

j “ 0, and
weights ωj “ l´1

3

ś

i‰jprj ´ riq
´1, j “ 1, 2, 3.

3. For ℓ P G, compute the estimates

mn,pprjq “
1

p
trrp pΣp ´ rjIpq´1s, j “ 1, 2, 3;

pΘprj , γnq “ t1 ´ γn ´ γnrjmn,pprjqu´1, j “ 1, 2, 3;

pδprj , rj1 , γnq “ pΘprj , γnqpΘprj1 , γnq

”rj pΘprj , γnq ´ rj1 pΘprj1 , γnq

rj ´ rj1
´ 1

ı

, j ‰ j1;

pδprj , rj , γnq “ γnt1 ` rjmn,pprjqupΘ3prj , γq

` γnrjtmn,pprjq ` rjm
1
n,pprjqupΘ4prj , γnq, j “ 1, 2, 3;

ρ̂0prj , γnq “ mn,pprjq, j “ 1, 2, 3;

ρ̂1prj , γnq “ pΘprj , γnqr1 ` rjmn,pprjqs, j “ 1, 2, 3;

ρ̂2prj , γnq “ pΘprj , γnqrp´1trp pΣpq ` rj ρ̂1prj , γqs, j “ 1, 2, 3;
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pΩℓpγnq “

3
ÿ

j“1

ωjtpΘprj , γnq ´ 1u;

p∆ℓpγnq “ 2
3

ÿ

j“1

3
ÿ

j1“1

ωjωj1 pδprj , rj1 , γnq;

pΞℓpγnq “ p∆
´1{2
ℓ pγnq

3
ÿ

j“1

2
ÿ

i“0

ωjtiρ̂iprj , γnq.

4. Select ℓ˚ “ argmaxℓPG pΞℓpγnq through a grid search.
5. The same as Step 5 of Algorithm 4.1, use one of the following standardized statistics

to reject the null at asymptotic level α, if pT ą ξα.

pTLRpℓ˚q :“

?
nt1 ` pΩℓ˚ pγnqu

q1{2
p∆
1{2
ℓ˚ pγnq

rTLRpℓ˚q ´ q logt1 ` pΩℓ˚ pγnqus;

pTLHpℓ˚q :“

?
n

q1{2
p∆
1{2
ℓ˚ pγnq

tTLHpℓ˚q ´ qpΩℓ˚ pγnqu;

pTBNPpℓ˚q :“

?
nt1 ` pΩℓ˚ pγnqu2

q1{2
p∆
1{2
ℓ˚ pγnq

tTBNPpℓ˚q ´
qpΩℓ˚ pγnq

1 ` pΩℓ˚ pγnq
u.

where

TLRpℓ˚q “

q
ÿ

i“1

logp1 ` λiq, TLHpℓ˚q “

q
ÿ

i“1

λi, TBNPpℓ˚q “

q
ÿ

i“1

λi

1 ` λi
,

and tλiu
q
i“1 are eigenvalues of n´1QT

nY
T fℓ˚ p pΣpqYQn.

The suggested grid in practice is as following. Denote p´1trp pΣpq as M. First, generate
l3 P ˘r10´3λ̄´2M´1, 102λ̄´2M´1s. Secondly, it is efficient to focus on l2’s such that the
inflection point x “ l2{p´3l3q of the cubic equation is around r0, λ̄s. Hence, for any l3,
we select l2 to be such that l2{p´3l3q P r´0.1λ̄, 1.1λ̄s. Thirdly, to avoid f´1

ℓ being too
steep, we select l1 to be such that l3M

2 ` l2M ` l1 “ rf´1
ℓ pMq ´ f´1

ℓ p0qs{M P r0, 2s.
Valid grid points are those satisfying R2 and R3. c4 can be arbitrarily small. We suggest
c4 “ 10´6λ̄´2.

S.2. About mpzq, Θpz, γq and δpz1, z2, γq

Recall that mpzq is the Stieltjes transform of F8, that is the limit almost surely of F pΣp

at any point of continuity of F8. mpzq is the unique solution in C` of (2.1)

mpzq “

ˆ
dLΣpτq

τp1 ´ γ ´ γzmpzqq ´ z
,
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where LΣ is the limit of FΣp .
We provide another formulation of the Marčenko-Pastur equation (2.1) that is more

convenient under some situations. Define

F8pτq “ p1 ´ γq1r0,8qpτq ` γF8pτq.

F8 is a valid c.d.f. for any γ, that is a mixture of F8 and a point mass at 0 (if γ ă 1). It is
actually the limit almost surely of the ESD of n´1ZTΣpZ. Denote the Stieltjes transform
of F8 to be mpzq. Then, there is a 1-1 mapping between mpzq and mpzq as

mpzq “
γ ´ 1

z
` γmpzq.

The Marčenko-Pastur equation has an equivalent formulation as

mpzq “

”

´ z ` γ

ˆ
τdLΣpτq

1 ` τmpzq

ı´1

.

With the help of mpzq, we now study the domain of Θpz, γq on any contour C enclosing
X “ r0, lim supp λmaxpΣpqp1 `

?
γq2s. Observe that Θpz, γq “ pzmpzqq´1. It is claimed

in Bai and Silverstein (2004) that infzPS |mpzq| ą 0, for any bounded subset S of C.
Therefore,

sup
zPC

|Θpz, γq| ă 8.

Because the support of F8, sppF8q Ă X ,

sup
zPC

|m1pzq| “ sup
zPC

ˇ

ˇ

ˇ

ˆ
pτ ´ zq´2dF8pτq

ˇ

ˇ

ˇ
ă 8,

sup
zPC

|m2pzq| “ sup
zPC

ˇ

ˇ

ˇ

ˆ
2pτ ´ zq´3dF8pτq

ˇ

ˇ

ˇ
ă 8.

Hence,

sup
zPC

ˇ

ˇ

ˇ

B

Bz
Θpz, γq

ˇ

ˇ

ˇ
ă 8,

sup
z1,z2PC

ˇ

ˇ

ˇ
δpz1, z2, γq

ˇ

ˇ

ˇ
ă 8,

sup
z1,z2PC

ˇ

ˇ

ˇ

B

Bz1
δpz1, z2, γq

ˇ

ˇ

ˇ
ă 8.

Moreover,

inf
zPC

ˇ

ˇ

ˇ

Θpz, γq ´ 1

Θpz, γq
´ 1

ˇ

ˇ

ˇ
“ inf

zPC

ˇ

ˇ

ˇ
Θ´1pz, γq

ˇ

ˇ

ˇ
“ inf

zPC

ˇ

ˇ

ˇ
zmpzq

ˇ

ˇ

ˇ
ą 0.

About convergence of FΣp to LΣ It is claimed in Section 2.1 that, pointwise almost
surely on z P C`, mn,ppzq converges to mpzq. In view that the convergence of FΣp to
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LΣ can be arbitrarily slow, the convergence rate of mn,ppzq to mpzq is also arbitrarily
slow. Consequently, the convergence rate of pΘpz, γnq and pδpz1, z2, γnq can be slower than
n´1{2, while a faster rate than n´1{2 is required in this paper.

To solve this problem, it is typical (see for example Bai and Silverstein (2010)), to
replace mpzq with a deterministic sequence tm0

ppzq, p “ 1, 2, . . . u, that is the unique
solution of

m0
ppzq “

ˆ
dFΣppτq

τp1 ´ γn ´ γnzm0
ppzqq ´ z

.

Notice that the last equation is the Marčenko-Pastur equation with the population spec-
tral distribution FΣp replacing the limiting spectral distribution. The convergence rate
of mn,ppzq ´ m0

ppzq is shown to be Opn´1q in Bai and Silverstein (2004). The result does
not rely on the convergence rate of FΣp to LΣ, since m0

ppzq is free of LΣ.
To emphasize readability and succinctness of the paper, we adopt another solution,

that is to impose a convergence rate on FΣp to LΣ and on γn to γ, as shown in C2 and
C4. Later, we will frequently refer to existing results in literature that are established
using tm0

ppzq, p “ 1, 2, . . . u. It is necessary to study the difference between m0
ppzq and

mpzq under C2 and C4.
Similarly to mpzq, define

m0
ppzq “

γn ´ 1

z
` γnm

0
ppzq.

The following formulation also holds

m0
ppzq “

”

´ z ` γn

ˆ
τdFΣppτq

1 ` τm0
ppzq

ı´1

.

It is claimed in Bai and Silverstein (2004) (see (4.2)) that when FΣp converges to
LΣ at any continuity point of LΣ, for any C bounded away from the support of F8, as
n Ñ 8,

sup
zPC

|m0
ppzq ´ mpzq| Ñ 0.

Therefore,
sup
zPC

|m0
ppzq ´ mpzq| Ñ 0.

The result still holds under our assumption in C4 that
?
nDW pFΣp , LΣq Ñ 0, because

the weak convergence of FΣp is implied. Next, we show the convergence rate is faster
than n´1{2.

Lemma S.1 Suppose C2 and C4 hold. For any contour C such that X is in the interior
of C,

sup
zPC

?
p|m0

ppzq ´ mpzq| ÝÑ 0.
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We only need to show
sup
zPC

?
p|m0

ppzq ´ mpzq| ÝÑ 0.

Without loss of generality, suppose the contour C intersects with the real axis at two
points, u and u, with u ă 0 and u ą lim supp λpΣpqp1 `

?
γq2.

Note that it is enough to show the convergence on Cztu, uu, since m0
ppzq and mpzq are

smooth on C (Silverstein and Choi, 1995).
Denote the support of LpΣq to be sppLΣq. We first show that

inf
zPC

inf
τPsppLΣq

|1 ` τmpzq| ą 0. (S.2.1)

When z “ u or u, it follows from Silverstein and Choi (1995, Theorem 4.1) that ´mpzq´1 P

sppLΣqc. Therefore, 1 ` τmpuq ‰ 0 and 1 ` τmpuq ‰ 0 for any τ P sppLΣq. Following
from continuity of mpzq and the fact that sppLΣq is compact, we can find a neighbor-
hood of u and a neighborhood of u such that there exists a ϵ ą 0, for any z in the two
neighborhoods,

inf
τPsppLΣq

|1 ` τmpzq| ą ϵ.

When z is outside of the neighborhoods, so away from the real axis, Bai and Silverstein
(1998, Lemma 2.11) indicates that

|1 ` τmpzq| ď maxp
4 lim supp λmaxpΣpq

ℑpzq
, 2q,

where ℑpzq is the imaginary part of z. It completes the proof of (S.2.1).
Moreover, since supzPC |m0

ppzq ´ mpzq| ÝÑ 0, for all sufficiently large p,

inf
zPC

inf
τPsppLΣq

|1 ` τm0
ppzq| ą ϵ{2.

Following from (S.2.1), uniformly on C,

wn1 :“
”

γn

ˆ
τ1sppLΣqpτqdFΣppτq

1 ` τmpzq
´ γ

ˆ
τdLΣpτq

1 ` τmpzq

ı

“ opn´1{2q.

Define
m̃ppzq “

”

´ z ` γn

ˆ
τ1sppLΣqpτqdFΣppτq

1 ` τmpzq

ı´1

.

We have, uniformly on C,

m̃ppzq ´ mpzq “ mpzq

”

m´1pzq ` wn1

ı´1

wn1 “ opn´1{2q,

since both mpzq and m´1pzq are bounded on C.
Now considerm0

ppzq´m̃ppzq. The target is to showm0
ppzq´m̃ppzq “ rm0

ppzq´mpzqsRp`

opn´1{2q for some Rp such that supzPCztu,uu |Rp| ă 1 for sufficiently large p.



High-dimensional general linear hypothesis via spectral shrinkage 7

For simplicity, we shall write 1sppLΣq as 1sp. First, observe that the imaginary part of
m0

ppzq, denoted to be v0ppzq, is

v0ppzq “
ℑpzq ` γn

´ τ2v0
ppzqdFΣp pτq

|1`τm0
ppzq|2

ˇ

ˇ

ˇ
´ z ` γn

´ τdFΣp pτq

1`τm0
ppzq

ˇ

ˇ

ˇ

2 . (S.2.2)

The imaginary part of m̃ppzq, denoted to be ṽppzq, is

ṽppzq “
ℑpzq ` γn

´ τ21sppτqvpzqdFΣp pτq

|1`τmpzq|2

ˇ

ˇ

ˇ
´ z ` γn

´ τ1sppτqdFΣp pτq

1`τmpzq

ˇ

ˇ

ˇ

2 (S.2.3)

where vpzq is the imaginary part of mpzq.

m0
ppzq ´ m̃ppzq “

rm0
ppzq ´ mpzqsγn

´ τ21sppτq

r1`τm0
ppzqsr1`τmpzqs

dFΣppτq
”

´ z ` γn
´ τ1sppτqdFΣp pτq

1`τmpzq

ı”

´ z ` γn
´ τdFΣp pτq

1`τm0
ppzq

ı

´
γn
´

τ
r1`τm0

ppzqs
p1 ´ 1sppτqqdFΣppτq

”

´ z ` γn
´ τ1sppτqdFΣp pτq

1`τmpzq

ı”

´ z ` γn
´ τdFΣp pτq

1`τm0
ppzq

ı

“ rm0
ppzq ´ mpzqsRp ` wn2, say.

ˇ

ˇ

ˇ

´
p1 ´ 1sppτqqdFΣppτq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

´
p1 ´ 1sppτqqdrFΣppτq ´ LΣpτqs

ˇ

ˇ

ˇ
“ opn´1{2q. It follows that

uniformly on C,
?
n|wn2| Ñ 0.

Next, we verify that when p is sufficiently large, |Rp| ă 1. By Hölder’s inequality,
when ℑpzq ‰ 0,

|Rp|2 “

ˇ

ˇ

ˇ

γn
´ τ21sppτq

r1`τm0
ppzqsr1`τmpzqs

dFΣppτq
”

´ z ` γn
´ τ1sppτqdFΣp pτq

1`τmpzq

ı”

´ z ` γn
´ τdFΣp pτq

1`τm0
ppzq

ı

ˇ

ˇ

ˇ

2

ď
γn
´ τ21sppτqdFΣp

|1`τmpzq|2

ˇ

ˇ

ˇ
´ z ` γn

´ τ1sppτqdFΣp pτq

1`τmpzq

ˇ

ˇ

ˇ

2

γn
´

τ2dFΣp

|1`τm0
ppzq|2

ˇ

ˇ

ˇ
´ z ` γn

´ τdFΣp pτq

1`τm0
ppzq

ˇ

ˇ

ˇ

2

“
γn
´ τ21sppτqdFΣp

|1`τmpzq|2
ṽppzq

ℑpzq ` γn
´ τ21sppτqdFΣp pτq

|1`τmpzq|2
vpzq

¨
γn
´

τ2dFΣp

|1`τm0
ppzq|2

v0ppzq

ℑpzq ` γn
´ τ2dFΣp pτq

|1`τm0
ppzq|2

v0ppzq

“ rn1 ¨ rn2, say.

Because m0
ppzq is the Stieltjes transform of a c.d.f supported within X , we have that

0 ă inf
zPCztu,uu

v0ppzq{ℑpzq ď sup
zPCztu,uu

v0ppzq{ℑpzq ă 8.
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Therefore, rn2 ă K ă 1 for all z P Cztu, uu.
We only need to show rn1 ď 1. Because mpzq is the Stieltjes transform of F8, again,

0 ă inf
zPCztu,uu

vpzq{ℑpzq ď sup
zPCztu,uu

vpzq{ℑpzq ă 8.

Observe that

vpzq “
ℑpzq ` γ

´ τ2vpzqdLΣpτq

|1`τmpzq|2

ˇ

ˇ

ˇ
´ z ` γ

´ τdLΣpτq

1`τmpzq

ˇ

ˇ

ˇ

2

Comparing with (S.2.3), we have

ṽppzq{vpzq “
ℑpzq{vpzq ` γn

´ τ21sppτqdFΣp pτq

|1`τmpzq|2

ℑpzq{vpzq ` γ
´ τ2dLΣpτq

|1`τmpzq|2

ˇ

ˇ

ˇ
´ z ` γ

´ τdLΣpτq

1`τmpzq

ˇ

ˇ

ˇ

2

ˇ

ˇ

ˇ
´ z ` γn

´ τ1sppτqdFΣp pτq

1`τmpzq

ˇ

ˇ

ˇ

2

ÝÑ 1, uniformly for z P Cztu, uu.

Therefore, for sufficiently large n, rn1 ď 1 for all z P Cztu, uu.
Together, we proved

m0
ppzq ´ mpzq “ rm0

ppzq ´ mpzqsRp ` opn´1{2q,

and |Rn| ă 1 for all sufficiently large p. The uniform convergence of
?
n|m0

ppzq ´ mpzq|

follows.
Next, we show the derivative of m0

ppzq also converges to the derivative of mpzq.

Lemma S.2 Suppose C2 and C4 hold. For any contour C such that X is in the interior
of C,

sup
zPC

?
p

ˇ

ˇ

ˇ

d

dz
m0

ppzq ´
d

dz
mpzq

ˇ

ˇ

ˇ
ÝÑ 0.

We follow the arguments in the proof of Lemma S.1.

m0
ppzq ´ mpzq “ rm0

ppzq ´ mpzqsRp ` wn2 ` mpzqrm´1pzq ` wn1s´1wn1.

Take differentiation on both sides,

d

dz
m0

ppzq ´
d

dz
mpzq “ r

d

dz
m0

ppzq ´
d

dz
mpzqsRp ` rm0

ppzq ´ mpzqs
d

dz
Rp

`
d

dz
wn2 `

d

dz
mpzqrm´1pzq ` wn1s´1wn1

` mpzq
d

dz
rm´1pzq ` wn1s´1wn1 ` mpzqrm´1pzq ` wn1s´1 d

dz
wn1

It is straightforward to verify, using arguments in the proof of Lemma S.1, that

sup
zPC

|
d

dz
Rp| ă 8,
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sup
zPC

|
d

dz
rm´1pzq ` wn1s´1| ă 8,

sup
zPC

?
n
d

dz
wn1 Ñ 0,

sup
zPC

?
n
d

dz
wn2 Ñ 0.

Together with the fact that mpzq,m´1pzq, dmpzq{dz, dm´1pzq{dz are bounded,

d

dz
m0

ppzq ´
d

dz
mpzq “ r

d

dz
m0

ppzq ´
d

dz
mpzqsRp ` opn´1{2q.

The uniform convergence of
?
n| d

dzm
0
ppzq ´ d

dzmpzq| follows.

S.3. Proof of Theorem A.1
Recall notation in Section 2 and Appendix A.1 of the paper. Define

Θnpzq “ 1 ` γn
1

p
Etrtp rΣp ´ zIq´1Σpu,

Gp1q
n pz, a, bq “ n1{2tGnpz, a, bq ´ EGnpz, a, bqu,

Gp2q
n pz, a, bq “ n1{2tEGnpz, a, bq ´ aT b

Θnpz, γq ´ 1

Θnpz, γq
u,

Gp3q
n pz, a, bq “ n1{2aT bt

Θnpzq ´ 1

Θnpzq
´

Θpz, γq ´ 1

Θpz, γq
u.

