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We are interested in testing general linear hypotheses in a high-dimensional multivariate linear
regression model. The framework includes many well-studied problems such as two-sample tests
for equality of population means, MANOVA and others as special cases. A family of rotation-
invariant tests is proposed that involves a flexible spectral shrinkage scheme applied to the
sample error covariance matrix. The asymptotic normality of the test statistic under the null
hypothesis is derived in the setting where dimensionality is comparable to sample sizes, assuming
the existence of certain moments for the observations. The asymptotic power of the proposed
test is studied under various local alternatives. The power characteristics are then utilized to
propose a data-driven selection of the spectral shrinkage function. As an illustration of the
general theory, we construct a family of tests involving ridge-type regularization and suggest
possible extensions to more complex regularizers. A simulation study is carried out to examine

the numerical performance of the proposed tests.

Keywords: General linear hypothesis, Local alternatives, Ridge shrinkage, Random matrix the-
ory, Spectral shrinkage.

1. Introduction

In multivariate analysis, one of the fundamental inferential problems is to test a hy-
pothesis involving a linear transformation of regression coefficients under a linear model.
Suppose Y is a p x N matrix of observations modeled as

Y = BX +%/°Z , (1.1)

where (i) B is a p x k matrix of regression coefficients; (ii) X is a k x N design matrix
of rank k; (iii) Z is a p x N matrix with i.i.d. entries having zero mean and unit variance;
and (iv) X,, a p x p nonnegative definite matrix, is the population covariance matrix

of the errors, with E,l,/Q a “square-root” of ¥, so that X, = 2117/2(211)/2);,«. General linear
hypotheses involving the linear model (1.1) are of the form
Hy: BC=0 VS. H,: BC #0, (1.2)
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for an arbitrary k x g “constraints matrix” C, subject to the requirement that BC' is
estimable. Without loss of generality, C is taken to be of rank ¢. Throughout, we assume
that ¢ and k are fixed, even as observation dimension p and sample size N increase to
infinity. Henceforth, n = N — k is used to denote the effective sample size, which is also
the degree of freedom associated with the sample error covariance matrix.

With various choices of X and C, the testing formulation incorporates many hypothe-
ses of interest. For example, multivariate analysis of variance (MANOVA) is a special
case. When the sample size N is substantially larger than the dimension p of the obser-
vations, this problem is well-studied. Anderson (1958) and Muirhead (2009) are among
standard references. Various classical inferential procedures involve the matrices

1

S, =-Y(I - XT(xxT)'x)YT, (1.3)
n

H, Ly xmxxTyeet (xxTy o) et (x xT) T x Y, (1.4)
n

so that f}p is the residual covariance of the full model, an estimator of X,, while ﬁp
is the hypothesis sums of squares and cross products matrix, scaled by n~!. In a one-
way MANOVA set-up, X, and H,, are, respectively, the within-group and between-group
sums of squares and products matrices, scaled by n~1. In the rest of the paper, we shall
refer to 3, as the sample covariance matrix.

The testing problem (1.2) is well-studied in the classical multivariate analysis litera-
ture. Three standard test procedures are the likelihood ratio test (LR), Lawley—Hotelling
trace test (LH) and Bartlett—-Nanda—Pillai trace (BNP) test. They are called invariant
tests, since under Gaussianity the null distributions of the test statistics are invariant
with respect to X,. One common feature is that all test statistics are linear functionals
of the spectrum of Iflpﬁlj L. Since this matrix is asymmetric, for convenience, a standard
transformation is applied, giving the expressions of the invariant tests as follows. Define

Q. = XT(xx")~te[ct(xxTy~tc~12, (1.5)
1 ~
M, = gQ,TLYTE;WQR.

The matrix Q,Q7 is the “hat matrix” of the reduced model under the null hypothesis.

n
Note that the non-zero eigenvalues of HPE;1 = n‘lYQanYTﬁljl are the same as

those of Mg. The test statistics for the LR, LH and BNP tests can be expressed as

q
Ty™ = log{l + Ai(Mo)},
i=1
q
Tyt = > Ai(My),
=1

TgBNP = Z )\l(Mo)/{l + )\z(MO)}

i=1
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The symbol A; () denotes the i-th largest eigenvalue of a symmetric matrix, further using
the convention that Amax(-) and Amin(-) indicate the largest and smallest eigenvalue,
respectively.

In contemporary statistical research and applications, high-dimensional data whose
dimension is at least comparable to the sample size is ubiquitous. In this paper, focus
is on the interesting boundary case when dimension and sample sizes are comparable.
Primarily due to inconsistency of conventional estimators of model parameters — such as
3, —, classical test procedures for the hypothesis (1.2) — such as the LR, LH and BNP
tests — perform poorly in such settings. When the dimension p is larger than the degree
of freedom 7, the invariant tests are not even well-defined because X, is singular. Even
when p is strictly less than n, but the ratio v, = p/n is close to 1, these tests are known
to have poor power behavior. Asymptotic results when ~,, — v € (0, 1) were obtained in
Fujikoshi, Himeno and Wakaki (2004) under Gaussianity of the populations, and more
recently in Bai, Choi and Fujikoshi (2017) under more general settings that only require
the existence of certain moments.

Pioneering work on modifying the classical solutions in high dimension is in Bai et al.
(2013), who corrected the scaling of the LR statistic when n > p but p, k and ¢ are propor-
tional to n. The corrected LR statistic was shown to have significantly more power than
its classical counterpart. In contrast, in this paper, we focus on the setting where k and ¢
are fixed even as n,p — o so that v, = p/n — v € (0,00). In the multivariate regression
problem, this corresponds to a situation where the response is high-dimensional, while the
predictor is finite-dimensional. In the MANOVA problem, this framework corresponds to
high-dimensional observations belonging to one of a finite number of populations.

To the best of our knowledge, when n < p, the linear hypothesis testing problem has
been studied in depth only for specific submodels of (1.1), primarily for the important
case of two-sample tests for equality of population means. For the latter tests, a widely
used idea is to construct modified statistics based on replacing 3 ! with an appropri-
ate substitute. This approach was pioneered in Bai and Saranadasa (1996) and further
developed in Chen and Qin (2010). Various extensions to one-way MANOVA (Srivas-
tava and Fujikoshi, 2006; Yamada and Himeno, 2015; Srivastava and Fujikoshi, 2006; Hu
et al., 2017) and a general multi-sample Behrens-Fisher problem under heteroscedastic-
ity (Zhou, Guo and Zhang, 2017) exist. Other notable works for the two-sample problem
include Biswas and Ghosh (2014); Chang et al. (2017); Chen, Li and Zhong (2014);
Guo and Chen (2016); Lopes, Jacob and Wainwright (2011); Srivastava, Li and Ruppert
(2016); Wang, Peng and Li (2015). A second approach aims to regularize the matrix EAJP
to address the issue of its near-singularity in high dimensions; see Chen et al. (2011) and
Li et al. (2016) for ridge-type penalties in two-sample settings. Finally, another alterna-
tive line of attack consists of exploiting sparsity; see Cai, Liu and Xia (2014); Cai and
Xia (2014).

In this paper, we seek to regularize the spectrum of f)p by flexible shrinkage functions.
For a symmetric p X p matrix A and a function g(-) on R, define

9(A) = Radiag(g(M(A4)),. .., 9(A\p(A) RY,
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where R, is the matrix of eigenvectors associated with the ordered eigenvalues of A.
Now, consider any real-valued function f(-) on R that is analytic over a specific domain
associated with the limiting behavior of the eigenvalues of ZA]p, as elaborated in Section 2.
The proposed statistics are functionals of eigenvalues of the regularized quadratic forms

M(f) = - QIY" F(5,)Y Q.

Specifically, we propose regularized versions of LR, LH and BNP test criteria, respectively,
namely

TUR(fF) = > log{l + \i(M(f))}.

1=1
TY(f) = Z Ai(M(f)),
TENP(f) = _Z X (M)A + Mi(M(f)}

These test statistics are designed to capture possible departures from the null hypothesis,

when ¥, is replaced by f(3,), while suitable choices of the regularizer f allow for getting

around the problem of singularity or near-singularity when p is comparable to n.
Notice that M(f) has the same non-zero eigenvalues as f(X,)H,. Thus, the proposed

test family is a generalization of the classical statistics based on X7 'H,. Importantly,
M(f) — and consequently the proposed statistics — is rotation-invariant, which means if
a linear transformation is applied to the observations with an arbitrary orthogonal matrix,
the statistic remains unchanged. It is a desirable property when not much additional
knowledge about ¥, and BC is available. It should be noted that the two-sample mean
tests by Bai and Saranadasa (1996) and Li et al. (2016), together with their generalization
to MANOVA, are special cases of the proposed family with f(z) = 1 and f(x) = 1/(z+),
A > 0, respectively.

The present work builds on the work by Li et al. (2016). The theoretical analysis also
involves an extension of the analytical framework adopted by Pan and Zhou (2011) in
their study of the asymptotic behavior of Hotelling’s T2 statistic for non-Gaussian ob-
servations. However, the current work goes well beyond the existing literature in several
aspects. We highlight these as the key contributions of this manuscript: (a) We propose
new families of rotation-invariant tests for general linear hypotheses for multivariate re-
gression problems involving high-dimensional response and fixed-dimensional predictor
variables that incorporate a flexible regularization scheme to account for the dimension-
ality of the observations growing proportional to the sample size. (b) Unlike Li et al.
(2016), who assumed sub-Gaussianity, here only the existence of finite fourth moments
of the observations is required. (c¢) Unlike Pan and Zhou (2011), who assumed %, = I,,,
Y, is allowed to be fairly arbitrary and subjected only to some standard conditions on
the limiting behavior of its spectrum. (d) We carry out a detailed analysis of the power
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characteristics of the proposed tests. The proposal of a class of local alternatives enables a
clear interpretation of the contributions of different parameters in the performance of the
test. () We develop a data-driven test procedure based on the principle of maximizing
asymptotic power under appropriate local alternatives. This principle leads to the defini-
tion of a composite test that combines the optimal tests associated with a set of different
kinds of local alternatives. The latter formulation is an extension of the data-adaptive
test procedure designed by Li et al. (2016) for the two-sample testing problem.

The rest of the paper is organized as follows. Section 2 introduces the asymptotics
of the proposed test family both under the null hypothesis and under a class of local
alternatives. Using these local alternatives, in Section 3 a data-driven shrinkage selec-
tion methodology based on maximizing asymptotic power is developed. In Section 4, an
application of the asymptotic theory and the shrinkage selection method is given for
the ridge-regularization family. An extension of ridge-regularization to higher orders is
also discussed. The results of a simulation study are reported in Section 5. Section 6
contains additional discussion. In the Appendix, proof outlines of the main theorems are
presented, while technical details are collected in the Supplementary Material.

2. Asymptotic theory

After giving necessary preliminaries on Random Matriz Theory (RMT), the asymptotic
theory of the proposed tests under the null hypothesis and under various local alternative
models is presented in this section. For any p x p symmetric matrix A, define the Empirical
Spectral Distribution (ESD) F4 of A by

1 p
FA(r) = 5 DL (ay<ry-

i=1

In the following, |- ||max stands for the maximum absolute value of the entries of a matrix.
The following assumptions are employed.

C1 (Moment conditions) The entries z;; of Z are i.i.d. such that E[z;;] = 0, E[2;] = 1,
E[zf]] < o0;

C2 (High-dimensional setting) k and ¢ are fixed, while p, n — oo such that ~,, = p/n —
7 € (0,00) and v/n|y — 7| = 0;

C3 (Boundedness of spectral norm) 3, is non-negative definite and lim sup,, Amax(3p) <
05

C4 (Asymptotic stability of ESD) There exists a distribution L* with compact support
in [0,00), non-degenerate at zero, such that /nDy (F>», L¥) — 0, as n,p — 0,
where Dy (Fy, F») denotes the Wasserstein distance between distributions F; and
F5, defined as

Dy (F1, Fy) = s?p{) / FdF, — / dez‘; Fis 1—Lipschitz}.
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C5 (Asymptotically full rank) X is of full rank and n=! X X7 converges to a positive
definite k& x k& matrix. Moreover, limsup,,_, . | X [ max < 0;

C6 (Asymptotically estimable) liminf,, o Amin(CT (n 71X XT)~1C) > 0.
2.1. Preliminaries on random matrix theory

Recall that the Stieltjes transform mg(-) of any function G of bounded variation on R
is defined by

m(;(z)—/OO dG(a:)7 zeCt = {u+iv:v>0}.

o T—Z
Minor modifications of a standard RMT result imply that, under Conditions C1-C86,

the ESD F=» converges almost surely to a nonrandom distribution F* at all points of
continuity of F'°. This limit is determined in such a way that for any z € C*, the Stieltjes
transform m(-) = mpe(-) of F is the unique solution in C* of the equation

B dL*(1)
= [ @ 1)

Equation (2.1) is often referred to as the Marcenko—Pastur equation. Moreover, pointwise
almost surely for z € C*, m_s (z) converges to mp=(z). The convergence holds even
when z € R_ (negative reals) with a smooth extension of mp~ to R_. Readers may refer
to Bai and Silverstein (2004) and Paul and Aue (2014) for more details. From now on,
for notational simplicity, we shall write mp=(z) as m(z) and write m s (z) as mn ,(z).
Note that 1

My p(z) = ];tr(Ep —zl,)™

and define
O(z,7) = {1l =y —yzm(z)} . (2.2)

It is known that (f)p —zI,)7 !, for any fixed z € C*, has a deterministic equivalent (Bai
and Silverstein (2004); Liu, Aue and Paul (2015); Li et al. (2016)), given by

{07z, 1)%) —2I} 7,
in the sense that for symmetric matrices A bounded in operator norm, as n — o0,
piltr[(ﬁp - zIp)*lA] fpfltr[{@*l(z, M, — ZI}*lA] — 0, with probability 1.

Resolvent and deterministic equivalent will be used frequently in this paper. They will
appear for example as Cauchy kernels in contour integrals in various places.
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2.2. Asymptotics under the null hypothesis

To begin with, for £ > 1, denote by W = [wij]ﬁj:l the Gaussian Orthogonal Ensemble
(GOE) defined by (1) wi; = wjs;; (2) wi; ~ N(0,1), wi; ~ N(0,1/2), i # j; (3) w;;’s
are jointly independent for 1 < i < j < k. Throughout this paper, f(-) is assumed to be
analytic in an open interval containing

X = [0, lmsup Amax(Zp)(1 + /)]

p—0

Let C to be a closed contour enclosing X such that f(-) has a complex extension to the
interior of C. Further use C? to denote C®C = {(z1,22): 71, z2 € C}. The asymptotic null
distribution is determined in the next theorem.

Theorem 2.1 Suppose C1-C6 hold. Under the null hypothesis Hy: BC' = 0,

VR{M(f) = Q(f, )1} = AV2(f,7)W,

where = denotes weak convergence and Q(f,~) and A(f,~) are as follows. With ©(z,~)
defined in (2.2),
—1
Q.7 = 5o P FEO(. ) ~ 1)

For any two analytic functions f1 and fs,
2
A(f1, fasv) = o %2 fi1(z1) f2(z2)6(z1, 22, v)dz1dz2,

and A(f, f,v) is written as A(f,v) for simplicity. The kernel 6(z1,z2,7) is such that

Zl@(zlaf}/) - 22@(1%7) _ 1]

71 — 72

5(113 2277) = 6(1137)6(1257)[

6(171’7) = leiglz(s(Z,227’Y) = @2(2,’7)[% — 1:|

= {1 +zm(2)}0°(z.7) + vz{m(z) + 2m'(2)}0" (2, 7).
The contour integral is taken counter-clockwise.

Using knowledge of the eigenvalues of the GOE leads to the following statement.

Corollary 2.1 Let the conditions of Theorem 2.1 be satisfied. Assume that A(f,~v) >0
and let

~ D )
Ai = ————{(M - Q(f,7)}, =1,...,q
Then, the limiting joint density function of (5\1, ceey S\q) at yp = yo = - -+ = yq is given by

) T -wen(- 35

i<j i=1
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Although without closed forms, Q(f,~) and A(f,~) do not depend on the choice of C
used to compute the contour integral. With the resolvent as kernel M(f) can be expressed
as the integral of R

F@n QYT (3 - 21,) Y Qn

on any contour C, up to a scaling factor. The quadratic form n’ngYT(ZA]p —z1,)7'YQ,
is then shown to concentrate around [©(z,7) — 1]I,, which consequently serves as the

integral kernel in Q(f, ). The kernel 6(z1, z2,7) of A(f,~) is the limit of E[niltr{(f]p —
211p) ' Ep(Bp — 221p) T}

Remark 2.1 Two sufficient conditions for A(f,~v) > 0 are

(1) fgxg >0 forxzeX;

(2) f(x) =0 for xe X, with f(z) # 0 for some x € X, and liminf A\, (X,) > 0.

It would be convenient if Q(f,~) and A(f,~v) had closed forms in order to avoid
computational inefficiencies. Closed forms are available for special cases as shown in the
following lemma.

Lemma 2.1 When f(z,() = (x — £)~! with £ € R™, the contour integrals in Theorem
2.1 have closed forms, namely, for j, ji1, jo =0,1,2,...,

—1 [ & f(z,0) _d(O(y) — 1)
2mi Jo oI (O(z,y) = 1)dz = =0 ’
jl j2 j1+j2
L # O f@1,b) O F @ 8) 50 Vi = SO ),
(2mi)? Jfex  oef: ot o0 o5

The results continue to hold when £ € C\X.

Lemma 2.1 indicates that it is possible to have convenient and accurate estimators of
the asymptotic mean and variance of M(f) under ridge-regularization. The result easily
generalizes to the setting when f(z) is a linear combination of functions of the form
(z — ¢;)71, for any finite collection of ¢;’s. We elaborate on this in Section 4.

To conduct the tests, consistent estimators of Q(f,~v) and A(f,~) are needed.

Lemma 2.2 Let @(z, Yn) and 3(11,22,7,1) be the plug-in estimators of ©(z,~) and 6(z1,
z2,7), with (m(z),v) estimated by (my, p(z),vn). For general f, fi1, f2, we can esti-

mate Q(f,y) and A(f1, fo,) by replacing ©(z,v) and 0(z1,z2,7) with (?)(z,’yn) and
0(z1,22,7n). Denote the resulting estimators by Q(f,vn) and A(f1, fo,vn). Then,

ValQ(f, 7)) — Q1) - 0,
\/mﬁ(fl,f%%) — A(f1, f2,7)] Lo,

where 2> indicates convergence in probability. Again, we write ﬁ(f, fyym) as ﬁ(f, V).
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For the special case of fU)(x,0) = &7 (x —£)~1/ot7, j =0,1,2,... and £ € C\X, using
Lemma 2.1, natural estimators in closed forms are

QFD (2, 0), ) = LOE ) = 1),

ot
~ . . aj1+j222§\(£1 by, )
A(fY9D) (z,01), U2 (2, 02),7,) = RdShe RIS
(fY9 (@, by), £ (2, L2), 7n) o6 o032

In particular, for j,ji,j2 =0,

~

(f(@,0),7m) = O 7n) — 1,
(@, 00), f (@, £2),7n) = 20(£1, Lo, ).
The estimators are consistent, for any fized j and £. Given the eigenvalues of f]p, the
computational complexity of calculating the above estimators is O(p).

Recall the definitions of TR (f), TVH(f) and TBNF(f) from Section 1.
Theorem 2.2 Suppose C1-C6 hold and A(f,v) > 0. Under the null hypothesis Hy:
BC =0,

gy o= VUL QA0 7am 1)  log(1 4 Q(f. 1) =N (0, 1),

qY2AY2(f, )

—_— NG 5
T (f) = m{TLH(f) — QU f, ) =N (0, 1),
- \/ﬁ{l + ﬁ(.ﬁ ’Yn)}Q ﬁ(fa P}/n)
PBNP (. 4 TBNP(py _ M) Y a0 1),
) gAY (f ) { ) L+ Q(f,vn) } 0.0

For any of the three tests, the null hypothesis is rejected at asymptotic level «, if
T(f) > &, where &, is the 1 — a quantile of the standard normal distribution.

>

2.3. Asymptotic power under local alternatives

This subsection deals with the behavior of the proposed family of tests under a host
of local alternatives. We start with deterministic alternatives, a framework commonly
used in the literature to study the asymptotic power of inferential procedures. Next, we
consider a Bayesian framework, using a class of priors that characterize the structure of
the alternatives. Because the results to follow simultaneously hold for TUR(f), TH(f)
and fBNP(f)7 the unifying notation f(f) will be used to refer to each of the test statistics.

2.8.1. Deterministic local alternatives

Consider a sequence of BC such that, as n,p — o0,

VnCTBT{©7(2,7)%, — 2I}'BC — D(z,7) pointwise, (2.3)
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on an open subset of C containing X'.
Observe that YQ,, = BC[CT(n ' XXT)~1C]~Y? + 211,/2ZQ,1 and define

-1
HD.f) = T2 £ D)z | T2, (24

where
T = lim cT(n txxT)~1c. (2.5)

Note that T exists and is non-singular under C5 and C6. If further f(x) > 0 for any
x € X, H(D, f) is non-negative definite.

Theorem 2.3 Suppose C1-C6 and (2.3) hold, and A(f,~) > 0. Then, as n — o0,

Vn H(D, f)
AV2(f,5) AV2(f,5)

Denote the power functions of T (f) at asymptotic level «, conditional on BC| by

{M(f) = Qf, 1) I}=W +

Y(BC. f) = P(T(f) > éu | BO).
The asymptotic behavior of the power functions is described in the following corollary.

Corollary 2.2 Under the assumptions of Theorem 2.3, as n — o0,

tr(H(D, f)) )
) )

T(BC, f) — ‘I’( —&a t g 2A2(f,~

where ® is the standard normal CDEF.

Remark 2.2 Corollary 2.2 indicates the three proposed statistics have identical asymp-
totic powers under the assumed local alternatives. This is because the first-order Taylor
expansions of x, log(1+x) and x/(1+x) coincide at 0. However, the respective empirical
powers may differ considerably for moderate sample sizes.

The following remark provides a sufficient condition under which (2.3) is satisfied.
Denoting the columns of BC' by [u1,. .., tg], it follows that
q

ViCTBTO™ (2,7)5, — 21} BC = V| il {07 (2, 7)%, — 21} 1]

7,j=1

Remark 2.3 (a) Let E,, , denote the eigen-projection associated with A, , = )\m(zZp).
Suppose that there exists a sequence (in p) of mappings [%ij;p]g,j=1 from [0,0)7 to

2 . . .
[0,00)7, satisfying Bij.p(Amp) = pul By ppj, m = 1,....p, and a mapping
[Bijioli j=1 continuous on [0,00)T such that, as p — oo and for 1 <i,j < g,

/|%ij;p(x) - %ij;oo(x”dFZp (z) — 0.
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Then, under C4, it follows that (2.3) holds with D(z,~) = [di;(z,7)]] ;=, and

Bijioo()dL> () Bj.oo(x)dL* (z)
dij(za 7) = (E@_]‘(Z ) — = T —.
) —z o{l =y —yzm(2)} -z
(b) If %y , then (2.3) is Satwﬁ@d if vnulu; — Kij, for some constants K;j,

1<i,j<gq. In thzs case, D(z,7) = (07 (z,7) — )71[’Cm]” 1

2.3.2. Probabilistic local alternatives

While deterministic local alternatives provide useful information, they are somewhat
restrictive for the purpose of a systematic investigation of the power characteristics.
Therefore, probabilistic alternatives are considered in the form of a sequence of prior
distributions for BC. This has the added advantage of providing flexibility for incorpo-
rating structural information about the regression parameters and the constraints matri-
ces. The proposed formulation of probabilistic alternatives can be seen as an extension
of the proposal adopted by Li et al. (2016) in the context of two-sample tests for equal-
ity of means. One challenge associated with formulating meaningful alternatives to the
hypothesis (1.2), when compared to the two-sample testing problem, is that there are
many more plausible ways in which the null hypothesis can be violated. Considering
this, we propose a class of alternatives, that on one hand can incorporate a multitude of
structures of the parameter BC', while on the other hand retains analytical tractability
in terms of providing interpretable expressions for the local asymptotic power.
Assume the following prior model of BC' with separable covariance

BC = n~Vip~2RYST, (2.6)

where V is a p x m stochastic matrix (m > 1 fixed) with independent elements v;; such
that E[v;;] = 0, E[|v45|*] = 1 and max;; E[|v;;]*] < p® for some ¢, € (0,1); Risap x p
deterministic matrix and S is a fixed ¢ x m matrix. Moreover, let |R|2 < K1 < o0 and
suppose there is a nonrandom function h(z,~y) such that, as p — 00, on an open subset
of C containing X,

ptr{(07Y(z,7)%, — zI) 'RRT} — h(z,7) pointwise. (2.7)

Recalling that (©71(z,7)X, — zI)~! is the deterministic equivalent of the resolvent
(f]p —zI)™1, existence of the limit (2.7) also implies that p’ltr{(f)p —zI)7*RRT} con-
verges pointwise in probability to h(z,~). Notice also that p_ltr{(f]p —z)TIRRTY is
the Stieltjes transform of a measure supported on the eigenvalues of ip.

Model (2.6) leads to a fairly broad covariance design for multi-dimensional random
elements, encompassing structures commonly encountered in many application domains,
especially in spatio-temporal statistics. We give some representative examples by consid-
ering various functional forms of the matrix S. Denote by j; the columns of BC and by
V; the columns of V.

Example 2.1 In all that follows j takes valuesin 1,...,¢q
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(a) Independent: p; = n~4p=12RV;

(b) Longitudinal: p; = n~'/4 _1/2R(V1 + Voj+ oo+ Vg™ 1)

(c) Moving average: p; = n~Yp~12R[V\ + 01V]+t 1+ -+ + 6,Vj] for constants
01,...,0;.

