
Ensemble Learning for Detecting Fake Reviews

Luis Gutierrez-Espinoza1, Faranak Abri1, Akbar Siami Namin1, Keith S. Jones2, and David R. W. Sears3

1Department of Computer Science, 2Department of Psychological Sciences, 3Performing Arts Research Lab

Texas Tech University

{Luis.Gutierrez-Espinoza, faranak.abri, akbar.namin, keith.s.jones, david.sears}@ttu.edu

Abstract—Customers represent their satisfactions of consum-
ing products by sharing their experiences through the utilization
of online reviews. Several machine learning-based approaches
can automatically detect deceptive and fake reviews. Recently,
there have been studies reporting the performance of ensem-
ble learning-based approaches in comparison to conventional
machine learning techniques. Motivated by the recent trends
in ensemble learning, this paper evaluates the performance of
ensemble learning-based approaches to identify bogus online
information. The application of a number of ensemble learning-
based approaches to a collection of fake restaurant reviews
that we developed show that these ensemble learning-based
approaches detect deceptive information better than conventional
machine learning algorithms.

Index Terms—Ensemble learning, deception detection.

I. INTRODUCTION

There are several factors that contribute to the success or

failure of a business, and customer satisfaction is always listed

as one of the most important ones. Customer satisfactions

and good reputation is a matter of life and death for many

businesses. It is important to take customer’s reviews into ac-

count seriously and address their concerns concisely. However,

online reviews can also be abused by adversaries for differ-

ent reasons. It is therefore important to distinguish between

genuine and dubious reviews. The automatic detection of fake

online reviews is an inherent instance of a simple binary clas-

sification problem. As a result, conventional machine learning-

based classification or simple statistical-based approaches can

be applicable to this problem. Given the natural language-

based nature of reviews and the hidden features that might be

latent for explicit modeling, the accuracy might vary.

The use of the most accurate classification algorithms

available for deception is essential in order to design the best

possible detection platforms. Conventional machine learning

algorithms have been extensively used in the literature con-

cerned with the detection of deceptive and/or fake reviews.

These conventional approaches offer relatively accurate results

for the underlying classification problem [1]. More notably,

support vector machines (SVM) are frequently reported as

the best classifier for a wide range of application domains.

However, recent studies are demonstrating the efficacy of “en-

semble learning” approaches [2], which have been shown to

outperform conventional machine learning approaches such as

SVM [3]. In particular, recently developed ensemble learning-

based approaches such as gradient-boosting machines are

demonstrating very promising results for classification.

Motivated by the recent research on ensemble learning-

based approaches to classification problems [4], [5], this paper

investigates and compares the performance of these ensemble-

based techniques with conventional machine learning algo-

rithms. More specifically, ensemble learning-based techniques

(e.g., bagging and boosting) are integrated into conventional

Support Vector Machines and extreme gradient-boosting ma-

chines and are compared with the conventional algorithms.

To accomplish this experimental study, our research team

created a repository, called hereafter the “Restaurant Dataset,”
for which a group of undergraduate students created fake

reviews for three restaurants. The results of our experimental

study, conducted on a repository of fake and deceptive reviews

created by our research team, validate the hypothesis that the

ensemble learning-based approaches outperform their conven-

tional machine learning counterparts. The key contributions of

this research are as follows:

• Introducing a new dataset on fake reviews, called the

“Restaurant Dataset.”
• Investigating the performance of ensemble learning-based

approaches to the problem of identifying fake reviews.

• Reporting the results of experiments that compare the per-

formance of ensemble learning-based approaches using

different machine learning techniques for classification.

This paper is organized as follows: Section II highlights

the goals of this research work and the objectives. Section

III reviews the literature. A brief technical background of

ensemble learning and the classifiers studied is presented in

Section IV. The experimental setup of the study is discussed in

Section V. The results of the experimental study are presented

in Section VI. Finally, Section VII offers conclusions and

sheds some light on future work.