The rest of the section is organized as follows. In Subsection S.3.1, we show the finite
dimensional convergence of Gp1q

n pz, a, bq. In Subsection S.3.2, we show the tightness of
G

p1q
n pz, a, bq. In Subsection S.3.3, we show convergence of G

p2q
n pz, a, bq. In Subsection,

S.3.4, we show convergence of Gp3q
n pz, a, bq. It completes the proof of Theorem A.1.

Notation We collect notation to the following list. Let

1. ua “ pua1, . . . , uaN qT “ n´1{2Una;
2. ub “ pub1, . . . , ubN qT “ n´1{2Unb;
3. z is the complex conjugate of z;
4. zj is the jth column of Z;
5. Zj is Z with zj replaced with the 0 vector;
6. Zij is Z with both zi and zj replaced with the 0 vectors;
7. Apzq “ Σ

T {2
p p rΣp ´ zIq´1Σ

1{2
p “ Σ

T {2
p p 1

nΣ
1{2
p ZZTΣ

T {2
p ´ zIq´1Σ

1{2
p ;

8. Ajpzq “ Σ
T {2
p p 1

nΣ
1{2
p ZjZ

T
j Σ

T {2
p ´ zIq´1Σ

1{2
p ;

9. Aijpzq “ Σ
T {2
p p 1

nΣ
1{2
p ZijZ

T
ijΣ

T {2
p ´ zIq´1Σ

1{2
p ;

10. σpz1, . . . , zN q is the σ-algebra generated by z1, . . . , zN ;
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11. Ejr¨s “ Er¨ | σpz1, . . . , zjqs, j “ 0, . . . , N,with the convention E0r¨s “ Er¨s;

12. βjpzq “

´

1 ` n´1zTj Ajpzqzj

¯´1

;

13. βtr
j pzq “

´

1 ` n´1trAjpzq

¯´1

;

14. βEpzq “

´

1 ` En´1trA1pzq

¯´1

“ Θ´1
n´1pzq;

15. θjpzq “ 1
nz

T
j Ajpzqzj ´ 1

n trAjpzq;

16. ϱjpzq “ 1
nz

T
j AjpzqZjuau

T
b Z

T
j Ajpzqzj ´ 1

nu
T
aZ

T
j A

2
j pzqZjub.

17. ei is the canonical vector with 1 on the ith coordinate.

The following identities holds

βjpzq “ βtr
j pzq ´ βjpzqβtr

j pzqθjpzq,

βjpzq “ βEpzq ´ βjpzqβEpzqp
1

n
zTj Ajpzqzj ´

1

n
EtrAjpzqq.

(S.3.1)

In the following, oL1
p1q means a random variable converging to 0 in L1-norm. Similarly,

oL2
p1q means a random variable converging to 0 in L2-norm. We shall use } ¨ }1 to denote

the entrywise matrix 1-norm, which is the sum of all matrix entries in absolute value.
} ¨ }max means the matrix max “norm”, which is the maximum of all matrix entries in
absolute value.

Under Condition C4, }Un}max “ Opn´1{2q. Therefore, for any fixed a and b,

}ua}max “ Opn´1q, }ub}max “ Opn´1q.

S.3.1. Finite dimensional convergence of Gp1q
n pz, a, bq

In this subsection, we show that
r

ÿ

i“1

ωiG
p1q
n pzi, a, bq

converges to a Gaussian random variable, where r is any positive integer, ω1, . . . , ωr and
z1, . . . , zr are any complex numbers. In view of the smoothing step, z1, . . . , zr are required
to have nonzero imaginary part. Without loss of generality, assume n is sufficiently large
so that ρn is smaller than the imaginary part of z1, . . . , zr.

S.3.1.1. Construction of martingale difference sequences

To lighten notation, the arguments a, b and γ may be dropped from some expressions
whenever there is no scope of ambiguity. We represent Gp1q

n pzq as the sum of a martingale
difference sequence,

Gp1q
n pzq “ n1{2

N
ÿ

j“1

tEjrGnpzqs ´ Ej´1rGnpzqsu
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“ n1{2
N
ÿ

j“1

tEjruT
aZ

TApzqZub ´ uT
aZ

T
j AjpzqZjubs

´ Ej´1ruT
aZ

TApzqZub ´ uT
aZ

T
j AjpzqZjubsu

“ n1{2
N
ÿ

j“1

pEj ´ Ej´1qrd1pzq ` d2pzq ` d3pzqs,

where

d1pzq “ uT
a pZ ´ ZjqTApzqZub,

d2pzq “ uT
aZ

T
j pApzq ´ AjpzqqZub,

d3pzq “ uT
aZ

T
j AjpzqpZ ´ Zjqub.

d1pzq “ uajz
T
j AjpzqZjub ` uajubjz

T
j Ajpzqzj

´
1

n
uajz

T
j Ajpzqzjz

T
j AjpzqZjubβjpzq ´

1

n
uajubjpzTj Ajpzqzjq2βjpzq

“ d
p1q
1 pzq ` d

p2q
1 pzq ` d

p3q
1 pzq ` d

p4q
1 pzq, say.

d
p1q
1 pzq is such that

n1{2
N
ÿ

j“1

pEj ´ Ej´1qd
p1q
1 pzq “ n1{2

N
ÿ

j“1

Ejruajz
T
j AjpzqZjubs.

By Lemma S.8, Lemma S.10 and LemmaS.13,

E
ˇ

ˇ

ˇ
n1{2

N
ÿ

j“1

pEj ´ Ej´1qd
p2q
1 pzq

ˇ

ˇ

ˇ

2

ď n
N
ÿ

j“1

|uajubj |2E
ˇ

ˇ

ˇ
zTj rEj´1Ajpzqszj ´ trEj´1Ajpzq

ˇ

ˇ

ˇ

2

ď Kn
N
ÿ

j“1

|uajubj |2nE}Ej´1Ajpzq}2 “ op1q.

Due to (S.3.1), dp3q
1 pzq is such that, we have

d
p3q
1 pzq “

1

n
uajz

T
j Ajpzqzjz

T
j AjpzqZjubβjpzqβtr

j pzqθjpzq

´ uajθjpzqzTj AjpzqZjubβ
tr
j pzq ` uajpβtr

j pzq ´ 1qzTj AjpzqZjub.

By Lemma S.8, Lemma S.10 and Lemma S.18 , the first two terms above are such that

E
1

n

ˇ

ˇ

ˇ

N
ÿ

j“1

pEj ´ Ej´1quajz
T
j Ajpzqzjz

T
j AjpzqZjubβjpzqβtr

j pzqθjpzq

ˇ

ˇ

ˇ

2

“ op1q,
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E
ˇ

ˇ

ˇ
n1{2

N
ÿ

j“1

pEj ´ Ej´1quajθjpzqzTj AjpzqZjubβ
tr
j pzq

ˇ

ˇ

ˇ

2

“ op1q.

It leads to

n
1
2

N
ÿ

j“1

pEj ´ Ej´1qd
p3q
1 pzq “

N
ÿ

j“1

n
1
2Ejrpβtr

j pzq ´ 1quajz
T
j AjpzqZjubs ` opp1q.

´ pEj ´ Ej´1qd
p4q
1 pzq

“ pEj ´ Ej´1q
1

n
uajubjpzTj Ajpzqzjq2βtr

j pzq

´ pEj ´ Ej´1q
1

n
uajubjpzTj Ajpzqzjq2βjpzqβtr

j pzqθjpzq

“ pEj ´ Ej´1q

”

tnuajubjθ
2
j pzqβtr

j pzqu ` 2tuajubjθjpzqβtr
j pzqtrAjpzqu

´
1

n
uajubjpzTj Ajpzqzjq2βjpzqβtr

j pzqθjpzq

ı

.

Using Lemma S.8, Lemma S.10 and Lemma S.13,

E
ˇ

ˇ

ˇ
n1{2

N
ÿ

j“1

pEj ´ Ej´1qnuajubjθ
2
j pzqβtr

j pzq

ˇ

ˇ

ˇ

2

ď Kn3
N
ÿ

j“1

|uajubj |2E|θ2j pzqβtr
j pzq|2 “ op1q.

E
ˇ

ˇ

ˇ
n1{2

N
ÿ

j“1

pEj ´ Ej´1quajubjθjpzqβtr
j pzqtrAjpzq

ˇ

ˇ

ˇ

2

ď Kn
N
ÿ

j“1

|uajubj |2E|θjpzqβtr
j pzqtrAjpzq|2 “ op1q.

Similarly, by Lemma S.18, we can show

E
ˇ

ˇ

ˇ
n1{2

N
ÿ

j“1

pEj ´ Ej´1qn´1uajubjpzTj Ajpzqzjq2βjpzqβtr
j pzqθjpzq

ˇ

ˇ

ˇ

2

“ op1q.

Thus,

E
ˇ

ˇ

ˇ
n1{2

N
ÿ

j“1

pEj ´ Ej´1qd
p4q
1 pzq

ˇ

ˇ

ˇ

2

“ op1q.
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All together

n1{2
N
ÿ

j“1

pEj ´ Ej´1qd1pzq “ n1{2
N
ÿ

j“1

Ejruajz
T
j AjpzqZjubβ

tr
j pzqs ` opp1q.

Further, we want to replace βtrpzq with βEpzq. By (S.3.1), Lemma S.12, and Lemma S.16,

E|pβtr
j pzq ´ βEpzqqzTj AjpzqZjub|2

“ E|βtr
j pzqβEpzq

1

n
rtrAjpzq ´ EtrAjpzqszTj AjpzqZjub|2 “ op1q.

Therefore,

n1{2
N
ÿ

j“1

pEj ´ Ej´1qd1pzq “ βEpzq

N
ÿ

j“1

Ejrn1{2uajz
T
j AjpzqZjubs ` opp1q.

Secondly, using Lemma S.6,

d2pzq “ ´
1

n
ubjz

T
j Ajpzqzjz

T
j AjpzqZjuaβjpzq

´
1

n
zTj AjpzqZjubu

T
aZ

T
j Ajpzqzjβjpzq

“ ´
1

n
ubjz

T
j Ajpzqzjz

T
j AjpzqZjuaβjpzq

´ ϱjpzqβjpzq ´
1

n
uT
aZ

T
j A

2
j pzqZjubβjpzq

“d
p1q
2 pzq ` d

p2q
2 pzq ` d

p3q
2 pzq, say.

Along very similar lines to those we use to simplify d1pzq, together with

E|ϱjpzq|2 ď KE
1

n2

ˇ

ˇ

ˇ
uT
aZ

T
j AjpzqAjpzqZjuau

T
b Z

T
j AjpzqAjpzqZjub

ˇ

ˇ

ˇ
“ Opn´2q,

which is due to Lemma S.9 and Lemma S.15, we can show

n1{2
N
ÿ

j“1

pEj ´ Ej´1qd
p1q
2 pzq

“

N
ÿ

j“1

Ejrpβtr
j pzq ´ 1qn1{2ubjz

T
j AjpzqZjuas ` opp1q

“ pβEpzq ´ 1q

N
ÿ

j“1

Ejrn1{2ubjz
T
j AjpzqZjuas ` opp1q.

n1{2
N
ÿ

j“1

pEj ´ Ej´1qd
p2q
2 pzq “ ´βEpzqn1{2

N
ÿ

j“1

pEj ´ Ej´1qϱjpzq
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´ n1{2
N
ÿ

j“1

pEj ´ Ej´1qϱjpzqtβtr
j pzq ´ βEpzqu

` n1{2
N
ÿ

j“1

pEj ´ Ej´1qϱjpzqβjpzqβtr
j pzqθjpzq

“ ´βEpzqn1{2
N
ÿ

j“1

Ejϱjpzq ` opp1q,

n1{2
N
ÿ

j“1

pEj ´ Ej´1qd
p3q
2 pzq

“

N
ÿ

j“1

pEj ´ Ej´1qn´1{2uT
aZ

T
j A

2
j pzqZjubβjpzqβtr

j pzqθjpzq “ opp1q.

All together, we have

n1{2
N
ÿ

j“1

pEj ´ Ej´1qpd2pzqq “pβEpzq ´ 1q

N
ÿ

j“1

Ejrn1{2ubjz
T
j AjpzqZjuas

´ βEpzqn1{2
N
ÿ

j“1

Ejϱjpzq.

Combining with d3pzq, we have proved, thus far,

Gp1q
n pzq “

N
ÿ

j“1

βEpzqHnpz, jq ` opp1q

where

Hnpz, jq “ Ejrn1{2uajz
T
j AjpzqZjubs ` Ejrn1{2ubjz

T
j AjpzqZjuas

´ Ejn
1{2ϱjpzq “ Hr1spz, jq ` Hr2spz, jq ` Hr3spz, jq, say.

In summary, it suffices to find the weak limit of
řr

i“1

řN
j“1 ωiβ

EpziqHnpzi, jq, that is

r
ÿ

i“1

N
ÿ

j“1

ωiβ
EpziqrHr1spzi, jq ` Hr2spzi, jq ` Hr3spzi, jqs.

S.3.1.2. martingale central limit theorem

We use the following theorem to show finite dimensional convergence of
r

ÿ

i“1

N
ÿ

j“1

ωiβ
EpziqHnpzi, jq.
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Theorem S.1 (Theorem 35.12 of Billingsley (1995)). Suppose Y1, . . . , Yn is a martinagle
difference sequence with respsect to the increasing σ-field F1, . . . ,Fn, with finite second
moments. If as n Ñ 0,

(i)
n
ř

j“1

EpY 2
j | Fj´1q Ñ σ2 in probability where σ2 is a positive constant,

(ii)
n
ř

j“1

EtY 2
j 1p|Yj | ě ϵqu Ñ 0 for each ϵ ą 0,

then,
n

ÿ

j“1

Yj Ñ N p0, σ2q, in distribution.

It is easy to check that Hnpz, jq has finite second moments. We show Condition (ii)
first.

As for Hr3spz, jq, because of insufficient finite moments of zij , we need to analyze ϱjpzq

carefully. Write

ϱjpzq “
1

n

p
ÿ

i‰ℓ

eTi AjpzqZjuau
T
b Z

T
j Ajpzqeℓzijzℓj

`
1

n

p
ÿ

i“1

eTi AjpzqZjuau
T
b Z

T
j Ajpzqei

”

z2ij1p|zij | ď log nq ´ Ez2ij1p|zij | ď log nq

ı

`
1

n

p
ÿ

i“1

eTi AjpzqZjuau
T
b Z

T
j Ajpzqei

”

z2ij1p|zij | ą log nq ´ Ez2ij1p|zij | ą log nq

ı

“ ϱ
p1q
j pzq ` ϱ

p2q
j pzq ` ϱ

p3q
j pzq, say.

By Lemma 5 of Pan and Zhou (2011),

E|ϱ
p1q
j pzq|4 ď Kn´4E

ˇ

ˇ

ˇ
uT
aZ

T
j AjpzqAjpzqZjuau

T
b Z

T
j AjpzqAjpzqZjub

ˇ

ˇ

ˇ

2

“ Opn´4q.

By Lemma S.15,

E|ϱ
p2q
j pzq|4 ď Kn´4plog nq8E

´

p
ÿ

i“1

|eTi AjpzqZjuau
T
b Z

T
j Ajpzqei|

¯4

ď Kn´4plog nq8E
ˇ

ˇ

ˇ
uT
aZ

T
j AjpzqAjpzqZjuau

T
b Z

T
j AjpzqAjpzqZjub

ˇ

ˇ

ˇ

2

“ Opn´4plog nq8q.

Note, conditional on Zj , all summation terms in ϱ
p3q
j are mutually independent.

E|ϱ
p3q
j pzq|2 ď Kn´2E

ˇ

ˇ

ˇ

p
ÿ

i“1

|eTi AjpzqZjuau
T
b Z

T
j Ajpzqei|

ˇ

ˇ

ˇ

2

Ez4ij1p|zij | ą log nq
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“ opn´2q.

The last step is due to Ez4ij1p|zij | ą log nq Ñ 0, as n Ñ 8.
As for Hr1spz, jq and Hr2spz, jq, Lemma S.16 says that

E
ˇ

ˇ

ˇ
n1{2uajz

T
j AjpzqZjub

ˇ

ˇ

ˇ

4

“ Opn´2q,

E
ˇ

ˇ

ˇ
n1{2ubjz

T
j AjpzqZjua

ˇ

ˇ

ˇ

4

“ Opn´2q.

To verify condition (ii), for any positive ϵ,

N
ÿ

j“1

E
”ˇ

ˇ

ˇ

r
ÿ

i“1

ωiβ
EpziqHnpzi, jq

ˇ

ˇ

ˇ

2

1p

ˇ

ˇ

ˇ

r
ÿ

i“1

ωiβ
EpziqHnpzi, jq

ˇ

ˇ

ˇ
ě ϵq

ı

ď 25
N
ÿ

j“1

E
”ˇ

ˇ

ˇ

r
ÿ

i“1

ωiβ
EpziqHr1spzi, jq

ˇ

ˇ

ˇ

2

1p

ˇ

ˇ

ˇ

r
ÿ

i“1

ωiβ
EpziqHr1spzi, jq

ˇ

ˇ

ˇ
ě ϵ{5q

ı

` 25
N
ÿ

j“1

E
”ˇ

ˇ

ˇ

r
ÿ

i“1

ωiβ
EpziqHr2spzi, jq

ˇ

ˇ

ˇ

2

1p

ˇ

ˇ

ˇ

r
ÿ

i“1

ωiβ
EpziqHr2spzi, jq

ˇ

ˇ

ˇ
ě ϵ{5q

ı

` 25
N
ÿ

j“1

E
”ˇ

ˇ

ˇ

r
ÿ

i“1

ωiβ
Epziqn

1{2ϱ
p1q
j pzq

ˇ

ˇ

ˇ

2

1p

ˇ

ˇ

ˇ

r
ÿ

i“1

ωiβ
Epziqn

1{2ϱ
p1q
j pzq

ˇ

ˇ

ˇ
ě ϵ{5q

ı

` 25
N
ÿ

j“1

E
”ˇ

ˇ

ˇ

r
ÿ

i“1

ωiβ
Epziqn

1{2ϱ
p2q
j pzq

ˇ

ˇ

ˇ

2

1p

ˇ

ˇ

ˇ

r
ÿ

i“1

ωiβ
Epziqn

1{2ϱ
p2q
j pzq

ˇ

ˇ

ˇ
ě ϵ{5q

ı

` 25
N
ÿ

j“1

E
”ˇ

ˇ

ˇ

r
ÿ

i“1

ωiβ
Epziqn

1{2ϱ
p3q
j pzq

ˇ

ˇ

ˇ

2

1p

ˇ

ˇ

ˇ

r
ÿ

i“1

ωiβ
Epziqn

1{2ϱ
p3q
j pzq

ˇ

ˇ

ˇ
ě ϵ{5q

ı

ď
K
ϵ2

N
ÿ

j“1

E
ˇ

ˇ

ˇ

r
ÿ

i“1

ωiβ
EpziqHr1spzi, jq

ˇ

ˇ

ˇ

4

`
K
ϵ2

N
ÿ

j“1

E
ˇ

ˇ

ˇ

r
ÿ

i“1

ωiβ
EpziqHr2spzi, jq

ˇ

ˇ

ˇ

4

`
K
ϵ2

N
ÿ

j“1

E
ˇ

ˇ

ˇ

r
ÿ

i“1

ωiβ
Epziqn

1{2ϱ
p1q
j pzq

ˇ

ˇ

ˇ

4

`
K
ϵ2

N
ÿ

j“1

E
ˇ

ˇ

ˇ

r
ÿ

i“1

ωiβ
Epziqn

1{2ϱ
p2q
j pzq

ˇ

ˇ

ˇ

4

` Kn
N
ÿ

j“1

E
ˇ

ˇ

ˇ

r
ÿ

i“1

ωiβ
Epziqϱ

p3q
j pzq

ˇ

ˇ

ˇ

2

ÝÑ 0.