Taking the MANOVA problem to illustrate, suppose that the columns of B represent
group mean vectors, and suppose C' is the matrix that determines successive contrasts
among them. Then, p; is the difference between the means of group j and group j +
1. Parts (a)—(c) of Example 2.1 correspond then to pi,..., 1, respectively following
an independent, a longitudinal and a moving average process. The row-wise covariance
structure is assumed to be such that each p; has a covariance matrix proportional to
n~12p~IRRT. The factor n=/2p~! provides the scaling for the tests to have non-trivial
local power.

A sufficient condition that leads to (2.7), similar to Remark 2.3, is to postulate the
existence of functions B, satisfying B,(\;,) = tr{E; ,RRT}, j = 1,...,p, and

/ B (@) — Bg (2) | dF (2) — 0

for some function B, continuous on [0,00), where A; ), is the jth eigenvalue of ¥, and
E; , is the eigen-projection associated with A; ,. Then

B B (z)dL> ()
e = [ o =

(2.8)

Equations (2.7) and (2.8) indicate that h(z,y) effectively captures the distribution of the
total spectral mass of RR” across the spectral coordinates of Yp, also taking into account
the dimensionality effect through the aspect ratio =. Later, we shall discuss specific
classes of the matrices R that lead to analytically tractable expressions for h(z,~), with
the structure of R linking the parameter BC under the alternative through (2.6) to the
structure of XJ,,.

Another important feature of the probabilistic model is that it incorporates both dense
and sparse alternatives through different specifications of the innovation variables v;;. We
consider two special cases.

1. Dense alternative: v;; ~ N'(0,1);
2. Sparse alternative: v;; ~ Gy, for some 1) € (0, 1), where G,, is the discrete probability
distribution assigning mass 1 — p~" to 0 and mass (1/2)p~" to the points +p"/2.

Note that the usual notion of sparsity corresponds to the setting where in addition,
R = I,. More generally, the second specification above formulates a prior model for BC
that is sparse in the coordinate system determined by R. In particular, if RR” is a
polynomial in ¥, (see Section 3.2 for a discussion), BC' can be seen as sparse in the
spectral coordinates of X,.

Theorem 2.4 Suppose that C1-C6 hold and A(f,~) > 0. Also suppose that, under H,,
BC has a prior distribution given by (2.6). Then, the power function of each of the three
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test statistics satisfies

L1 tI‘(SSTTfl) -1

as n — oo, where T is as in (2.5) and L1, indicates Ly -convergence (with respect to the
prior measure of BC').

Remark 2.4 Even if the quantity h,(z,v) = p~tr{(©07(z,7)X, —zI) "'RRT} does not
converge, it can be verified that the difference between the left- and right-hand sides of
(2.9) still converges to zero in Ly if h(z,) is replaced by hy(z,7).

Observe that the matrices R and S decouple in the expression (2.9) for the asymptotic
power. Dependence on the unknown error covariance matrix X, besides AV2(f, v), is
only through the function h(z,v), which incorporates the structure of the matrix RR”.
It is also noticeable that distributional characteristics of the variables v;; do not affect
the asymptotic power. Indeed, the proposed tests have the same local asymptotic power
under both sparse and dense alternatives.

3. Data-driven selection of shrinkage

In this section, we introduce a data-driven procedure to select the “optimal” f from a
parametric family § of shrinkage functions. The strategy is to maximize the local power
function Y(BC, f) over f, given a class of probabilistic local alternatives as in (2.6). In
designing the classes of alternatives, we focus our attention only on the specification of
R. This is because, as the expression (2.9) shows, the dependence on the matrix S is
only through a multiplier involving a “known” matrix T, while the effect of the unknown
covariance ¥, (and its interaction with R) manifests itself through the function h(z,~).
Another reason for focusing on R is that the choice of S is closely related to the specific
type of linear model being considered, while the choice of R is associated with the
structure of the error distribution.

We present some settings of BC for which h(z,v) can be computed explicitly. We
also verify that the standardized test statistic with the data-driven selection of f is still
asymptotically standard normal under suitable conditions. Hence, the Type 1 error rate
of the tests is asymptotically not inflated, although the same data is used for both shrink-
age selection and testing. Lastly, we present a composite test procedure that combines
the optimal tests corresponding to different prior models of BC' and thereby improves
adaptivity to various kinds of alternatives.

3.1. Shrinkage family

Suppose the family of shrinkage functions is such that

%':{fg:£€£},
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(i) £ is a compact subset of R", r € N¥;

(ii) There is a closed, connected subset Z of C such that X = [0, limsup,, Amax(¥,)(1+
\/7)2] c Z, and the third-order partial derivatives of f;, with respect to ¢ are
continuous on L ® Z;

(iii) The gradient V,f, and the Hessian VZf, of f, with respect to ¢ have analytic
extensions to Z for all £ € L;

(iv) infrec A(fe,v) > 0.

Under the probabilistic prior model (2.6) with h(z,v) in (2.7) given, define

= — 771 2Vh(z 7
“(67}177) - 27T7;A1/2(f£,’}’) éfé( )h( 77)d .

Theorem 2.4 suggests that ¢ should be chosen such that E(¢, h, ) is maximized, that is,
Z01’)15 = arg I?G%CX E(év h’a ,Y)

The test with the selected shrinkage will then be the locally most powerful test under
the alternatives specified by (2.6) and (2.7) for any given choice of S. Since Z(¢, h, ) is
continuous with respect to ¢ under condition (i)—(iv), fop exists. Importantly, Z(¢, h, )
does not rely on §. In other words, different column-wise covariance structures of BC
are uniform in terms of selecting the optimal shrinkage. This significantly simplifies the
selection procedure.

Recall that h(z, /) is the limit of p~1tr{(©~!(z,7)X, — zI) "'RRT}. We next present
two possible settings of RRT under which h(z,v) and consequently Z(¢,h,v) can be
accurately estimated:

(1) Suppose RRT is specified. Then, h(z,v) is estimated by ?L(L’yn) = pfltr{(f]p —
zI)7'RRT} and

~

~ —1 ~
Ee,h,n:A—% 2)h(z,vn)dz
(£ 7 vn) A (o) Cfe()( Tn)

is a consistent estimator of Z(f, h,7). As an example of this scenario, assume that
the p components of ;1; admit a natural ordering such that the dependence between
their coordinates is a function of the difference between their indexes. Then we may
set RRT to be a Toeplitz matrix (stationary auto-covariance structure).

(2) Only the spectral mass distribution of RR” in the form of B, described in (2.8)
is specified.

The remainder of this section is devoted to dealing with the second scenario.
3.2. Polynomial alternatives

Even if B, is given, the estimation of h(z,~) is still challenging since it involves the
unknown limiting population spectral distribution L*. In order to estimate h(z,7), it is
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convenient to have it in a closed form. This is feasible if B, is a polynomial, which is true
if RRT is a matrix polynomial in 3. Since any smooth function can be approximated by
polynomials, this formulation is quite flexible and practically beneficial. Assume therefore
that

S
= 4% (3.1)
j=0
where tg,...,ts are pre-specified weights such that Zj‘:o thf) is nonnegative definite.

Under the model,

h(z,7v) = lim 1tr[(@ Yz,7)%, —2I)~ Zt EJ] = Z tipi(z,v),

p—0 P

where the functions p;(z,y) satisfy the recursive formula (see Ledoit and Péché, 2011)

poz) = (@), prale) = O] [PAL ) + 25027

For any j € N, [27dL*(x), and consequently p;j(z,7), can be estimated consistently
(Bai, Chen and Yao, 2010, Lemma 1). Specifically, p’ltr(f]p) is a consistent estimator
of [zdL*(x).

In practice, we restrict to the case s = 2. There are several considerations that guided
this choice of s as stated in Li et al. (2016). First, for s = 2, all quantities involved
can be computed explicitly without requiring knowledge of higher-order moments of the
observations. Also, the corresponding estimating equations for h(z,v) are more stable as
they do not involve higher-order spectral moments. Second, the choice of s = 2 yields
a significant, yet nontrivial, concentration of the prior covariance of pj;, j = 1,...,q,
(that is RR” up to a scaling factor) in the directions of the leading eigenvectors of %,,.
Finally, the choice s = 2 allows for both convex and concave shapes of the spectral mass
distribution B, since the latter becomes a quadratic function.

With s = 2, we estimate po(z,7), p1(z,7), and pa(z,7) by

Po(z,¥n) = M p(2),
P1(z ) = O(z,7m)[1 + 2mn (2)], (3.2)
p2(z,9m) = ©(z,7n) [P t1(Sp) + 201 (2,7 ]

and h(z,v) by

(Z,7n) Z tipi(z,n)-

The algorithm for the data-driven shrlnkage selection is stated next.

Algorithm 3.1 (Data-driven shrinkage selection)
1. Specify prior weights t = (tg,t1,t2). The canonical choices are (1,0,0), (0,1,0),
(0,0,1);
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~ N R
2. Compute h(z,vn) = X5 tjPj(2,Vn);
3. For any ¢ € L, numerically compute the integral

(E,;\l,’}/n) = Z)};'(Zv’)/’rﬂdz;

[1n»

~1
i

4. Select Loy () = argmaxyer é(ﬁ,h,vn).

The behavior of the tests applied with the data-driven shrinkage selection is described
in the following theorem.

Theorem 3.1 Suppose C1-C6 hold and § satisfies conditions (i)-(iv). Then,

(1) SUpges VAIE(C by ) = E(4, 7, 7)) = 0 as n — .

(2) Let £* be any local mazimizer of Z(L, h,~y) in the interior of L. Assume there exists
a neighborhood of £* such that for all feasible points £ € L within the neighborhood,
there exists a constant K > 0 such that

E(6h,y) = E(E*, hyy) < =K — 3. (3-3)

Then, there exists a sequence (L% : n € N) of local mazimizers of (é(é, h, Yn): n€N)
satisfying
VA — 0y = 0p(1) (o). (3.4)

Further, recalling notation in Section 2, under the null hypothesis,

o
AV2(fpse, m)
(8) Let £* be any local maximizer of Z(¢, h,v) on the boundary of L. Assume there exists

a neighborhood of £* such that for all feasible points £ € L within the neighborhood,
there is a constant K' > 0 satisfying

{M(fur) = Qfor, ) g} = W. (3.5)

E( D, y) — (L hyy) < K6 = £ (3.6)

Then, (3.4) and (3.5) still hold.

The two conditions (3.3) and (3.6) ensure that the parameter ¢* is locally identifiable in
a neighborhood of ¢*. In general, the two conditions depend on the structure of L*.

3.3. Combination of prior models

An extensive simulation analysis revealed that there is considerable variation in the shape
of the power functions and the values of £ = (to,1,%2), especially when the condition
number of X, is relatively large. In this subsection, we consider a convenient collection
of priors that are representative of certain structural scenarios. A composite test, called
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fmax, is defined as the maximum of the standardized statistics ZA“( fox) where £¥ is obtained
from Algorithm 3.1 under prior ¢;, i = 1,..., m. The following strategy is applicable to
LR, LH and BNP. We therefore continue to use T'(f) to denote the general test statistic.
In summary, we propose to test the hypothesis by rejecting for large values of the statistic
fmax = I{laNXf(fz* )s
tell ’

where II = {t1,...,tm}, m = 1, is a pre-specified finite class of weights. A simple but
effective choice of II consists of the three canonical weights #; = (1,0,0), £ = (0,1,0),
ts = (0,0,1).

Theorem 3.2 Suppose C1-C6 hold and § satisfies condition (i)-(iv). For each i =
..., m, assume that £}, is a sequence of local mazimizers of the empirical power function

L
a
=

=

(€7,f\L,’Yn) under prior model with weight t; such that
ntA ek, — L2 = Oy(1).
(See (5.4)). Then, under the null hypothesis Hy: BC =0,
(T(f ) T(F,)) = N(0,A4),
where Ay is an m X m matriz with diagonal entries 1 and (i, j)-th off-diagonal entry

A_l/z(féj‘ ) ’Y)A(fézk ) f[j‘ ) V)A_I/Q(flj‘ ’ 7)

Theorem 3.2 shows that fmax has a non-degenerate limiting distribution under Hy. It is
worth mentioning that LR, LH and BNP share the covariance matrix A,. Theorem 3.2
can be used to determine the cut-off values of the test by deriving analytical formulas
for the quantiles of the limiting distribution. Aiming to avoid complex calculations, a
parametric bootstrap procedure is applied to approximate the cut-off values. Specifically,
Ay is first estimated by Ay, and then bootstrap replicates are generated by simulating
from N(0, A*), thereby providing an approximation of the null distribution of Tpay.
Replacing A(f@k,fezg,'y) with A(fgi,fgj,’yn) yields the natural estimator.

Remark 3.1 Observe that A* defined above may not be nonnegative definite even though
it is symmetric. If such a case occurs, the resulting estimator can be projected onto its
closest mon-negative definite matriz simply by setting the negative eigenvalues to zero.
This covariance matriz estimator is denoted by AL and it is used for generating the
bootstraps samples.

4. Ridge and higher-order regularizers

4.1. Ridge regularization

One of the most commonly used shrinkage procedures in statistics is ridge regularization,
corresponding to choosing fi(z) = 1/(x — £), £ < 0, so that fi(X,) = (£, — ¢I,)"1. It is
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an effective way to shift f)p away from singularity by adding a ridge term —/I,. In this
subsection, we apply the results of Sections 2 and 3 using the ridge-shrinkage family

Sridge = {fe(x) = (=07, Le[L, 0]}, —w<l<l<O.

In the literature, ridge-regularization was applied to high-dimensional one- and two-
sample mean tests in Chen, Li and Zhong (2014) and Li et al. (2016). Hence, this sub-
section is a generalization of their methods to general linear hypotheses.

From the aspect of population covariance estimation, ridge-regularization can be
viewed as an order-one estimation where ¥, is estimated by a weighted average of X,
and I, namely ool + o flp The estimator is equivalent to ridge-regularization with
£ = —ap/ay for testing purposes. Within a restricted region of (1, asg), the large eigen-
values of f]p are shrunk down and the small ones are lifted upward. It is a desired
property since in high-dimensional settings, large sample eigenvalues are systematically
biased upward and small sample eigenvalues downwards.

An important advantage of ridge regularization is that the test procedure is com-
putationally efficient due to the fact that Q(fr,v) and A( e v) admit closed forms as
shown in Lemma 2.1. These quantities can be estimated by Qg( n) = (6 Yn) — 1 and
Ag('yn) = 25(8 £,7vn), respectively. A closed-form estimator ._[(/f\L
able for Z(¢, h, ). This leads to the following algorithm.

~r) is then also avail-

Algorithm 4.1 (Ridge-regularized test procedure)
1. Specify prior weights t = (to, t1, t2) ~
2. With my, ,(¢) = 1tr(2 —LI,)7Y, compute, for any € € [£,1],
(& ) = {1 = 0 = Yulmnp (O}
Qe(n) = O 7m) — 1,
Ar(m) = 23 {1+ b p (O30 (€, 30) + 2y l{mnp (6) + 1, (0}O (£, 7n);

3. For any € [£, {], compute ?L(E,"yn) = Z?:o t;p; (6, vn) as defined in (3.2) and

4. Select {* = argmax,, 7 Hg(h Yn);
5. Use one of the standardized statistics

f“wﬂ:*iigﬁéf”wwwﬂm%u+mﬂwm7
% \In

HLH gy . \/ﬁ LH/p%\ _ O
~ n{l + 0 n) )2 q(AZ n
TBNP (p%) = f{1/2A1/£2* ()} [TBNPQ*) _ o (7n) ],
q Ag* ('Yn) 1+ QZ* ('771)




High-dimensional general linear hypothesis via spectral shrinkage 19

where

q q
TR (0%) Z log(1+X;),  TY(*) = >N,  TPNP(e%)

i=1 i=1

and A1, ..., Aq are the eigenvalues of n_lQTYT( —0*1,)7'Y Q.. Reject the null
at asymptotic level o if the test statistic value exceeds &

Although in theory any negative £* is allowed in the test procedure, in practice,
meaningful lower and upper bounds £ and ¢ are needed to ensure stability of the test
statistics when p ~ n or p > n and also to carry out the search for optimal / at a
low computational cost. In our simulation settings we use ¢ = —p~tr(3,)/100 and

l= —20)\max(§3p), which generally lead to quite robust performance.
The composite test procedure with ridge-regularization is summarized in Algoritm
4.2.

Algorithm 4.2 (Composite ridge-regularized test procedure)

1. Select prior weights I = (t1,...,tm). The canonical choice is ((1,0,0),(0,1,0),
(0,0,1)); ) N ~

2. For each tj in 11, run Algorithm 4.1, get the standardized test statistic T'(¢F) and
compute f’max = maxXi<j<m f(@“),

3. With the selected tuning parameters (05,05, 0%) compute the matriz Ay whose di-
agonal elements are equal to one and whose (i, j)-th entry for i # j is

AK_;I}/Q (’)/n)ﬁzj" i (’yn)A J1/2 (),

where Ae* (vn) is defined in Step 2. of Algorithm 4.1 and

A 5 5 O ) = £1O(E7, 1)
AZ?‘,Z;‘ ('Yn) = 26(6;‘:7’)%)@( j ﬂ7n)|: 7 _ fi J - 1];
i Y

4. Project A* to its closest non-negative definite matrix A+ by setting the negative
eigenvalues to zero. Generate €1,...,eq with &5 = MaXigi<m Z; ) with Zz® =
(2], ~ N(0,A]).

5. Compute the p-value as G—1 21?:1 1{ep > fmax}.

4.2. Extension to higher-order regularizers

Through an extensive simulation study in a MANOVA setting, it is shown in Section 5
that the ridge-regularized tests compare favorably against a host of existing test proce-
dures. This is consistent with the ﬁndlngs in Li et al. (2016) in the two-sample mean
test framework. Ridge-shrinkage rescales H by ( — (I,)"! instead of f]; L. Broader
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classes of scaling matrices have been studied extensively (see Ledoit and Wolf, 2012, for
an overview). They can be set up in the form f (EA)I,). When f(-) is analytic, such scaling
falls within the class of the proposed tests.

The flexibility provided by a larger class of scaling matrices can be useful to design test
procedures for detecting a specific kind of alternative. The choice of the test procedure
may for example be guided by questions such as Which f leads to the best asymptotic
power under a specific sequence of local alternatives, if Hy is rejected based on large
eigenvalues of M(f)? While a full characterization of this question is beyond the scope
of this paper, a partial answer may be provided by restricting to functions f in the
higher-order class

Shigh = {fe(x) = [i ljl“j]_li t=(lo,....lx)" € g},
i=0

where G is such that f; is uniformly bounded and monotonically decreasing on X', for
any ¢ € G. These higher-order shrinkage functions are weighted averages of ridge-type
shrinkage functions. To see this, suppose the polynomial Z;‘Lo l;z7 hasroots r1,...,7x, €
C\X with multiplicity s1,...,ss, € NT. Via basic algebra, f; can be expressed as

folz) = [ZH: ljxj]_l = i Sﬁ wji(w —7r;) 7" (4.1)
j=0 j=1i=1

with some weights wj; € C. If all roots are simple, f, is a weighted average of ridge-
regularization with x different parameters. Heuristically, it is expected that a higher order
fe yields tests more robust against unfavorable selection of ridge shrinkage parameter.

The design of G is not easy when k is large. Here, we select x = 3, which is the
minimum degree that allows f[l to be both locally convex and concave. In this case,
the complexity of selecting the optimal regularizer is significantly higher than for ridge-
regularization. Due to space limitations, we move the design of G and the test procedure
when k = 3 to Section S.1 of the Supplementary Material.

5. Simulations

In this section, the proposed tests are compared by means of a simulation study to two
representative existing methods in the literature, Zhou, Guo and Zhang (2017) (ZGZ)
and Cai and Xia (2014) (CX). We focus on one-way MANOVA, a set-up for which both
competing methods are applicable. It is worth mentioning that CX requires a good es-
timator of the precision matrix 3 !, that is typically unavailable when both ¥, and
¥, are dense. In the simulations, the true ! is utilized for CX, thus making it
an oracle procedure. In the following, LRy idge, LHyidge, and BNP,jgee denote the ridge-
regularized tests presented in Algorithm 4.1. LRyigh, LHnigh, and BNPyie, denote the
tests with higher-order shrinkage introduced in Section 4.2 with x = 3. LRcomp, LHcomp
and BNP.om, denote the composite tests of Algorithm 4.2 with the canonical choice of

~

= ((17 070)7 (07 1, 0)7 (07 0, 1))
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5.1. Settings

The observation matrix Y was generated as in (1.1) with normally distributed Z. Specifi-
cally, we selected k = 3 or 5, and N = 300. For k = 3, the three groups had 75,90 and 135
observations, respectively. For k = 5, the design was balanced with each group containing
60 observations. The dimension p was 150,600, 3000, so that ~, = p/n ~ 0.5,2 and 10.
The columns of B were the k& group mean vectors. Accordingly, the columns of X were
the group index indicators of observation subjects. We selected C' to be the successive
contrast matrix of order ¢ = k — 1. This is a standard one-way MANOVA setting.
Under the null, B is the zero matrix. Under the alternative, for each setting of the
parameters and each replicate, B is generated using one of the following models.

(i) Dense alternative: The entries of B are i.i.d. N'(0, c?) with ¢ = O(n™"/4p~1/2) used
to tune signal strength to a non-trivial level.

(ii) Sparse altenative: B = ¢RY with ¢ = O(n~Y*p~1/2), where R is a diagonal p x p
matrix with 10% randomly and uniformly selected diagonal entries being /10 and
the remaining 90% being equal to 0, and V is a p X p matrix with i.i.d. standard
normal entries.

The following four models for the covariance matrix ¥ = ¥, were considered. All models
were further scaled so that tr(X,) = p.

(i) Identity matriz (ID): ¥ = I,.

(ii) Dense case ¥gepn: Here ¥ = PE(l)PT with a unitary matrix P randomly generated
from the Haar measure and resampled for each different setting, and a diagonal
matrix ;) whose eigenvalues are given by A; = (0.1 + )8 +0.05p%, 5 =1,...,p.
The eigenvalues of ¥ decay slowly, so that no dominating leading eigenvalue exists.

(ili) Toeplitz case Xipep: Here ¥ is a Teoplitz matrix with the (7, j)-th element equal to
0.51"=31. Tt is a setting where X! is sparse but ¥ is dense.

(iv) Discrete case ¥4;5: Here ¥ = PZ(Q)PT with P generated in the same way as in
(i), and ¥(9) is a diagonal matrix with 40% eigenvalues 1, 40% eigenvalues 3 and
20% eigenvalues 10.