II. RESEARCH QUESTIONS AND OBJECTIVES

The objectives of this paper are two-fold: 1) introducing a

newly produced dataset of fake reviews, called the “Restaurant
Dataset,” and 2) investigating the performance of ensemble

learning-based methodologies in comparison with conven-

tional machine/deep learning approaches to the fake-review

detection problem. More specifically, this paper addresses the

following questions:

1) Are standard forms of machine/deep learning algorithms

effective in the context of fake review identification?

2) Can ensemble learning-based approaches improve the

accuracy rate for this problem?

1320

2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)

978-1-7281-7303-0/20/$31.00 ©2020 IEEE
DOI 10.1109/COMPSAC48688.2020.00-73

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:31:01 UTC from IEEE Xplore. Restrictions apply.

3) How much would the accuracy be improved through

hyperparameter optimization?

III. RELATED WORK

Fuller et al. [6] developed three classification techniques –

artificial neural networks, decision trees and logistic regression

– along with an information fusion-based ensemble method for

automated deception detection. They extracted 31 text-based

deception features (cues) from the labeled statements of crime

scenarios. They reported 74% accuracy with their fusion based

model, 73.46% with the artificial neural network, and 71.60%

with the decision tree model, respectively.

Xu et al. [7] introduced their approach on deception de-

tection called “Unified Review Spamming Model” (URSM).

The approach is a unified probabilistic graphical model for

deception detection in reviews from three online services

(Amazon, Yelp and TripAdvisor). By using the hierarchical

Latent Dirichlet Allocation (hLDA) model [8], the model

ranks the reviews, the reviewers, and the offers based on the

degree of deceptivity. They compared this model with human

judgments and a classifier trained using n-gram features. They

achieved higher performance such as 78.8% accuracy for a

TripAdvisor dataset compared to other methods.

Conroy et al. [9] provided a survey for deception detection

in the context of implementing fake news detecting systems.

They focused on two main methods: the linguistic cue ap-

proach and network analysis approach. Their study showed

that the performance of linguistic approaches is topic-oriented

and successful in some domains. Also, the performance of

network approaches varies from average to high based on

the knowledge-base which was used. They argued for an

approach that combines linguistic cue and machine learning

with network-based behavioral data, and explained the features

for implementing such a system.

Crawford et al. [1] conducted a study on deception de-

tection in reviews using supervised, unsupervised, and semi-

supervised techniques. First, they investigated different ap-

proaches for feature extraction and divided them into “review-

centric,” which uses the content of the review, and “reviewer-

centric,” which uses review metadata related to the reviewers.

Levitan et al. [10] compared different machine learning

techniques with various feature sets and proposed a hybrid

deep neural network approach which uses a combination of

audio and textual features (spectral, acoustic-prosodic, and

lexical) for deception detection. They utilized a subset of the

Columbia X-Cultural Deception (CXD) Corpus to evaluate

their models and achieved F1-score of 63.90% for their deep-

hybrid model and precision of 76.11% for their random forest

model. In their next work [11], they examined automatic

deception detection in the interview scenario. They used differ-

ent sets of features: semantic features collected using LIWC,

linguistic featured collected from previous study, personal

traits (gender and native language) and also emotional level

and detail level scores collected using Dictionary of Affect

Language (DAL). Applying three different classifiers (Random

Forest, Logistic Regression, and SVM), they achieved 72.74%

for F1-score as the best performance by random forest.

Grondahl and Asokan [12] surveyed deception detection

from textual format and provided their arguments for different

questions in this subject. Based on their findings, linguistic

features are not enough for textual deception detection and it is

better to also consider approaches, which are based on content

comparison. They also discussed adversarial “stylometry,” the

identification of authors based on writing style.

IV. ENSEMBLE LEARNING AND CLASSIFIERS

This section presents background information regarding

ensemble learning and the classifiers examined in this paper.

A. Ensemble Learning

Using ensemble learning, the performance of poorly per-

forming classifiers can be improved by creating, training, and

combining the output of multiple classifiers and thus result in

a more robust classification. There are three main approaches

for developing an ensemble learner [13]:

• Boosting, often uses homogeneous-base models trained

sequentially;

• Bagging, which often uses homogeneous-base models

trained in parallel; and

• Stacking, which uses mostly heterogeneous-base models

trained in parallel and combined using a meta-model.