To verify Condition (i) of Theorem S.1, we next need to find the limit in probability
of

N
ÿ

j“1

Ej´1p

r
ÿ

i“1

ωiβ
EpziqHnpzi, jqq2
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“

r
ÿ

i“1

r
ÿ

i1“1

N
ÿ

j“1

Ej´1ωiωi1βEpziqβ
Epzi1 qHnpzi, jqHnpzi1 , jq.

In next four sections, for arbitrary z1 and z2 with nonzero imaginary part, we derive the
limit in probability of

N
ÿ

j“1

Ej´1Hr1spz1, jqHr1spz2, jq (S.3.2)

N
ÿ

j“1

Ej´1Hr1spz1, jqHr2spz2, jq (S.3.3)

N
ÿ

j“1

Ej´1Hr1spz1, jqHr3spz2, jq (S.3.4)

N
ÿ

j“1

Ej´1Hr3spz1, jqHr3spz2, jq. (S.3.5)

Note, Hr2spz1, jqHr2spz2, jq and Hr2spz1, jqHr3spz2, jq are just Hr1spz1, jqHr1spz2, jq and
Hr1spz1, jqHr3spz2, jq respectively with a and b exchanged.

S.3.1.3. The limit of (S.3.2)

This subsection shows that, as n Ñ 8,
N
ÿ

j“2

Ej´1Hr1spz1, jqHr1spz2, jq (S.3.6)

“ nβEpz1qβEpz2q

N
ÿ

j“2

u2
ajtr rEjAjpz1qEjAjpz2qs

j´1
ÿ

i“1

u2
bi ` opp1q.

Note that clearly when j “ 1, EHr1spz1, 1qHr1spz2, 1q “ 0.
We introduce Zj “ rz1, . . . , zj´1, 0, zj`1, . . . , zN s for j “ 2, 3, . . . , N , where zj`1, . . . ,

zN are i.i.d. copies of z1 and independent with z1, . . . , zj´1. What’s more, introduceAjpzq

like Aj , but Ajpzq is now defined on Zj instead of Zj . Note, conditional on z1, . . . , zj´1,
pZj ,Ajq is independent with pZj ,Ajq. Therefore, for j ě 2,

Ej´1

”

EjrzTj Ajpz1qZjubsEjrzTj Ajpz2qZjubs

ı

“Ej´1ruT
b Z

T
j Ajpz1qAjpz2qZjubs

“

j´1
ÿ

i“1

u2
biEj´1z

T
i Ajpz1qAjpz2qzi `

j´1
ÿ

i“1

ubiEj´1z
T
i Ajpz1qAjpz2qZijub

`

N
ÿ

i“j`1

ubiEj´1z
T
i Ajpz1qAjpz2qZjub “ J p1q

j ` J p2q
j ` J p3q

j , say.
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where Zij , i ă j is defined to be rz1, . . . , zi´1, zi`1, . . . , zj´1, 0, zj`1, . . . , zN s.
(S.3.6) will follow, if we can show,

sup
1ďjďN

E
ˇ

ˇ

ˇ
J p1q
j ´ βEpz1qβEpz2q

´

j´1
ÿ

i“1

u2
bi

¯

trtrEjrAjpz1qAjpz2qsu

ˇ

ˇ

ˇ
“ op1q,

sup
1ďjďN

E|J p2q
j | “ op1q,

sup
1ďjďN

E|J p3q
j | “ op1q.

Similar to βjpzq, define

βijpzq “
1

1 ` n´1zTi Aijpzqzi
,

β
ij

pzq “
1

1 ` n´1zTi Aijpzqzi

where Aijpzq is defined in the same way as Aijpzq, but with Zij instead of Zij .
As for J p1q

j ,

E
ˇ

ˇ

ˇ
J p1q
j ´ βEpz1qβEpz2q

j´1
ÿ

i“1

u2
bitr

“

EjrAjpz1qAjpz2qs
‰

ˇ

ˇ

ˇ

“ E
ˇ

ˇ

ˇ
Ej´1

j´1
ÿ

i“1

u2
biβijpz1qβ

ij
pz2qzTi Aijpz1qAijpz2qzi´

j´1
ÿ

i“1

u2
biβ

Epz1qβEpz2qtr
“

EjrAjpz1qAjpz2qs
‰

ˇ

ˇ

ˇ

ď n2}ub}2maxE
ˇ

ˇ

ˇ
βijpz1qβ

ij
pz2q

1

n
zTi Aijpz1qAijpz2qzi´

βEpz1qβEpz2q
1

n
trtAjpz1qAjpz2qu

ˇ

ˇ

ˇ

ď n2}ub}2maxE
ˇ

ˇ

ˇ
pβijpz1q ´ βEpz1qqβ

ij
pz2q

1

n
zTi Aijpz1qAijpz2qzi

ˇ

ˇ

ˇ

` n2}ub}2maxE
ˇ

ˇ

ˇ
βEpz1qpβ

ij
pz2q ´ βEpz2qq

1

n
zTi Aijpz1qAijpz2qzi

ˇ

ˇ

ˇ

` n2}ub}2max|βEpz1q||βEpz2q|E
ˇ

ˇ

ˇ

1

n
zTi Aijpz1qAijpz2qzi ´

1

n
trtAjpz1qAjpz1qu

ˇ

ˇ

ˇ

“ op1q.

For the last line, we need to the following arguments that are direct consequences of
Lemma S.10, Lemma S.11, Lemma S.12 and Lemma S.13.

|βEpzq| ă 8,
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E|
1

n
zTi AijpzqAijpzqzi|

2 “ Op1q,

E|
1

n
zTi AijpzqAijpzqzi ´

1

n
trtAjpz1qAjpz1qu|2 “ op1q,

E|βijpzq ´ βEpzq|2 ď E
ˇ

ˇ

ˇ
βijpzqβEpzqp

1

n
zTi Aijzi ´

1

n
EtrAijq

ˇ

ˇ

ˇ

2

` E
ˇ

ˇ

ˇ
βijpzqβEpzqp

1

n
EtrAij ´

1

n
EtrAjq

ˇ

ˇ

ˇ

2

“ op1q.

As for J p2q
j , due to

E
ˇ

ˇ

ˇ
pβijpz1q ´ βEpz1qqzTi Aijpz1qAijpz2qZijub

ˇ

ˇ

ˇ
“ op1q,

E
ˇ

ˇ

ˇ

1

n
pβijpz1q ´ βEpz1qqtrtAijpz1qAijpz2quzTi Aijpz2qZijub

ˇ

ˇ

ˇ
“ op1q,

E
ˇ

ˇ

ˇ

1

n
βijpz1qβijpz2qrzTi Aijpz1qAijpz2qzi ´ trtAijpz1qAijpz2qus¨

zTi Aijpz2qZijub

ˇ

ˇ

ˇ
“ op1q,

which are consequences of Lemma S.10, Lemma S.12, Lemma S.13 and Lemma S.16,

J p2q
j “ Ej´1

j´1
ÿ

i“1

ubiβijpz1qzTi Aijpz1qAjpz2qZijub

“ Ej´1

j´1
ÿ

i“1

ubiβijpz1qzTi Aijpz1qAijpz2qZijub

´ Ej´1

j´1
ÿ

i“1

1

n
ubiβijpz1qβ

ij
pz2qzTi Aijpz1qAijpz2qziz

T
i Aijpz2qZijub

“

j´1
ÿ

i“1

ubiβ
Epz1qEj´1z

T
i Aijpz1qAijpz2qZijub

´

j´1
ÿ

i“1

1

n
ubiβ

Epz1qβEpz2qEj´1trtAijpz1qAijpz2quzTi Aijpz2qZijub ` oL1p1q

The residual term above is uniform over j.
We claim that the first two terms are also negligible. To see this, we first show

sup
j

E
ˇ

ˇ

ˇ

j´1
ÿ

i“1

ubiz
T
i Aijpz1qAijpz2qZijub

ˇ

ˇ

ˇ

2

“ op1q, (S.3.7)

sup
j

E
ˇ

ˇ

ˇ

j´1
ÿ

i“1

ubiz
T
i Aijpz2qZijub

ˇ

ˇ

ˇ

2

“ op1q. (S.3.8)
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The proofs of the two are very similar. Therefore, we shall only present proof of (S.3.7).
Like Zij , we define Zii1j to be Z with zi, zi1 , zj replaced by 0. Similarly, define Zii1j ,

i ă j, i1 ă j by replacing the i-th and i1-th column of Zj by the 0 vectors. Further, define
Aii1j and Aii1j to be the counterparts of Aij and Aij with Zij replaced by Zii1j , or with
Zij replaced by Zii1j . Accordingly, define

βtr
ijpzq “

1

1 ` n´1trAijpzq
,

θijpzq “
1

n
zTi Aijpzqzi ´

1

n
trAijpzq,

βii1jpzq “
1

1 ` n´1zTi1Aii1jpzqzi1
,

β
ii1j

pzq “
1

1 ` n´1zTi1Aii1jpzqzi1
.

By Lemma S.16, for squared-terms in the expansion of (S.3.7),

j´1
ÿ

i“1

u2
biE

ˇ

ˇ

ˇ
zTi Aijpz1qAijpz2qZijub

ˇ

ˇ

ˇ

2

ď

N
ÿ

i“1

u2
biE

ˇ

ˇ

ˇ
zTi Aijpz1qAijpz2qZijub

ˇ

ˇ

ˇ

2

“ Opn´1q.

For crossed-terms with i ‰ i1, due to Lemma S.10, Lemma S.16, and Lemma S.17,

E|zTi Aijpz1qAijpz2qZijubz
T
i1Ai1jpz1qAi1jpz2qZi1jub|

ď E|zTi Aii1jpz1qAii1jpz2qZii1jubz
T
i1Ai1jpz1qAi1jpz2qZi1jub|

` |ubi1 |E|zTi Aii1jpz1qAii1jpz2qzi1zTi1Ai1jpz1qAi1jpz2qZi1jub|

`
1

n
E|zTi Aii1jpz1qAii1jpz2qzi1zTi1Aii1jpz2qβ

ii1j
pz2qZii1jub¨

zTi1Ai1jpz1qAi1jpz2qZi1jub|

`
1

n
|ubi1 |E|zTi Aii1jpz1qAii1jpz2qzi1zTi1Aii1jpz2qβ

ii1j
pz2qzi1 ¨

zTi1Ai1jpz1qAi1jpz2qZi1jub|

`
1

n
E|zTi Aii1jpz1qzi1zTi1Aii1jpz1qβii1jpz1qAii1jpz2qZii1jub¨

zTi1Ai1jpz1qAi1jpz2qZi1jub|

`
1

n
|ubi1 |E|zTi Aii1jpz1qzi1zTi1Aii1jpz1qβii1jpz1qAii1jpz2qzi1 ¨

zTi1Ai1jpz1qAi1jpz2qZi1jub|

`
1

n2
E|zTi Aii1jpz1qzi1zTi1Aii1jpz1qβii1jpz1q¨
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Aii1jpz2qzi1zTi1Aii1jpz2qβ
ii1j

pz2qZii1jubz
T
i1Ai1jpz1qAi1jpz2qZi1jub|

`
1

n2
|ubi1 |E|zTi Aii1jpz1qzi1zTi1Aii1jpz1qβii1jpz1q¨

Aii1jpz2qzi1zTi1Aii1jpz2qβ
ii1j

pz2qzi1zTi1Ai1jpz1qAi1jpz2qZi1jub|

“ op1q.

Therefore, (S.3.7) follows. We conclude that the first term in the expansion of Jj is oL1p1q

uniformly for all j.
The second term in the expansion of Jj is such that,

E
ˇ

ˇ

ˇ

”

trtAijpz1qAijpz2qu ´ trtAjpz1qAjpz2qu

ı

zTi Aijpz2qZijub

ˇ

ˇ

ˇ

2

ď KE
ˇ

ˇ

ˇ
zTi Aijpz2qZijub

ˇ

ˇ

ˇ

2

“ Op1q,

due to an inequality similar to Lemma S.11.
Therefore,

j´1
ÿ

i“1

1

n
ubiβ

Epz1qβEpz2qEj´1trtAijpz1qAijpz2quzTi Aijpz2qZijub

“ βEpz1qβEpz2qEj´1

” 1

n
trtAjpz1qAjpz2qu

j´1
ÿ

i“1

ubiz
T
i Aijpz2qZijub

ı

` oL1p1q

By (S.3.7), (S.3.8) and Lemma S.11,

E
” 1

n
trtAjpz1qAjpz2qu

j´1
ÿ

i“1

ubiz
T
i Aijpz2qZijub

ı2

ď KE
”

j´1
ÿ

i“1

ubiz
T
i Aijpz2qZijub

ı2

“ op1q.

It implies that the second term in the expansion of Jj is also oL1
p1q uniformly for all j.

As for J p3q
j , due to

E|θijpz1q|2 “ Opn´1q,

E|zTi Aijpz1qAjpz2qZjub|2 “ Op1q,

we get

J p3q
j “ Ej´1

N
ÿ

i“j`1

ubiz
T
i Ajpz1qAjpz2qZjub

“ Ej´1

N
ÿ

i“j`1

ubiβijpz1qzTi Aijpz1qAjpz2qZjub
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“ Ej´1

N
ÿ

i“j`1

ubiβ
tr
ijz

T
i Aijpz1qAjpz2qZjub

´ Ej´1

N
ÿ

i“j`1

ubiβijpz1qβtr
ijpz1qθijpz1qzTi Aijpz1qAjpz2qZjub

“ ´Ej´1

N
ÿ

i“j`1

ubiβijpz1qβtr
ijpz1qθijpz1qzTi Aijpz1qAjpz2qZjub

“ oL1
p1q.

(S.3.6) has been proved.

S.3.1.4. The limit of (S.3.3)

This subsection shows, as n Ñ 8,

N
ÿ

j“1

Ej´1Hr1spz1, jqHr2spz2, jq

“ nβEpz1qβEpz2q

N´1
ÿ

i“1

uaiubi

N
ÿ

j“i`1

uajubjtr rEjAjpz1qEjAjpz2qs (S.3.9)

` opp1q.

Following notation defined in Section S.3.1.3,

Ej´1

“

EjrzTj Ajpz1qZjuasEjrzTj Ajpz2qZjubs
‰

“Ej´1ruT
aZ

T
j Ajpz1qAjpz2qZjubs

“

j´1
ÿ

i“1

uaiubiEj´1z
T
i Ajpz1qAjpz2qzi `

j´1
ÿ

i“1

uaiEj´1z
T
i Ajpz1qAjpz2qZijub

`

N
ÿ

i“j`1

uaiEj´1z
T
i Ajpz1qAjpz2qZjub “ J p4q

j ` J p5q
j ` J p6q

j , say.

For future use, we instead show the following results in L2-norm.

sup
j

E
ˇ

ˇ

ˇ
J p4q
j ´ βEpz1qβEpz2q

j´1
ÿ

i“1

uaiubitrEjrAjpz1qAjpz2qs

ˇ

ˇ

ˇ

2

“ op1q,

sup
j

|J p5q
j |2 “ op1q,

sup
j

|J p6q
j |2 “ op1q.
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As for J p4q
j , due to similar arguments to those for J p1q

j , we need to show

E
ˇ

ˇ

ˇ

j´1
ÿ

i“1

uaiubi

”

βijpz1qβ
ij

pz2qzTi Aijpz1qAijpz2qzi

´ βEpz1qβEpz2qtrrtAjpz1qAjpz2qus

ıˇ

ˇ

ˇ

2

“ op1q.

It suffices to show

E
1

n2

ˇ

ˇ

ˇ
βijpz1qβ

ij
pz2qzTi Aijpz1qAijpz2qzi´

βEpz1qβEpz2qtrrtAjpz1qAjpz2qus

ˇ

ˇ

ˇ

2

“ op1q.

It can be done using Cauchy-Schwarz inequality and the following results.

E|βijpz1q ´ βEpz1q|ℓ “ op1q, ℓ ě 2,

E|β
ij

pz2q ´ βEpz2q|ℓ “ op1q, ℓ ě 2,

E|
1

n
zTi Aijpz1qAijpz2qzi ´

1

n
trrtAjpz1qAjpz2qus|ℓ “ op1q, ℓ ě 2.

Now consider J p5q
j ,

J p5q
j “ Ej´1

j´1
ÿ

i“1

uaiβijpz1qzTi Aijpz1qAjpz2qZijub

“ Ej´1

j´1
ÿ

i“1

uaiβijpz1qzTi Aijpz1qAijpz2qZijub

´ Ej´1

j´1
ÿ

i“1

1

n
uaiβijpz1qβ

ij
pz2qzTi Aijpz1qAijpz2qziz

T
i Aijpz2qZijub

“

j´1
ÿ

i“1

uaiβ
Epz1qEj´1z

T
i Aijpz1qAijpz2qZijub

´

j´1
ÿ

i“1

1

n
uaiβ

Epz1qβEpz2qEj´1trtAijpz1qAijpz2quzTi Aijpz2qZijub ` oL2p1q.

The last step is due to

E|
1

n
zTi Aijpz1qAijpz2qzi ´

1

n
trtAijpz1qAijpz2qu|4 “ op1q,

E|zTi Aijpz2qZijub|4 “ Op1q.

Together with (S.3.7) and (S.3.8),

sup
j

E|J p5q
j |2 “ op1q.
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The proof of J p6q
j “ oL2

p1q is very similar to that of J p3q
j . We omit details.