All tests were conducted at significance level & = 0.05. Empirical sizes for the various tests
are shown in Tables 5.1 and 5.2. Empirical power curves versus expected signal strength
n'/4pl/2¢ are reported in Figures 5.1-5.3. To better compare the power of each test,
curves are displayed after size adjustment where the tests utilize the size-adjusted cut-
off values based on the actual null distribution computed by simulations. Counterparts
of Figures 5.1-5.3 that utilize asymptotic (approximate) cut-off values are reported in
Section S.9. The difference between the two types is limited. LR, LH and BNP criteria
behave similarly across simulation settings, as indicated by Theorem 2.4. Therefore, only
one of them is displayed in each figure for ease of visualization. More figures can be
found in Section S.8 of the Supplementary Material. Note that, in some of the settings,
several of the power curves nearly overlap, creating an occlusion effect. Then, power
curves corresponding to the composite tests are plotted as the top layer.
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Y= Ip ¥ = 2den
k=3 k=5 k=3 k=5
n =300,p = 150 600 3000 150 600 3000 150 600 3000 150 600 3000

7, 54 52 51 52 51 51 49 44 47 44 33 42
LRydge 12 54 52 51 52 51 51 49 52 49 44 49 47
3 53 52 51 52 51 51 58 59 51 53 52 49

t1 54 5.2 5.1 5.3 5.1 52 6.2 7.2 5.7 6.2 7.7 6.0
LH iqge ta 5.4 5.2 5.1 5.3 5.1 52 6.2 5.9 52 6.2 5.9 5.1
t3 5.3 5.2 51 5.3 5.1 5.2 5.8 5.9 52 54 5.2 5.0

t1 53 5.2 50 52 5.0 50 40 25 3.7 29 1.3 3.1
BNPrigge t2 54 5.2 50 52 5.0 50 40 4.7 46 29 39 4.4
t3 53 5.2 50 52 5.0 50 58 5.8 5.0 5.3 5.1 4.7

t1 6.5 6.3 53 6.5 5.3 55 6.0 5.8 51 6.5 5.9 4.5
LRhpigh ta 6.5 6.3 53 6.5 53 55 83 6.8 55 84 7.2 5.2
t3 6.6 6.3 53 6.6 53 55 6.7 6.7 55 64 7.1 5.2

t1 6.7 64 54 6.8 5.5 5.7 6.1 5.9 5.7 6.7 6.2 5.5
LHpign ta 6.7 64 54 68 54 57 83 6.8 5.6 8.5 7.3 5.5
t3 6.7 6.4 54 68 54 57 6.7 6.7 56 6.5 7.2 5.5

t1 6.2 6.3 52 6.1 5.3 52 59 5.7 46 64 5.5 3.7
BNPpijgn t2 6.3 6.3 52 6.1 5.2 52 83 6.7 53 83 7.0 4.9
t3 6.3 6.3 51 6.1 5.2 52 6.6 6.6 53 64 6.9 4.9

LRcomp 5.1 5.1 50 54 53 50 6.0 5.1 55 56 5.0 5.1
LHcomp 5.1 5.1 51 55 53 51 6.7 58 59 69 6.2 5.7
BNPcomp 5.1 5.0 50 54 52 50 54 45 51 47 44 4.6
7ZGZ 5.6 5.7 52 56 48 52 59 5.5 54 54 54 5.3

CX (Oracle) 56 6.3 70 73 6.9 8.6 58 5.9 6.8 60 7.2 9.0

Table 5.1. Empirical sizes at level 5%. ¥ = ID and Zgen; t1 = (1,0,0), 5 = (0,1,0), f3 = (0,0, 1).
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¥ = Yagis Y= Etoep
k=3 k=5 k=3 k=5

n =300,p = 150 600 3000 150 600 3000 150 600 3000 150 600 3000
t~1 4.8 5.0 4.6 4.7 4.5 5.0 5.4 4.4 4.8 4.5 4.6 4.6

LRridgC to 5.1 5.2 4.9 5.2 4.6 5.1 5.4 4.9 4.9 4.9 4.8 5.0
t3 5.6 5.5 5.1 5.7 5.3 5.3 5.8 5.2 5.0 5.7 5.4 5.1

fl 5.8 6.0 5.2 6.6 6.3 5.6 6.4 5.3 5.2 6.2 6.3 5.3

LHridge t~2 5.7 5.7 5.1 6.3 5.6 5.5 5.9 5.3 5.0 5.8 5.6 5.3
t3 5.6 5.5 5.2 5.8 5.3 5.4 5.8 5.3 5.1 5.7 5.4 5.2

fl 3.9 4.1 4.3 3.1 3.1 4.1 4.4 3.7 4.4 3.2 3.4 3.9

BNPridge t~2 4.6 4.8 4.8 4.1 4.0 4.9 4.9 4.4 4.8 4.1 4.3 4.7
t3 5.5 5.5 5.0 5.7 5.2 5.1 5.8 5.2 5.0 5.6 5.4 5.1

t1 6.3 6.4 4.8 5.9 7.0 5.5 7.1 7.0 5.3 7.5 6.9 5.2

LRhigh ta 7.9 6.5 4.8 8.3 7.1 5.5 7.6 7.2 5.3 7.8 7.0 5.2
t3 6.1 5.6 4.8 6.4 6.1 5.5 6.7 6.5 5.3 6.6 6.4 5.2

i:l 6.6 6.5 5.0 6.2 7.2 5.7 7.2 7.2 5.5 7.7 7.0 5.5

LHpign to 8.0 6.6 5.0 8.5 7.2 5.7 7.8 7.2 5.5 8.0 7.1 5.5
i3 6.2 5.6 5.0 6.5 6.2 5.7 6.7 6.5 5.5 6.7 6.5 5.5

t~1 6.1 6.3 4.7 5.6 6.8 5.3 7.1 7.0 5.2 7.2 6.8 5.1

BNPhigh t~2 7.9 6.4 4.7 8.2 7.0 5.3 7.5 7.1 5.2 7.7 7.0 5.1
t~3 6.1 5.5 4.7 6.4 6.0 5.3 6.6 6.4 5.2 6.5 6.3 5.1

LRcomp 6.2 5.2 5.0 5.2 5.3 5.5 5.9 5.0 5.1 5.5 4.9 4.9
LHcomp 7.0 5.9 5.3 6.5 6.4 6.0 6.6 5.6 5.3 6.6 5.7 5.3
BNPcomp 5.5 4.6 4.8 4.4 4.6 5.0 5.4 4.6 4.9 4.8 4.4 4.6
7G7Z 5.5 4.7 4.6 5.7 5.1 5.3 6.0 5.5 5.0 5.9 5.6 5.0
CX (Oracle) 5.3 5.9 6.6 6.8 7.2 8.6 5.3 6.2 6.8 6.8 7.2 8.4

Table 5.2. Empirical sizes at level 5%. & = Zg;5 and Ztoep; t1 = (1,0,0), t2 = (0,1,0), 3 = (0,0, 1).
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Figure 5.1: Size-adjusted power with ¥ = X4, £ = 5. Rows (top to bottom): B =
Dense and Sparse; Columns (left to right): p = 150,600,3000. BNP omp (red, solid);
ZGZ (green, solid); oracle CX (purple, solid); BNP,igee (black, dashed) and BNPpigp
(blue, dotted-dashed) with £ = (1,0, 0).
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Figure 5.2: Size-adjusted power with ¥ = X4.,, & = 5. Rows (top to bottom): B =
Dense and Sparse; Columns (left to right): p = 150, 600, 3000. LHcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LH,iqge (black, dashed) and LHpign (blue, dotted-
dashed) with £ = (0,0,1).
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Figure 5.3: Size-adjusted power with ¥ = X, £ = 3. Rows (top to bottom): B =
Dense and Sparse; Columns (left to right): p = 150,600, 3000. LR¢omp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LR,iqge (black, dashed) and LRy;gn (blue, dotted-
dashed) with £ = (0,1,0).

5.2. Summary of simulation results

Tables 5.1 and 5.2 show the empirical sizes of the proposed tests are mostly controlled
under 7.5%. The slight oversize is caused by the fact that M(f) behaves like a quadratic
form, therefore the finite sample distribution is skewed. LR and BNP tests are more
conservative than LH tests because the former two calibrate the statistics by transforming
eigenvalues of M(f). Ridge-regularized tests are slightly more conservative under higher-
order shrinkage.

Note that in both simulation settings, B consists of independent entries. There-
fore, t; = (1,0,0) is considered as a correctly specified prior, while o = (0,1,0) and
t3 = (0,0,1) are considered as moderately and severely misspecified, respectively. The
composite tests combine %1, t; and #3, and are therefore considered as consistently cap-
turing the correct prior. We shall treat the composite tests as a baseline to study the
effect of prior misspecification, by comparing them to tests using a single .

For each simulation configuration considered in this study, the proposed procedures
are as powerful as the procedure with the best performance, except for the cases when B
is sparse, p is small, and priors are severely misspecified in the proposed tests; see Figure
S.8.6 in the Supplementary Material. We highlight the following observations based on
the simulation results.

(1) The composite tests are slightly less efficient than BNP,iqge and BNPy;g, when the
correct prior £, is used, as in Figure 5.1. However, as in Figure 5.2, when the prior is
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severely misspecified, the composite test is significantly more powerful. It suggests
that the composite tests are robust against prior misspecification, although losing
some efficiency against tests with correctly specified priors.

(2) Although ridge-shrinkage and higher-order shrinkage behave similarly under the
correct prior, the latter outperforms the former when the prior is misspecified;
see Figure 5.2. This provides evidence for the robustness of high-order shrinkage
against unfavorable ridge shrinkage parameter selection.

(3) ZGZ is a special case of the proposed test family with f(z) = 1 for all x, which
amounts to replacing ﬁp with I,,. When X, = I,,, ZGZ appears to be the reasonable
option at least intuitively. Note, both Frigge and Fnign contain functions close to
f(z) = 1. Figures for ¥, = I, displayed in Section S.8 of the Supplementary
Material show that the proposed tests perform as well as ZGZ in that case. It may
be viewed as evidence of the effectiveness of the data-driven shrinkage selection
strategy detailed in Section 3.

(4) Comparing to ZGZ, when the eigenvalues of ¥, are disperse, the proposed tests are
significantly more powerful when p = 150 and 600, but behave similarly as ZGZ
when p = 3000. On the other hand, as in Figure 5.2, the ridge-regularized test with
a severely misspecified prior t3, is close to ZGZ.

(5) CX is a test specifically designed for sparse alternatives. The procedure shows
its advantage in favorable settings, especially when p = 150. Simulation results
suggest that the proposed tests are still comparable to CX even under sparse BC
and ¥ 1 as long as the prior in use is not severely misspecified. When p is large,
the proposed tests are significantly better when ¥, = I,,. Evidence may be found
in Figures S.8.10, S.8.11 and S.8.12 of the Supplementary Material.

6. Discussion

In this paper, we addressed the problem of testing general hypotheses in a high-dimensional
setting by proposing a family of rotation-invariant tests that generalizes well-studied tests
in the literature through utilization of a shrunken version of the empirical error covari-
ance matrix. The shrinkage function is an analytic function on the support of the limiting
spectrum of the empirical error covariance matrix. The asymptotic null distribution was
built under finite fourth-moment assumption of the observations and a regime where the
dimension of the observations (response) is proportional to the sample sizes, while the
dimension of the regressors remains fixed. This class encompasses the MANOVA problem
with a finite number of populations, and multivariate regression involving a finite number
of predictors. We studied the asymptotic power of the proposed tests under a Bayesian
framework involving a flexible class of local alternatives that determines the structure
of the parameter of interest. We proposed a data-driven procedure for selection of the
shrinkage function that relies on maximizing the asymptotic power of the test under spe-
cific classes of local alternatives. We also extended the procedure to propose a composite
test that combines the optimally chosen tests associated with a finite collection of dis-
tinct local alternatives. Finally, we illustrated the test procedures by focusing on specific
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shrinkage functions including the ridge-regularization and a higher-order generalization.
Simulation studies were conducted to show both the ridge and high-order regularizers
have good power under various settings of population covariance and alternatives.

There are several future research directions that can be pursued. On the technical
side, the analytic requirement of the shrinkage is still somewhat restrictive. One aim is
to seek a generalization from analyticity to fourth-order continuous differentiability. A
decision-theoretic selection of the shrinkage parameter that is optimal with respect to a
broad class of local alternatives is an interesting theoretical challenge. Another challenge
is to find suitable modifications to the tests that enable improvement of their power
characteristics even when the dimension is an order of magnitude larger than the sample
size, a setting that is outside the analytical framework adopted here.
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Appendix

This appendix contains the proofs of the main theorems. Additional proofs of supporting
lemmas can be found in the Supplementary Material. The arguments used here build on
those in Bai and Silverstein (2010) and Pan and Zhou (2011) but contain considerable
innovations. First, the key assumption C4 on the spectrum of ¥, is different from its
counterpart in Bai and Silverstein (2010). Therefore, additional results regarding the
Stieltjes transforms m,, ,(z) and m(z) are needed here. We also need the uniform conver-
gence of derivatives of m, ,(z) on a contour, which was not part of Bai and Silverstein
(2010). These results are detailed in Section S.2 of the Supplementary Material. Sec-
ond, Pan and Zhou (2011) only considered the case ¥, = I, because of the invariance
of Hotelling’s T? statistic with respect to ¥p. Important arguments in their paper, for
example their Lemma 6, no longer hold under general covariance structures. Addition-
ally, the calculation of the asymptotic variance and covariance of the quadratic form
n*IQZYT(Zp — zIp)’lYQn is significantly more involved than for Hotelling’s T2 statis-
tic. Third, our proof includes an important transformation of the quadratic form to deal
with the complex correlation structure between Y@, and X,. We believe the trick can
be used to generalize existing work in the literature, for example Bai, Choi and Fujikoshi
(2017).

A.1. Proof of Theorem 2.1

Recall that
Qn = XT(xXT)'C[cT(xXT) e,
M(f) = QLY f(8,)YQu,

& 1
3, = EY(I - XT(xxT)=1x)YT.
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Introduce the product @, = U,V,, with
U, = XT(xxT)=v2 | (A1)
Vi, = (XXT)y~" 2010t (xXT)" 1o~ V2 . (A.2)

This decomposition will aid the analysis of the correlation between Y @,, and ZAJZ,.

From now on, use Eg/ % to denote (Zzl,/ 2)T. Under the null hypothesis, the following
representations hold:

1 ~
M(f) = 5VJU§ZTEZ/2f<Ep)E;,NZUnvn,

o 1
Sy = SN2 - U U275

Observe that the joint asymptotic normality of entries in /nM(f) is equivalent to the
asymptotic normality of

nV2TVIUTZT ST §(8,)8Y 220, Vi

for arbitrary (but fixed) vectors « and 1 € R? .

Recall that X = [0, limsup, Amax(Xp)(1 + 4/7)?]. Let C be any contour enclosing X
such that f() is analytic on its interior. With slight modifications, all arguments in the
following hold for arbitrary such C. For convenience, select C as rectangle with vertices
u + ivg and U =+ ivg, such that

vo >0;  T> lmsup Apax(Zp)(1 + ﬁ)z; u < 0.

Such a rectangle must exist. R
By Cauchy’s integral formula, if Apmax(Z,) < T,

n 2o VIUTZ YT f(2,) 2220, Ve
-1

" 2mi

~ A3
55 f@n2TVIUTZTSTA(2, — 21) ' 8Y2 20, V,ndz. (4.3)
C

If /\max(ﬁp) > u, the above equality may not hold. However, if we can show that
P(Amax(ﬁp) > W) converges to 0, we can still acquire the weak limit of the left-hand
side by deriving the weak limit of the right-hand side. Yin, Bai and Krishnaiah (1988,
Theorem 3.1) implies that

P(Amax(2p) = ) — 0. (A.4)

Hence, it suffices to show the asymptotic normality of the process
En(z,0,n) = nV2TVIUTZTST (S, — 21)7'SY2Z0, Ve, zeC.

Clearly, £(z, ., m) is continuous with respect to z. All asymptotic results are derived in
the space of continuous functions on C with uniform topology. In the following, study the
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k x k matrix process UEZTEg/Z(f)p — zI)*lﬁ)}lﬁZUn, that is a component of £(z, o, ).
Note that a k x k complex-valued matrix can be viewed as a 2k2-variate real-valued
random element. To unify dimensionality and avoid potential ambiguity, all objects are
treated as random elements in the metric space C'(C ,R2k2) in the following. For dealing
with matrices of dimension ¢ x ¢ (with ¢ < k), note that a ¢ X ¢ matrix can be viewed as
the ¢g-th order leading submatrix of a k x k matrix whose other entries equal 0. Similarly,
univariate functions may be viewed as 1 x 1 submatrices. Therefore, results in Chapter
2 of Billingsley (1968) apply with Euclidean distance replaced by Frobenius norm of a
matrix, that is HAHF = (Z;ﬂ;l Z;zl |G,ij|2)1/2, where A = [afij]ij-

We may proceed to prove the asymptotic normality of &,(z,a,n) on z € C directly.
However, several technical challenges need to be addressed. First, in view of the spectral
norm of (3, —zI)~! being unbounded when z is close to the real axis and extreme eigen-
values of ip exceed lim sup Apmax(E,)(1 + \ﬁ)Q, the tightness of the process &, (z, a,n) is
unclear. Secondly, flp is not a summation of independent terms, but contains ZU, UL ZT
a component containing cross product terms between pairs of columns of Z. These terms
entangle the analysis of the correlation between X, and each single column of Z. For
these technical reasons, we avoid directly working on &,(z,«,n) under C1 on z € C,
but start with nfl/QUEZTEZ/Z(ip - zI)*lE}/QZUn, a component of &, (z, a, n) with f)p
replaced by an uncentered counterpart

< 1
2y = 5222 (A.5)

The relationship between ip and ﬁp is given by
& >~ 1
3, =3, - —S*ZU, UL Z7sT (A.6)
n

Next, we modify the process and the distribution of Z as follows.
Process smoothing. Select a sequence of positive numbers p,, decaying to 0 with a rate
such that for some w € (1, 2),

npn l 07 Pn > n—UJ.
Let Ct =C n {u+iv: |v] = p,}. Define
0, (z) =n 'UTZTST(E, — 2I)"'x%ZU,, ifzeCT,
n D p p

~ n — ~ . + n X . .
0,(z) = pr YO, (u+ipy) + ”2p” O, (u—ipy), ifzeC\C.

To understand this definition better, note that if z is too close to the real axis, O, (z) is
modified to be the linear interpolation of its values at u + ip, and u —ip,. Observe that
V., appearing in &, (z, a,n) was left out when defining Q,,(z). This trick that helps trans-
forming back to ip from ip; see (A.8). Note also that V,, is a sequence of deterministic
matrices of fixed dimensions, having a limit under C5 and C6. The reason to smooth the
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process is to guarantee a bound of order O(p;,;!) on the spectral norm of (f)p —zl,)7 L.
It is crucial in the proof of tightness.

Variable truncation. C1 will be temporarily replaced by the following truncated vari-
able condition. Select a positive sequence ¢,, such that

en—0 and &, *E[z},1(]z11]| = e,nY?)] — 0.

The existence of such a sequence is shown in Yin, Bai and Krishnaiah (1988). We then
truncate 2;; to be z;;1(|z;;| < £,n'/?). After that, we re-standardize the truncated vari-
able to maintain zero mean and unit variance. Since we will mostly work on the truncated
variables in the following sections, for notational simplicity, we shall use z;; to denote
the truncated random variables and Z;; to denote the original random variable satisfying
C1. That is,

Zi1(1 %] < enn?’?) — E2;1(|%;;| < eun'/?)
o .
Y {E[£51(125] < enn'?) — E2;51(%5] < ennl/?)]2}12

For some constant K, when n is sufficiently large,

|2ij| < Kenn'?, E[zi;] =0, E[z3]=1, E[zfj] < 0. (A7)

ij
The reason to truncate Z;; is to obtain a bound on the probability of extreme eigen-

values of flp exceeding limsup, Amax (Zp) (1 + W)Q A tail bound decaying fast enough
is critical when proving tightness of the smoothed random processes on C. Under the
original condition C1, although (A.4) holds, such a tail bound is not available. After the
truncation, the following lemma holds.

Lemma A.1 (Yin, Bai and Krishnaiah (1988); Bai and Silverstein (2004))
Suppose the entries of Z satisfy (A.7). For any positive £ and any ® € (limsup,

Amax (Zp) (1 + \ﬁ)Qv ), N
P(Amax(p) = D) = o(n™").
It is argued later that the process smoothing and variable truncation steps do not change

the weak limit of objects under consideration.
For arbitrary vectors a and b € R*, define

Gn(z,a,b) = a’ @n(z)b.

Theorem A.1 Suppose Z satisfies (A.7) and suppose C2-C6 in Section 2 hold. Then,

6(277) —1

1/2 G b _ Tb
n { n(z,a,b) —a 0@ )

} A\P(l)(z% zeC,

D , 2 . .
where — denotes weak convergence in C(C,R?*"), and ¥ (z) is a Gaussian process
with zero mean and covariance function

TN (z1,25) = 8(21,22,7)0 % (21,7)0 > (z2,7) [0l *[b]* + (a")?].



High-dimensional general linear hypothesis via spectral shrinkage 33

See Section S.3 of the Supplementary Material for proof of the theorem.

Notice that a’b(0(z,v) — 1)/0(z,7) is the pointwise asymptotic mean of G, (z,a,b).
This expression suggests that in order to establish Theorem A.1 we might need to smooth
O(z,7) when the imaginary part of z in absolute value is smaller than p,,, in the same
way as in the process smoothing strategy. Similar considerations apply to the treatment
of the pointwise asymptotic covariance §(z1,z2,7) of G,(z, a,b). However, notice that
O(z,v) and 0(z1,z2,7y) are smooth functions of z, z; and z; with bounded derivatives on
C. Therefore, when z € C\C*, O(z,7) = O(u * ipn,7) + O(pn) and y/np, — 0. Similar
results hold for 6(z1,z2,7) when z; and/or zy are close to the real axis. We provide
details in Section S.2 of the Supplementary Material, where the behavior of ©(z,~)
and §(z1,z2,7) on C (correspondingly, C?) is discussed. Notably, (©(z,v) — 1)/0(z,7) is
bounded away from 1 on C. These results help in applying the delta-method for proving
asymptotic normality.

The following result is an immediate consequence of Theorem A.1.

Lemma A.2 Suppose Z satisfies (A.7) and suppose C2-C6 in Section 2 hold. Then,
9(277) -1
O(z,7)

where U2 (z) = [W2)(2)];; is a k x k symmetric Gaussian matriz process with zero mean
and covariance, such that fori < j, i < j’,

E[T®)(21)]3i [T (22)]ii = 26(21,22,7)0 %(21,7)0 (22,7) .
E[‘I’(Q) (Zl)]ij [‘I’(2)(Z2)]ij = 5(11,2277)@_2(2177)@_2(127’7)» ifi#j,
2 (@)]i[ 8P (22)]irjr =0,  ifi i orj# g

nl/Q{én(z)— Ik} £>\I/(2)(z), zeC,

=
S

Next, transforming back to ip, define
0,(z) =n WUIZTSI (8, —2I)'2Y?ZU,,  zecC”,

N — U A . v+ A .
Qn(z) = p;p Qn(u + an) + 2ppn Qn(u — an), z€E C\CJr

Using the identity (A.5), and Lemma S.6 ( Woodbury matriz identity) in the Supplemen-
tary Material, we get R N N
Qn(z) = Qn(@)[1k — Qn(2)] . (A.8)

Lemma A.3 now follows from Lemma A.2 and the delta method.

Lemma A.3 Suppose Z satisfies (A.7) and suppose C2-C6 in Section 2 hold. Then,
n'*(Qu(2) — {6,7) ~ Wi} > ¥ (@),  zeC,

where ¥ (z) = [WB)(2)];; s a k x k symmetric Gaussian matriz process with zero mean
and covariance, such that fori < j, i < j’,

E[U®) (21)]u[ 0P (22)]is = 20(21,22,7),
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E[0®)(21)]5[¥P (22)]i; = 0(z1,22,7),  if i # J,

E[\P(g) (Zl)]lj[\lf(s) (Z2>]i’j’ = O, ’LfZ 7é i/ OT’j Eé j/.
The asymptotic normality of O, (z) follows since it is a smooth function of O, (z). The
calculation of the covariance kernel of ¥ (z) is basic, though tedious, and hence details

are omitted. R
To smooth &, (z, o, n) in the same way as Q,,(z), define

En(z a,n) = &a(z,a,n), z €C+7

p;p_ (u—ipn,a,n), zeC\C™.

gn(z a,n) = vﬁn(UJriPmOfﬂ?)ﬂL

Note that En(z a,n) =n2a”TVI Qn( )Von and that V,, has orthonormal columns.
Lemma A.4 Suppose that Z satisfies (A.7) and C2-C6 hold. Then,

&n(z,0,m) = n'?(O(2,7) = 1)a"n = ¥V (2),
where U (z) is a Gaussian process with zero mean and covariance function

I® (21, 22) = 8(z1,z2.7) [l nl]* + (aT)?].

The following result is an immediate consequence of the foregoing:

f fnZOéTl)

—2m

—n'2Q(f,7)a =N (0, [ *|n]* + (aTn)*]A(f,7))-

In Section S.6 of the Supplementary Material (see Lemma S.4 and (S.6.2) for details),
we verify that, if we replace gn(z,oz,n) with &,(z,«,n), and (A.7) with C1, the above
result continues to hold. R

Since /naTM(f)n —2mi) ¢, f(z)én(z, 0, n)dz when Amax(E,) < @ and (A.4)
holds, the proof of Theorem 2.1 is complete.

A.2. Proof of Theorem 2.3

Define T}, = CT(n ' X XT)~1C. Then,

VAM(f) == QTZT ST ($,)51°2Q,

NG

TrpTNT/2 £/ 1/2 TrpT~NT/2 £/ 12T
+QIZTSL [(8,)BCT, M2 + (QIZTS] 2 (S, BOT, 1)
+/nT; 20T BT f(5,)BCT; V2.
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In view of Theorem 2.1 and Lemma 2.2 (whose proof is presented in Section S.5 of the
Supplementary Material), we only need to show that under C1,

& - P
Qrz's] (2, BeT 2| Lo, (A.9)
H\/ET,L‘WCTBT F(,)BCTTY? —#(D, f)H 2,0, (A.10)
For future use, we also show that the convergence is uniform over the class
{BeRP** CeRM*: \/n|BC|2 <K}, for arbitrary K > 0.

Similar to the strategy in the proof of Theorem 2.1, we first consider z;;’s satisfying
(A.7). Observe when Apax(2,) <D for any D € (imsup, Amax(Xp) (1 + /7)?, @),

|QuZ"Sy 2 f(3,)BCT, 25

_ ;1 TrTT/2 (1§ 1 _1/2
_HngWif(z)Q"Z ¥,/%(3y —zI)” " BCT, dZQ

-1 ~
< H§£ — f(z)ngng/Q(zp_zz)—lBCT,;l/?dz‘ + w1 BCa,
c+ T 2

where wy , — 0 is a deterministic sequence. The last step is due to

-1 TrTT/2 (% -1 —1/2
— Z° X 3, —zIl)""BCT d
| /C\C+ gy @@ 22y (3 —2) Ve
< Kpal T 22 1275522 [(@— D)7 + [l |IBCl2
< Kpan? [T, 2; D2 (@ = D)7 + |ul ™ || B2,

where K is a universal constant.
Next, using Lemma S.6 of the Supplementary Material,

QTZTSIA(E, — 2I)'BC = VI (I — Q,(2)) UL ZTSI (S, — 21) " BC.

In the following, |dz| refers to the differential form of the integral with respect to the
length of a contour.
For any € > 0,

P(1QIZT]F(S,)BOT, 2 > ¢)
IP’({HQTZTET/Qf(f] VBCT,; 21 > e} [ {Amax(E5) < D) + P(Anax(E,) = D)

<B(|§, G @V~ 8u@) UIZTS] (S, — D) BCT, i
c+ 7TZ ,

Seo wl,nHBcHz) +wp
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<B($ 10~ Q@) bl f WIZTSIRE, — =0 BOT, A e

> Ki{e —win

[BO|2}?) + wan
<B( |UTZTSEAE, — o) BOTT P e > e — wn o BOILY?)
c+ ? ’C2 '

+ (P10~ 0@ rldel > Ka) +
Cc+

_ sWpuees BJUTZTS) (8, —20) " BCT |3
BC,p

+ w3 n + W2 p-

’C4{€ — wl’n|

Here, IC1, K2, K3, K4 are appropriately large constants independent of BC', and
Wo,p = P(Amax(ip) > @) — 0, due to Lemma A.1,

win =B 10— O@) ! [plael > Kz) 0. (A1)

Note that (A.11) follows because (I — Q(z))~* £, ©(z,7v)I, (Lemma A.2) and that
©(z,7) is bounded on C (shown in Bai and Silverstein (2004)).
We claim, with proof presented in Section S.4 of the Supplementary Material, that

sup E[Hngng/Q(fzp - zI)_lBCTn‘l/2||2F] < K|BC|3, (A.12)

zeCt

for a sufficiently large K.