By averaging (or voting) the outputs produced by the pool

of classifiers, especially for small dataset, ensemble methods

provide better predictions and avoid overfitting. Another rea-

son that contributes to the better performance of ensemble

learning is its ability in escaping from the local minimum. By

using multiple models, the search space becomes wider and

the chance for finding a better output becomes higher [14]. En-

semble learning may solve some machine learning limitations

and challenges such as class imbalance, concept drift (change

of features or labels over time), and curse of dimensionality.

B. Machine/Deep Learning Classifiers

We conducted our experiments using four classifiers: Deci-

sion Tree, Random Forest, Support Vector Machines (SVMs),

Extreme Gradient-Boosting Trees (XGBT), and Multilayer

Perceptron.

V. EXPERIMENTAL SETUP

A. Data Collection: “Restaurant Dataset”

We developed our own fake reviews dataset (the “Restaurant
Dataset,”) in order to support research community with new

dataset and thus help in addressing threats to the external

validity of the experiments. The dataset consists of reviews of

three restaurants, each of which has equal numbers of fake and

real reviews, as well as positive and negative ones. We targeted

restaurants that offered the same type of food, in order to avoid

external bias. To collect these reviews, four undergraduate

students wrote fake reviews (positive and negative) for three

restaurants, each one paragraph in length. In addition, they

collected real reviews for those three restaurants that were

1321

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:31:01 UTC from IEEE Xplore. Restrictions apply.

available from Google. To make sure that the real reviews were

credible, we selected reviews from verified users. Finally, all

the reviews and their labels were added to the dataset. The

dataset includes 86 reviews of which 43 were fake reviews

and 43 were real reviews, across all three restaurants.

B. Document Embedding for the “Restaurant Dataset”

For all classifiers in this work, we generated the features

for our reviews using Doc2Vec [15]. Doc2Vec is an extension

of Word2Vec. Similar to the way Word2Vec aims to represent

words as vectors, Doc2Vec embeds documents as vectors [15].

In order to generate the document embedding, we preprocessed

the dataset removing special characters, stop words, and punc-

tuation marks.

C. Classification Metrics

We employed widely adopted classification metrics, such

as accuracy, precision, recall, and F1 score. An accuracy of

1.0 indicates that the predicted labels and observed labels are

identical. Precision is the ratio of true positives against all

predicted positive labels. Recall is the ratio of predicted true

positives against all observed true positive labels. The F1 score

is the harmonic mean of precision and recall, which yields

a more informative performance metric when precision and

recall have dissimilar values. Although we report accuracy and

F1, we determine overall model performance using accuracy,

because our balanced dataset prevents accuracy to report

misleading values.

D. The Hyperparameter Optimization Algorithm

We developed Python scripts for the chosen classifiers and

used the Scikit-learn library and XGBoost for the Extreme Gra-

dient Boosting Trees [16]. We carried out several experiments

to identify the best hyperparameters for each classifier.

Let X and y be the samples and their labels, respectively,

C be a classifier with l hyperparameters to be tuned, and

H be a list where the ith element is either a probability

distribution for the values of the ith hyperparameter of C, or a

list of equiprobable categorical values for the hyperparameter.

A randomized search takes hyperparameter values from H
for a fixed number of iterations, builds an instance of C
using them, and performs the classification. In our work, we

executed the randomized search 100 times, saving the model

estimated in each round for future comparison. Each model

was also fitted using K-fold cross-validation with K = 10 in

each iteration. Once all iterations were completed, we selected

the best model according to its accuracy, and returned both

the model and its set of best hyperparameters. Our approach

is defined in Algorithm 1. Algorithm 1 also returns Xtest and

ytest. These sets comprise unseen data and are used for the

optimal classification and computing the final test errors.