S.3.1.5. The limit of (S.3.4)

In this section, we will show

N
ÿ

j“1

Ej´1Hr1spz1, jqHr3spz2, jq ÝÑ 0, in probability. (S.3.10)

Lemma S.19 indicates

Ej´1

“

EjrzTj Ajpz1qZjαbsEjpϱjpz2qq
‰

“
Ez311
n

p
ÿ

i“1

rEjhipz2, a, jqhipz2, b, jqsrEjhipz1, b, jqs

where hipz, a, jq and hipz, b, jq are respectively the ith element ofAjpzqZjua andAjpzqZjub.
Therefore,

pS.3.4q “ ´Ez311
N
ÿ

j“1

uaj

p
ÿ

i“1

rEjhipz2, a, jqhipz2, b, jqsrEjhipz1, b, jqs.

It is sufficient to show

sup
1ďjďN

E
p

ÿ

i“1

ˇ

ˇ

ˇ
rEjhipz2, a, jqhipz2, b, jqsrEjhipz1, b, jqs

ˇ

ˇ

ˇ
Ñ 0.

We first show hipz, a, jq concentrates around its mean. Specifically, we have

sup
iďp;jďN

E|hipz, a, jq ´ Ehipz, a, jq|2 “ Opn´1q, (S.3.11)

sup
iďp;jďN

E|hipz, a, jq ´ Ehipz, a, jq|4 “ opn´1q. (S.3.12)

To show (S.3.11),

hipz, a, jq ´ Ehipz, a, jq

“

N
ÿ

ℓ“1,ℓ‰j

rEℓ ´ Eℓ´1shipz, a, jq

“

N
ÿ

ℓ“1,ℓ‰j

rEℓ ´ Eℓ´1seTi rAjpzqZjua ´ AℓjpzqZℓjuas

“

N
ÿ

ℓ“1,ℓ‰j

rEℓ ´ Eℓ´1stuaℓe
T
i Aℓjpzqzℓ ´

1

n
eTi Aℓjpzqzℓz

T
ℓ AℓjpzqZℓjuaβℓjpzq
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´
uaℓ

n
eTi Aℓjpzqzℓz

T
ℓ Aℓjpzqzℓβℓjpzqu

By Lemma S.14 and Lemma S.10, for all i, j, ℓ,

E|eTi Aℓjpzqzℓ|
4 “ E|zTℓ Aℓjpzqeie

T
i Aℓjpzqzℓ|

2 ď KE}Aℓjpzq}4 “ Op1q.

E|
1

n
eTi Aℓjpzqzℓ|

8 “ n´8E|zTℓ Aℓjpzqeie
T
i Aℓjpzqzℓ|

4

ď KE}Aℓjpzq}8rε4nn
´6 ` n´8s “ opn´6q.

Together with Lemma S.13 and Lemma S.16,

E|
1

n
eTi Aℓjpzqzℓz

T
ℓ AℓjpzqZℓjua|2 “ Opn´2q,

E|
1

n
eTi Aℓjpzqzℓz

T
ℓ AℓjpzqZℓjua|4 “ opn´2q,

E|
uaℓ

n
eTi Aℓjpzqzℓz

T
ℓ Aℓjpzqzℓ|

2 ď K}ua}2max “ Opn´2q.

E|
uaℓ

n
eTi Aℓjpzqzℓz

T
ℓ Aℓjpzqzℓ|

4 “ opn´3q.

Using Lemma S.8, (S.3.11) and (S.3.12) holds.
Back to our goal, (S.3.11) and (S.3.12) lead to

E
p

ÿ

i“1

ˇ

ˇ

ˇ
rEjhipz2, a, jqhipz2, b, jqsrEjhipz1, b, jq ´ Ehipz1, b, jqs

ˇ

ˇ

ˇ

ď E
p

ÿ

i“1

ˇ

ˇ

ˇ
rEjhipz2, a, jqEhipz2, b, jqsrEjhipz1, b, jq ´ Ehipz1, b, jqs

ˇ

ˇ

ˇ

` E
p

ÿ

i“1

ˇ

ˇ

ˇ
rEjhipz2, a, jqthipz2, b, jq ´ Ehipz2, b, jqus¨

rEjhipz1, b, jq ´ Ehipz1, b, jqs

ˇ

ˇ

ˇ

The second term above is such that
´

E
p

ÿ

i“1

ˇ

ˇ

ˇ
rEjhipz2, a, jqthipz2, b, jq ´ Ehipz2, b, jqus¨

rEjhipz1, b, jq ´ Ehipz1, b, jqs

ˇ

ˇ

ˇ

¯2

ď

p
ÿ

i“1

E|hipz2, a, jq|2
p

ÿ

i“1

E
ˇ

ˇ

ˇ
rhipz2, b, jq ´ Ehipz2, b, jqs¨

rEjhipz1, b, jq ´ Ehipz1, b, jqs

ˇ

ˇ

ˇ

2

ď

p
ÿ

i“1

E|hipz2, a, jq|2
p

ÿ

i“1

´

E|rhipz2, b, jq ´ Ehipz2, b, jqs|4
¯1{2

¨



26 H. Li, A. Aue and D. Paul

´

E|rhipz1, b, jq ´ Ehipz1, b, jqs|4
¯1{2

“ op1q.

where the last step is due to (S.3.12) and
p

ÿ

i“1

E|hipz2, a, jq|2 “ EuT
aZ

T
j Ajpz2qAjpz2qZjua “ Op1q. (S.3.13)

The first term is such that
´

E
p

ÿ

i“1

ˇ

ˇ

ˇ
rEjhipz2, a, jqEhipz2, b, jqsrEjhipz1, b, jq ´ Ehipz1, b, jqs

ˇ

ˇ

ˇ

¯2

ď

p
ÿ

i“1

E|hipz2, a, jq|2
p

ÿ

i“1

|Ehipz2, b, jq|2E|hipz1, b, jq ´ Ehipz1, b, jq|2

“ op1q,

The last line is due to
p

ÿ

i“1

|Ehipz2, b, jq|2E|hipz1, b, jq ´ Ehipz1, b, jq|2 ď K 1

n

p
ÿ

i“1

E|hipz2, b, jq|2 “ op1q,

which is a consequence of (S.3.11).
Therefore,

sup
1ďjďN

E
p

ÿ

i“1

ˇ

ˇ

ˇ
rEjhipz2, a, jqhipz2, b, jqsrEjhipz1, b, jqs

ˇ

ˇ

ˇ

“ sup
1ďjďN

E
p

ÿ

i“1

ˇ

ˇ

ˇ
rEjhipz2, a, jqhipz2, b, jqsEhipz1, b, jq

ˇ

ˇ

ˇ
` op1q

sup
1ďjďN

p
ÿ

i“1

|Ehipz1, b, jq|E
ˇ

ˇ

ˇ
hipz2, a, jqhipz2, b, jq

ˇ

ˇ

ˇ

ď sup
jďN ;iďp

|Ehipz1, b, jq| sup
1ďjďN

p
ÿ

i“1

E
ˇ

ˇ

ˇ
hipz2, a, jqhipz2, b, jq

ˇ

ˇ

ˇ

ď sup
jďN ;iďp

|Ehipz1, b, jq| sup
1ďjďN

´

EuT
aZ

T
j Ajpz2qAjpz2qZjua

¯1{2

¨

´

EuT
b Z

T
j Ajpz2qAjpz2qZjub

¯1{2

.

It implies that we only need to show

sup
jďN ;iďp

|Ehipz1, b, jq| Ñ 0. (S.3.14)
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For all j,

Ehipz, b, jq “

N
ÿ

ℓ‰j

ubℓEeTi A12pzqz1β12pzq

“

N
ÿ

ℓ‰j

ubℓEeTi A12pzqz1β12pzqt1 `
1

n
EtrA12pzqu´1p

1

n
zT1 A12z1 ´

1

n
EtrA12pzqq

By Lemma S.13 and Lemma S.14,

E|eTi A12pzqz1β12pzqt1 `
1

n
EtrA12pzqu´1p

1

n
zT1 A12z1 ´

1

n
EtrA12pzqq|

ď KE|eTi A12pzqz1p
1

n
zT1 A12z1 ´

1

n
EtrA12pzqq| “ op1q.

Consequently supj |Ehipz, b, jq| Ñ 0. We later prove a stronger result in (S.3.31).
We have shown

sup
1ďjďN

E
p

ÿ

i“1

ˇ

ˇ

ˇ
rEjhipz2, a, jqhipz2, b, jqsrEjhipz1, b, jqs

ˇ

ˇ

ˇ
Ñ 0.

Thus,
N
ÿ

j“1

Ej´1Hr1spz1, jqHr3spz2, jq ÝÑ 0, in probability.

S.3.1.6. The limit of (S.3.5)

In this subsection, we show, as n Ñ 8,

N
ÿ

j“1

Ej´1Hr3spz1, jqHr3spz2, jq

“ pβEpz1qβEpz2qq2
1

n

N
ÿ

j“1

rtrEjAjpz1qEjAjpz2qs2¨ (S.3.15)

rp

j´1
ÿ

i“1

uaiubiq
2 `

j´1
ÿ

i“1

u2
ai

j´1
ÿ

i“1

u2
bis ` opp1q.

By Lemma S.20,

N
ÿ

j“1

Ej´1Hr3spz1, jqHr3spz2, jq

“ pEz411 ´ 3q
1

n

N
ÿ

j“1

p
ÿ

i“1

rEjhipz1, a, jqhipz1, b, jqsrEjhipz2, a, jqhipz2, b, jqs
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`
1

n

N
ÿ

j“1

Ejr

p
ÿ

i“1

hipz1, a, jqhipz2, b, jq

p
ÿ

i“1

hipz1, a, jqhipz2, b, jqs

`
1

n

N
ÿ

j“1

Ejr

p
ÿ

i“1

hipz1, b, jqhipz2, b, jq

p
ÿ

i“1

hipz1, a, jqhipz2, a, jqs

“ J p7q
j ` J p8q

j ` J p9q
j .

where similar to hipz, a, jq and hipz, b, jq, hipz, a, jq and hipz, b, jq are respectively the ith
elements of AjpzqZjua and AjpzqZjub.

Consider J p7q
j first. The target is to show

1

n

N
ÿ

j“1

p
ÿ

i“1

rEjhipz1, a, jqhipz1, b, jqsrEjhipz2, a, jqhipz2, b, jqs “ opp1q. (S.3.16)

Split it into four terms,
p

ÿ

i“1

rEjhipz1, a, jqhipz1, b, jqsrEjhipz2, a, jqhipz2, b, jqs

“

p
ÿ

i“1

rEjhipz1, a, jqhipz1, b, jqsrEhipz2, a, jqsrEhipz2, b, jqs

`

p
ÿ

i“1

rEjhipz1, a, jqhipz1, b, jqsrEhipz2, a, jqsrEjhipz2, b, jq ´ Ehipz2, b, jqs

`

p
ÿ

i“1

rEjhipz1, a, jqhipz1, b, jqsrEjhipz2, a, jq ´ Ehipz2, a, jqsrEhipz2, b, jqs

`

p
ÿ

i“1

rEjhipz1, a, jqhipz1, b, jqs¨

Ejtrhipz2, a, jq ´ Ehipz2, a, jqsrhipz2, b, jq ´ Ehipz2, b, jqsu

“ d
p1q
4 ` d

p2q
4 ` d

p3q
4 ` d

p4q
4 , say.

Combining (S.3.13) and (S.3.14),

E|d
p1q
4 | ď sup

i
p|Ehipz2, a, jq|q sup

i
p|Ehipz2, b, jq|q

p
ÿ

i“1

E|hipz1, a, jqhipz1, b, jq|

ď sup
i

p|Ehipz2, a, jq|q sup
i

p|Ehipz2, b, jq|q¨

´

p
ÿ

i“1

E|hipz1, a, jq|2
p

ÿ

i“1

E|hipz1, b, jq|2
¯1{2

ÝÑ 0.
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Next, using (S.3.11) and (S.3.12),

E|d
p2q
4 | ď sup

i
p|Ehipz2, a, jq|q

”

p
ÿ

i“1

E|hipz1, a, jqhipz1, b, jq|2
ı1{2

¨

”

p
ÿ

i“1

E|hipz2, b, jq ´ Ehipz2, b, jq|2
ı1{2

ÝÑ 0.

Similarly,

E|d
p3q
4 | ď sup

i
p|Ehipz2, b, jq|q

”

p
ÿ

i“1

E|hipz1, a, jqhipz1, b, jq|2
ı1{2

”

p
ÿ

i“1

E|hipz2, a, jq ´ Ehipz2, a, jq|2
ı1{2

ÝÑ 0.

E|d
p4q
4 | ďp

p
ÿ

i“1

E|hipz1, a, jqhipz1, b, jq|2q1{2
”

p
ÿ

i“1

E|hipz2, a, jq ´ Ehipz2, a, jq|4¨

p
ÿ

i“1

E|hipz2, b, jq ´ Ehipz2, b, jq|4
ı1{4

ÝÑ 0.

Consider J p8q
j . The target is to show

Ej

p
ÿ

i“1

hipz1, b, jqhipz2, a, jq

p
ÿ

i“1

hipz2, b, jqhipz1, a, jq

“ Ej

p
ÿ

i“1

hipz1, b, jqhipz2, a, jqEj

p
ÿ

i“1

hipz2, b, jqhipz1, a, jq ` oL1
p1q.

(S.3.17)

First we substitute hipz1, a, jq with Ejhipz1, a, jq in J p8q
j and show the resulting difference

is small. That is to show

Ej

p
ÿ

i“1

hipz1, b, jqhipz2, a, jq

p
ÿ

i“1

hipz2, b, jqhipz1, a, jq (S.3.18)

“ Ej

p
ÿ

i“1

hipz1, b, jqhipz2, a, jq

p
ÿ

i“1

hipz2, b, jqEjhipz1, a, jq ` oL1p1q.

It suffices to prove

E
ˇ

ˇ

ˇ

p
ÿ

i“1

hipz1, b, jqhipz2, a, jq

p
ÿ

i“1

hipz2, b, jqrhipz1, a, jq ´ Ejhipz1, a, jqs

ˇ

ˇ

ˇ
“ op1q.
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Due to very similar arguments to (S.3.13),

E
ˇ

ˇ

ˇ

p
ÿ

i“1

hipz1, b, jqhipz2, a, jq

ˇ

ˇ

ˇ

2

ď

´

E
´

p
ÿ

i“1

|hipz1, b, jq|2
¯2

E
´

p
ÿ

i“1

|hipz2, a, jq|2
¯2¯1{2

“

´

E|uT
b Z

T
j Ajpz1qAjpz1qZjub|2E|uT

aZ
T
j Ajpz2qAjpz2qZjua|2

¯1{2

“ Op1q.

It suffices to show

E
ˇ

ˇ

ˇ

p
ÿ

i“1

hipz2, b, jqrhipz1, a, jq ´ Ejhipz1, a, jqs

ˇ

ˇ

ˇ

2

“ op1q.

Fixing j, we consider the σ-algebra generated by

tz1, . . . , zj´1, zj`1, . . . , znu Y tzj`1, . . . zNu

Define a filtration (in l) as

σpz1, . . . , zj´1, zj`1, . . . zN , zl, . . . , zN q, l “ j ` 1, . . . , N.

Rewrite
p
ř

i“1

hipz2, b, jqrhipz1, a, jq ´ Ejhipz1, a, jqs as a sum of martingale difference se-

quence with respect to the filtration.
Denote Ej,l to be the conditional expectation with respect to

σpz1, . . . , zj´1, zj`1, . . . zN , zl, . . . , zN q

for l “ j ` 1, . . . , N .
p

ÿ

i“1

hipz2, b, jqrhipz1, a, jq ´ Ejhipz1, a, jqs

“

N
ÿ

l“j`1

pEj,l ´ Ej,l´1quT
b Z

T
j Ajpz2qrAjpz1qZjua ´ Aijpz1qZijuas

“

N
ÿ

l“j`1

pEj,l ´ Ej,l´1qualu
T
b Z

T
j Ajpz2qAljpz1qzlβljpz1q

´
1

n

N
ÿ

l“j`1

pEj,l ´ Ej,l´1quT
b Z

T
j Ajpz2qAljpz1qzlz

T
l Aljpz1qZljuaβljpz1q

“d
p1q
5 ` d

p2q
5 , say.
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By Lemma S.8, Lemma S.10 and Lemma S.16,

E|d
p1q
5 |2 ď K

N
ÿ

l“j`1

|ual|
2E|uT

b Z
T
j Ajpz2qAljpz1qzlβljpz1q|2 “ Opn´1q.

E|d
p2q
5 |2 ď K 1

n2

N
ÿ

l“j`1

E|uT
b Z

T
j Ajpz2qAljpz1qzlz

T
l Aijpz1qZljuaβljpz1q|2

ď K 1

n2

N
ÿ

l“j`1

tE|uT
b Z

T
j Ajpz2qAljpz1qzl|

2E|zTl Aljpz1qZljua|2u1{2 “ Opn´1q.

The proof of (S.3.18) is done.
We next continue to substitute hipz1, b, jq with Ejhipz1, b, jq in

Ej

p
ÿ

i“1

hipz1, b, jqhipz2, a, jq

p
ÿ

i“1

hipz2, b, jqEjhipz1, a, jq

and show the following line is op1q.

E
ˇ

ˇ

ˇ
Ej

p
ÿ

i“1

hipz1, b, jqhipz2, a, jq

p
ÿ

i“1

rhipz2, b, jq ´ Ejhipz2, b, jqsEjhipz1, a, jq

ˇ

ˇ

ˇ
.

It can be done along very similar lines to the proof of (S.3.18). Therefore, we omit details.
Finally, we proved

Ej

p
ÿ

i“1

hipz1, b, jqhipz2, a, jqEj

p
ÿ

i“1

hipz2, b, jqhipz1, a, jq

“

”

Ej´1u
T
b Z

T
j Ajpz1qAjpz2qZjua

ı”

Ej´1u
T
b Z

T
j Ajpz2qAjpz1qZjua

ı

` oL1
p1q.

In Section S.3.1.4, we proved L2-convergence of Ej´1u
T
b Z

T
j Ajpz1qAjpz2qZjua. Therefore,

it is straightforward that

Ej

p
ÿ

i“1

hipz1, b, jqhipz2, a, jqEj

p
ÿ

i“1

hipz2, b, jqhipz1, a, jq

“

´

βEpz1qβEpz2qtrEjrAjpz1qAjpz2qs

¯2´

j´1
ÿ

i“1

uaiubi

¯2

` oL1p1q.

Consider J p9q
j . Repeat the arguments for J p8q

j with limited modifications,

Ej

p
ÿ

i“1

hipz1, b, jqhipz2, b, jqEj

p
ÿ

i“1

hipz2, a, jqhipz1, a, jq

“

´

βEpz1qβEpz2qtrEjrAjpz1qAjpz2qs

¯2

p

j´1
ÿ

i“1

uaiuaiqp

j´1
ÿ

i“1

ubiubiq ` oL1
p1q.