Now (A.9) follows when z;;’s satisfy (A.7), since (2.3) implies | BC|3 — 0, as n — 0. In
Section S.6 of the Supplementary Material, we will show that the difference between the
left-hand side of (A.9) with and without variable truncation converges to 0 in probability.
The convergence is also uniform on BC € {y/n|BC|% < K}. It completes the proof of
(A.9).

As for (A.10), again using Lemma S.6 of the Supplementary Material,

CTBT (8, —zI)"'BC = CTBT($, —zI)"'BC
1 ~ _ N S _
+ ECTBT(EP —2I) 'SP ZU, (I - Q(z)) UL 2SI (8, — 21) ' BC.

Using analogous arguments, for some deterministic sequence w4, — 0 and constants

K:5,IC6,
P(|VaT, Y2CT BT f(8,)BCT; V2 = H(D, )]z > )
-1 ~
< IP(H y§ S F@WVAT 2O BT (8, — 21) 7 BOT, 2dz — H(D, f)H
c+ 4Tt 2

> & = w1 BCI3) + w2
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<IF’(§I§+

i _ 0 -1 TgTyT/2(31 -1 2 & _
+P(ﬁg§+ I(1 = Q@) 2| Ux 255 (3, — 2I) ™ BC|3|dz| > = {e

~ _ K
VnCTBT (2, —zI)7'BC — D(z,’y)H2|dz| > 75{6 - w4,n||BCH§})

wen| BOIZ}) +wsm

<IF’(§I§+

1 TrpTsT/2 (3 -1 2 Ks
+B(Jz § WUTZTEAS, — D) BORE| > 52 e —

~ _ K
VnCTBY (2, —2zI)7'BC — D(z,v)H2|dz| > 75{6 - w4,n||BCH§})

BCI3})
+P( sup (1= 3(2)) 2 = Ko) + wa,n.

zeCt
The same arguments as those in proving (A.11) imply that, for sufficiently large Kg,

P( sup (7~ Q@) [ = K¢ ) — 0.
zeCt

We only need to show

sup ]E[”\/HCTBT(EJP —2I)"'BC - D(z, v)l\?] < K| BC|3, (A.13)

zeCt

The proof is given in Section S.4 of the Supplementary Material. That (A.10) holds under
C1 (without variable truncation) will be addressed in Section S.6 of the Supplementary
Material. The results indicate the convergence in (A.10) is uniform on BC € {y/n||BC|3 <
K}.

A.3. Proof of Theorem 2.4

Throughout this section, P, is the prior probability measure of u, P the probability
measure of the observations conditional on BC, and Pz the probability measure of Z.
Under the probabilistic local alternative model (2.6),

Vil BOJ3 = 0,(1). (A.14)

Using Lemma S.13 and Lemma S.17 of the Supplementary Material, we can prove

VnCTBT[©7 Y (2,7)E, — zI] ' BC — Dp, (z,7) ELN 0, pointwise for z € C, (A.15)

where Dp, (z,7) = h(z,7)SS™.

In what follows, we only consider the (regularized version of) the LR criterion and
show the convergence of Y'®. The convergence of YMH and YBNP can be proved using
analogous arguments. To verify the theorem, it suffices to show that for any ¢ > 0 and
any ¢ > 0, there exists a sufficiently large Ny, such that when n > Ny,

P*<TLR(BC,f)—¢(—§a+m)’ >e) <c
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Deﬁne g = {1+ Q(f,7)}A"Y2(f,~) and its empirical counterpart g, = {1 + Q(f, Yn)}
“12(f,9,). Lemma 2.2 implies that g, — ¢ in probability. Recall

H(D, f) = T~2[(—2mi) ! }é £(2)D(z,~)dz]T~V/2.

Write
M) = QU ]2 F(8,)5 20 + —LH(Dy )+ — =0, (BC)
o \F 2 n(BC,Z),
where with notation W(f,X,,7) = (=27i)~' §, f( (z,7)%, — zI) " dz,

[ T V20T BTW(f, %, 1) BOT; V2 — H(Ds,, f)],
n"(BC, Z) = [gn — glVnT, " *CT BT"W(f,%,,7)BCT, 2,
1 (BC,Z) = guv/nT, PCT BT £(£,) = WS, 5y, 7) | BOT, 2,
n®(BC,Z) = g.QL 27312 £(3,)BCT, 12,
1 (BC,Z) = g, T, *CT BT f(£,)5Y%ZQ,.

Therefore, by Lemma S.7, for i = 1,2,...,q,

A(M(P) N (%sz%,?ﬂf(ip)z;ﬂzcgn H(De,. 1))

nf

Z [n(BC,Z)|».

lon(BC)

<o f

Since the function log(1 + ) is 1-Lipschitz when x > 0,

q
1 A~
V[T Yo 1+ 0 (GEET S5y 20 L e, )|
(A.16)
4
<¢"?on(BC)2 + 4" 3 [0 (BC, Z)2. (A.17)
=1
Define
T6) = Pa(vintay Ytoe [1+ 0 (2127512 48,5120, + —L(Ds, . 1))]
1/21 1 ! g rer n\/> *
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— Vigaq"log(1 + Q(£,7)) > €)

and note that this quantity is independent of BC. By Theorem 2.1, Lemma 2.2 and an
application of the delta method, for any fixed &,

tr(H(Dp,, f))
q'PAV2(f) )
Hence, for any € > 0, we can find a sufficiently large N7 such that when n > N,
tI‘(H(Dp* y f))
q'2AV2(f, )
ti(H(DP*7f>) 75(]1/26 — e
q\2AV2(f, )

Due to (A.14) and (A.15), there exists a constant K. and a sufficiently large N such
that when n > Ny, Py (K1) > 1 — ¢, where

KW = {BC: \/n|BC|3 < K¢} n {BC : |0,(BC)| < €}.

T(£)~<I><—£+

T(€q —5¢"%) < ® (—ga + + 5q1/26> + €,

T(€a + 5¢"%€) > ® <ga +

Using the arguments in the proof of Theorem A.2, we have, for ¢ = 2, 3, 4, uniformly on
KM,

n(BC,Z) 222 0.
This convergence to zero is also valid for (V) (BC, Z), since g, P, g due to Lemma 2.2

and g, is independent of BC. Therefore, we can find a sufficiently large N3, such that
when n > Nj, for any BC € K| the event

K®(BC) = {Z: max |19(BC,Z)]> < ¢}

has measure at least 1 — ¢, that is, Ppc (K (BC)) > 1 — €. Therefore, when BC € K1),
and n > max(Ny, Na, N3), (A.17) implies

Y'R(BC, f) < Ppe ({:FLR( ) > ga} A K<2>(BC)) + Pro(K@(BO))

< T(6a —5¢1%€) + €
co( g + D DrS)

1/2
q1/2A1/2(f,'y) + 5¢q e) + 2e.

Conversely,
TY(BC, f) = H”13'C<{7A1LR(JC) > §a} nK® (BC))
> T(fa + 5q1/2e)

tr(H(DP* ) f))
g 2AYE(f,y)

This completes the proof, since Py (K™M) > 1 —¢.

> ®(—E, + —5¢'%€) —e.
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Proof of Theorem 3.1

To show Result (1), first note that A(fe, ) is a continuous function of £ under Condition
(ii) of §. It is also assumed that infses A(fe,y) > 0 in Condition (iv). Hence, A(f;,7) is
bounded away from infinity and 0 on £. Moreover, Conditions (i)—(iii) of § imply

sup sup | fe(z)| < oo.
zeC (el

In the proof of Lemma 2.2, presented in Section S.5 of the Supplementary Material,
it is shown that

sup v/njmn (z) — m(z)| = 0,

zeCt

sup v/n|m}, ,(z) — m'(z)] - 0.

zeCt

It follows that R ,
sup vn|h(z,v,) — h(z,v)| — 0.

zeC+t
Hence,
supv/n| O fo(@)[h(z,9n) — h(z,7)]dz| = 0.

lel c+

The boundedness of ©(z, ) is deduced in Section S.2 of the Supplementary Material. It
can be checked that m,, ,,(z) and ©(z,,) are also bounded on C when Apax(%,) <D < .
Since 4/np, — 0, it follows that

sup \FM h(z fyn)dz) — 0,
c\c+

lel

sup+/n fo(2)h(z, v )dz| 2> 0.

el c\Cc+

The convergence of A( fe,vn) is stated in Lemma 2.2. The proof of Lemma 2.2 reveals
that the convergence of A( fe,vn) follows from the uniform convergence of 5 (z1,22,7n)
on (C*)2. It implies that the convergence of A( fe,vn) is uniform on f, € §, because

VA (fe, 1) = Alfe, )| < < Ksupsup|fi(z I7§ Vld(z1,22, 1) = (21, 22,7)dz1 || dz].

We therefore have

sup v/l A(fo, ) — A(fe,7)] == 0

lel

and the proof of result (1) is complete.
As for (3.3), we only need to show for any £ > 0, there exists a constant /. > 0 and
an integer n., such that for t = K.n~/* and any n > n.,

P(2(6%, 7y y0) = (6 + 6,1, 7) > 0 for all & s.t. |3 = 1 and ¢* + 16 ¢ £) >
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Under condition (3.3),
S0 hyyn) — E(0F + 16, 7, y) = E(0F, b, y) — E(0* + 16, h,5) + 0y
> Kt20]2 + 0, (n1/2).

n—1/2)

The remainder o,(n~'/2) is uniform for any ¢ and §. Therefore, if ¢ = O( —14,
E(l* hyyn) —Z(0* + 10, h,yy,) is positive with high probability for any § with La-norm 1
for any £ € L. Similarly denote the local maximizer

As for (3.5), write £ = (Iy,...,1,)T
of 24, h,yn) by €5 = (I%,,...,1%)7 and let ¢* = (IF,1%,...,0*)T. Since the partial
derivatives of fy« are analytic under Condition (iii) of §, due to Theorem 2.1 and (S.5.1)

n1/4[M<aai§*> —53(06];}* ,%)Iq] —op(1), j=1,....m.

M (o) -8 )] = st 57 =1

Because the third-order derivatives are continuous functions on £ ® Z, we can find a

constant g such that
‘ ° fe(z)
max  Supsup | —————
1<5,5,5" <7 per ze2 | Ol 'alj/alj//

= Kv, M(fo) = 0,(1),

3
max  sup HM(é’l gl fgl //)H

1<j,5’,57"<r el

< Ky.

Since for the constant function fo(z)

Similarly, we have
= 0,(1).

s s (o)
A Taylor expansion shows that
VIM(f) = Qs ) | = Vi {M(few) = QS 1)y
<\/EHM< (* e*)wag*) - ﬁ((ej; fe*)wag*,%)IqH
VM6 = )T fn (05— %)) = Q( (0 = )TV fin (6 = ), ) Iy
g~ 13- 0, (1)
—0,(1).

Moreover, A(fzi,fyn) £, A(fpx,v) and (3.5) follows.
When ¢* is on the boundary of £, we can prove (3.4) and (3.5) along similar lines and

.

details are consequently omitted.
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Proof of Theorem 3.2

Following from the argument in the proof of Theorem 3.1,
T(fzj‘n) = T(fej‘) + 0p(1),
by Slutsky’s Theorem, we only need to show

(TUer)s- D)) = N (0,87).

m

Observe that the asymptotic normality of T (fy) follows from that of the un-standardized

statistic, T'(f,«). It suffices to show that (T(fzik), e ,T(fm)) is asymptotically normal.
If the (regularized version) of LH criterion is being adopted, that is,

TU) = T (i) = 3 (M)

the joint normality of (T('fl;k), . ,T(fm)) follows from Theorem 2.2 and the fact that,
for any linear combination of (T(fe;k), . ,T(fm)), say with coefficients a1, ..., an,
ZaTL TLH(Zaifﬁ).
i=1

Since A, aifpx,y) = ity 2ty aia A(fex, fpx,7), the asymptotic covariance
K3 K J

kernel of R R
(P T ()

can be verified to be A* via elementary calculation.
If LR or BNP criterion with regularization is being adopted, due to delta-method,

T (fp) — aQ s, 7m) .

L+ Q(fpr, )

¢ fyx ) L T ) - QU fox s n)
L+ Q(fpr, ) {14+ Q(fpr, 7))

It implies that any linear combination of TF( fox) or TBNP( ) can be expressed as a

0 (nil/z)

T (fpr) = qlog(1 + Q(fy, 7)) + »

i

+ 0,(n71/2).

TBNP (fg;“ ) _

linear combination of TMH( fé*) with a negligible remainder. The proof is complete.

Supplementary Material

Supplementary Material includes additional simulation results and detailed proofs of the
main theoretical results presented in this paper.
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Supplementary Material for “High Dimensional General
Linear Hypothesis Tests via Non-linear Spectral Shrinkage”

Haoran Li, Alexander Aue and Debashis Paul

University of California, Davis

S.1. Additional material to Section 4.2

Recall notation in Section 2—Section 3 of the manuscript and recall the higher order
shrinkage family proposed in Section 4.2,

Shigh = {fe(x) = [i ljxj]il, 0=(lg,...,1.)T e g}.
=0

In this section, we introduce the selection of G and the application of Section 2 and
Section 3 with f € §high when x = 3.

If f, has three distinct roots r1,r2, 73 and non-zero leading coefficient I3, we have the
following representation

x) = []Zg)ljwj]l g i(z—1;)”

where w; = I3 [Lizj(rj — ;). With Lemma 2.1, we have the following closed forms of

Q(fe,v) and A(fr,7).

3

Qfe,v) = D wilO(rs,7) — 1);

j—l

A(fe, _22 Z wjw;d(rs, i, y) _22 2 w;wjr0(rs;Tjr, )

Jj=15'=1 Jj=15'=1

where w is the complex conjugate of w and 7 is analogous.

The case that f, has a multiple root, say 71, is the limit when 75 and/or r3 converges to
1. As shown in (4.1), in that situation, the decomposition of f; involves g; (z) = (x—ry) =2
or go(z) = (x — r;)~3. Although similar closed forms of Q(fs,~v) and A(fe,7) are also
available, they involve first-order or second-order derivatives of O(z,v) and §(z,7/,7)
with respect to z. The estimation of Q(fr,v) and A(fe, ) will be less precise. However,
the test procedure wouldn’t benefit much from allowing the existence of a multiple root.
Because the asymptotic power Y(BC, f;) under the local alternatives is smooth with
respect to r1, 72, r3. In the following, we shall simply restrict G to exclude the case where
fe¢ has a multiple root by forcing Restriction R3 shown below.
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As stated in Section 4.2, it is reasonable to require f; being strictly positive and
monotonically decreasing on X" for any ¢ € G. Moreover, since multiplying f, by a constant
leads to an equivalent test procedure, we can fix Iy = f¢(0) = 1.

In summary, we set G to be the set of coefficients ¢ = (1,11, 12,13) such that

R1 (Compactness): [l;] <¢;,1=1,2,and 0 <¢3 < |l3| < T3 ;

R2 (Monotonicity): 3lzx? + 2lpx + 1y = 0 for all z € [0, \];
R3 (Distinct roots): [18l3laly — 415 + 1312 — 41313 — 2713| = cu;

where ¢y, 2, c3,C3, ¢4 are pre-specified positive constants and X is a constant such that
A = lim sup,, Amax (3p) (14 4/7)?. In practice, we choose A = [Amax(2p)]+0.01p~ tr(X;).
Under R1 and R2, there exists a constant K such that

inf inf  min |z —r;| > K.
eg IE[O,X] 7=1,2,3

Under R3, the roots r1, s, r3 are mutually exclusive and we can find a constant K’ such
that

inf min |r; —ry] > K.

teG 1<j#j'<3

The considerations lead to the following algorithm to determine the shrinkage function
f € Bnign given G and the test procedure with the selected shrinkage. The practical
suggestion of G is provided after.

Algorithm S.1.1 (Test procedure with higher order shrinkage) Perform the fol-
lowing steps.
1. Specify prior weightst = (to,t1,t2). Canonical choices are (1,0,0), (0,1,0), (0,0, 1).
2. For each £ = (l3,l2,l1,l0) € G, calculate roots ri,re,735 of Z?:o ljz? = 0, and
weights w; = 13" [Liz(rj — ri)h 7 =1,2,3.
3. For £ € G, compute the estimates

1, & _ .
mn,p(rj) = ];tr[(Ep - lep) 1]’ Jj=1,2,3;

(o)

(Tj»'yn) ={1—v— ’anjmn,p(rj)}_lv Jj=123;

~

A A riO(r;, ) — 1O, 1n o
30y 1 3) = O3, 30)B (1, ) [ LA 2O ) ] 5
J J

~

0(rj,75,vm) = L + 1jma p(r;) 103 (r;, 7)
+ Yt M p (1) + Timiy (1)} (1, ), 5 = 1,2,3;
Po(T5,m) = Mnp(rj),j =1,2,3;
(i m) = Oy, )L + rymnp(ry)], G = 1,2,3;
pa(rj . m) = O, v)lp 1 t2(y) + ripr(ry, )] J = 1,2,3;
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Jj=1
AZ(’Yn) =2 Z Z Wy 5(r]3r] a7n)
j=1j'=1
R R 3 2
Eetr) = 8,2 00) 0 D wjitipilrs, m)-

4. Select £* = argmaxyeg ég(’}/n) through a grid search.
5. The same as Step 5 of Algorithm 4.1, use one of the following standardized statistics
to reject the null at asymptotic level o, if T > &, .

1+ Qs (1 \ -
TWM-“;gg%WWmemumMML

~ n ~
TLH(K*) = M{TLH(E*) = qQx () };
ox UIn
j—\vBNP([*) — \/ﬁ{l + Qs (Pyn)}2 {TBNP(Z*) _ g€ (/771) )
¢ 2R () 1+ Qg (1)

where

TR (0%) Zlog + ), THHE(e%) Z)\z, TENP ()
i=1 z=1

and {\;}!_, are eigenvalues of n~ 1QTYng*( )Y Q.

The suggested grid in practice is as following. Denote piltr(Zp) as M. First, generate
I3 € £[1073A7291~L, 102A7291~1]. Secondly, it is efficient to focus on I5’s such that the
inflection point = = lo/(—3l3) of the cubic equation is around [0, A]. Hence, for any I3,
we select I to be such that lo/(—3l3) € [-0.1A, 1.1\]. Thirdly, to avoid f, ' being too
steep, we select I; to be such that 392 + LM + 1; = [f,1(M) — £,1(0)]/9m € [0,2].
Valid grid points are those satisfying R2 and R3. ¢4 can be arbitrarily small. We suggest
ey =1075072,

S.2. About m(z), ©(z,v) and &(z1,z2,7)

Recall that m(z) is the Stieltjes transform of F'®°, that is the limit almost surely of F' sy
at any point of continuity of F'®. m(z) is the unique solution in C* of (2.1)

dL*(7)
e = / (1=

—yzm(z)) —z’
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where L* is the limit of F'>».
We provide another formulation of the Maréenko-Pastur equation (2.1) that is more
convenient under some situations. Define

F?(1) = (1 = y)Ljo,00)(T) + vF*(7).

F” is a valid c.d.f. for any v, that is a mixture of F* and a point mass at 0 (if v < 1). It is
actually the limit almost surely of the ESD of n=1ZT%,Z. Denote the Stieltjes transform
of F* to be m(z). Then, there is a 1-1 mapping between m(z) and m(z) as

m(z) = 1= 4 yma).

The Marcenko-Pastur equation has an equivalent formulation as

TdL= (1) 711
me) = [~z [ L]

With the help of m(z), we now study the domain of ©(z,~) on any contour C enclosing
X = [0,limsup, Amax(3p)(1 + 4/7)?]. Observe that O(z,v) = (zm(z))~". It is claimed
in Bai and Silverstein (2004) that inf,es |m(z)| > 0, for any bounded subset S of C.
Therefore,
sup |O(z, )| < .

zeC

Because the support of F®, sp(F*) c X,

sup | (2)] = sup| /(T ) 2dF ()| < o0,

zeC zeC
sup |m” (z \—sup‘/ T —2) 3dF® (T )‘
zeC zeC
Hence,
0
sup‘—@(z,y)‘ <
zeC 0z
sup 5(1172277)‘ < @,
Zl,lzec
sup |=—9d(z1, 22,7y ’ < 0.
z1,2z26C az1 ( ’ )
Moreover,
O
inf Oy -1 _ 1‘ mf 1,7)’ = inf zm(z)‘ > 0.
zeC @(Z,’y zeC

About convergence of F¥» to L*¥ It is claimed in Section 2.1 that, pointwise almost
surely on z € CT, m,, ,(z) converges to m(z). In view that the convergence of F>» to
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L* can be arbitrarily slow, the convergence rate of m,,,(z) to m(z) is also arbitrarily

~

slow. Consequently, the convergence rate of é(Z, vn) and d(z1, z2, 7y, ) can be slower than
n~1/2, while a faster rate than n~'/2 is required in this paper.

To solve this problem, it is typical (see for example Bai and Silverstein (2010)), to
replace m(z) with a deterministic sequence {mg(z), p = 1,2,...}, that is the unique

solution of . )
dF*r (T
0\ _
my(2) = / 7(1 = vp — Yzmd(z)) — z

Notice that the last equation is the Marcenko-Pastur equation with the population spec-
tral distribution F>» replacing the limiting spectral distribution. The convergence rate
of my, ,(z) — mY(z) is shown to be O(n~') in Bai and Silverstein (2004). The result does
not rely on the convergence rate of F>» to L*, since mg(z) is free of L*.

To emphasize readability and succinctness of the paper, we adopt another solution,
that is to impose a convergence rate on F>» to L* and on 1, to v, as shown in C2 and
C4. Later, we will frequently refer to existing results in literature that are established
using {my(z), p = 1,2,...}. It is necessary to study the difference between mj(z) and
m(z) under C2 and C4.

Similarly to m(z), define

The following formulation also holds

mg(z) = [z+7n/TdFZP(T))]—1.

L+ 71mi(z

It is claimed in Bai and Silverstein (2004) (see (4.2)) that when F*» converges to
L* at any continuity point of L*, for any C bounded away from the support of F®, as
n — oo,
sup [m(2) — m(2)] — 0.
zeC

Therefore,
sup |my (z) — m(z)| — 0.
zeC

The result still holds under our assumption in C4 that \/nDy (F*», L¥) — 0, because
the weak convergence of F¥» is implied. Next, we show the convergence rate is faster
than n—1/2.

Lemma S.1 Suppose C2 and C4 hold. For any contour C such that X is in the interior
of C,

sup vl ) — m(z)] — 0.

pAS]
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We only need to show
sup Vplmp(z) — m(z)| — 0.
p4S]

Without loss of generality, suppose the contour C intersects with the real axis at two
points, u and @, with u < 0 and @ > limsup, A(3,)(1 + \/7)*.

Note that it is enough to show the convergence on C\{u, @}, since m,)
smooth on C (Silverstein and Choi, 1995).

Denote the support of L(X) to be sp(L*). We first show that

(z) and m(z) are

inf inf : |1 + 7m(z)| > 0. (S.2.1)

zeC resp(L=E

When z = u or %, it follows from Silverstein and Choi (1995, Theorem 4.1) that —m(z)~! €
sp(L¥)¢. Therefore, 1 + 7m(u) # 0 and 1 + 7m(u) # 0 for any 7 € sp(L*). Following
from continuity of m(z) and the fact that sp(L*) is compact, we can find a neighbor-
hood of u and a neighborhood of % such that there exists a ¢ > 0, for any z in the two
neighborhoods,
inf |1+ 7mm(z)| > e
Tesp(L¥)

When z is outside of the neighborhoods, so away from the real axis, Bai and Silverstein
(1998, Lemma 2.11) indicates that

4limsup,, Amax (2p)

|1 + 7m(z)| < max 50

,2),

where 3(z) is the imaginary part of z. It completes the proof of (S.2.1).
Moreover, since sup,cc |mg(z) — m(z)| — 0, for all sufficiently large p,

inf inf |1 v > ¢/2.
igcfesllon(ﬂ)' +rmp (@)l > ¢/

Following from (S.2.1), uniformly on C,

- [,yn/ T]lsp(LZ)(T)dFEp(T) —’7/ TdL*(7) ] _ 0(71_1/2).

1+ mm(z) 1+ mm(z)

Define

i oo [

We have, uniformly on C,
1 -t 1/2
iy (2) = m(z) = m(z)|m @) + wir | wnr = o),

since both m(z) and m~!(z) are bounded on C.
Now consider m9(z) =1y (z). The target is to show mj(z)—my(z) = [my(z)—m(z)| Ry +
o(n=1/2) for some R, such that SUP,ec\ fuz} [13p| < 1 for sufficiently large p.
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For simplicity, we shall write 14,z =) as 1g,. First, observe that the imaginary part of
mj(z), denoted to be v (z), is

2.0 )
&~ T, (z)dF*P (1)
0(2) = S(z )+7nf4|1i‘rm0( )\2 (5.2.2)
P TdF¥p ( T) ' o

) —zZ+ M f 1+7mf(z)
The imaginary part of my,(z), denoted to be 7, (z), is

2 v(z =p (1
(x( + nf T 15])(7—) ( )dF ( )

~ 1+7m(z)]?

Up(z) = L+ ;)l (S.2.3)
Tlgp (7)dF P(‘r)

‘ —z+ Tn f 1+7m(z)

where v(z) is the imaginary part of m(z).