The number of models estimated during the randomized

search is limited to the number of iterations; however, fewer

models are estimated in the event that the possible combi-

nations of hyperparameters are fewer than the number of

Algorithm 1 Hyperparameters selection via randomized

search
Input

X Samples;

y Samples labels

H Probability distributions for the l hyperparameters

C Classification model

Output
M ′ Best model

H ′ Best set of hyperparameters

Xtest Test samples

ytest Test samples labels

1: Xtrain, ytrain, Xtest, ytest ← split dataset(X, y)
2: M = {}
3: for i← 1 to 100 do
4: hi ← sample(H)
5: Model = Fit−K−Fold−CV (Xtrain, ytrain, C, hi)
6: M ←M ∪Model
7: end for
8: M ′ = GetBestModel(M)
9: H ′ = GetParams(M ′)

10: return M ′, H ′, Xtest, ytest

iterations. This procedure also prevents us from generating

duplicated sets of hyperparameters.

The probability distribution over the values, or the possible

categorical values, of the classifiers’ hyperparameters, follows:

1) Decision Tree

• Max depth: discrete uniform distribution over [3, 5).
This range was obtained empirically considering the

size of our dataset, in order to prevent over-fitting.

• Splitter: best, random.

• Criterion: gini, entropy.

2) Random Forest

• Number of weak classifiers: discrete uniform distri-

bution over [100, 1000).
• Max depth: discrete uniform distribution over [3, 5).
• Criterion: gini, entropy.

3) Support Vector Machine

• Kernel: RBF, linear, polynomial, sigmoid.

• C: continuous uniform over [0.1, 1000).
• Degree: discrete uniform distribution over [3, 10).

Only considered when the kernel is polynomial.

• Gamma (γ): scale, auto. Only considered when the

kernel is RBF.

4) Extreme Gradient Boosting Trees

• Number of stages: discrete uniform distribution over

[100, 1000).
• Max depth: discrete uniform distribution over [3, 5).
• Gamma (γ): continuous uniform distribution over

[0, 10).
• Learning rate (α): continuous uniform distribution

over [0.01, 1).

1322

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:31:01 UTC from IEEE Xplore. Restrictions apply.

5) Multilayer Perceptron

• Maximum iterations: uniformly sampled from the

set {600, 800, 1000, 1200}.
• Hidden layers size: sampled from a discrete uniform

distribution over [2, 5). The number of units in each

layer is uniformly sampled, once per layer, from

{5, 10, 15, 20, 25, 30, 35, 40, 45, 50}.
• Activation function: ReLU, hyperbolic tangent, lo-

gistic sigmoid, identity function.

VI. RESULTS AND DISCUSSION

Table I shows the top set of hyperparameters that result

in higher accuracy during the random search for Decision

Tree, Random Forest, SVM, XGBT, and MLP, respectively.

We report the five best sets of hyperparameters for each

classifier, except for the Random Forest, which has only three

possible combinations of hyperparameters reporting a different

accuracy. The accuracy and F1 scores reported in Table I

represent the mean of the estimates calculated during the 10-

fold cross-validation for each model, using Xtrain and ytrain
of Algorithm 1 to fit them, so they correspond to training

errors.

As Table I shows, the Decision Tree has the highest training

accuracy, with 79.6%, where the “best” splitter and the Gini

criterion for information gain yield the highest metrics by a

margin of 7.8%. In this model, the value of maximum tree

depth does not seem to make a difference in the performance.

XGBT follows in accuracy with 78.3%. The metrics for

XGBT suggest smaller values for the learning rate (α), in

addition to higher values of the regularization coefficient (γ),

generate better accuracy and F1 scores. Moreover, the two

top results show the trade-off between maximum tree depth

and the number of estimators in the ensemble, where high

performance can be achieved by increasing the maximum

depth with fewer numbers of estimators, or maintaining a

lower depth with more estimators.

Next, SVMs report 72.6% accuracy. The RBF kernel in each

set of hyperparameters suggests that the Doc2Vec represen-

tation of our dataset benefits from the non-linear mapping

of the RBF kernel; this finding agrees with the high values

for C, which controls the width of the soft margin in the

SVM restricting samples within the margin in non-linearly

separable data. γ is set to “scale” in all results, which shows

that considering the variance of all our samples, in addition

with the number of features to calculate γ, leads to a better

accuracy. The Degree is ignored by the model, as it is used

only when the kernel function is polynomial.

Random Forest reports 71.5% accuracy in training stage.