The proof of (S.3.15) is complete.
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S.3.1.7. Calculation of asymptotic variance

Summarizing Section S.3.1.3 – Section S.3.1.6,
3

ÿ

k“1

3
ÿ

k1“1

N
ÿ

j“2

Ej´1Hrkspz1, jqHrk1spz2, jq “

nβEpz1qβEpz2q

N
ÿ

j“2

trrEjAjpz1qEjAjpz2qs

j´1
ÿ

i“1

pu2
aiu

2
bj ` u2

aju
2
bi ` 2uaiubjuajubiq

`
1

n
βEpz1q2βEpz2q2

N
ÿ

j“2

ttrrEjAjpz1qEjAjpz2qsu2¨

”

p

j´1
ÿ

i“1

uaiubiq
2 `

j´1
ÿ

i“1

u2
ai

j´1
ÿ

i“1

u2
bi

ı

` opp1q.

We next try to find the limit of the right-hand side.
Recall the definition of m0

ppzq in Section S.2. It is proved in Bai and Silverstein (2004,
(2.18)) that

trrtEjAjpz1quAjpz2qs

!

1 ´
j ´ 1

N2
m0

ppz1qm0
ppzqtr

”

pI ` m0
ppz2qΣpq´1Σp ¨

pI ` m0
ppz1qΣpq´1Σp

ı)

“
1

z1z2
trrpI ` m0

ppz2qΣpq´1ΣppI ` m0
ppz1qΣpq´1Σps

` oL1
p1q.

It is worth mentioning that in Bai and Silverstein (2004), the definition of the sample
covariance matrix is 1

NΣ
1{2
p ZZTΣ

T {2
p , while in this paper rΣp “ 1

nΣ
1{2
p ZZTΣ

T {2
p . We shall

not distinguish the difference because
´ 1

N
Σ1{2

p ZZTΣT {2
p ´ zI

¯´1

“
N

n

´

rΣp ´
n

N
zI

¯´1

,

and m0
ppzq is continuous in z.

It is also proved in Bai and Silverstein (2004, (2.17)) that

1

1 ` N´1EtrrA1pzqs
` zm0

ppzq “ Opn´1{2q. (S.3.19)

Note
1

n
m0

ppz1qm0
ppz2qtr

”

pI ` m0
ppz2qΣpq´1ΣppI ` m0

ppz1qΣpq´1Σp

ı

“ γnm
0
ppz1qm0

ppz2q

ˆ
τ2dFΣppτq

r1 ` τm0
ppz1qsr1 ` τm0

ppz2qs

“ 1 `
m0

ppz1qm0
ppz2qpz1 ´ z2q

m0
ppz2q ´ m0

ppz1q
.
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We get
E

ˇ

ˇ

ˇ
βEpz1qβEpz2q

1

n
trrEjAjpz1qEjAjpz2qs ´

D
1 ´

j´1
N D

ˇ

ˇ

ˇ
“ op1q,

where
D “ 1 `

m0
ppz1qm0

ppz2qpz1 ´ z2q

m0
ppz2q ´ m0

ppz1q
.

Define
Pj “

D
1 ´ jD{N

.

Therefore,

3
ÿ

i“1

3
ÿ

i1“1

N
ÿ

j“2

Ej´1Hrispz1, jqHri1spz2, jq

“n2
N
ÿ

j“2

Pj´1

j´1
ÿ

i“1

pu2
aiu

2
bj ` u2

aju
2
bi ` 2uaiubjuajubiq

` n
N
ÿ

j“2

P2
j´1

”

p

j´1
ÿ

i“1

uaiubiq
2 `

j´1
ÿ

i“1

u2
ai

j´1
ÿ

i“1

u2
bi

ı

` opp1q.

“N2
N
ÿ

j“1

Pj

j
ÿ

i“1

pu2
aiu

2
bj ` u2

aju
2
bi ` 2uaiubjuajubiq

` N
N
ÿ

j“1

P2
j

”

p

j
ÿ

i“1

uaiubiq
2 `

j
ÿ

i“1

u2
ai

j
ÿ

i“1

u2
bi

ı

` opp1q.

The convergence of tβEpz1qβEpz2q 1
n trrEjAjpz1qEjAjpz2qsu2 follows from the fact that

βEpz1qβEpz2q
1

n
trrEjAjpz1qEjAjpz2qs

is bounded for any fixed z1 and z2 with non-zero imaginary part.
Define

Oℓ “

ℓ
ÿ

i“1

pu2
aiu

2
bℓ ` u2

aℓu
2
bi ` 2uaiubℓuaℓubiq.

The following result indicates p
j

ř

i“1

uaiubiq
2 `

j
ř

i“1

u2
ai

j
ř

i“1

u2
bi is approximately the sum of

Oℓ, ℓ “ 1, . . . , j.

j
ÿ

ℓ“1

Oℓ “

j
ÿ

ℓ“1

ℓ
ÿ

i“1

pu2
aiu

2
bℓ ` u2

aℓu
2
bi ` 2uaiubℓuaℓubiq
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“

j
ÿ

iďℓ

pu2
aiu

2
bℓ ` u2

aℓu
2
bi ` 2uaiubℓuaℓubiq

“

j
ÿ

iěℓ

pu2
aiu

2
bℓ ` u2

aℓu
2
bi ` 2uaiubℓuaℓubiq

“ 1{2
j

ÿ

i“1

j
ÿ

ℓ“1

pu2
aiu

2
bℓ ` u2

aℓu
2
bi ` 2uaiubℓuaℓubiq ` 2

j
ÿ

i“1

u2
aiu

2
bi

“

j
ÿ

i“1

j
ÿ

ℓ“1

pu2
aiu

2
bℓ ` uaiubℓuaℓubiq ` Opn´3q

“ p

j
ÿ

i“1

uaiubiq
2 `

j
ÿ

i“1

u2
ai

j
ÿ

i“1

u2
bi ` Opn´3q.

Next, it can be verified that

Pj “ P0 `
1

N

j
ÿ

i“1

P2
j ` Opn´1q.

To see this,

1

N

j
ÿ

i“1

P2
i ď

1

N

j
ÿ

i“1

PiPi`1 “

j
ÿ

i“1

pPi`1 ´ Piq “ ´P0 ` Pj ` Opn´1q,

1

N

j
ÿ

i“1

P2
i ě

1

N

j
ÿ

i“1

Pi´1Pi “

j
ÿ

i“1

pPi ´ Pi´1q “ ´P0 ` Pj .

It follows that
3

ÿ

i“1

3
ÿ

i1“1

N
ÿ

j“2

Ej´1Hrispz1qHri1spz2q

“N2
N
ÿ

j“1

Pj´1Oj ` N
N
ÿ

j“1

P2
j

j
ÿ

ℓ“1

Oℓ ` opp1q

“N
N
ÿ

j“1

Ojp

j
ÿ

ℓ“1

P2
ℓ ` NP0q ` N

N
ÿ

j“1

P2
j

j
ÿ

ℓ“1

Oℓ ` opp1q

“N2P0

N
ÿ

j“1

Oj ` N
N
ÿ

ℓďj

OjP2
ℓ ` N

N
ÿ

ℓěj

OjP2
ℓ ` opp1q

“N2P0

N
ÿ

j“1

Oj ` N
N
ÿ

ℓ“1

N
ÿ

j“1

OjP2
ℓ ` opp1q
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“N2
N
ÿ

j“1

Ojr
1

N

N
ÿ

j“1

P2
ℓ ` P0s ` opp1q

“N2PN

N
ÿ

j“1

Oj ` opp1q

“N2 D
1 ´ D

”

p

N
ÿ

i“1

uaiubiq
2 `

N
ÿ

i“1

u2
ai

N
ÿ

i“1

u2
bi

ı

` opp1q

“
D

1 ´ D
r}a}2}b}2 ` paT bq2s ` opp1q.

Next, we express D{p1 ´ Dq in terms of δpz1, z2, γq and Θpz, γq. Using the results in
Section S.2, we have

zm0
ppzq “ ´Θpz, γq ` op1q.

It follows
D

1 ´ D
“ δpz1, z2, γqΘ´1pz1, γqΘ´1pz2, γq ` op1q.

Thus,

3
ÿ

k“1

3
ÿ

k1“1

N
ÿ

j“2

βEpz1qβEpz2qEj´1Hrkspz1, jqHrk1spz2, jq
P

ÝÑ

Θ´2pz1, γqΘ´2pz2, γqδpz1, z2, γqr}a}2}b}2 ` paT bq2s.

The proof of finite dimensional convergence of Gp1q
n pzq is complete.

S.3.2. Tightness of Gp1q
n pz, a, bq

In view of our smoothing strategy, to show the tightness, we first consider the case
z “ u ` iv P C`, that is |v| ě ρn.

Recall the definition

Gnpz, a, bq “

$

’

&

’

%

uT
aZ

TApzqZub, |v| ě ρn
ρn´v
2ρn

uT
aZ

TApu ` iρnqZub

`
v`ρn

2ρn
uT
aZ

TApu ´ iρnqZub, |v| ă ρn.

where z “ u ` iv.

Gp1q
n pz, a, bq “ n1{2rGnpz, a, bq ´ EGnpz, a, bqs.

We shall drop the arguments a and b in the rest of the section, since they are fixed.
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We first show that E}Apzq}ℓ is bounded on C` for all ℓ ě 1. As in Lemma A.1, select
an arbitrary constant D P plim suppÑ8 λmaxpΣpqp1 `

?
γq2, uq, and denote G to be the

event tλmaxp rΣpq ě Du. Lemma A.1 says, for any positive ℓ,

PpGq “ opn´ℓq.

Note, on Gc, all eigenvalues of rΣp are bounded away from C` with distance at least
mintu ´ D, |u|u. Thus, }p rΣp ´ zIpq´1}2 ă K for some K ą 0. On G, Lemma S.10 always
holds. Therefore, there exists an universal constant K such that

}Apzq} ď Kr1 ` |v|´11pGqs}Σp} ď Kr1 ` ρ´1
n 1pGqs}Σp}. (S.3.20)

Thus, for any ℓ, there exists a constant KℓpAq such that

sup
zPC`

E}Apzq}ℓ ď KℓpAq. (S.3.21)

Similarly, we can show there exists constants Kℓpβq and KpβEq such that

sup
zPC`

E|βjpzq|ℓ ď Kℓpβq, (S.3.22)

sup
zPC`

|βEpzq| ď KpβEq. (S.3.23)

Another useful result is, on Gc, a nonrandom bound holds as following.

|βjpzq| “ |1 ´ n´1zTj Apzqzj | ď 1 ` KD, on Gc. (S.3.24)

(S.3.22), (S.3.23) and (S.3.24) are shown in Section 3 of Bai and Silverstein (2004).
Next, we show tightness of Gp1q

n pz, a, bq. We use Theorem 12.3 of Billingsley (1968).
The first condition of the theorem can be replaced by the tightness at any point in r0, 1s,
as pointed out in Bai and Silverstein (2004). Therefore, we only need to show there exists
a constant K such that

E|Gp1q
n pz0q|2 ď K,

with z0 a complex number having non-zero imaginary part. In view of the construction
and simplification of the martingale difference sequence in Subsection S.3.1, it is sufficient
to show

E|

N
ÿ

j“1

βEpz0qHnpz0, jq|2 ď K.

Due to (S.3.23), we only need to show

N
ÿ

j“1

E|n1{2uajz
T
j Ajpz0qZjub|2 ď K,

N
ÿ

j“1

E|n1{2ϱjpz0q|2 ď K.
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We can prove the results using Lemma S.13, Lemma S.15 and Lemma S.16 with the
nonrandom bound of }Ajpz0q} shown in Lemma S.10.

The second condition of Theorem 12.3 of Billingsley (1968) will be verified if we can
show there exists a constant K such that for all sufficiently large n and z1 ‰ z2 P tu`iv P

C and |v| ě ρnu,

E
|G

p1q
n pz1q ´ G

p1q
n pz2q|2

|z1 ´ z2|2
ď K.

Define

Ãpz1, z2q “ Σ
T
2
p

”

p
1

n
Σ

1
2
p ZZ

TΣ
T
2
p ´ z1Iqp

1

n
Σ

1
2
p ZZ

TΣ
T
2
p ´ z2Iq

ı´1

Σ
1
2
p ,

Ãj¨pz1, z2q “ Σ
T
2
p

”

p
1

n
Σ

1
2
p ZjZ

T
j Σ

T
2
p ´ z1Iqp

1

n
Σ

1
2
p ZZ

TΣ
T
2
p ´ z2Iq

ı´1

Σ
1
2
p ,

Ã¨jpz1, z2q “ Σ
T
2
p

”

p
1

n
Σ

1
2
p ZZ

TΣ
T
2
p ´ z1Iqp

1

n
Σ

1
2
p ZjZ

T
j Σ

T
2
p ´ z2Iq

ı´1

Σ
1
2
p ,

Ãjjpz1, z2q “ Σ
T
2
p

”

p
1

n
Σ

1
2
p ZjZ

T
j Σ

T
2
p ´ z1Iqp

1

n
Σ

1
2
p ZjZ

T
j Σ

T
2
p ´ z2Iq

ı´1

Σ
1
2
p .

Along very similar lines to the proof of (S.3.21), we can show, for any ℓ ě 1, there exists
a constant KℓpÃq

sup
z1,z2PC`

E}Ãpz1, z2q}ℓ ď KℓpÃq,

sup
z1,z2PC`

E}Ãj¨pz1, z2q}ℓ ď KℓpÃq, (S.3.25)

sup
z1,z2PC`

E}Ã¨jpz1, z2q}ℓ ď KℓpÃq,

sup
z1,z2PC`

E}Ãjjpz1, z2q}ℓ ď KℓpÃq.

Using the identity Apz1q ´ Apz2q “ pz1 ´ z2qÃpz1, z2q.

G
p1q
n pz1q ´ G

p1q
n pz2q

z1 ´ z2
“n1{2uT

aZ
T Ãpz1, z2qZub ´ n1{2EuT

aZ
T Ãpz1, z2qZub

“n1{2
N
ÿ

j“1

pEj ´ Ej´1qruT
aZ

T Ãpz1, z2qZub ´ uT
aZ

T
j Ãjjpz1, z2qZjubs

“n1{2
N
ÿ

j“1

pEj ´ Ej´1qrd6 ` d7 ` d8 ` d9s,

where

d6 “ uT
aZ

T Ãpz1, z2qZub ´ uT
aZ

T
j Ãpz1, z2qZub
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d7 “ uT
aZ

T
j Ãpz1, z2qZub ´ uT

aZ
T
j Ãj¨pz1, z2qZub

d8 “ uT
aZ

T
j Ãj¨pz1, z2qZub ´ uT

aZ
T
j Ãjjpz1, z2qZub

d9 “ uT
aZ

T
j Ãjjpz1, z2qZub ´ uT

aZ
T
j Ãjjpz1, z2qZjub

Regarding d6,

d6 “ uajubjz
T
j Ãjjpz1, z2qzjβjpz1qβjpz2q

` uajz
T
j Ãjjpz1, z2qZjubβjpz1q

´
1

n
uajz

T
j Ãjjpz1, z2qzjz

T
j Ajpz2qZjubβjpz1qβjpz2q.

Combining Lemma S.13, Lemma S.16 and (S.3.25) we can show

sup
j

sup
z1,z2PC`

n´ℓE|zTj Ãjjpz1, z2qzj |ℓ ă Kℓ, for all ℓ ě 2, (S.3.26)

sup
j

sup
z1,z2PC`

n´ℓE|zTj Ajjpz1, z2qzj |ℓ ă Kℓ, for all ℓ ě 2, (S.3.27)

sup
j

sup
z1,z2PC`

E|zTj Ãjjpz1, z2qZjub|4 ă K, (S.3.28)

for some constants Kℓ and K.
Therefore, together with (S.3.22) and (S.3.24),

sup
z1,z2PC`

E
ˇ

ˇ

ˇ
n1{2

N
ÿ

j“1

pEj ´ Ej´1qd6

ˇ

ˇ

ˇ

2

“ Op1q.

The other terms can be written as

d7 “ ´
1

n
zTj Ãjjpz1, z2qZjubz

T
j Ajpz1qZjuaβjpz1q

´
1

n
ubjz

T
j Ãjjpz1, z2qzjz

T
j Ajpz1qZjuaβjpz1q

`
1

n2
zTj Ajpz1qZjuaz

T
j Ãjjpz1, z2qzjz

T
j Ajpz2qZjubβjpz2qβjpz1q

`
1

n2
ubjz

T
j Ajpz1qZjuaz

T
j Ãjjpz1, z2qzjz

T
j Ajpz2qzjβjpz2qβjpz1q

d8 “ ´
1

n
zTj Ãjjpz1, z2qZjuaz

T
j Ajpz2qZjubβjpz2q

´
1

n
ubjz

T
j Ãjjpz1, z2qZjuaz

T
j Ajpz2qzjβjpz2q

d9 “ ubjz
T
j Ãjjpz1, z2qZjua

Next, we only present the proof of

sup
z1,z2PC`

E
ˇ

ˇ

ˇ
n1{2

N
ÿ

j“1

pEj ´ Ej´1qd8

ˇ

ˇ

ˇ

2

“ Op1q.
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The proof for d7 and d9 are very similar.
Due to (S.3.24), (S.3.26), (S.3.27) and (S.3.28),

sup
j

sup
z1,z2

E|zTj Ãjjpz1, z2qZjuaz
T
j Ajpz2qZjubβjpz2q1pGcq|2

ď sup
j

sup
z1,z2

KE|zTj Ãjjpz1, z2qZjuaz
T
j Ajpz2qZjub|2

ď sup
j

sup
z1,z2

K
”

E|zTj Ãjjpz1, z2qZjua|4E|zTj Ajpz2qZjub|4
ı1{2

“ Op1q.

sup
j

sup
z1,z2

E|zTj Ãjjpz1, z2qZjuaz
T
j Ajpz2qZjubβjpz2q1pGq|2

ď sup
j

sup
z1,z2

E}zj}4}Ãjjpz1, z2q}2}Zjua}2}Zjub}2}Ajpz2q}2 ¨

p1 ` }zj}2}Apzq}q21pGq “ op1q.

Combining with Lemma S.8, it follows that

sup
z1,z2PC`

E
ˇ

ˇ

ˇ
n1{2

N
ÿ

j“1

pEj ´ Ej´1q
1

n
zTj Ãjjpz1, z2qZjuaz

T
j Ajpz2qZjubβjpz2q

ˇ

ˇ

ˇ

2

“ Op1q.