‘I’2 sp T )

0 [mS(2) — @) | rrmestimm ™ (7)

mp(l> - mp(l> = T]lsp(T)dFZp(T) CdFT ()
[—z-l—%fw][—z-&-% 1”7@2(74]
Tn f Mm(l — ]lsp(q—))dFZp (7—)

B Tlgp (T dFZp (1 —dFZp (r

= [mg(l) — m(z)|R, + wya, say.
‘f = Lep(m)AF> ‘ - ‘f = Lap(7))d[Fr (7) = LE(T)]] — o(n~1/2). Tt follows that

umformly on C V1| Wpa2| — 0.
Next, we verify that when p is sufficiently large, |R,| < 1. By Hélder’s inequality,
when $(z) # 0,

721 (1) >p
RI?— | i e (1) 2
| p| _‘ Tl (T)dF P (1) TdF>p (1) )
2t T mm || 2t e T
721, (7)dF=P r2dF>p
Yo ) Trrm@E o J T mP

TdFSp (1) |2

o (1)dF®r (1) |?
—spr /- A/ ‘ —Z+ Yn f m

h T1
’ —Z+Yn f 14+7m(z)

Lep(7)dFZP F2dFEp 0
Tn T|1+DT(2(Z)|2P’%( ) Yu [ T+rml @) Up (2)

7216, (7)dF =P (T ’ T2dF*p (T
I(z) +m,,fwv(2) 3(z) +%wa p(2)

= Tnp1 - Tn2,8ay.

Because m!(z) is the Stieltjes transform of a c.d.f supported within X', we have that

P

0< inf 92)/3@2) < sup 222)/3(z) < ©.
edt vp(2)/3(2) o »(2)/S(2)
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Therefore, r,o < K < 1 for all z € C\{u,u}.
We only need to show r,,; < 1. Because m(z) is the Stieltjes transform of F*, again,

0< inf w0(2)/S(z) < sup v(z)/S(z) < ©

zeC\{u,u} zeC\{u,u}
Observe that (L (o)
S + v T°v(z)dL* (T
’U(Z) f |1+‘r1’n(z)|2

dL>
’ —z+ ’Yf I+‘rm(;))

Comparing with (S.2.3), we have

21 (1)dFP (7 rdL¥(r) |*

) S(2)/o(a) + 0 [ THpDIELD |24y [

p(2)/v(z) = — 77dLS = (1) [2
S(z)/v(z) +7fm ’—Z+%f%w

—> 1, uniformly for z € C\{u,u}.

Therefore, for sufficiently large n, r,1 < 1 for all z € C\{u,u}.
Together, we proved

mp(z) - m(z) = [m)(@) — m@)] R, + o(n~"?),

and |R,| < 1 for all sufficiently large p. The uniform convergence of \/nmj(z) — m(z)|
follows.
Next, we show the derivative of m9(z) also converges to the derivative of m(z).

Lemma S.2 Suppose C2 and C4 hold. For any contour C such that X is in the interior
of C,

d
Sup V| L m(2) — Lm(z)| — 0.

zeC

We follow the arguments in the proof of Lemma S.1.

mﬁ(l) —m(z) = [mS(Z) —m(z)|Ry + w2 + m(z)[m ™ (z) + wn1]  wn.

Take differentiation on both sides,

d d d d d
—my(2) = —m(z) = [Zmy(2) — —m(@)|R, + [my(2) - m(z)] R,

z

d
+ —Wp2 + m(z)[mil(z) + wnl]ilwnl

dz
d

It is straightforward to verify, using arguments in the proof of Lemma S.1, that

a
dz

[m ™ (z) + wor] wnt + m(z)[m (2) + Wt ] —war

d
sup| R,| < o,
zeC dz
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d _ _
sup |—[m 1 (z) + w1 ] < oo,
zeC dz

d
sup \/ﬁd—wnl — 0,
zeC VA

d
sup \/ﬁawng — 0.

zeC

Together with the fact that m(z), m~'(z), dm(z)/dz,dm ' (z)/dz are bounded,

d d d d 1/
Lnd(a) ~ () = [Lmd(z) — —m(@)]R, + on~"?)
The uniform convergence of \/ﬁ\d%mg(z) — L m(z)| follows.

S.3. Proof of Theorem A.1
Recall notation in Section 2 and Appendix A.1 of the paper. Define
1 ~
On(z) =1+ fyn];IEtr{(zp —zI)7'%,},

GV (z,a,b) = nY*{Gn(z,a,b) — EG,(z,a,b)},

@n(za’Y) —1
Gg) z,a,b) = n'/>{EG,(z,a,b) — aTp—22 2~}
(z.b) =R z b =0t G
Gn(z) —1 6(177) -1
G®) z,a,b) = n'2aTh — .
wne?) To.@ " ey !

The rest of the section is organized as follows. In Subsection S.3.1, we show the finite
dimensional convergence of G%l)(z,a,b). In Subsection S.3.2, we show the tightness of
Gg)(z,a,b). In Subsection S.3.3, we show convergence of el (z,a,b). In Subsection,

S.3.4, we show convergence of Gg’)(z, a,b). It completes the proof of Theorem A.1.
Notation ~ We collect notation to the following list. Let

g = (Uq1, ..., uen)T = n"Y2Upa;

upy = (ubl, - ,ubN)T = 77,71/2Unb;

7 is the complex conjugate of z;

z; is the jth column of Z;

Z; is Z with z; replaced with the 0 vector;

Z;; is Z with both z; and z; replaced with the 0 vectors;

A@@) = 5328, —2l)5y? = sp P (Ls)*2275)? — 21wy,
T/2 1/2 T/2 _ 1/2

Aj(2) = 53 (25,2 2,2T50 7 — 1) 1wy
T/2 1/2 T/2 _ 1/2

Ayi(2) = 32 (252, 20557 — 2D) 15y

o(z1,...,2zN) is the o-algebra generated by z1,...,zyN;

A i A e el

—_
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11. E;[-] = E[- | o(z1,...,2;)],j = 0,..., N, with the convention E¢[-] = E[-];
-1
12. B;(z) = (1 + nflzfAj(z)zj) ;
41
13. B¥(z) = (1 + n_ltrAj(z)) ;
-1
14. 6%(z) = (1 +En_1trA1(z)) - 07l (2);
15. gj(Z) = %Z?Aj(Z)Zj — %tI‘Aj(Z);
16. 0j(z) = %Z?Aj(z)zjuaubTZ?Aj(z)zj — %uZZ?A?(z)Zjub.
17. e; is the canonical vector with 1 on the ith coordinate.

The following identities holds
Bi(2) = B (2) — B;(2)B" (2)0;(2),

S.3.1
8i(2) = 65(2) — 51(2)6 @) o] Ay (a)a; — ~EtrA(2). -

In the following, or,, (1) means a random variable converging to 0 in L;-norm. Similarly,
or,(1) means a random variable converging to 0 in Ly-norm. We shall use || - |; to denote
the entrywise matrix 1-norm, which is the sum of all matrix entries in absolute value.
|+ [lmax means the matrix max “norm”, which is the maximum of all matrix entries in
absolute value.

Under Condition C4, |U,|max = O(n~/2). Therefore, for any fixed a and b,

|ta | max = O(n_l)v [ max = O(n_l)'

S.3.1. Finite dimensional convergence of Gg)(z, a,b)

In this subsection, we show that
Z w;G WV (z;,a,b)
i=1

converges to a Gaussian random variable, where r is any positive integer, wq,...,w, and
z1,. ..,z are any complex numbers. In view of the smoothing step, z1, ..., z,. are required
to have nonzero imaginary part. Without loss of generality, assume n is sufficiently large
so that p,, is smaller than the imaginary part of zy,...,z,.

S.8.1.1. Construction of martingale difference sequences

To lighten notation, the arguments a, b and v may be dropped from some expressions

whenever there is no scope of ambiguity. We represent Gnl) (z) as the sum of a martingale
difference sequence,

N
GV (z) = n'? Y {E;[Gn(2)] — E;-1[Gn(2)]}

Jj=1
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_ pl/2 Z{E [ug Z"A(z)Zuy, — u) ZT Aj(2)Zju)
—E;_1[ulZ"A(2)Zuy — UEZJTAJ‘(Z)ZJ'UI:]}
N
— pl/2 Z (E; —Ej—1)[d1(z) + da(z) + d3(z)],

Jj=1

where

di(z) = ul(Z — Z;)" A(z)Zuy,
da(z) = ul Z] (A(z) — A;(2)) Zuy,
ds(z) = u) Z] Aj(z)(Z — Zj)uy

di(z) = ua;z; TA;(2)Z; Up + UgjUpjZj A (2)z;

1
— - UajZj TA;(2)z52) Aj(2)Zjup;(z) — Euajubj(ZJTAj(Z)Zj)Qﬁj(Z)
= d (2) + &P (2) + 4P (2) + 4 (2), say.

dgl)(z) is such that

N

N
n'/? Z (E; — Ej—l)dgl)(l) =n'/? Z E; [“ajZJTAj (2)Zjus].
j=1 j=1

By Lemma S.8, Lemma S.10 and LemmaS.13,

N 2
]E‘”w D (B — ]Ej—l)dgz)(l)‘
j=1

N
< i |2
n |tqtin;
Jj=1

2
z) [E;_1A(2)]z; — trE;_1A;(2)

N
<Kn Y |uajun*nE[E; 1 A;(2)]* = o(1).
j=1
Due to (S.3.1), dgg) (z) is such that, we have

ot A @)y A (@) B 5 (2) 5 ()6 2)

— uqj0;(2)2; Aj(2)Zjup B} (2) + ua;j (8" (2) — 1)z A (2) Zjus.

4 (z) =

11

By Lemma S.8, Lemma S.10 and Lemma S.18 | the first two terms above are such that

N 2
B | (B — By oyl As(2)ege] A (2)Z5m 8] (@)6;(2)| = o(1),
i=1
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N
E[n'/2 " (B; — Bj1)uasbs (2)2] Ay(2) 2wy (2)] = o(1)
j=1
It leads to
1 N N 1
nz Z(EJ E;_4 d1 Z n2E; (8} (z) - 1)uan A;(2)Zjup] + 0p(1)
j=1 Jj=1

—(E; —E;- ) U'ajub](z A;(2)z;)*B;(2)B;" (2)0;(2)

(E; — By [{nuwubj 2@)87 ()} + 2uagun,0; ()87 (2)0rA (2)}
1 T

— —uaun (2] A (2)2,)26, ()8 ()6 (2) |

Using Lemma S.8, Lemma S.10 and Lemma S.13,

N

Eln2 3 (B — By musoguns 02(2) 35 2)|
j=1

N
<Kn® Y [uajun; |PEI63 (2) 85 (2)]* = o(1).

=1

=

2
E|n? Y (E; — Ej—1)uqjuns; (2) B} (2)trA; (2)

=1
N
<Kn Y uajus;El0; (2) 85 (2)trA; (2)]* = o(1).

Similarly, by Lemma S.18, we can show

N 2

E”I’Ll/2 Z (E] — Ej,l)n_luajubj (Z?Aj (Z)Zj)2ﬁj (z)ﬂ;r(z)ﬂj (Z) = O(l)

Jj=1
Thus,

E’nuz i(Ej _ ]Ej_l)dg‘*) (z) 2 = o(1).

J=1
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All together
N N
n'? 3By —Ejo1)di(z) = n'/? Y Byluasa] Ay (2)ZyusBy (2)] + 0p(1).
j=1 j=1
Further, we want to replace 3% (z) with 5%(z). By (S.3.1), Lemma S.12, and Lemma S.16,
E|(8] (z) — %(2))2] Aj(2)Zjus|?
= E|ﬁ;r(z)ﬁE(z)E[trAj(z) — EtrA,; (z)]z?Aj (Z)Zjub\2 = o(1).

Therefore,

N
1/22 (E; —E;_1)dy(z (2) Y Bj[n'ua;z] A;(2)Zuws] + 0p(1).
Jj=1 j=1

Secondly, using Lemma S.6,

1

d2(z) = — ~up;2; T A (2)z;2] Aj(2)Zu.p5(z)
- Sl Ay (@) 2wl 2 A (2)26(2)
1

nub]Z TA i(z )z]z A;(2)Zju,pBj(z)
— 0,(2)3s(2) — ul 2T AX@) 2y (o)
=ds"(2) + dY (@) + 4 (z), say.

Along very similar lines to those we use to simplify dy(z), together with

1 _ _
Elo;(z)|* < ICE? ul Z7 Aj(2)A;(2)Zjuqul Z] Aj(z)A;(2)Zjus| = O(n?),

which is due to Lemma S.9 and Lemma S.15, we can show

Jj= 1

N

Z [(B5 (2) )nl/zub]z A (z2)Zju.] + o0p(1)
) N

= (8%(2) Z [n'?up;z] Aj(2)Zjua] + 0p(1).

N N

nY/2 3 (B — Ej_1)ds? (2) = —B5(@2)n"? D (E; — E;j-1)0;(2)

Jj=1 Jj=1
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N

=12 (B ~Ejm)e (@16 (@) — £°(@)
v

M Y (B — Ejo1)e; (2)5;(2) B (2)0;(2)

<.
Il
—

_ 1/221,3]@] +op(1),
ol 3
V2N (E; — Ejo1)ds) ()
j=1

N
Z (Bj — Ej_1)n~ Pul Z] A%(2)Z;jusB;(2) B (2)0;(2) = op(1).
All together, we have

n'/? i (Ej —Ej_1)(d2(2)) = szl l/zubj Aj(2)Zjua]

j=1 j=1
N
1/2 Z ]Ej Qj
j=1
Combining with d3(z), we have proved, thus far,
Gz Z BE(@)Hn (2, ) + 0p(1)

where
Mn(2,7) = Ej[n'Puasz] Aj(@)Zjus] + Ej[n'Pup;z] Aj(2)Zju]
—E;jn'?0(z) = Hpy(z, j) + Hig (2. 5) + Hiz (2. 5), say.

In summary, it suffices to find the weak limit of »}/_, Zj\le w;i B%(zi)Hn(zi, ), that is

iZwZﬂE Zz (Zz7 )"’H (Zz, )+H (Zu )]

S.8.1.2. martingale central limit theorem
We use the following theorem to show finite dimensional convergence of

r N
Z Z wiB* (z;) M (23, §)-
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Theorem S.1 (Theorem 35.12 of Billingsley (1995)). Suppose Y1, . ..,Y,, is a martinagle
difference sequence with respsect to the increasing o-field %1, ..., %y, with finite second
moments. If as n — 0,

2 {s a positive constant,

n
(i) >, E(Yf | Z;_1) — 02 in probability where o
j=1

(ii) J§1E{YJZH<‘YJ| =€)} — 0 for each € > 0,

then,
n
Z Y; — N(0,6%), in distribution.
j=1
It is easy to check that H,(z,j) has finite second moments. We show Condition (ii)

first.
As for Hz)(z, j), because of insufficient finite moments of z;;, we need to analyze g;(z)

carefully. Write
12
0j(z) = - 2 eiTAj(z)ZjuaubTZ]TAj(z)egzijzgj
i#L

+ e?Aj(z)ZjuauEZfAj(z)ei [zfj]l(|z”| < logn) — Ezfj]l(|zij| < log n)]

3|
D=

-
Il
-

T Aj(2)Zjuaul ZF A (2)e; [z3j1(|zij| > logn) — E221(|25] > log n)]

S|
D=

+
1

-
Il

= o"@) + P (@) + o (2), say.

By Lemma 5 of Pan and Zhou (2011),

—
~—

2
]E|g§1)(z)\4 < Kn™E )
=0(n™%).

ug Zj Aj(2)A;(2)Zjuauy Z] Aj(2)Aj(2)Zjuy

By Lemma S.15,

P 4
Elof”) @)|* < Kon~*(logn) B ( Y |67 A(2)Zjuoul 27 A (2)ei])
=1

ul ZT A (2)A;(2)Zjuquy Z) Aj(2)A;(2)Zjw,

2
< Kn~%(logn)*E ‘

= O(n"*(logn)®).

Note, conditional on Z;, all summation terms in 953) are mutually independent.

P 2
E|g§-3) (z)]* < /Cn_Q]E) Z |6?Aj(z)ZjuaugZ?Aj(z)ei\ Ezfjﬂ(|zij| > logn)
i=1
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=o(n7?).

The last step is due to Ez} 5 1(|zij| > logn) — 0, as n — o0.
As for Hpyy(z, j) and Hg)(z, j), Lemma S.16 says that

4
E‘nlmua] z; TAi(z )Zjub’ =0(n™?),
4

E‘nlpubjijAj(z)Zjua =0(n?).

To verify condition (ii), for any positive e,

N r
ZEHZMZ"BE(ZZ n(2is ’ ‘szﬂ z;)H Zla])‘ 6)]

j=1 =1
N
<25 )] EH Z Wi (z:) M (zi, ] ’ ‘Z wi%(zi)H z“J)‘ > ¢/5)|
Jj=1
N
+25ZE[ ZwiﬂE(zi)H Zu] ‘ ‘szBE Zz Zza])‘ Z‘5/5)]
j=1 =1
N
+25 ) E| Z w22 ()] 1( Z wiB®(z)n20{" ()| > ¢/5)]
j=1 i=1
N
+25 Z ]E[ 2 wiB]E(zi)nl/zgf)(z) 2]1( Z w; B (z; 1/295-2)(2) > 6/5)]
j=1 =1 i=1
N T
495 2 ]E[ ZwiﬁE(Zi)nl/2g§-3)(z) 21( 2 BEz)n 1/2Q§3)(z) > 6/5)]
j=1 =1 i=1
K N r . 4 K N r - 4
<5 DB e @M + 5 3B wib )M )|
=1 i=1 j=1 " i=1
N T N T
EQ Z:l ‘ZZI /2ot )( )‘ + g Z:l]E‘ leiﬁm(zi)nl/QQ§2)(Z)‘4
- - o
N T 2
+Kn Y E| Y wib (@)l @) — 0

j=1 =1

To verify Condition (i) of Theorem S.1, we next need to find the limit in probability
of

N T
Z j—1 szﬂ z;)H 217]))2

j=1
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r N

= Z Z E;_1wiwi 8%(2:) B (zir ) i (25, j) Ha (2ir, 5).-
=1 1

i'=1j=

In next four sections, for arbitrary z; and z; with nonzero imaginary part, we derive the
limit in probability of

=

Ej 1 Hp(z1, §)Hp (22, 5) (8.3.2)
=1
N
D E; My (21, §) Hiz) (22, ) (5.3.3)
j=1
N
2 Ej 1My (z1,5) His) (22, 5) (5.3.4)
j=1
N
2 Ej_1H[3)(z1, ) Hz) (22, 5)- (8.3.5)

<.
Il
—

Note, H2)(z1,5)H[2)(z2, ) and H[s)(z1,5)H3)(z2,]) are just H(y)(z1,7)H[1y(z2,5) and
Hp(z1, ) H(s)(z2, j) respectively with a and b exchanged.

S.8.1.8. The limit of (S.3.2)

This subsection shows that, as n — o0,

N
N Ej My (21, ) Hpy (22, 5) (.3.6)
=2
N j—1
= nB"(21)8%(z2) ) uljtr [B;A;(21)B; A (22)] D up; + 0p(1).
j=2 i=1
Note that clearly when j = 1, EHyy(z1, 1)H[13(z2, 1) = 0.
We introduce Z; = [z1,...,2j-1,0,2;,1,...,2y] for j =2,3,...,N, where z; {, ...,
z, are i.i.d. copies of z; and independent with zq, ..., z;_1. What’s more, introduce Aj(z)
like A, but Aj(z) is now defined on Zj instead of Z;. Note, conditional on z1,...,2z;_1,

(Z;,A;) is independent with (Z;, A ;). Therefore, for j > 2,

E;_1 [Ej (2] A;(z1)Zjus|E;[2] A; (Zz)Zjub]]
=E;_1[u] Z] A;(21)A(z2)Z;up]

-1 -1
= Y up B az] Aj(z) A (22)zi + D unili1z] Aj(z1) A (22)Zjwe
= izl

N
+ 2 ubiEjflzerj(Zl)Aj(ZZ)Zjub = %(1) + j7(2) + g_7j(3)’ say.
i=j+1
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where Z;;,i < j is defined to be [Z1, .., 2Zi—1,Zit1,-- - 2j-1,0,2Z5,9, - JZN -
(S.3.6) will follow, if we can show,

j—1
sup E|) — 55(2) 0% (e2) ( 3] i ) el [E5 [, (2) A, ()]} = o),
IsysN i=1
sup E|\7j(2)| =o(1),
1<j<N
sup E|k7j(3)| = o(1).
I<j<N
Similar to ;(z), define
1
/Blj(z) - 1 + n_lz;rA.ij(Z)Ziv
1
By® = 1+n712{ A;;(2)z;

where A, ;(z) is defined in the same way as A;;j(z), but with Z,; instead of Z;.
As for jj(l),

j—1

|7, - @) (e) 35 wdi (B4 (z1) A zo)] |
j—1

~E[B; 1Y) w28, (2)aT Ay (21)A (22)2—
=1

Jj—1
> w87 (@) B a2 tr [ A, (@) A (z2)]] |

< 12l FraxE

Bis(m)B,(22) T Ay (21 A a2)
5 (1) 55 (22) ~ tr{ A (1) A, (22))

(Builes) — B (@), (22) 21 Ay (1) Ay 2)2
B5(21) (B, (22) — B(22)) -7 Aij(an) Ay (a2

1?2 B )5 22 E| T Ay (21) A o) — (A () Ay )|
= o(1).

< 1 [lup | FaxE

+n2|\ub|\2 E

max

For the last line, we need to the following arguments that are direct consequences of
Lemma S.10, Lemma S.11, Lemma S.12 and Lemma S.13.

18%(2)| < o,
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1
]E|EziTAij(Z)Aij (2)zi]* = O(1),
L 1 2
B 2T Ay (2) A, (o) - ftr{A«zl)Aj ()} = o(1),
2

Elfi(2) — @I < B[ (5@ (2 Aigzi — - Burdy)

E 5ij(z)5E(z)(%EtrAij — gEtrAj)) = o(1).

As for 77, due to
E|(8ij(21) — 8%(20))2] Ais (21) Ay (22) i us| = o(1),
| (8 (21) — 6% (0))r{ Ay (21) Ay (22) 2] A (22) 24| = o(1),
| iy (21)81 (22) [T A () Ay (22) — r{ Ay (21) A 22) )]
2l A (22)Z; ) = o(1),

which are consequences of Lemma S.10, Lemma S.12, Lemma S.13 and Lemma S.16,

-1
\73»(2) =E;_; Z upiBij (z1) 27 Ayj (z1)A;(z2)Z;;up
i=1
j—1
=E;_; Z upiBij(z1)2; Aij (z1)A;;(z2)Z; jup

i=1

—E;1 Z szﬁzg 11)5 (ZQ)Z AzJ(ZI)A j(ZQ)Zz‘ZiTAij(b)szub

2 upi B (z1)E;j— IZZTAij(Zl)Aij(Z2)Zijub
i=1
j—1
Y %ubi,@%n/ﬁ( 2)Ej1tr{ Ay (21) Ay (z2) ! Ay (22)Z5us + o1, (1)
i=1

The residual term above is uniform over j.
We claim that the first two terms are also negligible. To see this, we first show
.j*l 2
sup E‘ 2 ubiziTAij(zl)Aij (zz)Zijub’ = o(1), (S.3.7)
J i=1

jfl 2
SUpE| Y wiz! Ay (22) 2w = o(1). (5:3.8)
J i=1
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The proofs of the two are very similar. Therefore, we shall only present proof of (S.3.7).
Like Z;;, we define Z;;; to be Z with z;,z;,z; replaced by 0. Similarly, define Z;; ;,
2' < j,1 < j by replacing the i-th and #’-th column of Z; by the 0 vectors. Further, define
Ay and A;;; to be the counterparts of A;; and A,;; w1th Z;; replaced by Z;;;, or with
Z, . replaced by Z;; .. Accordingly, define

1] '3

1

tr _
gl (Z) N 1+ n*ltrAij (Z)’

1 1
9,']' (Z) = EZiTA,L'j (Z)Zi - EtrAij (Z)7

1
ﬂii’j(z) - 1+n—1z Au]( )

1
By ® = T Ay e

By Lemma S.16, for squared-terms in the expansion of (S.3.7),

j—1
2
2, Ui

i=1
N

For crossed-terms with 7 # 7', due to Lemma S.10, Lemma S.16, and Lemma S.17,

’ 2

zZTAij (Zl)Aij (22)Zijub
2
‘ = O(nil)-

Z Azy Zl)A (Zg)Zijub

E|Z;-TA,'J‘(11)A (ZQ)Z i UpZy AZJ(Zl)A4 4(22)Zl,4'u,b|
<E|Z?Aii’j(11)An](22)Z11jubz A’L](Zl)A (ZQ)Z ub‘
+ |upir [E|2f Ay (z1) Ay (22) 2002 Airj (21) Ay (22) Ly |

2244’ g

(ZQ)Z Up-

ity

+ Bl A (1) A (22207 A (22)8,,
2 Ay (21) Ay (22) Ly

b g (BT Ay (21) A (22) a0 Ay (22)8 1, (220
ziT,A”(zl)A (ZQ)Z ub|

%' j

+ %]E|ZiTAiz‘/j(Zl)Zi'Zi/Aii'j(h)ﬁii/j(ll)ém 3(22)2” ;Wb
2y Aivj(21) Ay (22)Zy |

+ %‘Ubi’|E‘Z?Aii’j(11)zi’Z$Aii’j (21) Biirj (21) Ayir j (22) 20
7}, Ay i(z1)A, (22) 2y ju|

1
+ §E|Z¢TAM‘/J' (z1)2ir23, Aiivj (21) Biirj (21)-
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A“ ](Zg)zllzj:A” J(ZQ)B J(ZQ)Z“ jubz:CAi/j (Zl)A (ZQ)Z ub|
1
+ F'ubi’|E|ZTAii'j(Zl)zi’zg;Aii’j(Zl)ﬂii’j(zl)'
Am ’j (22)Z1'Z Au ’j (12)6 (ZQ)Zi'Z;Z:Al 'J (Zl)A (12)Zi’jub|
= o(1).