The results for Random Forest show that a relatively high

number of estimators achieves high accuracy independent

of the maximum depth of the tree. This is consistent with

the improvement in the performance of the weak classifier

(decision tree) according to the number of estimators [17].

Finally, the MLP achieves 68% accuracy in training stage.

As expected, the most important factor of the performance

of the network is its architecture. Each value of the “Hidden

layers & units” is a tuple t of positive integers, where

size(t) = # of hidden layers, and the i-th element of t corre-

sponds the number of neurons in the i-th hidden layer. The five

results were generated using an MLP with 4 hidden layers, the

maximum number possible in our experiments. The number

of iterations and number of neurons per layer do not seem

to affect the performance of the MLP, as the values for these

hyperparameters range over all possible values. Regarding the

activation function, ReLu and hyperbolic tangent were chosen

over the rest; this agrees with the choice of the RBF kernel

for the SVMs, as the ReLu and hyperbolic tangent functions

allow the model to generalize in a non-linear way.

Table II shows the training and test errors for the classifiers.

To report the training errors, we fit each classifier with the

Xtrain and ytrain dataset using the best set of hyperparameters

presented in Table II. The test error was reported by making

predictions with the classifiers using the Xtest and ytest
dataset. Xtrain, ytrain, Xtest, and ytest correspond to the

datasets described in Algorithm 1.

We trained an ensemble of SVMs and MLPs fitted with their

respective best hyperparameters. We trained both ensembles

using the bagging and adaboost techniques, with the number of

estimators ranging from 2 to 22 in steps of 2. Table II includes

the lowest test error for the four aforementioned ensembles.

For both SVM and MLP, the adaboost ensembles produce the

best test error, with 0.273 for SVMs (16, 18, and 20 estimators)

and 0.227 for MLPs (4 estimators).

Figures 1 and 2 show the training and testing errors for

SVMs using bagging and adaboost, respectively. Figures 3

and 4 show the training and testing errors for MLPs using

bagging and adaboost, respectively. The learning rates for

adaboost were obtained empirically. The results of the en-

semble of SVMs and MLPs suggest that the classification

of Doc2Vec document embedding for the restaurant dataset

benefits from adaboost over bagging. This finding might be

because adaboost fits the estimators sequentially using the

whole dataset, adjusting the ensemble to fit it in the best way;

whereas bagging fits the estimators with different datasets that

were sampled using a bootstrap from the original one [13].

This finding is consistent with the overall trend of the training

error in Figure 2, where it decreases steadily as the number of

estimators grows, and Figure 3, where this decreasing trend

is also present, although with a few jumps. It is worth noting

that the MLP adaboost ensemble fits the training data perfectly

with 14 or more estimators; however, the testing error trend

is less obvious for MLP ensembles. This result might be due

to the limited number of samples in our dataset, as neural

networks require several samples to be trained properly.

VII. CONCLUSION AND FUTURE WORK

In this work, we present a novel dataset of fake reviews,

along with the results of the binary classification using

machine/deep learning techniques. Additionally, we applied

ensemble learning-based approaches using Random Forest,

bagging, and adaboost ensembles, with SVMs and MLPs as

weak classifiers with optimized hyperparameters. Our results

1323

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:31:01 UTC from IEEE Xplore. Restrictions apply.

TABLE I
BEST HYPERPARAMETERS TUNING (TRAINING STAGE).

Classifier Hyperparameters Mean
Acc.

Std
Acc.

Mean
F1

Std
F1Decision Tree Criterion Max Depth Splitter –

gini 3 best – 0.796 0.097 0.769 0.123
gini 4 best – 0.772 0.115 0.751 0.137
gini 3 random – 0.694 0.096 0.620 0.136

entropy 3 random – 0.683 0.092 0.598 0.123
entropy 4 random – 0.657 0.095 0.576 0.148

Hyperparameters Mean
Acc.

Std
Acc.

Mean
F1

Std
F1Random Forest Criterion Max Depth N Estimators –

entropy 3 931 – 0.715 0.115 0.673 0.158
gini 4 827 – 0.703 0.118 0.664 0.156
gini 3 659 – 0.690 0.131 0.658 0.168

Hyperparameters Mean
Acc.