For the second term in d8,

sup
j

sup
z1,z2

E|
1

n
zTj Ãjjpz1, z2qZjuaz

T
j Ajpz2qzjβjpz2q1pGcq|2

ď sup
j

sup
z1,z2

KE|
1

n
zTj Ãjjpz1, z2qZjuaz

T
j Ajpz2qzj |2

ď sup
j

sup
z1,z2

K
”

E|zTj Ãjjpz1, z2qZjua|4E|
1

n
zTj Ajpz2qzj |4

ı1{2

“ Op1q.

sup
j

sup
z1,z2

E|
1

n
zTj Ãjjpz1, z2qZjuaz

T
j Ajpz2qzjβjpz2q1pGq|2

ď sup
j

sup
z1,z2

En´2}zj}6}Ãjjpz1, z2q}2}Zjua}2}Ajpz2q}2 ¨

p1 ` }zj}2}Apzq}q21pGq “ op1q.

When |v| ă ρn, Gp1q
n pzq is the connected line between G

p1q
n pu` iρnq and G

p1q
n pu´ iρnq.

Set z1 “ u ` iρn and z2 “ u ´ iρn. All previous arguments in the subsection apply.
Therefore, the slope of the connected line is bounded in expectation.

The proof of tightness of Gp1q
n pzq is complete.
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S.3.3. Convergence of Gp2q
n

Recall

Gp2q
n pz, a, bq “ n1{2tEGnpz, a, bq ´ aT b

Θnpz, γq ´ 1

Θnpz, γq
u,

Θnpzq “ 1 ` γn
1

p
EtrApzq.

In this section, we show
sup
zPC`

Gp2q
n pz, a, bq Ñ 0.

n1{2EGnpz, a, bq

“ n1{2EuT
aZ

TApzqZub

“ n1{2
N
ÿ

j“1

Euajubjz
T
j Ajpzqzjβjpzq ` n1{2

N
ÿ

j“1

Euajz
T
j AjpzqZjubβjpzq

“ n1{2
N
ÿ

j“1

Euajubjz
T
j Ajpzqzjβ

Epzq

´ n1{2
N
ÿ

j“1

Euajubjz
T
j AjpzqzjβjpzqβEpzqt

1

n
zTj Ajpzqzj ´

1

n
EtrAjpzqu

´ n1{2
N
ÿ

j“1

Euajz
T
j AjpzqZjubβjpzqβEpzqt

1

n
zTj Ajpzqzj ´

1

n
EtrAjpzqu

“ n1{2aT b
γnp

´1EtrA1pzq

1 ` γnp´1EtrA1pzq

` n1{2aT bβEpzqEβ1pzqt
1

n
zT1 A1pzqz1 ´

1

n
EtrA1pzqu

´ n1{2
N
ÿ

j“1

Euajz
T
j AjpzqZjubpβEpzqq2t

1

n
zTj Ajpzqzj ´

1

n
EtrAjpzqu

` n1{2
N
ÿ

j“1

Euajz
T
j AjpzqZjubβjpzqpβEpzqq2t

1

n
zT1 A1pzqz1 ´

1

n
EtrA1pzqu2

“ d10 ` d11 ` d12 ` d13, say.

First, due to (S.3.21), (S.3.22) and Lemma S.13,

sup
zPC`

|EtrA1pzq ´ EtrApzq| “ sup
zPC`

|E
1

n
zT1 A

2
1pzqz1β1pzq| “ Op1q.
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Together with (S.3.23), we get

sup
zPC`

´

d10 ´ n1{2aT b
Θnpz, γq ´ 1

Θnpz, γq

¯

Ñ 0.

Next we want to show supzPC`

´

|d11| ` |d13|

¯

Ñ 0.

d11 “ n1{2aT bpβEpzqq2Eβ1pzqt
1

n
zT1 A1pzqz1 ´

1

n
EtrA1pzqu2,

|d13| ď n1{2}ua}max

N
ÿ

j“1

|βEpzq|2E
ˇ

ˇ

ˇ
zTj AjpzqZjubβjpzq

ˇ

ˇ

ˇ
¨

ˇ

ˇ

ˇ
t
1

n
zT1 A1pzqz1 ´

1

n
EtrA1pzqu

ˇ

ˇ

ˇ

2

.

Due to (S.3.21), (S.3.23), (S.3.28) and Lemma S.13,

sup
zPC`

E|
1

n
zT1 A1pzqz1 ´

1

n
EtrA1pzq|4 “ opn´1q,

sup
zPC`

E|zTj AjpzqZjubβjpzq|2 “ Op1q. (S.3.29)

Thus,
sup
zPC`

´

|d11| ` |d13|

¯

ÝÑ 0.

We next want to show
sup
zPC`

|d12| ÝÑ 0.

By Lemma S.20,

n1{2EzTj AjpzqZjubt
1

n
zTj Ajpzqzj ´

1

n
EtrAjpzqu

“ n´1{2Ez311E
p

ÿ

i“1

eTi Ajpzqeie
T
i AjpzqZjub.

We first show

sup
zPC`

sup
1ďi,mďp

E
ˇ

ˇ

ˇ
eTi Ajpzqem ´ EeTi Ajpzqem

ˇ

ˇ

ˇ

2

“ Opn´1q, (S.3.30)

sup
zPC`

sup
1ďiďm,1ďjďN

E
ˇ

ˇ

ˇ
eTi AjpzqZjub ´ EeTi AjpzqZjub

ˇ

ˇ

ˇ

2

“ Opn´1q. (S.3.31)

For (S.3.30),

E
ˇ

ˇ

ˇ
eTi Ajpzqem ´ EeTi Ajpzqem

ˇ

ˇ

ˇ

2
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“ E
ˇ

ˇ

ˇ

N
ÿ

ℓ‰j

pEℓ ´ Eℓ´1qreTi Ajpzqem ´ EeTi Ajℓpzqems

ˇ

ˇ

ˇ

2

“ E
ˇ

ˇ

ˇ

N
ÿ

ℓ‰j

pEℓ ´ Eℓ´1qr
1

n
zTℓ AjℓpzqemeTi Ajℓpzqzℓβℓjpzqs

ˇ

ˇ

ˇ

2

ď K 1

n2

N
ÿ

ℓ‰j

E
ˇ

ˇ

ˇ
zTℓ AjℓpzqemeTi Ajℓpzqzℓβℓjpzq

ˇ

ˇ

ˇ

2

.

By Lemma S.14, there exists a K,

E|zTℓ AjℓpzqemeTi Ajℓpzqzℓ|
2 ď KE}Ajℓpzq}4,

Recall the definition of Gc in Subsection S.3.2. Using (S.3.21) and (S.3.24), on Gc,

E
ˇ

ˇ

ˇ
zTℓ AjℓpzqemeTi Ajℓpzqzℓβℓjpzq

ˇ

ˇ

ˇ

2

ď EK}Ajℓpzq}4 “ Op1q. (S.3.32)

On G,

E
ˇ

ˇ

ˇ
zTℓ AjℓpzqemeTi Ajℓpzqzℓβℓjpzq

ˇ

ˇ

ˇ

2

(S.3.33)

ď E}zℓ}
4}Ajℓpzq}4p1 ` }zℓ}

2}Ajpzq}2q21pGq Ñ 0.

It completes the proof of (S.3.30).
To show (S.3.31),

E|eTi AjpzqZjub ´ EeTi AjpzqZjub|2

“ E|

N
ÿ

ℓ‰j

pEℓ ´ Eℓ´1qreTi AjpzqZjub ´ eTi AjℓpzqZjℓubs|2

ď K
N
ÿ

ℓ‰j

E
ˇ

ˇ

ˇ
ubℓe

T
i Ajℓpzqzℓ ´

1

n
eTi Ajℓpzqzℓz

T
ℓ AjℓpzqZjℓubβℓjpzq

` ubℓpβℓjpzq ´ 1qeTi Ajℓpzqzℓ

ˇ

ˇ

ˇ

2

.

By Lemma S.14, (S.3.21),

sup
zPC`

sup
i

E|eTi Ajℓpzqzℓ|
4 ď K sup

zPC`
E}Ajℓpzq}4 “ Op1q.

Together with Lemma S.14 and (S.3.22),

E|eTi Ajℓpzqzℓz
T
ℓ AjℓpzqZjℓubβℓjpzq|2 “ Op1q.

The proof of (S.3.31) is complete.
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Following from (S.3.30) and (S.3.11),

d12 “ ´n1{2pβEpzqq2
N
ÿ

j“1

uajEzTj AjpzqZjubt
1

n
zTj Ajpzqzj ´

1

n
EtrAjpzqu

“ ´n´1{2pβEpzqq2
N
ÿ

j“1

uajEz311E
p

ÿ

i“1

eTi Ajpzqeie
T
i AjpzqZjub

“ ´n´1{2pβEpzqq2
N
ÿ

j“1

uajEz311
p

ÿ

i“1

EeTi AjpzqeiEeTi AjpzqZjub ` op1q

“ ´n´1{2pβEpzqq2Ez311
N
ÿ

j“1

uaj

N
ÿ

ℓ‰j

ubℓ

p
ÿ

i“1

EeTi A1pzqeiEeTi A1pzqz2 ` op1q.

The residual term op1q is uniform on C`. Note

EeTi A1pzqz2

“ EeTi A12pzqz2β21pzq

“ ´EeTi A12pzqz2β21pzqβEpzqp
1

n
zT2 A12pzqz2 ´

1

n
EtrA1pzqq

“ ´EeTi A12pzqz2pβEpzqq2p
1

n
zT2 A12pzqz2 ´

1

n
EtrA1pzqq

` EeTi A12pzqz2pβEpzqq2β21pzqt
1

n
zT2 A12pzqz2 ´

1

n
EtrA1pzqu2

“ ´
1

n
pβEpzqq2Ez311

p
ÿ

ℓ“1

EeTℓ A12pzqeℓe
T
ℓ A12pzqei

` EeTi A12pzqz2pβEpzqq2β21pzqt
1

n
zT2 A12pzqz2 ´

1

n
EtrA1pzqu2.

By Lemma S.13, Lemma S.14, (S.3.21), (S.10),

sup
zPC`;i

E|eTi A12pzqz2pβEpzqq2β21pzqt
1

n
zT2 A12pzqz2 ´

1

n
EtrA1pzqu2| “ opn´1{2q.

Therefore, again using (S.3.30),

d12 “ n´3{2pβEpzqq4pEz311q2
N
ÿ

j“1

uaj

N
ÿ

ℓ‰j

ubℓ

p
ÿ

i“1

EeTi Ajpzqei¨

p
ÿ

ℓ“1

EeTℓ A12pzqeℓe
T
ℓ A12pzqei ` op1q

“ n´3{2pβEpzqq4pEz311q2
N
ÿ

j“1

uaj

N
ÿ

ℓ‰j

ubℓ

p
ÿ

i“1

p
ÿ

ℓ“1

EeTi AjpzqeiEeTℓ A12pzqeℓ ¨
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EeTℓ A12pzqei ` op1q

“ n´5{2pβEpzqq4pEz311q2aTUT
n 1n1

T
nUnb ¨

p
ÿ

i“1

p
ÿ

ℓ“1

EeTi A1pzqeiEeTℓ A12pzqeℓEeTℓ A12pzqei.

Note aTUT
n 1n “ Opn1{2q because }U}max “ Opn´1{2q. Meanwhile,

p
ÿ

i“1

p
ÿ

ℓ“1

EeTi A1pzqeiEeTℓ A12pzqeℓEeTℓ A12pzqei “ αT
1 EA12α2,

where α1 is the diagonal of EA1pzq and α2 is the diagonal of EA12pzq.

sup
zPC`

|αT
1 EA12α2| ď sup

zPC`
}EA12pzq}2}α1}2}α2}2

ď sup
zPC`

n}EA12pzq}22}EA1pzq}2}EA12pzq}2 “ Opnq.

It follows that supzPC` |d12| “ Opn´1{2q.

S.3.4. Convergence of Gp3q
n

We next show
sup
zPC`

Gp3q
n pz, a, bq Ñ 0.

Using the idea of proof of Lemma 2 of Chen, Li and Zhong (2014), post-multiplying both
sides of the identity p rΣp ´ zIpq ` zIp “ rΣp by p rΣp ´ zIpq´1,

Ip ` zp rΣp ´ zIpq´1 “ rΣpp rΣp ´ zIpq´1 “
1

n

N
ÿ

i“1

Σ1{2
p ziz

T
i Σ

T {2
p p rΣp ´ zIpq´1.

Taking trace and expectation on both sides,

n

N
r1 ` z

1

p
Etrp rΣp ´ zIpq´1s “

1

p
EzT1 Apzqz1

“
γ´1
n pΘn´1pzq ´ 1q

Θn´1pzq
´

1

p
EzT1 A1pzqz1β

Epzqβ1pzqt
1

n
zT1 A1pzqz1 ´

1

n
EtrA1pzqu.

Therefore,

pΘn´1pzq ´ 1q

Θn´1pzq
“

n

N
γn `

n

N
zγn

1

p
Etrp rΣp ´ zIpq´1

`
1

n
EzT1 A1pzqz1β

Epzqβ1pzqt
1

n
zT1 A1pzqz1 ´

1

n
EtrA1pzqu.
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Note pΘpz, γq ´ 1qΘ´1pz, γq “ γ ` γzmpzq. We only need to show

sup
zPC`

n1{2
ˇ

ˇ

ˇ
γn ` γnz

1

p
Etrp rΣp ´ zIpq´1u ´ pγ ` γzmpzqq

ˇ

ˇ

ˇ
ÝÑ 0, (S.3.34)

sup
zPC`

n´ 1
2

ˇ

ˇ

ˇ
EzT1 A1pzqz1β

Epzqβ1pzqt
1

n
zT1 A1pzqz1 ´

1

n
EtrA1pzqu

ˇ

ˇ

ˇ
Ñ 0. (S.3.35)

(S.3.34) follows from the condition n1{2|γn ´ γ| Ñ 0, Section 4 of Bai and Silverstein
(2004) and Lemma S.1.

As for (S.3.35),

sup
zPC`

n´1{2
ˇ

ˇ

ˇ
EzT1 A1pzqz1β

Epzqβ1pzqt
1

n
zT1 A1pzqz1 ´

1

n
EtrA1pzqu

ˇ

ˇ

ˇ

“ sup
zPC`

n1{2
ˇ

ˇ

ˇ
Eβ1pzqβEpzqt

1

n
zT1 A1pzqz1 ´

1

n
EtrA1pzqu

ˇ

ˇ

ˇ

“ sup
zPC`

n1{2
ˇ

ˇ

ˇ
Eβ1pzqpβEpzqq2t

1

n
zT1 A1pzqz1 ´

1

n
EtrA1pzqu2

ˇ

ˇ

ˇ
“ op1q.

S.4. Additional technical support of Theorem 2.3
In this section, we show (A.12) and (A.13), two key steps in the proof of Theorem 2.3
under the truncated random variable condition (A.7). Additional arguments that deal
with the differnce between C1 and (A.7) can be found in Section S.6.

Consider (A.12). It is sufficient to show

sup
zPC`

E|aTUT
n ZT p rΣp ´ zIq´1BCb|2 ď K}BC}22,

for any vector (k-variate) a and (q-variate) b, such that }a}2 ď 1 and }b}2 ď 1.
Recall notation defined in Section S.3. Further, write 1

nΣ
1
2
p ZjZ

T
j Σ

T
2
p as rΣ

pjq
p and

1
nΣ

1
2
p Zjj1ZT

jj1Σ
T
2
p as rΣ

pjj1q
p .

aTUT
n ZT p rΣp ´ zIq´1BCb

“

N
ÿ

j“1

?
nuajz

T
j Σ

T
2
p p rΣpjq

p ´ zIq´1BCbβjpzq

“

N
ÿ

j“1

?
nuajz

T
j Σ

T
2
p p rΣpjq

p ´ zIq´1BCbβEpzq´

N
ÿ

j“1

?
nuajz

T
j Σ

T
2
p p rΣpjq

p ´ zIq´1BCbβjpzqβEpzqp
1

n
zTj Ajpzqzj ´

1

n
EtrAjpzqq

“ d13 ` d14, say.
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E|d13|2 “ n
N
ÿ

j“1

u2
aj |βEpzq|2EbTCTBT p rΣp1q

p ´ zIq´1Σpp rΣp1q
p ´ zIq´1BCb`

n
ÿ

j‰j1

uajuaj1 |βEpzq|2EzT1 Σ
T
2
p p rΣp1q

p ´ zIq´1BCbbTCTBT p rΣp2q
p ´ zIq´1Σ

1
2
p z2

ď K|βEpzq|2}b}22}BC}22E}p rΣp1q
p ´ zIq´1}22 ` KE

1

n

ˇ

ˇ

ˇ
zT1 A12pzqz2

ˇ

ˇ

ˇ

2

¨

ˇ

ˇ

ˇ
zT2 Σ

T
2
p p rΣp12q

p ´ zIq´1BCbbTCTBT p rΣp12q
p ´ zIq´1Σ

1
2
p z1β12pzqβ21pzq

ˇ

ˇ

ˇ
.

Using Lemma S.13, Lemma S.14, Lemma S.17,

E|zT1 A12pzqz2|4 ď Kn2E}A12pzq}4,

E|zT2 Σ
T
2
p p rΣp12q

p ´ zIq´1BCbbTCTBT p rΣp12q
p ´ zIq´1Σ

1
2
p z1|4

ď K}BC}82E}p rΣp12q
p ´ zIq´1}42}p rΣp12q

p ´ zIq´1}42.

Together with (S.3.21), (S.3.22), and (S.3.23),

sup
zPC`

E|d13|2 ď K}BC}2.

E|d14|2 ď K|βEpzq|2E
ˇ

ˇ

ˇ
zT1 Σ

T
2
p p rΣpjq

p ´ zIq´1BCbβjpzq¨

?
np

1

n
zTj Ajpzqzj ´

1

n
EtrAjpzqq

ˇ

ˇ

ˇ

2

.

Using Lemma S.13,

E
ˇ

ˇ

ˇ

?
np

1

n
zTj Ajpzqzj ´

1

n
EtrAjpzqq

ˇ

ˇ

ˇ

2

ď KE}Ajpzq}2,

E
ˇ

ˇ

ˇ
zT1 Σ

T
2
p p rΣpjq

p ´ zIq´1BCb
ˇ

ˇ

ˇ

4

ď K}BC}42E}p rΣp ´ zIq´1}42.

We have
sup
zPC`

E|d14|2 ď K}BC}2.

(A.12) follows.
Consider (A.13). We first show

sup
zPC`

nE|aTCTBT p rΣp ´ zIq´1BCa ´ EaTCTBT p rΣp ´ zIq´1BCa|2 ď K}BC}42,

for any vector (q-variate) a such that }a}2 ď 1.
We use Lemma S.8 to show the result. It is worth mentioning that when z P R´, the

result is shown in El Karoui and Kösters (2011). Note
?
naTCTBT p rΣp ´ zIq´1BCa ´ E

?
naTCTBT p rΣp ´ zIq´1BCa
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“

N
ÿ

j“1

Ej

”?
naTCTBT p rΣp ´ zIq´1BCa ´

?
naTCTBT p rΣpjq

p ´ zIq´1BCa
ı

´ Ej´1

”?
naTCTBT p rΣp ´ zIq´1BCa ´

?
naTCTBT p rΣpjq

p ´ zIq´1BCa
ı

.