Therefore, (S.3.7) follows. We conclude that the first term in the expansion of 7; is or, (1)
uniformly for all j.
The second term in the expansion of J; is such that,

2
E|[tr{As(z1)A (22)} - tr{A (21)A; (22)} |2 A, (22)Z;u0
< KE ZzTAij(ZQ)Zijub =0(1),
due to an inequality similar to Lemma S.11.
Therefore,
> EubiﬁE(h)ﬁE(Zz) i1tr{ Ay (z1) Ay (z2)}2] Ayj(z2)Z; 5
i=1
j—1
— B%(21)8%(22)E; [ tr{ A () A, (z2)} ) wizl Ay (22)Zgw | + 0, (1)
=1
By (S.3.7), (S.3.8) and Lemma S.11,
i1 )
[ tr{Aj(21)A;(22)} Y upzl A, (ZQ)Zijub]
1=1

j71 2
< /C]E[ 3 ubizféij(zz)zijub] — o(1).
i=1
It implies that the second term in the expansion of J; is also o, (1) uniformly for all j.
As for %(3)7 due to
E|0;(z1)* = O(n™"),
]E|ZTAM( )A (z )Z Ub|2 o(1),
we get
N
»7]-(3) =E; 2 wpiz, Aj(z1)A;(z2)Z;uy

i=j+1

N
:Ejfl 2 ubiﬂij(zl)z?Aij(Zl)Aj(Z2)Zjub
i=j+1
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N
=E;_; Z ubiﬂ;jr‘z?Aij(Zl)Aj(ZQ)Zjub
i=jt1
N
B Y uniBiy(z1) B (21)0i(z1)z] Aij(z1) A (22)Z 5w,
i=j+1
N
=-E; Z wbiBij (21) 81 (21)0i (z1) 2] Aij(z1)A;(22)Z
i=j+1
=OL1(1).

(S.3.6) has been proved.

S.8.1.4. The limit of (S.3.3)

This subsection shows, as n — o0,

N
D E; M (21, §) Hiz) (22, )

j=1
N—-1 N
= nf%(21)B%(22) Y astns ) Uagunstr [E; A (21)E; A (22)] (5.3.9)
i=1 j=it+1
+ 0, (1).

Following notation defined in Section S.3.1.3,

Ej1 [Ejlz] Aj(z1)ZuqE; (2] Aj(z2)Zjus)]
=E; 1[ul ZTA;(21)A,(22)Z;us]

j—1 j—1
= Z UaiubiEj—lleAj(Zl)Aj(ZZ)Zi + Z uai]Ej—lzzTAj(Zl)Aj (ZQ)Zijub
i=1 =1

N
+ ) w1zl Ay (@)A(22)Zjuy = T+ TP+ T, say.
i=j+1

For future use, we instead show the following results in Lo-norm.

-1
SupE| 7Y — 55(20)8%(22) Y hast 0B [ A (20) Ay )] = o),
J =1

sup |7,V 2 = o(1),
J

sup |72 = o(1).
J
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As for »7]‘(4)7 due to similar arguments to those for jj(l), we need to show

j—1
B| 3 it | Big(21)8,, (22)2] Asj(21) A (22)2
i=1

— B (20) 8522 ul( A () A )] = o).
It suffices to show

1
Es

Bij(21)B,;(z2)z; Aij(z1)Aj(z2)2i—

2
B5(21) 8% (22) [ A (2) A, (22)}])] = o(1).
It can be done using Cauchy-Schwarz inequality and the following results.

E|Bij(z1) = B (@) = o(1), £>2,
E|B, (z2) = B%(z2)|" = 0(1), (=2,

E‘%Z?Aij(ll)éij<z2)zi - %tr[{AJ’(Zl)Aj<Z2)}]‘Z =o(l), (=2

Now consider jj@ ,

Jj—1
‘.7](5) _ Ej—l Z Uaiﬂij (Zl)z;‘TAij (Zl)Aj (Z2)Zijub
i=1

7j—1
= i1 ) tailBij(21)7) Aij(21) Ay (22) 25w,
=1

j—1
1
~—Ej-1 ), —uaifij(21)B, (z2)2] Aij(21)A,;(22)zi2] A, j(22)Z; jws
=1

i1
= Z Ui 3 (21)Ej_12] Aij(z1)A;(22)Z;

L

j_
i=1
The last step is due to

1 1

E|EZ2FA” (Zl)éij (z2)zi — Etr{Aij (Zl)Aij (12)}|4 =o(1),
E|Z?Aij(12)zijub‘4 =0O(1).

Together with (S.3.7) and (S.3.8),

sup E|\7j(5) 12 = o(1).
J

> %Uai/B]E(Zl)ﬁE(ZQNEj—ltr{Aij(Zl)Aij(Z2)}zzTAij (z2)Z;up + o, (1).

23
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The proof of jj(ﬁ) = 0r,(1) is very similar to that of jj(g). We omit details.

S.8.1.5. The limit of (S.3.4)

In this section, we will show

N
Z E;_1Hy(z1, J)Hg)(z2,5) — 0, in probability. (S.3.10)
j=1

Lemma S.19 indicates
Ej_1[E;lz] Aj(z1)Zj00]E;(0;(z2))]

]E23 p . . :
= =L N [ hi(z2, 0, )i (22, b, ) [Bsha(21, b, )
i=1

where h;(z,a, j) and h;(z, b, j) are respectively the ith element of A ;(z)Z;u, and A (z)Z;uy.
Therefore,

N P
(5.3.4) = —Ez¥, Y ua; Y,[Ejhi(z2,a,)hi(z2,b, 5)][E;hi(z1,b, 5)]-
=1 i=1

It is sufficient to show

p
sup EZ‘[Ejhi(lma’j)hi(l%bJ)][Ejhi(Zhbvj)] — 0.

IisN 5

We first show h;(z,a, j) concentrates around its mean. Specifically, we have

sup E‘hi(zaaaj) - ]Ehi(zaaaj)|2 = O(nil)a (8311)
1<p;j<SN

sup E|hi(z, a,j) — Ehi(z,a,7)|* = o(n™1). (S.3.12)
1<p;j<N

To show (S.3.11),

N
= D [Be—Eri]el [A;(2)Zjua — Agy(2) Zejua]
0

N
1
= > [Ee—Ee1l{uace] Arj(2)ze — 56iTA£j (2)202] Ayj(2)Zgjuafi;(2)
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u,
_ TaeeiTAz]‘ (2)2e7; Adj(2)215(2)}

By Lemma S.14 and Lemma S.10, for all 4, j, ¢,

Ele] Agj(2)ze* = Elzj Aj(2)eie] Agj(@)ze]* < KE|Ay(2)]* = O(1).

1
E\gefAej(Z)Zels =n"%Elz; Aj(z)eie] Ayj(2)ze|*
< KE|Ay;@)|[egn™® +n~%] = o(n™°).
Together with Lemma S.13 and Lemma S.16,
1
E|—e] Asj(@)ziz Aj(2)Zejual” = O(n™?),
1
E|*€TA4J* (Z)ZgZ%Agj (Z)Z@jua|4 = o(n_2),
ua N
E|=*ef Agj(@)zee] Agj @)zl < Kltial e = O(n”?).
Uq _
BI=2 ¢ Avj(@)zez] Agj(2)ze|* = o(n™).

Using Lemma S.8, (S.3.11) and (S.3.12) holds.
Back to our goal, (S.3.11) and (S.3.12) lead to

a,3)hiz2, b DIE;hi(z1,b. ) — Ehi(z1,b.5)]

i=1

[E;hi(z2, a, §)Ehi(z2, b, §)][Eshi(z1, b, §) —Ehi(zl,b,j)]‘

<EL
Z [E;hi(z2,a, j){hi(z2,b,5) — Eh;(z2,b, j)}]-

[Ejhi(zlabaj) Eh (21767 )]

The second term above is such that

(

[Ejhi(z2, a, j){hi(z2, b, j) — Ehi(z2,b, §)}]

[Ejhi(z1,6,5) — ]Ehi(zhb’j)]‘f

p
2E|h 22,0, ) |2Z]E‘ i(22,b, §) — Ehy(z2,b, )]

i=1 =

[E;hi(z1,b,7) — Ehi(z1,0,7)]

p
Z i(z2,a,§)|? Z ( i(z2,b,7) — Ehi(l2,b7j)]|4)1/2'

i=1

‘ 2

.

25
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<E|[hi(11,b»j) - Ehi(ll,b»j)]|4>1/2 = o(1).

where the last step is due to (S.3.12) and

p
N Elhi(za, a,5) = EulZT A, (22) A, (22)Z;uq = O(1).

i=1

The first term is such that

2
B i (22, . ) Eh (22, b, ) [Es i (21,,3) = Ehi(21,,5)])

——~
=
INeh

-
Il
—

p
E|hi(12a a?.j)|2 Z |Ehi(z27 b7j)|2E|hi(Zla bv.j) - Ehi(zlﬁ b7.])|2

i=1

)
s

&
Il
—

I

S
~
-
=

The last line is due to

(S.3.13)

P ) ) ) 1 P .
2 “Ehi(ZQab?])|2E|hi(Zlabaj) - Ehi(zlvbaj)‘Z < ’CE Z ]E‘hi(z27bv.])|2 = 0(1)7

=1 i=1

which is a consequence of (S.3.11).

Therefore,
P
sup B 3 [[Ehiz2,a )i 22, b, ) [Ehi(21, 5,9
1SN 4
p
= sup B |[E;hi(z2,a,5)hi(z2, b, )|Ehi(z1,b, )| + (1)
1ISj<N - 4
p
sup > [Ehi(z1,b, 5)[E|hi(z2, a, j)hi(22, b, j)'
ISIsSN G5
p
< sw [Bhizb )| sup TE|hi(za,a,)hi(z,b, )|
J<N;i<p 1<G<N i3

1/2
< sup |Ehi(z1,b,7)| sup (EuaTZ;‘-FAj(zz)Aj(ig)Zjua> .

J<N;i<p 1<j<N
TerT 1/2
<E’U,b Zj AJ(ZQ)AJ (ig)Zjub) .
It implies that we only need to show

sup |Ehi(z1,b,7)] — 0.

J<N3i<p

(S.3.14)
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For all j,
N
Ehi(z,b,5) = ) wrEe] A12(2)z1512(2)
)
i 1 1 1
= Z unge;rAlg(Z)Zlﬂlg(Z){l + EEtrAIZ(Z)}_l(EZ,{A12Z1 — EEtI‘Alg(Z))
0£j

By Lemma S.13 and Lemma S.14,

1 1 1
Elel A12(2)z1B12(2){1 + g]EtrAlg(z)} 1(ﬁz1TA12z1 - E]EtrAlg(z)ﬂ

1 1
< ICIE|eZ-TA12(z)z1(Ez1TA12z1 - EEtrAlg(z)ﬂ = o(1).

Consequently sup; [Eh;(z,b, j)| — 0. We later prove a stronger result in (S.3.31).
We have shown

a, j)hi(z2,b, j)|[Ejhi(z1,b, j)]| — O.

1<j<N —

Thus,
N
2 Ej_1H[1y(z1, ) Hz)(z2,5) — 0, in probability.
j=1
S.3.1.6. The limit of (S.3.5)

In this subsection, we show, as n — o0,

N
Z Ej_1H[s)(z1, 5)Hz) (22, 5)

j=1

= (8%(21)8"(22))° (S.3.15)

1 N
. D[t A (z1)E; A (z2)]*

j—1 _

j—1
(D] asuni)’ Z Z ups] + 0p(1
i=1 i=1

By Lemma S.20,

N

DB 1 Hp) (21, §) Hiz (22, )

j=1

N p

2 Z Zlaa J (Zlvbvj)][Ejhi(Z%aaj)hi(z%b»j)]

1
= (Ez}, — 3)=
Tl j=1li=1
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p
h’L(Zha] ZQabj l Zlaaj 2276])]
1

+
S|
M=
=
Fﬂ"@

j=1 =1 1=
1 N 14 p
+EZE][Zh1(Zl7bJ ZQab.] Z Zlaa‘j Zan.])]
j=1  i=1 i=1
_ 7 (8) (9)
~ 3+ 3,

where similar to h;(z, a,j) and h;(z,b, j), h;(z, a,j) and h,;(z,b, j) are respectively the ith
elements of A ;(z)Z;u, and A;(z)Z;uy.

Consider ij first. The target is to show

N p
% Z Z i(z1,a,5)hi(z1,b, §)][Ejhi(z2, a, j)hi(z2,b,7)] = 0p(1). (S.3.16)

Split it into four terms,

=

[Ejhi(zla aaj)hi(zlv baj)][Ejhi(ZQa (Z,j)hi(lg, bvj)]

.
Il
—

[Ej hl (Zlv a, ])hz (Zla b7 .7)] []Ehi(ZQa a, .7)] [Ehl (227 ba ])]

Il
'M"@

s
Il
—

[E h (Zlaa)j)hi(zhbvj)][Eh’i(Z%a7j)][Ejhi(Z27bvj) - Ehi(227b7j)]

'M%

s
Il
—

[Ejhi(z1,a,j)hi(z1,b,5)][E;hi(z2, a, j) — Bhi(z2, a, j)][Ehi(z2, b, j)]

'M@

N
Il
—

'Mv

s
Il
—

[Ejhi(z1,a,j)hi(z1,b,5)]
E;{[hi(z2,a,j) — Ehi(zz2,a, j)][hi(z2,b, ) — Ehi(z2,b, 5)]}
= dil) + dff) + dff) + df), say.
Combining (S.3.13) and (S.3.14),

P
Eld{| < < sup([Ehi(zs,a, j)|) sup((|Ehi(zz, b, 7)) D} Elhi(ar, 0, )hi(e, b, )|
? i=1

< sup([Ehi(z2, a, j)|) sup(|Eh; (22, b, j)|)-

P p
(Z Elh(z1, a, )| Z E|hi(117b7j)|2)1/2 — 0

i=1 i=1
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Next, using (S.3.11) and (S.3.12),

P 1/2
E|d{”| < sup(|Bhi(z2, 0. )| Y, Elhi(z1, 0. )hi (21,0, )1

i=1

\ E|hi(z2,b,7) — Eh;(z2, b, §)|? 1/2—>0.
[ ) Elhi(zs,b, 5) — Bhi(za,b,5)

i=1
Similarly,
(3) NS : NSEE
Eld”| <sup([Ehi(zz,b,)1)| ), Elhi(zi, 0. )hi(z1,b,5) ]
¢ i=1
L ‘ ]2
I:Z]E|hi(127a7j) 7Ehi(12aa7‘7)| ] — 0.

i=1

p p
Eldz(:l)‘ <(Z ]E|hi(zl7a7j)hi(zl7 baj)|2)1/2[ Z ]E‘hi(227a7j) - Ehi(127a7¢j)‘4'

i=1 i=1

p ] i 1/4
2E|hi(223b7])_]Ehi(227b7.7)| ] —0

i=1

Consider ‘7]-(8). The target is to show

p
hi(z1,b, )by (22,0, ) Y hi(za,b, §)hi(21, 0, )

=t . (S.3.17)
Z Zlab] ZQaa.] Z 127b,7 Zlaa.j)+0L1(1)

First we substitute h;(z1, a, j) with E;h;(z1,a,7) in Jj(g) and show the resulting difference
is small. That is to show

P P
E; Zh (z1,b,5)h;(z2,a,j Z (z2,b,j)hi(z1, a,7) (S.3.18)

hS]

P
= 2 Zlab ])h (22704 ])Zhi(227b7j)]Ejhi(Zlva7j)+OL1(1)'
=1 1=1

It suffices to prove

p
E‘Zh (21, )b (22, 0. §) Y hi(22,0, §)[hi(21, 0, 5) = Ejhi(z1,a, )] = o(1).
i=1

1=1
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Due to very similar arguments to (S.3.13),
D 2
E| ) hilr, b, (22, a,5)|

< (B( % Inder0. ) B( 3 It ) )

1/2
— (Blu] 2] A; (2 )Aj@nzjubPMu;’,”z?Aj(zQ)Aj@)zjuaﬁ) - o).

It suffices to show

p 2
‘2@ (22,0, j)[hi(z1,0a,j) — Ejhi(zlaa,j)]‘ = o(1).
Fixing j, we consider the o-algebra generated by
{z1, . Zj-1,2j41, -, Zn} U{Zj 1, BN
Define a filtration (in ) as
o(Z1,. 251,241, -ZN+Zl,---,ZN), [=j+1,...,N.

Rewrite Z h;(z2,b,7)[hi(z1,a,5) — E;jhi(z1,a,j)] as a sum of martingale difference se-

quence Wlth respect to the filtration.
Denote E;; to be the conditional expectation with respect to

U(Z17'"7Zj717Zj+17"'ZN?Zla"'aZN)

forl=54+1,...,N.

P

Z Z?ab ] Zlva ]) Ejhi(zlaaaj)]
1

N

= > By —Eju)ulZ] Aj(22)[Aj(21)Zjta — Asj(21)Zijua)
I=j+1

K2

=

(Eji — Ej-1 )ugul ZF A (20)Asj(z1)21 815 (21)
J -]
1=j+1
N
- Z Eji—Eji1)uy Zj Aj(z2)Asj(z1)ziz] Ayj(z1)Zijuaij(z1)

l=j+

—_

3

=d5 —i—d57 say.
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By Lemma S.8, Lemma S.10 and Lemma S.16,

N
Eld"? <K D) |ua*Eluf ZT A (22)Asj(21)mBi; () * = O(n ™).
I=j+1

N
1
EldY[? < K3 > Eluj ZT A (z2)Asj(z1)ziz] A (z1)Zijua B (1))
I=j+1

N
1
<K— > {Blui Z] A (22) A (21)z°Elz] Aj(z1)Zijua*}? = O(nY).

I=j+1
The proof of (S.3.18) is done.
We next continue to substitute h;(z1,b,j) with E;h;(z1,b,7) in

E; Zh (z1,b,75)h;(z2,0a,7) Z (z2,b, j)E;hi(z1,a,7)
i=1 i=1

and show the following line is o(1).

p
E|E; S hiles, b )bz a. Z (22,0, ) — Ejhy(22,b, ))E;hi21, 0, 5).

i=1 i=1

It can be done along very similar lines to the proof of (S.3.18). Therefore, we omit details.
Finally, we proved

p
Ejzhi(zhbvj ZQaa.] 1271)] Zlva’])

S ||'M~s

[EJ 1ubZ A (Zl [ j— 1ubZ A (ZQ)Aj(Zl)Zj’u,a] -‘rOLl(l).

In Section S.3.1.4, we proved Ly-convergence of E; 1ubTZTA (z1)A;(z2)Z;u,. Therefore,
it is straightforward that

]E Zh Zlabj Z?va]
i=1

= (#*@)F"@)uE; [Aj<zl>Aj<12>])2( Z i) + 02,1,

Z27bJ Zlaa])

1 M@

Consider Jj(g). Repeat the arguments for \7j(8) with limited modifications,

h (ZQ, a,j)hi(llvavj)

M@

P
E; 2 hi(z1,b,5)h;(z2,0,7)E;

i=1 i=1

<.

291

= (B]E(Zl)BE(ZQ)tr]Ej[AJ( ) Z uazum Z ubzubz +or, 1)

The proof of (S.3.15) is complete.
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S5.8.1.7. Calculation of asymptotic variance

Summarizing Section S.3.1.3 — Section S.3.1.6,

3 3 N
Z 2 Z Ej 1My (21, 5) Hiwy (22, ) =
h=1k=1j=2

N Jj—1
nB*(21)8%(22) Y tr[E; A (21)E; A (22)] D (udiug; + ugjug; + 2uaityta;in:)
j=2 i=1

+ B85 @) ) [ A, (21 A 2]

=2
Jj—1 Jj—1 Jj—1

[(Z Uaitin)? + Z u; Z ng] +0p(1).
i=1 =1 i=1

We next try to find the limit of the right-hand side.

Recall the definition of mg(z) in Section S.2. It is proved in Bai and Silverstein (2004,
(2.18)) that
-1

b (z)mb (2)t| (7 + m(22),) 'S, -

tr[(1 + mg(ZQ)E;D)_lZp(] + m?;(Zl)Ep)_lZp]

r[(E; A, (21)} A (22)]{ 1~ 2

(I + mg(zl)zp)_lZp]} =

+-OL1(1)

z17Z2

It is worth mentioning that in Bai and Silverstein (2004), the definition of the sample
covariance matrix is %E;/QZZTEZ“/Q, while in this paper pr = %E;/ZZZTEg/Q. We shall
not distinguish the difference because

L c1/20071)2 1Nk n -t
(F=v2zzsl? 1) = = (8, - Lal)
and mJ(z) is continuous in z.

It is also proved in Bai and Silverstein (2004, (2.17)) that

1 0
1+ N-Eu[A (2] = ™

(z) = O(n~*2). (S.3.19)

Note

1

~mp (2 )m (z2)tr| (1 + m (22)2,) TS (1 + m(21)E,) 7S, |

= (2)m0 (2 T2dF>r (1)

= Tniy (21)11 2)/ [1+ 7m0 (z1)][1 + 7m0 (z2)]
_ my (z1)my (22) (21 — z2)

T ) - mi)




High-dimensional general linear hypothesis via spectral shrinkage 33

We get
1 D
E 5E(21)5E(Z2)gtr[EjAj(Zl)EjAj(h)] - @ =o(1),
where 0 0
D14 mp(lé)mp(zz)(zl — 73)
mb(zz2) — md(z1)
Define .
ey
Therefore,

3 3 N
Z Z Z Ej 1My (21, 5)Hin (22, 5)

N
2 2 2 2 2
=n Z Pi-1 (uaiubj + ugup; + 20U U Ups )

J
2 22 2 2
=N Z P; Z(umubj + U Up; + 2UgiUp UajUp;)

N j J
+N Z PJQ[(Z Uqitini ) + Z u, Z u%l] + 0p(1).
The convergence of {3%(z1)B%(z2) Ltr[E;A;(z1)E;A;(z2)]}? follows from the fact that

55 ()5 (a2) - 1 A 21 A (22)]

is bounded for any fixed z; and zs with non-zero imaginary part.

Define
¢

Oy = Z (w2 udy + w2 ul; + 2ugiupetiarup).
i=1
J J J
The following result indicates (Y ugiupi)® + Y, uZ; ) u?; is approximately the sum of
j i=1

i=1 i=1
Op, £=1,...,7.

2

2 2 2
(ugiUpp + UgpUp; + 2UaitpeUarUp;)

VR4
=1

{=11
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2 9 2 2
(us;upy + UsipUy; + 2UaiUprtarp;)

I
‘Mb.

N
N
~

2 2 2 2
(us,upy + Usipuy; + 2UaiUprtartp;)

Il
‘Mb.

S
\
~

J
Z umubg + ’Ltagubz + 2Uqi UbeUarUp;) + 2 Z uazubz
/=1 i=1

Il
-
D 1 Mw

-
Il
—
o~
Il
—

(u;tipy + UaitiprUaetpi) + O(n~?)

Il
.@Q.

~
Il
-

J J
uaiubi)2 + Z 2 uy; + O(n
i=1 i=1

Next, it can be verified that

1 ! 2 —1
Pj=7>o+ﬁi=2179 +0(n

To see this,

1 J 1 Jd J
— Y PP=— ) PiiPi= > (Pi—Pi_1) =—Po + P;.
N 2 N 2P ; ' o

N

3 3
20 20 2 B (@) i (22)

i/ =1j=2

N
=N2 3P40, +NZ7D220¢+01,()

Jj=1 Jj=1 (=1

J N J
=N Y 0;(>. P} + NPy) + Z ]22 ¢+ op(1
j=1 =1 j=1 =1
N N
=N’Py >, 0; + N Z O;P}+ N > 0P} +0,(1)
j=1 <y >
N N N
=N?Py Y O;+ N Y Y0P +0,(1)

j=1 t=1j=1

<
Il

_

~.
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N N
1
=N? 3] Oily D1 P2+ Pol + 0p(1)
j=1

=1

N
=N?*Py > 0; +0,(1)

Jj=1

2 D < R 2
=N =D [(Z UqiUpi)” + Z U, Z ubi] + 0,(1)
i=1

=1 i=1

<.

D
=P alP 10l + (@75)%) + 0,(1).
Next, we express D/(1 — D) in terms of §(z1,z2,7) and ©(z, ). Using the results in
Section S.2, we have
ng(z) = —0(z,7) + o(1).
It follows

1-D §(z1,22,7)0 " (z1,7)0 ™ (z2,7) + o(1).

Thus,

3 3 N
3TN B @) B (22) By Hpn (21, ) Mg (22, ) ——

k=1k'=1j=2
@_2(2177)@_2(2277)6(1172257)[‘|G’H2HbH2 + (a’Tb)2]'

The proof of finite dimensional convergence of Gsll)(z) is complete.

S.3.2. Tightness of G (z, a,b)

In view of our smoothing strategy, to show the tightness, we first consider the case
z=u+iveCT, that is [v| = pn.
Recall the definition
ul'ZT A(z2)Zuy, [v] = pn
Gn(z,a,b) = —”gp_n” ulZTA(u + ip,)Zuy
+%uGTZTA(u —ipn)Zup, |v] < pp-

where z = u + .
G (z,a,b) = n'?[Gn(z,0,b) — EGy(z,a,b)].

We shall drop the arguments a and b in the rest of the section, since they are fixed.
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We first show that E||A(z)||° is bounded on C* for all £ > 1. As in Lemma A.1, select
an arbitrary constant © € (limsup, ., Amax(Ep)(1 + 1/7)?,%), and denote G to be the

event {/\max(flp) > ®}. Lemma A.1 says, for any positive ¢,
P(G) = o(n™").