Std
Acc.

Mean
F1

Std
F1Support Vector Machine C Degree γ Kernel

21.832 6 scale RBF 0.726 0.116 0.699 0.130
38.581 7 scale RBF 0.704 0.075 0.669 0.092
33.202 5 scale RBF 0.693 0.087 0.662 0.102
5.404 4 scale RBF 0.682 0.083 0.613 0.117
4.843 9 scale RBF 0.671 0.091 0.589 0.144

Hyperparameters Mean
Acc.

Std
Acc.

Mean
F1

Std
F1Extreme Gradient Boosting Trees γ α M. depth N Estimators

9.08 0.035 4 421 0.783 0.094 0.726 0.151
8.214 0.036 3 895 0.772 0.071 0.714 0.134
8.977 0.409 4 791 0.761 0.078 0.706 0.134
7.144 0.231 3 544 0.750 0.082 0.697 0.140
2.913 0.183 3 406 0.740 0.097 0.702 0.156

Hyperparameters Mean
Acc.

Std
Acc.

Mean
F1

Std
F1Multilayer Perceptron Max iterations Hidden layers & units Activation Function –

1000 (35, 40, 20, 5) relu – 0.680 0.100 0.685 0.082
400 (5, 15, 45, 10) tanh – 0.671 0.120 0.682 0.107
800 (40, 10, 20, 30) relu – 0.669 0.146 0.651 0.168
600 (50, 5, 15, 45) relu – 0.668 0.124 0.647 0.154
600 (10, 30, 20, 35) tanh – 0.667 0.147 0.678 0.135

TABLE II
TRAINING AND TEST ERRORS FOR THE CLASSIFIERS.

Classifier Training Error Test Error
Decision Tree 0.102 0.455

Random Forest 0.057 0.318
SVM 0.239 0.409

XGBT 0.182 0.364
MLP 0.0 0.318

Bagging Ensemble (SVM) 0.227 0.318
Adaboost Ensemble (SVM) 0.250 0.273
Bagging Ensemble (MLP) 0.034 0.318
Adaboost Ensemble (MLP) 0.068 0.227

show that, using document embedding from Doc2Vec and

after hyperparameter optimization, stand-alone classifiers can

achieve up to 68.2% accuracy in the case of MLP. Ensemble

learning-based classifiers achieve up to 77.3% accuracy with

the adaboost ensemble of MLPs. In every case, the ensem-

ble of classifiers outperforms their respective base classifier,

either Random Forest and XGBT with Decision Tree, or the

bagging/adaboost ensembles with their respective SVMs or

MLPs. Regarding the ensemble approach, adaboost seems to

produce the most consistent results. As future work, we can

utilize heuristics in order to find optimum values for the

hyperparameters of the models. Moreover, we need to explore

our method with other different datasets, and also expand the

Restaurant dataset in order to make any statistical analysis

based on this dataset meaningful. We also intend to perform

the classification with another set of features that allows more

interpretability than Doc2Vec’s document embedding, and pro-

vides more linguistic insights into deceptive texts. The focus

of this work was on analyzing static texts. In more challenging

settings, when there are interactions between two parties (e.g.,

chatting and lie detection), more sophisticated analysis would

be needed to take into account the time dimension (i.e., a time

series problem) such as Long Short-Term Memory [18], [19]

and clustering using deep learning [20], reinforcement learning

[21], and evidence theory [22].

ACKNOWLEDGMENT

Thanks to Pritish Ayer, Sagar Lamichhane, Omer Qureshi,

and Pranaya Sharma for contributions to the Restaurant dataset

creation. This research work is supported by National Science

Foundation under Grant No: 1723765.

REFERENCES

[1] M. Crawford, T. M. Khoshgoftaar, J. D. Prusa, A. N. Richter, and
H. Al Najada, “Survey of review spam detection using machine learning
techniques,” Journal of Big Data, vol. 2, no. 1, 2015.

[2] T. Dietterich, “Ensemble methods in machine learning,” in 1st Interna-
tional Workshop on Multiple Classifier Systems, 2000, pp. 1–15.