Note
?
naTCTBT p rΣp ´ zIq´1BCa ´

?
naTCTBT p rΣpjq

p ´ zIq´1BCa

“
´1
?
n
aTCTBT p rΣpjq

p ´ zIq´1Σ1{2
p zjz

T
j Σ

T {2
p p rΣpjq

p ´ zIq´1BCaβjpzq.

Therefore, using Lemma S.8 (Burkholder’s inequality) and Lemma S.14,

nE|aTCTBT p rΣp ´ zIq´1BCa ´ EaTCTBT p rΣp ´ zIq´1BCa|2

ď KE
ˇ

ˇ

ˇ
zTj Σ

T {2
p p rΣpjq

p ´ zIq´1BCaaTCTBT p rΣpjq
p ´ zIq´1Σ1{2

p zjβjpzq

ˇ

ˇ

ˇ

2

.

Observe that Σ
T {2
p p rΣ

pjq
p ´ zIq´1BCaaTCTBT p rΣ

pjq
p ´ zIq´1Σ

1{2
p is of rank one. Due to

very similar lines to (S.3.32) and (S.3.33), we can get

E
ˇ

ˇ

ˇ
zTj Σ

T {2
p p rΣpjq

p ´ zIq´1BCaaTCTBT p rΣpjq
p ´ zIq´1Σ1{2

p zjβjpzq

ˇ

ˇ

ˇ

2

ď K}BC}42.

Next, we show

sup
zPC`

n
ˇ

ˇ

ˇ
aTCTBT

”

Ep rΣp ´ zIq´1 ´ tΘpz, γqΣp ´ zIu´1
ı

BCa
ˇ

ˇ

ˇ

2

ď K}BC}42.

?
naTCTBT

”

Ep rΣp ´ zIq´1 ´ pΘpz, γqΣp ´ zIq´1
ı

BCa

“ E
?
naTCTBT p rΣp ´ zIq´1

”

Θpz, γqΣp ´ rΣp

ı

pΘpz, γqΣp ´ zIq´1BCa

“ E
?
naTCTBT p rΣp ´ zIq´1

”

Θpz, γqΣp ´
N

n
Σ

1
2
p z1z

T
1 Σ

T
2
p

ı

¨

pΘpz, γqΣp ´ zIq´1BCa

“ ´
N

n

?
nEzT1 Σ

T
2
p pΘpz, γqΣp ´ zIq´1BCaaTCTBT p rΣp1q

p ´ zIq´1Σ
1
2
p z1β1pzq

`
?
nΘpz, γqEaTCTBT p rΣp ´ zIq´1ΣppΘpz, γqΣp ´ zIq´1BCa

“
?
nrΘpz, γq ´

N

n
βEpzqsEaTCTBT p rΣp ´ zIq´1ΣppΘpz, γqΣp ´ zIq´1BCa

´
1

?
n
Θpz, γqpzqE

”

aTCTBT p rΣp1q
p ´ zIq´1Σ

1
2
p z1 ¨

zT1 Σ
T
2
p p rΣp1q

p ´ zIq´1ΣppΘpz, γqΣp ´ zIq´1BCaβ1pzq

ı
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`
N

n

?
nEzT1 Σ

T
2
p pΘpz, γqΣp ´ zIq´1BCaaTCTBT p rΣp1q

p ´ zIq´1 ¨

Σ
1
2
p z1β1pzqβEpzqp

1

n
zT1 A1pzqz1 ´ E

1

n
trA1pzqq.

Due to (S.3.19) and (S.3.21), we can get

sup
zPC`

?
n|Θpz, γq ´

N

n
βEpzq| Ñ 0,

sup
zPC`

E|aTCTBT p rΣp ´ zIq´1ΣppΘpz, γqΣp ´ zIq´1BCa| ď K}BC}22.

Moreover, by Lemma S.13,

sup
zPC`

E|zT1 Σ
T
2
p p rΣp1q

p ´ zIq´1ΣppΘpz, γqΣp ´ zIq´1BCa¨

aTCTBT p rΣp1q
p ´ zIq´1Σ

1
2
p z1|2

ď KE|aTCTBT p rΣp1q
p ´ zIq´1¨

Σpp rΣp1q
p ´ zIq´1ΣppΘpz, γqΣp ´ zIq´1BCa|2 ď }BC}42.

We next show
En

ˇ

ˇ

ˇ
r
1

n
zT1 A1pzqz1 ´ E

1

n
trA1pzqsβ1pzq

ˇ

ˇ

ˇ

2

“ Op1q.

Recall G is the event tλmaxp rΣpq ě Du for some D P plim supp λmaxpΣpqp1 `
?
γq2, uq,

defined in Subsection S.3.2. Recall (S.3.24). On Gc, β1pzq is bounded and

En|
1

n
zT1 A1pzqz1 ´ E

1

n
trA1pzq|2 ď KE}A1pzq}22 “ Op1q.

On G,
sup
zPC`

En
ˇ

ˇ

ˇ
r
1

n
zT1 A1pzqz1 ´ E

1

n
trA1pzqsβ1pzq1pGq

ˇ

ˇ

ˇ

2

Ñ 0.

It completes the proof.

S.5. Proof of Remark 2.1, Lemma 2.1 and Lemma 2.2

S.5.1. Proof of Remark 2.1

The results in Subsection S.3.1.7 imply that δpz1, z2, γq is the limit in L1-norm of
n´1trrApz1qApz2qs pointwise on pC`q2, when the random variables zij ’s satisfy the trun-
cated variable condition (A.7). Due to very similar lines to (S.3.21) and (S.3.25), we
have

sup
z1,z2PC`

E
ˇ

ˇ

ˇ
n´1trrApz1qApz2qs

ˇ

ˇ

ˇ
ă 8.
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Besides, in Section S.2, it is claimed that δpz1, z2, γq and its partial derivatives are
bounded on C.

It follows from Fubini’s Theorem and Dominated Convergence Theorem that

2

p2πiq2

‹
pC`q2

fpz1qfpz2q
1

n
trrApz1qApz2qsdz1dz2

P
ÝÑ ∆pf, γq.

On the other hand, when λmaxp rΣpq ă D, for some D P plim supp λmaxpΣpqp1 `
?
γq2, uq,

}Apzq} is bounded. Therefore,
‹

C2zpC`q2

ˇ

ˇ

ˇ
fpz1qfpz2q

1

n
trrApz1qApz2qs

ˇ

ˇ

ˇ
|dz1||dz2|

P
ÝÑ 0.

Providing that fpxq ě 0, for all sufficiently large n, with probability 1,

2

p2πiq2

‹
C2

fpz1qfpz2q
1

n
trrApz1qApz2qsdz1dz2 “

1

n
trrfp pΣpqΣpfp pΣpqΣps ě

t
1

n
trrfp pΣpqΣpsu2 ě max

!

λ2
minpΣpqr

1

n
trpfp pΣpqqs2, λ2

minpfp pΣpqqr
1

n
trpΣpqs2

)

.

It is assumed that FΣp converges to LΣ in Wasserstein distance and the latter is non-
degenerate at zero. If fpxq ą 0 on the compact set X , infxPX fpxq ą 0. Therefore, with
high probability,

λ2
minpfp pΣpqqr

1

n
trpΣpqs2 ą K ą 0.

It follows that ∆pf, γq ą 0.
If fpxq is only nonnegative but lim infp λminpΣpq ą 0, we only need to show that

n´1trrfp pΣpqs ą K ą 0 with high probability for all sufficiently large n. By Bai and Sil-
verstein (2004, Theorem 1.1),

´
fpτqdF

pΣppτq Ñ
´
fpτqdF8pτq in probability. It follows

that ∆pf, γq ą 0 if
´
fpτqdF8pτq ą 0.

The proof of Remark 2.1 is complete.

S.5.2. Proof of Lemma 2.1

Lemma 2.1 can be deduced by combining Lemma A.4 and Lemma S.3 shown in Section
S.6.

S.5.3. Proof of Lemma 2.2

Observe that Θpz, γq and ∆pz, γq are smooth functions of mpzq and m1pzq. We further
know that Θpz, γq is bounded on C (see Section S.2). Also, it is easy to check that pΘpz, γnq
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is bounded on C when λmaxp pΣpq ă D ă u. Consequently, it suffices to show the uniform
convergence of mn,ppzq and m1

n,ppzq on C`, that is,

sup
zPC`

?
n|mn,ppzq ´ mpzq|

P
ÝÑ 0, (S.5.1)

sup
zPC`

?
n|m1

n,ppzq ´ m1pzq|
P

ÝÑ 0. (S.5.2)

Define Σ̄ “ 1
n

řn
j“1 Σ

1{2
p zjz

T
j Σ

T {2
p and

m̃pzq “ p´1tr
”

pΣ̄ ´ zIpq´1
ı

.

Then, using the rank inequality, it is easy to check that

sup
zPC`

|m̃pzq ´ mn,ppzq| “ oppn´1{2q,

sup
zPC`

ˇ

ˇ

ˇ

d

dz
m̃pzq ´

d

dz
mn,ppzq

ˇ

ˇ

ˇ
“ oppn´1{2q.

The main reason is that
›

›

›
F

pΣp ´ F Σ̄
›

›

›

8
ď

1

p
rankp pΣp ´ Σ̄q ď

2k

p
.

Together with Lemma S.1 and Lemma S.2, we only need to show

sup
zPC`

?
n|m̃pzq ´ m0

ppzq|
P

ÝÑ 0,

sup
zPC`

?
n

ˇ

ˇ

ˇ

d

dz
m̃pzq ´

d

dz
m0

ppzq

ˇ

ˇ

ˇ

P
ÝÑ 0.

The convergence of m̃pzq to m0
ppzq is shown in Bai and Silverstein (2004) under (A.7).

It indeed holds under C1 (see Lemma S.5 in Section S.6). The proof of S.5.1 is complete.
As for the uniform convergence of d

dzm̃pzq, again, we first consider the truncated
variables satisfying (A.7), with generalization to C1 addressed by Lemma S.5 in Section
S.6. We first show

sup
zPC`

?
n

ˇ

ˇ

ˇ

d

dz
m̃pzq ´ E

d

dz
m̃pzq

ˇ

ˇ

ˇ

P
ÝÑ 0.

The convergence of finite-dimensional distributions is a direct consequence of Bai and
Silverstein (2004). We only need to show its tightness. Using the same strategy as in
Subsection S.3.2, it suffices to show that there exists a constant K such that for any
z1 ‰ z2 P C`,

En
|t d

dzm̃pz1q ´ E d
dzm̃pz1qu ´ t d

dzm̃pz2q ´ E d
dzm̃pz2qu|2

|z1 ´ z2|2
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ď 2nE
ˇ

ˇ

ˇ

1

p
tr

”

pΣ̄ ´ z1Iq´2pΣ̄ ´ z2Iq´1
ı

´ E
1

p
tr

”

pΣ̄ ´ z1Iq´2pΣ̄ ´ z2Iq´1
ıˇ

ˇ

ˇ

2

` 2nE
ˇ

ˇ

ˇ

1

p
tr

”

pΣ̄ ´ z1Iq´1pΣ̄ ´ z2Iq´2
ı

´ E
1

p
tr

”

pΣ̄ ´ z1Iq´1pΣ̄ ´ z2Iq´2
ıˇ

ˇ

ˇ

2

ď K.

Define Σ̄pjq “ 1
n

řn
i‰j Σ

1{2
p ziz

T
i Σ

T {2
p . We can write

tr
”

pΣ̄ ´ z1Iq´2pΣ̄ ´ z2Iq´1
ı

´ Etr
”

pΣ̄ ´ z1Iq´2pΣ̄ ´ z2Iq´1
ı

“

n
ÿ

j“1

pEj ´ Ej´1q

!

tr
”

pΣ̄ ´ z1Iq´2pΣ̄ ´ z2Iq´1
ı

´ tr
”

pΣ̄pjq ´ z1Iq´2pΣ̄pjq ´ z2Iq´1
ı)

.

The rest of the proof is very similar to the work presented in Subsection S.3.2, also Section
3 of Bai and Silverstein (2004). We use Lemma S.8 to find the stochastic order of the
sum of the martingale difference sequence. Similar to (S.3.21), we have supzPC` E}pΣ̄ ´

zIq´1}ℓ ă 8 for any ℓ P N`. We omit details.
We next show

sup
zPC`

?
n

ˇ

ˇ

ˇ
E

d

dz
m̃pzq ´

d

dz
m0

ppzq

ˇ

ˇ

ˇ
Ñ 0. (S.5.3)

It suffices to show supzPC`
?
n|E d

dzm̃pzq ´ d
dzm

0
ppzq| Ñ 0, where m̃pzq “

γn´1
z ` γnm̃pzq.

Following notation in Section S.3.1 and Section S.4, it is shown in Bai and Silverstein
(1998, (5.2)) that

γn

ˆ
dFΣppτq

1 ` τEm̃pzq
` zγnEm̃pzq “ Anpzq,

where

Anpzq “Eβ̄1pzq

” 1

n
zT1 Σ

T
p pΣ̄p1q ´ zIq´1pEm̃pzqΣp ` Iq´1Σ1{2

p z1

´
1

n
EtrrpEm̃pzqΣp ` Iq´1ΣppΣ̄ ´ zIq´1s

ı

,

β̄1pzq “
1

1 ` n´1zT1 Σ
T {2
p pΣ̄p1q ´ zIq´1Σ

1{2
p z1

.

It is shown that Anpzq “ opn´1{2q uniformly on C` in Bai and Silverstein (2004) (see
(4.19)–(4.11)).

Next, we would like to first take differentiation on both sides with respect to z, and
then interchange differentiation and integration. Note that, similar to (S.3.20), (S.3.24),
we have on z P C`,

E}pΣ̄ ´ zIq´2}ℓ ď EK2ℓr1 ` v´11pGqs2ℓ ă 8, for any ℓ P N`,
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E|
d

dz
β̄1pzq|2 “ E|

d

dz
p1 ´ n´1zT1 Σ

T {2
p pΣ̄ ´ zIpq´1Σ1{2

p z1q|2

“ E|n´1zT1 Σ
T {2
p pΣ̄ ´ zIq´2Σ1{2

p z1|2 ă 8.

Moreover, Bai and Silverstein (2004, (4.3)) claims that

sup
zPC`

}pEm̃pzqΣp ` Iq´1} ă 8.

Due to Dominated Convergence Theorem,

d

dz
Anpzq

“ E
d

dz
β̄1pzq

” 1

n
zT1 Σ

T
p pΣ̄p1q ´ zIq´1pEm̃pzqΣp ` Iq´1Σ1{2

p z1

´
1

n
EtrrpEm̃pzqΣp ` Iq´1ΣppΣ̄ ´ zIq´1s

ı

` Eβ̄1pzq

” 1

n
zT1 Σ

T
p pΣ̄p1q ´ zIq´2pEm̃pzqΣp ` Iq´1Σ1{2

p z1

´
1

n
EtrrpEm̃pzqΣp ` Iq´1ΣppΣ̄ ´ zIq´2s

ı

` Eβ̄1pzq

” 1

n
zT1 Σ

T
p pΣ̄p1q ´ zIq´1

! d

dz
pEm̃pzqΣp ` Iq´1

)

Σ1{2
p z1

´
1

n
Etrr

! d

dz
pEm̃pzqΣp ` Iq´1

)

ΣppΣ̄ ´ zIq´1s

ı

“ d15 ` d16 ` d17, say.

Follow analogous lines as those in Subsection S.3.2, Subsection S.3.3 and Section S.4, we
can show supzPC`

?
nr|d15| ` |d16| ` |d17|s “ op1q. Details are omitted.

Bai and Silverstein (2004, (4.12)) indicates

Em̃pzq ´ m0
ppzq

“ ´m0
ppzqAnpzq

”

1 ´ γnEm̃pzqm0
ppzq

ˆ
τ2dFΣppτq

p1 ` τEm̃pzqqp1 ` τm0
ppzqq

ı´1

.

It is also claimed that the denominator on the right-hand side is bounded away from
zero. Take differentiation on both sides,

E
d

dz
m̃pzq ´

d

dz
m0

ppzq

“ ´

” d

dz
m0

ppzq

ı

Anpzq

”

1 ´ γnEm̃pzqm0
ppzq

ˆ
τ2dFΣppτq

p1 ` τEm̃pzqqp1 ` τm0
ppzqq

ı´1

´ m0
ppzq

” d

dz
Anpzq

ı”

1 ´ γnEm̃pzqm0
ppzq

ˆ
τ2dFΣppτq

p1 ` τEm̃pzqqp1 ` τm0
ppzqq

ı´1
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´ m0
ppzqAnpzq

d

dz

”

1 ´ γnEm̃pzqm0
ppzq

ˆ
τ2dFΣppτq

p1 ` τEm̃pzqqp1 ` τm0
ppzqq

ı´1

.

It follows that Em̃pzq ´ m0
ppzq “ opn´1{2q uniformly on C`.

The proof of Lemma 2.2 is complete.

S.6. Truncation of random variables
In previous sections, we proved the asymptotics of various objects with the variable
truncation step. To complete the technical support, we need to verify the truncation step
does not change the weak limit of the objects.

Recall
zij “

z̆ij1p|z̆ij | ď εnn
1{2q ´ Ez̆ij1p|z̆ij | ď εnn

1{2q

tErz̆ij1p|z̆ij | ď εnn1{2q ´ Ez̆ij1p|z̆ij | ď εnn1{2qs2u1{2
.

We define Z̆ and Σ̆p by copying the definition of Z and pΣp, but with Z replaced by Z̆.
Similarly, m̆n,ppzq and m̆1

n,ppzq are the counterparts of mn,ppzq and m1
n,ppzq.

Specifically, to verify that Theorem A.1 still holds without the variable truncation, we
need to prove the following lemma.

Lemma S.3 For any fixed α and η,

sup
zPC`

n´1{2
ˇ

ˇ

ˇ
αTQT

nZ
TΣT {2

p p pΣp ´ zIq´1Σ1{2
p ZQnη

´ αTQT
n Z̆

TΣT {2
p pΣ̆p ´ zIq´1Σ1{2

p Z̆Qnη
ˇ

ˇ

ˇ

P
ÝÑ 0.

Secondly, to verify that Theorem 2.3 still holds without the variable truncation, we
need to show (A.9) and (A.10) still hold without the variable truncation. It suffices to
show the following lemma.