Note, on G°, all eigenvalues of flp are bounded away from C* with distance at least

min{z — D, |u|}. Thus, H(EN],, —zI,) 7!z < K for some K > 0. On G, Lemma S.10 always
holds. Therefore, there exists an universal constant K such that

[A@)] < KL+ T UG]S < K[L + o5 " UG]S, (S.3.20)
Thus, for any ¢, there exists a constant fs(A) such that
sup E|A(2)]* < Ke(A). (S.3.21)

zeCt

Similarly, we can show there exists constants KCo(3) and K(8%) such that

sup E|;(2)[" < Ku(B), (5.3.22)
sup |8%(2)| < K(B%). (S.3.23)
zeC+t

Another useful result is, on G°, a nonrandom bound holds as following.
1B (z)| = |1 — nflijA(z)zj| <14+ KD, onG" (5.3.24)

(S.3.22), (S.3.23) and (S.3.24) are shown in Section 3 of Bai and Silverstein (2004).

Next, we show tightness of G%l)(z,a,b). We use Theorem 12.3 of Billingsley (1968).
The first condition of the theorem can be replaced by the tightness at any point in [0, 1],
as pointed out in Bai and Silverstein (2004). Therefore, we only need to show there exists

a constant /C such that
EIG(z0)]> < K

with zg a complex number having non-zero imaginary part. In view of the construction
and simplification of the martingale difference sequence in Subsection S.3.1, it is sufficient
to show

E| 2 8% (20 Hon (20, )| < K.

j=
Due to (S.3.23), we only need to show

N
Z IE\nl/Quajz]TAj(ZO)Zj-ub\2 <K
j=1

Z Eln'/?0;(z0)* < K.

2
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We can prove the results using Lemma S.13, Lemma S.15 and Lemma S.16 with the
nonrandom bound of |A;(zg)| shown in Lemma S.10.

The second condition of Theorem 12.3 of Billingsley (1968) will be verified if we can
show there exists a constant K such that for all sufficiently large n and z; # z3 € {u+iv €
¢ and [o] = pu}.

g G (@) = Gi (@)

<K.
21 — 22|
Define
~ rr 1_1 1 -1_1
Az1,25) = E;[szzZTZ CnD)(~SEZZTS: —ZQI)] >3,
n n
. ol 1 11
Aj.(z1,22) = 57 [(fzzz ZTSE — 1) (=S 22T ] ~nD)] 52,
n n
. rr 1 T 11 r 1y
A(z1,2) ZE[ Ezgzsz; —zlf)(gzézjzfng )] sz,
z 57 Ty % loi, o163 1
Aji(z1,22) = 55 [(ﬁzpzjzj 27 —nl)(TZ,2] S —ZQI)] 52,

Along very similar lines to the proof of (S.3.21), we can show, for any £ > 1, there exists
a constant Ky(A)
sup  E|A(z1,22)[" < Ke(A),
Z1,ZQEC+
sup E[A;.(z1,22)]° < Ke(A), (5.3.25)
21,22€C+
sup  E[A.j(z1,22)[" < KCe(A),
21,226C+
sup B[ Aj;(z1,22)[" < Ke(A).
21,22€C+

Using the identity A(z;) — A(zs) = (z1 — 22)A(z1, 22).

G (@) - G (z2)

Z1 — Z2
—n'2ulZT A(zy,25) Zuy, — n**Bul Z7 A (21, 25) Zuy
N
:7’L1/2 Z (E] — Ej_l)[’U,Z;ZTA(Zl, Zg)zub — ’U,EZJTAJ] (Zl, Zg)Zjub]
j—l

:n1/22 (Bj —Ej-1)[ds + dr + ds + dy],

where

d6 = ufZTA(Zl, ZQ)Zub — UZZJTA(Zl, zz)Zub
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d7 ufZ;-FA(zl, zz)Zub - UZZZAJ (217 zz)Zub
dg UgZ?AJ‘.(Zl,Zg)Z’u,b — uaTZ?Ajj(thQ)Zub

dg = ’U,Z;Z?Ajj(ll,lg)zub - uaTZ?Ajj(zl,zz)Zjub

Regarding dg,
ds = uajup;z; Ajj(21,22)2;5i(21) B (22)
+ ’U,ajZ]TAjj (Zl, ZQ)Zjuij (Zl)

1 ~
- E“angTAjj(Zl’ 29)2;2; Aj(22)Z w3 (z1) B (z2).

Combining Lemma S.13, Lemma S.16 and (S.3.25) we can show

sup sup n_eE|z;“-FAjj (z1,22)z;]" < Ky,  forall £ > 2, (5.3.26)
J zi,z26Ct

sup sup n_eE|z;“-FAjj (z1,22)z;]" < Ky, forall £ > 2, (5.3.27)
J zi,z26Ct

sup sup E‘Z?Ajj(ll, 29)Zjup|* < K, (5.3.28)

J  z1,z2€CTt

for some constants Iy and .
Therefore, together with (S.3.22) and (S.3.24),

N 2
sup [E[nl/? E(Eﬂ —E;_1)dg| =O0(1).
Zl,ZQ€C+ j:1
The other terms can be written as
1 -
d7 = 7;Z?Ajj(11,ZQ)ZJ"U,(,Z?AJ'(Zl)Z]”U,aﬂj(Zl)

1 ~
- 5UijfAjj(Zh 25)z;2; Aj(21)Zjue;(z1)

1 -
+ ﬁZJTAj(Zl)Zj“aZJTAjj(Zh 25)z,7] Aj(z2)Zjwsf5(22) 5 (z1)
1 -
+ —5uniz) Aj(21)Z5uaz] A (21,22)2,2] A (22)25;(22) 8 (21)
1 ~
dg = _ﬁz"]rAjj(Zl,ZQ)ZjuaZ?Aj(ZQ)ZjUbﬁj(ZQ)
1 _
- guijJTAjj (z1,22)Zjuqz; Aj(22)2;5;(22)
dg = uijfAjj(Zl,Zg)Zj’U,a

Next, we only present the proof of

N 2
sup E n1/2 Z (E] - Ejfl)dg = O(].)

z1,z26Ct j=1
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The proof for d; and dg are very similar.
Due to (S.3.24), (S.3.26), (S.3.27) and (S.3.28),

sup sup E|Z?A]‘j (Zl, ZQ)Zj’LLaZ,JrAj(ZQ)Zj’U,bﬂj (ZQ)]].(GC)|2

Jj zi,z2
< sup sup ICIE|Z?AJ-]- (z1, ZQ)Zjuaz]TAj (ZQ)Zjub|2
J 71,22
T A 4 T 4 1/2
< Sup sup K[E‘Z] Ajj(zl; ZQ)Zjua| E‘Zj Aj(ZQ)Zj’U,b| ]
J 71,22
= 0(1).
sup sup E|z?Ajj (z1, ZQ)Z]"U,QZ?A]‘ (ZQ)Zjubﬁj(ZQ)]l(G)|2
J 21,22
RS SllP sup Zj ij Z1,2Z3 j'u,a jub j V) .
< Elz; |*|Ajj (21, 22) || Zjua* | 2w || A (22)]?
J 21,22

(1 + llz;I*|A@))*L(G) = o(1).

Combining with Lemma S.8, it follows that

N
1 ~ 2
sup E n1/2 2 (EJ — Ej,l)fz?Ajj (Zh Zg)ZjuaZ]TAj (ZQ)Zjubﬂj (22)
11,22€C+ j:1 n
= 0(1).

For the second term in dg,

1 ~
sup sup ]E|*Z?Ajj (Zl, Zg)ZjuaZ?A]’ (ZQ)Zjﬂj (ZQ)]].(GC)|2
j zizz T
1 ~

< sup sup KJE|EZ31AJ] (217 Zg)Zj'LLaZ?Aj (ZQ)Z]'|2

J  Z1,Z2
< KIEIZzTA .. 7. 4El TA. ,41/2
< sup sup |Zj i (21, 22) Zju,| |an j(22)z;]

] Zi1,Z2

= 0(1).

1 ~
Sup sup E'ﬁZfA]] (Zl, 12)ZjuaZ]TAj (ZQ)ZJ‘/BJ' (Zg)]l(G)|2
J 21,22
< sup sup En?|z;|°| Ay (21, 22) 12| Zjual* | A (22)]* -
J 21,22

(1 + Iz I*[A@))*L(G) = o(1).

39

When |v| < pp, GS)(Z) is the connected line between G%l)(u +ipy,) and G%l)(u —ipn).
Set zy = u + ip, and zo = u — ip,. All previous arguments in the subsection apply.

Therefore, the slope of the connected line is bounded in expectation.
The proof of tightness of Gg)(z) is complete.
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S.3.3. Convergence of Ggf)

Recall

@n(za A/) -1

Ggf) z,a,b) = n'/*{EG,(z,a,b) —a”b
(2.0.8) = nVHEG, (2.0.0) — o b2 L

5,
1

©,(z) = 1 + v, -EtrA(z).
p

In this section, we show
sup G (z,a,b) — 0.

zeCt

n*?EG,,(z, a,b)
— n'?Bul Z7 A (2)Zu,

N N
= 7?,1/2 Z Euajuij]TAj (Z)Zjﬁj (Z) + n1/2 Z ]EuaszTAj (Z)Zju(,ﬂj (Z)

j=1 7j=1

N
_ nl/Q Z Eua]uij?A] (Z)Z]B]E(Z)

Jj=1

N
—nl/? Z EuajubjijAj(z)zjﬁj(Z)BE(Z){%Z?AJ- (z)z; — %]EtrAj(z)}

j=1

N
02 ) Bugyl A (@) 255 (2) 55 @) T A (z)a; — ~EtrA;(2))
j=1

-1
_ 12 Ty TP EtrA;(z)
1+ v,p~1EtrA4(z)

+n2aT08% (2)EB, (z){%le A\ (2)z; — %EtrAl(z)}

ol 1 1
— 12 Z EuajijAj(z)zjub(ﬁﬁ(z)ﬁ{ﬁz]TAj (2)z; — EIEtrAj (z)}

Jj=1

N
+n'? Y Bugyz] Aj(2)ZiuB; (Z)(ﬂE(Z))Q{%leAl(z)zl - %EtrAl(z)}Q

j=1
= dyg + d11 + d12 + di3, say.

First, due to (S.3.21), (S.3.22) and Lemma S.13,

sup [EtrA;(z) — EtrA(z)| = sup ‘E%Z{A%(Z)Z161<Z)| =0(1).

zeCt zeCt



High-dimensional general linear hypothesis via spectral shrinkage
Together with (S.3.23), we get

1/2aTb@n(Za v) — 1) 0.

o (= a0 e

zeCt

Next we want to show sup,cc+ (|d11| + |d13|) — 0.

di1 = n'2a"b(E(2)) 2B, (z){%leAl(z)zl - %EtrAl(z)}Z,

N
sl < 02t max D IBE(Z)IQE‘ZJTAj(Z)Zjubﬂj(Z) :

Jj=1

(Faf A2 — EirAy(2)]
nZI 1\Z)Z1 n IrAajl\z

Due to (S.3.21), (S.3.23), (S.3.28) and Lemma S.13,

1 1
sup E|—z{ A (z)z; — —EtrA,(2)|* = o(n™!),
zeCt n n

sup E|Z;-FAj(z)Zjubb’j(z)|2 = O(1).

zeCt

Thus,
sup (|d11| + ‘d13|> — 0.

zeCt

We next want to show

sup |dy2] — 0.
zeC+t

By Lemma S.20,
121, T L r 1
n/“Ez; Aj(z)Zjub{gzj A;(z)z; — ﬁEtrAj (2)}

p
= n PR E Y ef Aj(@)eie] A (2)Zju,

i=1
We first show

2
sup sup E =0(n™),

zeCt 1<i,m<p

ezTAj (z)em — EezTAj (z)em

2
T Aj(2)Z;w, — Bl A (2)Zw)

sup sup E

zeC+t 1<ism,1<j<N

For (S.3.30),

2

E eiTAj(z)em — EeiTAj(z)em

41

(S.3.20)

(S.3.30)

(S.3.31)
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N 2
— E| Y (B — Bea)[el Ay(@)em — Bel Agu(z)en]|

0#j

S 1 T T 2
— E| Y (e — Eet)[ 2] Aje(@)eme] Aje(2)28(2)]

0#j

1 < 2
< ’Cﬁ Z E zéTAjg(z)emeiTAjg(z)zéﬁgj(z)‘

Iy

By Lemma S.14, there exists a IC,
Elzi Aje(2)eme] Aje(z)ze|* < KE[Aje(2)]*,
Recall the definition of G° in Subsection S.3.2. Using (S.3.21) and (S.3.24), on G°,
2
]E‘ngjg(z)emeiTAﬂ(Z)Zgﬁgj(z)‘ <EK|A(2)]* = 0(1). (S.3.32)
On G,

2
]E)ZeTAje(Z)emefAjz(Z)zeﬁzj'(Z)
< Elze|*[Aje(@)|* (1 + z[*| A (2)[*)*1(G) — 0.

(S.3.33)

It completes the proof of (S.3.30).
To show (S.3.31),

Ele] A;(2)Zjw, — Ee] Aj(z)Zju|*

N
= E| Y (Er — Ee1)[e] Aj(2)Zu — ¢] Ajo(2)Zj0w)|?
Iy

N
1
<K Z E’ubge?Aﬂ(z)ze — Ee;rAjg(Z)ZgZ%Ajg(Z)Zj(’u,bﬁgj(Z)
17
. 2
+ upe (B (z) — 1)e; Ajo(z)ze| -
By Lemma S.14, (S.3.21),

sup sup]I*I\eiTAjg(z)zd4 <K sup E|A(2)|* = O(1).
zeC

zeCt @

Together with Lemma S.14 and (S.3.22),
Ele Ajo(z)zez; Ajo(z)Zjeunfe; (2)° = O(1).

The proof of (S.3.31) is complete.
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Following from (S.3.30) and (S.3.11),

dia = —n?(6%(z) Zquz A;(2)Z, ub{ z! A;(2)z; fIEJtrA i(2)}
j=1

7n71/2(515 )2

=

P
(2))? Y ua B2 E Y e Aj(2)eie] Aj(2)Zjuy
j=1 i1
N P
= —n"Y2(5%(z))? Z uqj Bz Z Eel A;(2)e;Eel Aj(z)Zjuy + o(1)
im1

J
N N
_1/26E 32 ZU pETA Tl A 1
11 MZ €; 1(z)e; €; 1(2)z2 + o(1).
J=1 t#j i=1

The residual term o(1) is uniform on C*. Note

—

Ee! Ay (2)z,
= Ee] A12(2)2221(z)

= 7E6?A12(Z)Z2/821(Z)BE(Z)(%Z5A12(Z)Z2 — %]EtI'Al(Z))

= 7E6?A12(Z)Z2(ﬂE(Z))2(%ZgA12(Z)Z2 — %EtrAl(z))

+ B Ar(@)ea(5(2)) 01 (@) o] Ans(2)ar — —EtrAy(2))

P
—g(,@E(z))zEzfl Z Eel A1s(z)erel Ava(z)e;
=1

+ ]Ee;rA12(Z)ZQ(5]E(Z))2B21(Z){%Z§A12(Z)Z2 — %]EtI‘Al(Z)}2.

By Lemma S.13, Lemma S.14, (S.3.21), (S.10),

sgg‘IE|61TA12(1)Z2(BE(Z))2621(z){%nglg(z)ZQ _ %EtrAl(z)}ﬂ — o(n~2).

Therefore, again using (S.3.30),

N P
dia=n 3/2(BE YEZ) Z Z Upe Z Ee;?rAj (z)e;

j=1 03 1=1

p
Z Ee{Alg(z)egegAlz(z)ei + 0(1)
=1

P

N N
= n 732 (BE(2)) (B3, )? Z Uqj Z ) 2 Z Eel A;(z)e;Eef Aya(z)es

j=1  t i=1(¢=1

<.
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Ee{Alg(z)ei + 0(1)
= (R (@) (B )P UT 1S U

p

Z Z Ee Ai(z)e; Eeg Ais(z )egEezTAlg(z)ei.

Note a”UT'1,, = O(n'/?) because |Ul|max = O(n~'/2). Meanwhile,

1 M'@

p
Z Ee A1 6 Eee A12( )egIEe?Au(z)ei = OL{EAlg(JéQ,

where a7 is the diagonal of EA;(z) and ao is the diagonal of EA15(z).

sup |af EAjsaz| < sup |[EA12(z) 2] 2]z ]2
zeCt+

zeCt

< sup n|EA12(2)[3|EA1 (2)[2|EA12(2)[2 = O(n).
zeCt
It follows that sup,cc+ |diz| = O(n~12).

S.3.4. Convergence of Ggf)

We next show
sup G (z,a,b) — 0.

zeCt

Using the idea of proof of Lemma 2 of Chen, Li and Zhong (2014), post-multiplying both
sides of the identity (3, — zI,,) + zI, = ¥, by (X, —zI,)~!

I +2(8, —zl,) ' = 2,8, —zl,) " = 2 2222l 2128, — 21,) 7!
i=1

Taking trace and expectation on both sides,
n 1 & 1 1_ 7
N[l + Z;]Etr(zp - Z.[p) :| = ;Ezl A(Z)Zl
(0@~ 1)
@n_l(l)

— %EZ,{Al(Z)ZlﬁE(Z)Bl (z){%z{Al(z)zl — %EtrAl(z)}

Therefore,

(On-1(@)—1) _n
@nfl(z) N

1
+ %EleAl(z)zlﬁE(z)ﬁl (&)= 2] As () %EtrAl(z)}.

1 ~
Yo+ 2y, ~Etr(3, — 21,) !
p

N
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Note (O(z,7) —1)071(z,y) = v + yzm(z). We only need to show

1 ~
sup nl/Q"yn + %ngtr(Ep —zl) Y = (v + fyzm(z))’ — 0, (S5.3.34)
zeCt
1 1 1
sup 0”2 [Ea] A1 (2)21 5 (2) 51 (2){ 2] As(2)z1 - EEtrAl(z)}‘ -0 (S.3.35)
zeC

(S.3.34) follows from the condition n'/?|y, — | — 0, Section 4 of Bai and Silverstein
(2004) and Lemma S.1.
As for (S.3.35),

sup n71/2‘]EleAl(z)zlﬂE(z)ﬂl(z){%leAl(z)zl — %EtrAl (z)}‘

zeC+t
— sup n1/2‘Eﬁl(z)ﬁE(z){lz{AI(z)zl - lEtrAl(z)}‘
zeCt n n
= sw nl/Q‘Eﬁl(z)(5E(z))2{%z{A1(z)z1 - %EtrAl(z)}Ql = o(1).

S.4. Additional technical support of Theorem 2.3

In this section, we show (A.12) and (A.13), two key steps in the proof of Theorem 2.3
under the truncated random variable condition (A.7). Additional arguments that deal
with the differnce between C1 and (A.7) can be found in Section S.6.

Consider (A.12). It is sufficient to show

sup E|laTUT'Z" (2, — zI) "' BCbH|*> < K| BC|3,

zeC+t
for any vector (k-variate) a and (g-variate) b, such that |a|z <1 and |b]2 < 1.
1 T ~ (i
Recall notation defined in Section S.3. Further, write %7 ZJ»Z}HZP2 as Ez(f) and

132, 27,55 as ST
n=p Hjj Hjj~p p -
a"UTZT (2, — 2I) ' BCb

N

=) gzl B (B9 — 2I) 7 BChB;(2)
j=1
N T ~ .

= Z \/ﬁuajz?Zp? (21(7]) —zI) "' BCbBE (z)—
j=1
N

T ~,. -~ 1 1
Z Viug izl 2 (B4 — 1) 1BCij(z)B]E(z)(ng A;(z)z; — EEtrAj (z))
j=1
= d13 + d14, say.
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N
Elds* = n Y. u2;|8%(2)PEb" CT BT (E() — 2I)7'5, (B — 2I) ' BCb+
Jj=1
n Uajtay |FE (2) PE2T S (=M — 2zl Bew! cTBT (P ~ 2I)"'S2 2,
J#3’

~ N 1 2
< K@) PBI3IBCIZEN(Z(" — 21) 7|3 + KE—
T
2

Z’{Alg (Z)ZQ

\ZQT 22 (302 — 201 BOWTCT BT (S0 — 71) 7153 zlﬁlg(z)ﬂgl(i)‘.
Using Lemma S.13, Lemma S.14, Lemma S.17,
Elz{ A12(z)z2|* < Kn’E|A12(2)[*,
E|zLs7 (302 — 21)~' BCWT CT BT (S0 — 21)"15 3 7]
< K| BC|SE[(E(™ —2) 7 3B — 21) 5.
Together with (S.3.21), (S.3.22), and (S.3.23),
sup E|di3|* < K|BC|>.

zeC+t

Eldul* < KI5%@)PE| S5 (59 — 1) BObs (2)-
1 1 2
V2] Aj(2)2; - S BirA (@)

n

Using Lemma S.13,
1 - 1 2 9
E[Va(-2f A;(2)z; - —EtrA;(2)| < KE|A; (@),
~ . 4 ~
Blalsy (8 —2D) ' BOY < KIBCHEI(E, —2D) I3,

We have
sup Eldya|* < K| BC|*.
zeC+t
(A.12) follows.
Consider (A.13). We first show

sup nE|aT CT BT (£, — zI) ' BCa — Ea” CT BT (£, — zI) ' BCa|? < K|BC|3,

zeCt

for any vector (g-variate) a such that |afs < 1.
We use Lemma S.8 to show the result. It is worth mentioning that when z € R™, the
result is shown in El Karoui and Kosters (2011). Note

Vna"CTBT(8, —2I)"' BCa — Ev/na" C"B"(8, — 2I) ' BCa
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N
Z [faTC’TBT(Z —2I)"'BCa — \/na" CT BT (£Y) — )*1Bca]
1 [\/ﬁaTC'TBT(ip —zI)"'BCa — \/ﬁaTCTBT(ZN)y) - ZI)leCa].
Note

VnaTCTBT (£, - 2I)"'BCa — v/na” CTBT(£Y) — 2I)"'BCa

-1 ~ _ & _
=%aTCTBT(E;J)—ZI) '5)22;2] ST2(80) — 2I) "' BCaB(z).

Therefore, using Lemma S.8 (Burkholder’s inequality) and Lemma S.14,
nEla” CTBT(E, — zI) "' BCa — Ea” CT BT (2, — zI) "' BCal?
~ . ~ . 2
< ICIE‘ZJTEg/Q(EZ(j) —2I)"'BCad” "B (B) — 21)7'2122,; (z)‘

Observe that X1/%(ZY) — 2I)"1BCaaT CTBT (8§ — 2I)~15}? is of rank one. Due to
very similar lines to (S.3.32) and (S.3.33), we can get

< K|BCS.

~ . ~ . 2
E‘ijzg/z(zg) —21) "' BCad" CT BT (89 — 21) 7151?23, (2)
Next, we show

~ 2
sup n‘aTCTBT [E(zp —2l)7t — {8(z,7)8, — zI}_l]BCa’ < K| BC2.

zeC+t

VnaTcT BT [E(z“:,, —2)" = (O(2,7)%, — ZI)_l]BCa

bd?

= E\/ﬁaTC’TBT(ip - z[)fl[ 2 (©(z,7)2, —2I) ' BCa
= Ev/naT CT BT (8, — 21)~! [@( )8, —

(6(z,7)%, —zI)"'BCa

3\2

1
25z1z122] :

f%\/ﬁElezp% (0(2,7)%, — 2I) ' BCaaT CT BT (S — 21) 1532, 5, (2)
+/nO(z,7)Ea” CT BT (2, — 21)'%,(0(2,7)%, — zI) ' BCa
= VAlB(e,7) ~ 5 @ETCT BT(S, ~ 21) 715, (0(2,7)8, — =) BCa
- %@(z,v)(z)E[aTCTBT(ENJS) —2l)'5ha, -

2155 (B0 — 21)715,(0(2,7)%, — 2I) " BCapi(2)
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+ E\/EEZ{EP%(@(Z,’”EP —zI) ' BCaa” CTBT(E() — 21)7! -
n
1 1 1
25 Zlﬁl (Z)ﬁE(Z)(ﬁZP{Al(Z)Z1 — EgtIAl(Z)).

Due to (S.3.19) and (S.3.21), we can get

N
sup v/n|0(z,7) — —B(z)| - 0,
zeC+t n
sup Ela”CTBT(E, — zI)'%,(0(z2,7)%, — zI) "' BCa| < K| BC|3.

zeCt

Moreover, by Lemma S.13,

sup IE|Z1TE§(X~)Z()1) —2I)7'%,(0(z,7)%, — zI) ' BCa-
zeC+
aTCTBT (B — 21)15} 7,
< KE|a”CT BT (V) — 21)~.
Sp(B) - 21)71%,(6(2,7)%, — 21) 7' BCa|” < | BC3.

We next show )

En [%leAl(z)zl - E%trAl(z)]ﬁl(z) =0(1).

Recall G is the event {/\max(ip) > D} for some D € (limsup, Amax(Xp)(1 + /7)%, 1),
defined in Subsection S.3.2. Recall (S.3.24). On G¢, 34 (z) is bounded and

1 1
E’I’L|EZ,{A1(Z)Z1 — EﬁtrAl(zﬂ2 < KE|A;(2)|3 = O(1).

On G,
2

sup En [%leAl(z)z1 - E%trAl(z)]ﬂl(z)]l(G) — 0.

zeCt

It completes the proof.

S.5. Proof of Remark 2.1, Lemma 2.1 and Lemma 2.2

S.5.1. Proof of Remark 2.1

The results in Subsection S.3.1.7 imply that 6(z1,z2,7) is the limit in Li-norm of
n~'tr[A(z1)A(z2)] pointwise on (CT)?, when the random variables z;;’s satisfy the trun-
cated variable condition (A.7). Due to very similar lines to (S.3.21) and (S.3.25), we
have

sup Eln"'tr[A(z1)A(z2)]| < .