[3] A. Statnikov, L. Wang, and C. Aliferis, “A comprehensive comparison
of random forests and support vector machines for microarray-based
cancer classification,” BMC Bioinformatics, vol. 9, no. 319, 2008.

1324

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:31:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Training and test error for different number of estimators in the
bagging ensemble for SVMs.

Fig. 2. Training and test error for different number of estimators in the
adaboost ensemble for SVMs.

[4] Y. Pang, X. Xue, and A. S. Namin, “Early identification of vulnerable
software components via ensemble learning,” in IEEE ICMLA, 2016.

[5] F. Abri, S. Siami-Namini, M. A. Khanghah, F. M. Soltani, and A. S.
Namin, “Can machine/deep learning classifiers detect zero-day malware
with high accuracy?” in IEEE Big Data, 2019, pp. 3252–3259.

[6] C. Fuller, D. Biros, and D. Delen, “An investigation of data and text
mining methods for real world deception detection,” Expert Syst. Appl.,
vol. 38, pp. 8392–8398, 07 2011.

[7] Y. Xu, B. Shi, W. Tian, and W. Lam, “A unified model for unsupervised
opinion spamming detection incorporating text generality,” in 24th
International Conference on Artificial Intelligence, 2015, pp. 725–731.

[8] D. M. Blei, T. L. Griffiths, and M. I. Jordan, “The nested chinese restau-
rant process and bayesian nonparametric inference of topic hierarchies,”
J. ACM, vol. 57, no. 2, pp. 7:1–7:30, 2010.

[9] N. Conroy, V. Rubin, and Y. Chen, “Automatic deception detection:
Methods for finding fake news,” in Proceedings of the Association for
Information Science and Technology, 2016.

[10] G. Mendels, S. I. Levitan, K.-Z. Lee, and J. Hirschberg, “Hybrid
acoustic-lexical deep learning approach for deception detection,” in Proc.
Interspeech, 2017, pp. 1472–1476.

[11] S. I. Levitan, A. Maredia, and J. Hirschberg, “Linguistic cues to de-
ception and perceived deception in interview dialogues,” in Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1, 2018.

Fig. 3. Training and test error for different number of estimators in the
bagging ensemble for MLPs.

Fig. 4. Training and test error for different number of estimators in the
adaboost ensemble for MLPs.

[12] T. Grondahl and N. Asokan, “Text analysis in adversarial settings: Does
deception leave a stylistic trace?” ACM Comput. Surv., vol. 52, no. 3,
pp. 45:1–45:36, Jun. 2019.

[13] Z.-H. Zhou, “Ensemble learning,” in Encyclopedia of Biometrics, 2009.
[14] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, vol. 8, 2018.
[15] Q. Le and T. Mikolov, “Distributed representations of sentences and

documents,” in ICML, 2014, pp. 1188–1196.
[16] T. Chen, T. He, M. Benesty, V. Khotilovich, and Y. Tang, “Xgboost:

extreme gradient boosting,” R package version 0.4-2, pp. 1–4, 2015.
[17] L. Breiman, “Random Forests,” Machine learning, vol. 45, no. 1, pp.

5–32, 2001.
[18] S. Siami-Namini, N. Tavakoli, and A. S. Namin, “A comparison of

ARIMA and LSTM in forecasting time series,” in IEEE ICMLA, 2018.
[19] ——, “The performance of LSTM and BiLSTM in forecasting time

series,” in IEEE Big Data, 2019, pp. 3285–3292.
[20] N. Tavakoli, S. Siami-Namini, M. A. Khanghah, F. M. Soltani, and A. S.

Namin, “An autoencoder-based deep learning approach for clustering
time series data,” Springer Nature (SN) Applied Sciences, 2020.

[21] M. Chatterjee and A. S. Namin, “Detecting phishing websites through
deep reinforcement learning,” in IEEE COMPSAC, 2019, pp. 227–232.

[22] ——, “Detecting web spams using evidence theory,” in COMPSAC,
2018, pp. 695–700.

1325

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:31:01 UTC from IEEE Xplore. Restrictions apply.