Lemma S.4

sup
zPC`

›

›

›
QT

n Z̆
TΣT {2

p pΣ̆p ´ zIq´1BCT´1{2
n

´ QT
nZ

TΣT {2
p p pΣp ´ zIq´1BCT´1{2

n

›

›

›

2

P
ÝÑ 0,

sup
zPC`

?
n

›

›

›
T´1{2
n CTBT pΣ̆p ´ zIq´1BCT´1{2

n

´ T´1{2
n CTBT p pΣp ´ zIq´1BCT´1{2

n

›

›

›

2

P
ÝÑ 0.

Lastly, to verify Lemma 2.2 under C1, we need to show the following lemma.

Lemma S.5

sup
zPC`

?
n|mn,ppzq ´ m̆n,ppzq|

P
ÝÑ 0,

sup
zPC`

?
n|m1

n,ppzq ´ m̆1
n,ppzq|

P
ÝÑ 0.
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In the following, we shall only prove Lemma S.3. The other two lemmas can be proved
using analogous lines.

By Yin, Bai and Krishnaiah (1988),

λmaxpΣ̆pq ď lim sup
p

λmaxpΣpqλmaxp
1

n
ZZT q

a.s.
ÝÑ lim sup

p
λmaxpΣpqp1 `

?
γq2.

Together with Lemma A.1, we only need to consider the case λmaxpΣ̆pq ă D and
λmaxp pΣpq ă D for a constant D such that p1 `

?
γq2 lim sup

pÑ8
λmaxpΣpq ă D ă u. It

follows, under this event,

sup
zPC

}p pΣp ´ zIq´1}2 ď pu ´ Dq´1 ` |u|´1,

sup
zPC

}pΣ̆p ´ zIq´1}2 ď pu ´ Dq´1 ` |u|´1.

n´1{2αTQT
nZ

TΣT {2
p p pΣp ´ zIq´1Σ1{2

p ZQnη

´ αTQT
n Z̆

TΣT {2
p pΣ̆p ´ zIq´1Σ1{2

p Z̆Qnη

“ n´1{2αTQT
n pZ ´ Z̆qTΣT {2

p p pΣp ´ zIq´1Σ1{2
p ZQnη

` n´1{2αTQT
n Z̆

TΣT {2
p rp pΣp ´ zIq´1 ´ pΣ̆p ´ zIq´1sΣ1{2

p ZQnη

` n´1{2αTQT
n Z̆

TΣT {2
p pΣ̆p ´ zIq´1Σ1{2

p pZ ´ Z̆qQnη

“ d18 ` d19 ` d20, say.

Therefore, we can find a constant K sufficiently large such that

|d18| ď n´1{2K}αTQT
n pZ ´ Z̆qT }2}ZQnη}2.

By Lemma S.15, n´1{2}ZQnη}2 “ Opp1q. We next show

}pZ ´ Z̆qQnα}2
P

ÝÑ 0.

Since

EαTQT
n pZ ´ Z̆qT pZ ´ Z̆qQnα

“ E
N
ÿ

i“1

N
ÿ

j“1

rQnαsirQnαsj

p
ÿ

k“1

pzik ´ z̆ikqpzjk ´ z̆jkq “ }α}2pEpzij ´ z̆ijq2.

z̆ij ´ zij “
z̆ij1p|z̆ij | ą εnn

1{2q ´ Ez̆ij1p|z̆ij | ą εnn
1{2q

tErz̆ij1p|z̆ij | ď εnn1{2q ´ Ez̆ij1p|z̆ij | ď εnn1{2qs2u1{2

` z̆ij

”

1 ´

!

E
”

z̆ij1p|z̆ij | ď εnn
1{2q ´ Ez̆ij1p|z̆ij | ď εnn

1{2q

ı2)´1{2ı

.
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We only need to show

Eprz̆ij1p|z̆ij | ą εnn
1{2q ´ Ez̆ij1p|z̆ij | ą εnn

1{2qs2 ÝÑ 0,

p1{2
”

1 ´

!

E
”

z̆ij1p|z̆ij | ď εnn
1{2q ´ Ez̆ij1p|z̆ij | ď εnn

1{2q

ı2)´1{2ı

ÝÑ 0.

Note, εn is such that εn Ñ 0 and ε´4
n Ez̆4ij1p|z̆ij | ě εnn

1{2q Ñ 0. For the first line above,
we have

Eprz̆ij1p|z̆ij | ą εnn
1{2q ´ Ez̆ij1p|z̆ij | ą εnn

1{2qs2 ď 2Epz̆2ij1p|z̆ij | ą εnn
1{2q

ď 2γnε
´2
n Ez̆4ij1p|z̆ij | ą εnn

1{2q ÝÑ 0.

For the second line, since p1{2p1 ´ 1{
?
xq “ p1{2px ´ 1q{p

?
x ` xq, we only need to show

p
”

1 ´ Erz̆ij1p|z̆ij | ď εnn
1{2q ´ Ez̆ij1p|z̆ij | ď εnn

1{2qs2
ı

ÝÑ 0.

1 ´ E
”

z̆ij1p|z̆ij | ď εnn
1{2q ´ Ez̆ij1p|z̆ij | ď εnn

1{2q

ı2

“ Ez̆2ij ´ Ez̆2ij1p|z̆ij | ď εnn
1{2q ` tEz̆ij1p|z̆ij | ď εnn

1{2qu2

“ Ez̆2ij1p|z̆ij | ą εnn
1{2q ` rEz̆ij1p|z̆ij | ą εnn

1{2qs2

ď 2Ez̆2ij1p|z̆ij | ą εnn
1{2q ď 2ε´2

n n´1Ez̆4ij1p|z̆ij | ą εnn
1{2q “ opp´1q.

Therefore, |d18|
P

ÝÑ 0.

d19 “ n´1{2αTQT
n Z̆

TΣT {2
p rp pΣp ´ zIq´1 ´ pΣ̆p ´ zIq´1sΣ1{2

p ZQnη

“ n´1{2αTQT
n Z̆

TΣT {2
p p pΣp ´ zIq´1rΣ̆p ´ pΣpspΣ̆p ´ zIq´1Σ1{2

p ZQnη.

It is easy to check that Lemma S.15 still holds for Z̆ when m “ 2. We have

n´1EαTQT
n Z̆

T Z̆Qnα “ Op1q.

Thus, we only need to show,

n1{2}Σ̆p ´ pΣp}2 ď n´1{2}Z ´ Z̆}2p}Z}2 ` }Z̆}2q
P

ÝÑ 0. (S.6.1)

Since n´1{2}Z} and n´1{2}Z̆} are Opp1q (Yin, Bai and Krishnaiah, 1988), we only need
to show

}Z̆ ´ Z}2
P

ÝÑ 0.

Z̆ ´ Z “

”

1 ´

!

E
”

z̆ij1p|z̆ij | ď εnn
1{2q ´ Ez̆ij1p|z̆ij | ď εnn

1{2q

ı2)´1{2ı

Z̆

` tErz̆ij1p|z̆ij | ď εnn
1{2q ´ Ez̆ij1p|z̆ij | ď εnn

1{2qs2u´1{2F,
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where F is a matrix with the pi, jq-th entry being z̆ij1p|z̆ij | ą εnn
1{2q ´ Ez̆ij1p|z̆ij | ą

εnn
1{2q. It remains to show }F}2

P
ÝÑ 0.

Note, F has i.i.d. entries with mean 0 and variance

Erz̆ij1p|z̆ij | ą εnn
1{2q ´ Ez̆ij1p|z̆ij | ą εnn

1{2qs2 “ opp´1q.

Due to the previous arguments. Again using results in Yin, Bai and Krishnaiah (1988),
almost surely,

”

Erz̆ij1p|z̆ij | ą εnn
1{2q ´ Ez̆ij1p|z̆ij | ą εnn

1{2qs2
ı´1{2

n´1{2}F}2 “ Opp1q.

Therefore, }F}2
P

ÝÑ 0.
As for d20, the argument for d18 works, since n´1{2}αTQT

n Z̆
T }2 “ Opp1q also holds. It

completes the proof of Lemma S.3.

Weak limits remain unchanged after process smoothing Lemma S.3 implies Lemma
A.4 also holds when Z satisfies C1, Now, re-define ξnpz, α, βq with Z replaced by Z̆.
When λmaxpΣ̆pq ă u,

ˇ

ˇ

ˇ

˛
C
fpzqpξnpz, α, ηqdz ´

˛
C
fpzqξnpz, α, ηqdz

ˇ

ˇ

ˇ
(S.6.2)

ď Kρnn
´1{2}Z̆Z̆T }2}α}2}η}2p|u ´ λmaxpΣ̆pq|´1 ` |u´1|q.

The right-hand side above converges to 0 in probability since ρnn
1{2 Ñ 0. Therefore,

under C1,
´1

2πi

˛
C
fpzqξnpz, α, ηqdz ´ n1{2Ωpf, γqαT η

D
ÝÑ N p0, r}α}22}η}22 ` pαT ηq2s∆pf, γqq.

When λmaxpΣ̆pq ă u,

n´1{2αTV T
n UT

n Z̆TΣT {2
p fpΣ̆pqΣ1{2

p Z̆UnVnη

“
´1

2πi

˛
C
fpzqn´1{2αTV T

n UT
n Z̆TΣT {2

p pΣ̆p ´ zIq´1Σ1{2
p Z̆UnVnηdz.

Therefore, for arbitrary α and η,
”?

nαMpfqη ´ n1{2Ωpf, γqαT η
ı

ùñ N p0, r}α}22}η}22 ` pαT ηq2s∆pf, γqq.

S.7. Technical lemmas
There are a collection of lemmas built under (A.7). Proofs of these lemmas are omitted.
Similar work exists literature. See for example (3.10)- (3.14) of Pan and Zhou (2011).
Recall the notation list in Section S.3.
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Lemma S.6 (Woodbury formula) The following identity holds

pA ` UCV q´1 “ A´1 ´ A´1UpC´1 ` V A´1Uq´1V A´1

for matrices A,U,C, V of conformable sizes and assuming all inverse operations are well-
defined.

Lemma S.7 (Fan (1951)) Let A and C be two p ˆ n complex matrices. Then, for any
nonnegative integers i and j, we have

si`j`1pA ` Cq ď si`1pAq ` sj`1pCq,

where sip¨q is the i-th largest singular value of a matrix.

Lemma S.8 (Burkholder) Let tYiu be a complex martingale difference sequence with
respect to the increasing σ-field tσiu. Then for m ě 2

E
ˇ

ˇ

ˇ

ÿ

i

Yi

ˇ

ˇ

ˇ

m

ď KmEp
ÿ

i

Ep|Yi|
2 | σi´1qqm{2 ` KmEp

ÿ

i

|Yi|
mq.

Lemma S.9 (Lemma 2.7 of Bai and Silverstein (1998)) Let Y “ pY1, . . . , YpqT , where
Yi’s are i.i.d. real r.v.’s with mean 0 and variance 1. Let B “ pbijqpˆp, a deterministic
complex matrix. Then for any m ě 2, we have

E|YTBY ´ trB|m ď KmpEY 4
1 trBB˚qm{2 ` KmEY 2m

1 trrpBB˚qm{2s,

where B˚ denotes the complex conjugate transpose of B, and K is a constant only de-
pending on m.

Lemma S.10 ((3.4) of Bai and Silverstein (1998)) For any z “ u ` iv with v ą 0,

}Apzq}2 ď
}Σp}

v
, |β1pzq| ď

|z|

v
, |βtr

1 pzq| ď
|z|

v
.

Lemma S.11 (Lemma 2.10 of Bai and Silverstein (1998)) For any matrix D and z “

u ` iv with v ą 0,
ˇ

ˇ

ˇ
trtApzqD ´ AjpzqDu

ˇ

ˇ

ˇ
ď

}DΣp}2

v
.

Lemma S.12 For m ě 2 and any fixed z with non-zero imaginary part,

n´mE
ˇ

ˇ

ˇ
trApzq ´ EtrApzq

ˇ

ˇ

ˇ

m

“ Opn´m{2q.

Lemma S.13 For a sequence of deterministic matrices D such that }D}2 ă 8, m ě 2,

n´mE
ˇ

ˇ

ˇ
zT1 Dz1 ´ trpDq

ˇ

ˇ

ˇ

m

ď Kmn´m
!

rtrpDD˚qsm{2 ` ε2m´4
n nm´2trrpDD˚qm{2s

)

ď Km}D}m2 ε2m´4
n n´1

for some constant Km.
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Lemma S.14 For sequences of deterministic matrices D and G such that }D}2 ă 8

and }G}2 ă 8, for m ě 2,

n´mE
ˇ

ˇ

ˇ
zT1 Deie

T
j Gz1

ˇ

ˇ

ˇ

m

ď Km}D}m2 }G}m2 rε2m´4
n n´2 ` n´ms “ Opn´2ε2m´4

n q,

for some constant Km.

Lemma S.15 For a sequence of deterministic matrices D such that }D}2 ă 8 and a
sequence of vector u such that lim supnÑ8 n}u}max ď Kmax ă 8,

E|uTZTDZu|m ď KmK2m
max}D}m2 ,

for m ě 2 and some constant Km ą 0.

Lemma S.16 For a sequence of deterministic matrices D such that }D}2 ă 8 and a
sequence of vector u such that lim supn Ñ 8n}u}max ď Kmax ă 8,

E
ˇ

ˇ

ˇ
zT1 DZ1u

ˇ

ˇ

ˇ

m

ď KmKm
max}D}m2 nm{2´2εm´4

n ,

for m ě 4 and some constant Km ą 0.

Lemma S.17 For a sequence of deterministic matrices D such that }D}2 ă 8,

E
ˇ

ˇzT1 Dz2
ˇ

ˇ

m
ď Km}D}m2 nm´2εm´4

n ,

for m ě 4 and some constant Km ą 0.

Lemma S.18 For sequences of deterministic matrices D1, . . . ,Dm, G1, . . . ,Gs, and J
such that }Dj}2 ă 8, }Gj}2 ă 8, and }J}2 ă 8, and a sequence of vector u such that
lim supnÑ8 n}u}max ď Kmax ă 8,

E
ˇ

ˇ

ˇ

m
ź

i“1

1

n
zT1 Diz1

s
ź

j“1

1

n
pzT1 Gjz1 ´ trGjqpzT1 JZ1uqt

ˇ

ˇ

ˇ

ď Km,s,t

m
ź

i“1

}Di}2

s
ź

j“1

}Gj}}J}t2Kt
maxn

´1{2εmaxps´2,0q
n ,

where m ě 0, s ě 1, 0 ď t ď 2 and some constant Km,s,t ą 0.

Lemma S.19 For a vector r and deterministic matrices D “ pdijq and G,

ErpzT1 Dz1 ´ trDqzT1 Grs “ Ez311
p

ÿ

i“1

diie
T
i Gr,

where ei is the canonical vector with the ith entry 1.

Lemma S.20 For deterministic matrices D “ pdijq and G “ pgijq,

ErpzT1 Dz1 ´ trDqpzT1 Gz1 ´ trGqs “ |Ez211|2trDGT ` trDG ` pEz411

´ |Ez211|2 ´ 2q

p
ÿ

i“1

diigii.
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S.8. Additional simulation studies
Figure S.8.1 – Figure S.8.12 display additional size-adjusted power curves.
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Figure S.8.1: Size-adjusted power with Σ “ Σden, k “ 5. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. LHcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LHridge (black, dashed) and LHhigh (blue, dotted-
dashed) with t̃ “ p1, 0, 0q.
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Figure S.8.2: Size-adjusted power with Σ “ Σden, k “ 3. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. BNPcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); BNPridge (black, dashed) and BNPhigh (blue,
dotted-dashed) with t̃ “ p0, 1, 0q.
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Figure S.8.3: Size-adjusted power with Σ “ Σden, k “ 5. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. LRcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LRridge (black, dashed) and LRhigh (blue, dotted-
dashed) with t̃ “ p0, 0, 1q.
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Figure S.8.4: Size-adjusted power with Σ “ Σtoep, k “ 3. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. LHcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LHridge (black, dashed) and LHhigh (blue, dotted-
dashed) with t̃ “ p1, 0, 0q.
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Figure S.8.5: Size-adjusted power with Σ “ Σtoep, k “ 5. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. BNPcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); BNPridge (black, dashed) and BNPhigh (blue,
dotted-dashed) with t̃ “ p0, 1, 0q.
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Figure S.8.6: Size-adjusted power with Σ “ Σtoep, k “ 3. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. LRcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LRridge (black, dashed) and LRhigh (blue, dotted-
dashed) with t̃ “ p0, 0, 1q.
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Figure S.8.7: Size-adjusted power with Σ “ Σdis, k “ 5. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. LHcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LHridge (black, dashed) and LHhigh (blue, dotted-
dashed) with t̃ “ p1, 0, 0q.
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Figure S.8.8: Size-adjusted power with Σ “ Σdis, k “ 3. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. BNPcomp (red, solid);
ZGZ (green, solid); oracle CX (purple, solid); BNPridge (black, dashed) and BNPhigh

(blue, dotted-dashed) with t̃ “ p0, 1, 0q.
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Figure S.8.9: Size-adjusted power with Σ “ Σdis, k “ 5. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. LRcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LRridge (black, dashed) and LRhigh (blue, dotted-
dashed) with t̃ “ p0, 0, 1q.
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Figure S.8.10: Size-adjusted power with Σ “ Ip, k “ 3. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. LHcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LHridge (black, dashed) and LHhigh (blue, dotted-
dashed) with t̃ “ p1, 0, 0q.
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Figure S.8.11: Size-adjusted power with Σ “ Ip, k “ 5. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. BNPcomp (red, solid);
ZGZ (green, solid); oracle CX (purple, solid); BNPridge (black, dashed) and BNPhigh

(blue, dotted-dashed) with t̃ “ p0, 1, 0q.
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Figure S.8.12: Size-adjusted power with Σ “ Ip, k “ 3. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. LRcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LRridge (black, dashed) and LRhigh (blue, dotted-
dashed) with t̃ “ p0, 0, 1q.
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S.9. Nominal power curves
Figure S.9.1–Figure S.9.3 are counterparts of Figure 5.1–Figure 5.3 in the manuscript but
with asymptotic (approximate) cut-off values. We identify that the difference between
them and the size-adjusted power curves are negligible.
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Figure S.9.1: Empirical power with Σ “ Σden, k “ 5. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. BNPcomp (red, solid);
ZGZ (green, solid); oracle CX (purple, solid); BNPridge (black, dashed) and BNPhigh

(blue, dotted-dashed) with t̃ “ p1, 0, 0q.
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Figure S.9.2: Empirical power with Σ “ Σden, k “ 5. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. LHcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LHridge (black, dashed) and LHhigh (blue, dotted-
dashed) with t̃ “ p0, 0, 1q.
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Figure S.9.3: Empirical power with Σ “ Σtoep, k “ 3. Rows (top to bottom): B “

Dense and Sparse; Columns (left to right): p “ 150, 600, 3000. LRcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LRridge (black, dashed) and LRhigh (blue, dotted-
dashed) with t̃ “ p0, 1, 0q.
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