Z1,Z2 eC+
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Besides, in Section S.2, it is claimed that d(z1,z2,7y) and its partial derivatives are
bounded on C.
It follows from Fubini’s Theorem and Dominated Convergence Theorem that

2 1 P
o .., S0 ) el A ) Al esdes > A7)

On the other hand, when )\max(ip) <D, for some D € (limsup, Amax (3p) (1 + /7)?,7),
|A(z)] is bounded. Therefore,

\#22\(64»)2

Providing that f(z) = 0, for all sufficiently large n, with probability 1,

F(a1)fa2) [ Alen) Aeo)]| das dza] 0.

T;)Q D, f(zl)f(ZQ)%tr[A(Zl)A(Z2)]dZIdZ2 = %tr[f(ip)zp ()%, =
{%tr[f(ﬁp)&o]}2 >max{A$nm( )[%tr(f(i‘p))]2 A?nin(f(ﬁp))[%tr(Ep)]Q}.

It is assumed that F>» converges to L* in Wasserstein distance and the latter is non-
degenerate at zero. If f(x) > 0 on the compact set X, inf,cx f(x) > 0. Therefore, with
high probability,

N (FEp) [ tr(S,) > K > 0.

It follows that A(f,v) >0
If f(z) is only nonnegative but liminf, A\yin(2X,) > 0, we only need to show that
n~tr[f(2,)] > K > 0 with high probability for all suﬂiciently large n. By Bai and Sil-

verstein (2004 Theorem 1.1), [ f(7)dF = — [ f(7)dF®(7) in probability. It follows
that A(f,~) > 0if [ f(7) dFOO (1) > 0.
The proof of Remark 2.1 is complete.

S.5.2. Proof of Lemma 2.1

Lemma 2.1 can be deduced by combining Lemma A.4 and Lemma S.3 shown in Section
S.6.

S.5.3. Proof of Lemma 2.2

Observe that ©(z,v) and A(z,v) are smooth functions of m(z) and m'(z). We further
know that O(z, ) is bounded on C (see Section S.2). Also, it is easy to check that ©(z,~,)
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A~

is bounded on C when Amax(3,) < ® < @w. Consequently, it suffices to show the uniform
convergence of my, ,(z) and mj, ,(z) on C*, that is,

P

sup v/n|my, »(z) — m(z)| — 0, (S.5.1)
zeC+t

sup v/nlml, ,(z) —m'(z)| > 0. (S.5.2)
zeC+t

Define 3 = £ 37, E;/szijEZ/Q and

m(z) = p_ltr[(i - zIp)_l].
Then, using the rank inequality, it is easy to check that

sup |1m(z) — mnp(z)| = 0p(n~?),

zeC+t
d . d _
Zseléli Em(z) - Emn,p(z) = op(n 1/2)-

The main reason is that

e sl 1o %
[F= - ¥ < rank(S, - 5) < =
© p p

Together with Lemma S.1 and Lemma S.2, we only need to show

sup v/n|m(z) — md(z)] - 0,

zeC+
d - d 0 P
1861(1:11 vn Em(z) - Emp(z) — 0.

The convergence of 17(z) to mJ(z) is shown in Bai and Silverstein (2004) under (A.7).
It indeed holds under C1 (see Lemma S.5 in Section S.6). The proof of S.5.1 is complete.
As for the uniform convergence of %m(z), again, we first consider the truncated
variables satisfying (A.7), with generalization to C1 addressed by Lemma S.5 in Section
S.6. We first show p
sup v/n|—m(z) — E—m(z)| — 0.
zeCt dz
The convergence of finite-dimensional distributions is a direct consequence of Bai and
Silverstein (2004). We only need to show its tightness. Using the same strategy as in
Subsection S.3.2, it suffices to show that there exists a constant IC such that for any
Z1 # 72 € C+,

[{(Lm(z1) — Ein(z)} — {hii(zs) — ELrin(za)} ]

|21 — z2|?

En
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< an‘ltr[(z‘: ) HE - 221)—1] - Eltr[(i ) S - 221)—1] ‘2
p p
+ QnE‘%tr[(E )= 121)*2] - E;l)tr[(fl o 121)*2] \2
< K.
Define 0) = L3705 522,27 %1% We can write

tr[(i —nl)H(E - ZQI)—l] - ]Etr[(f) —nl)H(E 121)—1]

zn] E, —E,_ 1{ [(2—211)*2(2—121)*1]

j=1
- tr[(z’:m —aD)2(EW - 121)71]}.

The rest of the proof is very similar to the work presented in Subsection S.3.2, also Section
3 of Bai and Silverstein (2004). We use Lemma S.8 to find the stochastic order of the
sum of the martingale difference sequence. Similar to (S.3.21), we have sup,cq+ E[ (X —
zI)7!|* < oo for any £ € N*. We omit details.

We next show

sup fE m( ) — dimg(z) — 0. (S.5.3)
zeCt z

It suffices to show sup,ec+ v/n|E-L1i(z) — dim (z)] — 0, where /m(z) = 222 4 ~,1m(2).
Following notation in Section S.3.1 and Section S.4, it is shown in Bai and Silverstein
(1998, (5.2)) that

dF*» (1) .
Yn / m + zy,Em(z) = A, (z),

where
_ 1 — - _
An(2) ~EB (@) 2T 5L (S0 —2) BT, + 1) US s

1 _
- ~Et((En@)S, + ) 7'L,(E -2 7).
Ai(2) 1
1\z) = —
1+ 01275280 — 21) 1%,/ %2

It is shown that A, (z) = o(n~'?) uniformly on C* in Bai and Silverstein (2004) (see
(4.19)—(4.11)).

Next, we would like to first take differentiation on both sides with respect to z, and
then interchange differentiation and integration. Note that, similar to (S.3.20), (S.3.24),
we have on ze€ C™,

E|(Z —zI) 72" < EK*[1 4+ v '1(G)]* < oo, for any £ e N,
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_ d _ _ _
B Bi@)” = B (1~ n~ 2 5]2(8 — 21,) 52
= E|n_1z?§]§/2(i — ZI)_22117/2Z1|2 < 0.

Moreover, Bai and Silverstein (2004, (4.3)) claims that

sup |(Em(z)%, + 1)1 < 0.

zeCt
Due to Dominated Convergence Theorem,

= Anl@)
- E%Bl (2) [%ZITEZ(E_J(” —2I) N Bi(2)S, + 1) 'Sz
_ %Etr[(E@(z)ZP F 78,8 20|
+EBi(2) [%z{zg(im —2I)*(Bi(2)S, + 1) ' 5%z
— Eu{(EB(e)S, + 1) 5,(8 — 21) 7]

_ 1 _ (d . _
+Eﬁ1(z)[ﬁz{25(2(l) —zl) 1{£(Em(1)2p+1) 1}22/2Z1
d

_ %Etr[{ﬁ(E@(z)Zp + I)‘l}Ep(2 - ZI>_1]]

= dy5 + dig + di7, say.

Follow analogous lines as those in Subsection S.3.2, Subsection S.3.3 and Section S.4, we
can show sup,cc+ v/n[|d1s| + |dig| + |di7|] = o(1). Details are omitted.
Bai and Silverstein (2004, (4.12)) indicates

. T2dF>? (7) -1
= @) )1 B [ great e

It is also claimed that the denominator on the right-hand side is bounded away from
zero. Take differentiation on both sides,

d _ d
E— m(z) — - m,(z)

T2dF®r (1 -

_ _[%mg(z)]fln(z) [1 — B (z)m) (z) / 1+ TEm(i;(l(+)Tm2(Z))]
T2 dF®r (1 -

—m{(2) [%An(z)] [1 — WEmm(z)my(2) / 1+ TIEﬁz(Ci})F)(l(Jr)ng(Z))]
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d T2dF>r (7) -1
— 0@ An(2) L [1 - 7 Eri(2)m? / |
mp@ A0 (2) 3 |1 = 20 Bi(e) () (1 + 7Em(2))(1 + ng(z))]
It follows that Er(z) — m)(z) = o(n~"2) uniformly on C*.
The proof of Lemma 2.2 is complete.

S.6. Truncation of random variables

In previous sections, we proved the asymptotics of various objects with the variable
truncation step. To complete the technical support, we need to verify the truncation step
does not change the weak limit of the objects.
Recall
fij:ﬂ.(|éij| < ennl/Q) — Eflj:ﬂ_(|§”| < Ennl/z)
{E[Z;1(1%;| < ennt/?) — EZ1(1Z55] < enn?/2)]2}2

We define Z and Xu]p by copying the definition of Z and f]p, but with Z replaced by Z.
Similarly, 1m,, ,(z) and m;, ,(z) are the counterparts of my, ,(z) and m;, ,(z).
Specifically, to verify that Theorem A.1 still holds without the variable truncation, we

need to prove the following lemma.

Zij =

Lemma S.3 For any fized o and 1,
sup n~ /2 aTszTE;/Q(ZA]p - ZI)_lE;ﬂZan
zeCt
CaTQTETST(S, — 1) 822Qum| Lo 0.
Secondly, to verify that Theorem 2.3 still holds without the variable truncation, we

need to show (A.9) and (A.10) still hold without the variable truncation. It suffices to
show the following lemma.

Lemma S.4

sup |QEZTSIA(8, — 21) ' BOT, 2

zeC+

—QTZTYTA(S, — zI)‘lBCTn_l/ZH L0,
2

sup \/ﬁHTn‘l/QCTBT(flp — 2D BT V2
zeCt

—T7R2CTBT(S, - zI)—lBCT;1/2H2 0.
Lastly, to verify Lemma 2.2 under C1, we need to show the following lemma.

Lemma S.5

supv/nmy, ,(z) — My, ()] — 0,

zeCt

sup /nlm, ,(2) — i, ,(2)| > 0.

zeCt
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In the following, we shall only prove Lemma S.3. The other two lemmas can be proved

using analogous lines.
By Yin, Bai and Krishnaiah (1988),

1

)\max(i:p) < lim sup )\max (EP))‘IH&X ( E ZZT) =% lim sup )\max (EP) (1 + W)Q .
p p

Together with Lemma A.1, we only need to consider the case Apax(%,) < © and
Amax(2p) < D for a constant D such that (1 + /7)?limsup Apax(Ep) < D < w. It
p—0

follows, under this event,
sup [(2p —2I) M2 < (@—D2)7" + |uf ™,
S

sup 12y —2D) o< @—2)7" + |ul ™"
ze

n~ V2T QTZTSTA(E, - 21) T SY2ZQ.un
—a"QIZTSI (3, — 2I) 'R PZQun
=n"2aTQI(Z - 2)TST*(S, — 2I) 7' 812 ZQ.n
+n V2T QLZTSIR((S, — 2I) 7 — (3, — 2I) T8N ZQun
+n 1 2aTQIZ YT A(S, — 2I) T SVH(Z - Z)Qun
= dyg + dyg + dap, say.
Therefore, we can find a constant C sufficiently large such that
|dis| < 02K Q1 (Z — Z2)T 2| ZQuno-
By Lemma S.15, n™Y/2|ZQ,n|l2 = O,(1). We next show
v P
I(Z - Z)Q@nalz — 0.
Since

Ea”QT(Z — 2)"(Z — Z)Qna
N N p
=E > > [@nali[Qnel; Y (zik — Zin) (zjk — Zix) = lal*pE(zi; — %;)°.
i=1j=1 k=1
P éijﬂ(|5ij‘ > En’l’Ll/Q) — Efzﬂl(|5”| > Ennl/Q)
YT {E[E1(1 55| < ennt/?) — EZij1(|%5] < ennl/?)]211/2

2y —1/2
+ éij [1 — {E[élj]l(|éw| < Enn1/2) — Eémﬂ.(‘flﬂ < €nn1/2)] } ]



High-dimensional general linear hypothesis via spectral shrinkage 55

We only need to show
Ep[éij1(|éij| > ann1/2) — Eémﬂﬂéw‘ > Ennl/Z)]Q — 0,
2y —1/2
21— {B[51(15] < ennl’®) - Bzy1(5] < eant®)] } | —o0.
Note, €, is such that &, — 0 and &, *E#}1(|%;;| > £,n"/?) — 0. For the first line above,
we have
Ep[zij]lﬂéiﬂ > €nn1/2) — ngﬂ(léw| > Ennl/2>]2 < 2Ep5?j1(|5ij| > €n’I’L1/2)
< 29ne, 2 BEL1(1%5] > enn'/?) — 0.
For the second line, since p'/2(1 — 1//z) = pY/?(z — 1)/(y/x + z), we only need to show
p[l — E[2;1(|%5] < ean'/?) — EZ51(|%] < Ennl/z)]z] — 0
1/2 NE
1-— E[,z”]].(lézﬂ < Epn / ) - Eélj:ﬂ.(|52]| < epn / )]
= Eélgj — Eéiﬂ(léwl < Ennl/Q) + {Eéijﬂ(‘éijl < En’nl/Q)}Q
= Eéf]]l(|éw| > snnl/Q) + []Eéz]]l“éw‘ > En’rll/Z)]Q
< 2EZ31(|%5] > enn'/?) < 26,07 "B 1(|355] > ean'/?) = o(p7?).
P
Therefore, |d1g] — 0.
dig = n"V2TQLZTSIR(S, —2) 7t — (8, — 2I) B2 ZQ.n
=n V2T QTZTSIR(S, — 2) 7S, - 8,12, — 21)T'SIRZQ,n.
It is easy to check that Lemma S.15 still holds for Z when m = 2. We have
n BT QTZTZQ, = O(1).
Thus, we only need to show,
2|8, = Bylo <02~ 2l (|Z]2 + |Z]2) 0. (56.1)

Since n~/2||Z| and n~Y2|Z| are O,(1) (Yin, Bai and Krishnaiah, 1988), we only need
to show

1Z - Z]ls = 0.

] 2y —1/29
22 = [1 - {E[5,2(05| < cn?) - Bzy1(5 < e} |2

+A{E[Z;1(1 %5 < enn'/?) — E21(|%;] < ean'/?)]?}7125,
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where § is a matrix with the (i, j)-th entry being 2;;1(|%;;| > e,n'/?) — EZ;;1(]%;] >
e,n'/?). Tt remains to show |F|2 £, o0.
Note, § has i.i.d. entries with mean 0 and variance

E[%;1(|Zi] > ean'/?) — EZ;1(%5] > enn?)]? = o(p™ ).
Due to the previous arguments. Again using results in Yin, Bai and Krishnaiah (1988),
almost surely,

—1/2
B3] > ean®/®) — E2,1(15] > ean)P| 07252 = 0,(1).

Therefore, ||| L. 5
As for dag, the argument for dig works, since n=1/2[a”QTZ" |y = O,(1) also holds. Tt
completes the proof of Lemma S.3.

Weak limits remain unchanged after process smoothing Lemma S.3 implies Lemma

A4 also holds when Z satisfies C1, Now, re-define &, (z, o, ) with Z replaced by Z.

9

When Apax(Xp) < @,

|§ f@E oz~ ) 1@ and (5.6.2)
C oL C y
< Kpun™ 222" ool (17— A (5,) 7 + ™))

The right-hand side above converges to 0 in probability since p,n'/? — 0. Therefore,
under C1,

_—1 z z z—n'/? T
571 P 1@z 0z 020 7)aT

25 N, [l 2m]3 + (@Tm)2A(f, 7).
When Apax(2,) < @,

n V2TV IUTZ YT R f(3,) 5220, Van
-1 b y y
=5 ;5 f@n2"VIUTZTSTA(2, — 21) ' 8Y2 20, V,ndz.
e C
Therefore, for arbitrary « and 7,

[VaaM(f)n = n29(f, 7)™ 5] = N, Tl lnl3 + ("0 7).

S.7. Technical lemmas

There are a collection of lemmas built under (A.7). Proofs of these lemmas are omitted.
Similar work exists literature. See for example (3.10)- (3.14) of Pan and Zhou (2011).
Recall the notation list in Section S.3.
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Lemma S.6 (Woodbury formula) The following identity holds
(A+UCV) t=Aat—A'WU(Ct+vAlU)tvat

for matrices A, U, C,V of conformable sizes and assuming all inverse operations are well-
defined.

Lemma S.7 (Fan (1951)) Let A and C be two p x n complex matrices. Then, for any
nonnegative integers i and j, we have

Sivj+1(A+ C) < siv1(A) + 5;41(C),
where s;(+) is the i-th largest singular value of a matriz.

Lemma S.8 (Burkholder) Let {Y;} be a complex martingale difference sequence with
respect to the increasing o-field {o;}. Then for m = 2

E‘ZYz

Lemma S.9 (Lemma 2.7 of Bai and Silverstein (1998)) Let Y = (Y1,...,Y,)T, where
Y:’s are i.i.d. real r.v.’s with mean 0 and variance 1. Let B = (bi;j)pxp, @ deterministic
complex matriz. Then for any m = 2, we have

< KnEQ E(Yil? | 0m1)™? + KnEQ V™).

E|YTBY — trB|™ < K,,(EY;'trBB*)™/2 4 K, EY2™tr[(BB*)"/?],
where B* denotes the complex conjugate transpose of B, and K is a constant only de-

pending on m.

Lemma S.10 ((3.4) of Bai and Silverstein (1998)) For any z = u + iv with v > 0,

b z . z
@k <=l e< B rei< 2

Lemma S.11 (Lemma 2.10 of Bai and Silverstein (1998)) For any matriz D and z =

u + v with v > 0,
|Dy 2

tr{A(2)D - A;(z)D}| < -

Lemma S.12 For m = 2 and any fized z with non-zero imaginary part,

n~"E

trA(z) — EtrA(z)‘ — O(n~™?).
Lemma S.13 For a sequence of deterministic matrices D such that D]z < 00, m = 2,

m
n*mE‘z{Dzl — tr(D)‘

< Ky {[tx(DD*)]"/2 + 274 2] (DD*)"/?] } < K[ D327

for some constant KC,,.
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Lemma S.14 For sequences of deterministic matrices D and G such that |[D]2 < o
and |G|z < o0, for m = 2,

m
n~"E szeiejTGzl < Kn| DTG5 [e2™ 02 + n~™] = O(n2e2m™4),

for some constant K, .

Lemma S.15 For a sequence of deterministic matrices D such that |D]2 < 00 and a
sequence of vector w such that limsup,, o, 1/|t/max < Kmax < 90,
Elu’Z'DZu|™ < KK [D]5,

for m = 2 and some constant K,, > 0.

Lemma S.16 For a sequence of deterministic matrices D such that |D]2 < 00 and a
sequence of vector u such that limsup,, — 000/t |max < Kmax < 0,

m
]E‘leDzlu‘ < KpK™m_|D|nm™/2=2gm=4,

max
for m = 4 and some constant K,,, > 0.

Lemma S.17 For a sequence of deterministic matrices D such that |D|q < o0,
E’leDzzrn < Ko |D|5rn™2em =4,

for m = 4 and some constant KC,,, > 0.

Lemma S.18 For sequences of deterministic matrices D1,..., Dy, Gi,..., G, and J
such that |Dj2 < ©, |G|z < %, and |J||2 < o0, and a sequence of vector w such that
lim sup,, o, 7 t)lmax < Kmax < 0,

m 1 S 1
IE‘ 1_! ﬁleDizl 1_[1 E(ZlTszl — trG;)(z] JZ1u)’
i= Jj=

m S
< Koot | [IDil2 [ JIG [[T15KL en ™/ 2epyex(s=20),
i=1 j=1

where m > 0,5 > 1,0 <t < 2 and some constant K., s+ > 0.
Lemma S.19 For a vector r and deterministic matrices D = (d;;) and G,
P
E[(zf Dz, — trD)z! Gr] = Ez, Z diel Gr,
i=1
where e; is the canonical vector with the ith entry 1.
Lemma S.20 For deterministic matrices D = (d;;) and G = (g;5),

E[(z{ Dz, — trD)(z] Gz, — t1G)] = |E2%,*trDG” + trDG + (Ez},

p
— [Ez1[* - 2) Z diigii-
i=1
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S.8. Additional simulation studies

Figure S.8.1 — Figure S.8.12 display additional size-adjusted power curves.
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Figure S.8.1: Size-adjusted power with ¥ = ¥4.,, &k = 5.

Rows (top to bottom): B =

Dense and Sparse; Columns (left to right): p = 150,600, 3000. LHcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LHyiqge (black, dashed) and LHpigp (blue, dotted-

dashed) with £ = (1,0,0).
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Figure S.8.2: Size-adjusted power with ¥ = Y4.,, K = 3. Rows (top to bottom): B =
Dense and Sparse; Columns (left to right): p = 150, 600, 3000. BNP comy, (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); BNPyiqge (black, dashed) and BNPpig, (blue,
dotted-dashed) with # = (0, 1,0).
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Figure S.8.3: Size-adjusted power with ¥ = Y4.,, K = 5. Rows (top to bottom): B =
Dense and Sparse; Columns (left to right): p = 150,600, 3000. LRcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LRyiqge (black, dashed) and LRpign (blue, dotted-
dashed) with £ = (0,0, 1).
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Figure S.8.4: Size-adjusted power with ¥ = Y.y, k£ = 3. Rows (top to bottom): B =
Dense and Sparse; Columns (left to right): p = 150,600, 3000. LHcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LHyiqge (black, dashed) and LHpigp, (blue, dotted-
dashed) with £ = (1,0,0).
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Figure S.8.5: Size-adjusted power with ¥ = X4,.p, k£ = 5. Rows (top to bottom): B =
Dense and Sparse; Columns (left to right): p = 150, 600, 3000. BNP comy, (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); BNPjqge (black, dashed) and BNPpig, (blue,
dotted-dashed) with # = (0, 1,0).
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Figure S.8.6: Size-adjusted power with ¥ = Y., k£ = 3. Rows (top to bottom): B =
Dense and Sparse; Columns (left to right): p = 150,600, 3000. LRcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LRyiqge (black, dashed) and LRpign (blue, dotted-
dashed) with £ = (0,0, 1).
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Figure S.8.7: Size-adjusted power with ¥ = Y4, kK = 5. Rows (top to bottom): B =
Dense and Sparse; Columns (left to right): p = 150,600, 3000. LHcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LHyiqge (black, dashed) and LHpigp (blue, dotted-
dashed) with £ = (1,0,0).



66 H. Li, A. Aue and D. Paul

o o o
[ee) @ [ce]
o (=3 o
© © | ©
o o o
< < | <
o o o
N o~ o~
o o o
o o o
°o 1 2 3 7~ ° 0 1T 2z 3 4 5 °o 2 r: 5 3
o Q] e
© 0 | ©
o o o
© © ] ©
o o o
< < <
o o o
o~ ~ o~
o o o
o o o
°o 1 7 3 7~ °v 1T 2z 3 4 5 ° 7 Z 5 3

Figure S.8.8: Size-adjusted power with ¥ = Y4, kK = 3. Rows (top to bottom): B =
Dense and Sparse; Columns (left to right): p = 150,600,3000. BNP.omp (red, solid);
ZGZ (green, solid); oracle CX (purple, solid); BNP,igee (black, dashed) and BNPpigp
(blue, dotted-dashed) with £ = (0, 1,0).
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Figure S.8.9: Size-adjusted power with ¥ = Y4, kK = 5. Rows (top to bottom): B =
Dense and Sparse; Columns (left to right): p = 150,600, 3000. LRcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LRyiqge (black, dashed) and LRpign (blue, dotted-
dashed) with £ = (0,0, 1).
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Figure S.8.10: Size-adjusted power with ¥ = I, & = 3. Rows (top to bottom): B =
Dense and Sparse; Columns (left to right): p = 150,600, 3000. LHcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LHyiqge (black, dashed) and LHpigp (blue, dotted-
dashed) with £ = (1,0,0).
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Figure S.8.11: Size-adjusted power with ¥ = I,, & = 5. Rows (top to bottom): B =
Dense and Sparse; Columns (left to right): p = 150,600,3000. BNP.omp (red, solid);
ZGZ (green, solid); oracle CX (purple, solid); BNP,igee (black, dashed) and BNPpigp
(blue, dotted-dashed) with £ = (0, 1,0).
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Figure S.8.12: Size-adjusted power with ¥ = I, & = 3. Rows (top to bottom): B =
Dense and Sparse; Columns (left to right): p = 150,600, 3000. LRcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LRyiqge (black, dashed) and LRpign (blue, dotted-
dashed) with £ = (0,0, 1).
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S.9. Nominal power curves

Figure S.9.1-Figure S.9.3 are counterparts of Figure 5.1-Figure 5.3 in the manuscript but
with asymptotic (approximate) cut-off values. We identify that the difference between
them and the size-adjusted power curves are negligible.
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Figure S.9.1: Empirical power with ¥ = X4.,, k = 5. Rows (top to bottom): B =
Dense and Sparse; Columns (left to right): p = 150,600, 3000. BNP o (red, solid);
ZGZ (green, solid); oracle CX (purple, solid); BNP,qge (black, dashed) and BNPy;gh
(blue, dotted-dashed) with £ = (1,0,0).
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Figure S.9.2: Empirical power with ¥ = X4.,, & = 5. Rows (top to bottom): B =
Dense and Sparse; Columns (left to right): p = 150,600, 3000. LHcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LHyiqge (black, dashed) and LHpigp (blue, dotted-
dashed) with £ = (0,0, 1).
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Figure S.9.3: Empirical power with ¥ = 3,,, & = 3. Rows (top to bottom): B =
Dense and Sparse; Columns (left to right): p = 150,600, 3000. LRcomp (red, solid); ZGZ
(green, solid); oracle CX (purple, solid); LRyiqge (black, dashed) and LRpign (blue, dotted-
dashed) with £ = (0,1,0).
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