2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)

Ensemble Learning for Detecting Fake Reviews

Luis Gutierrez—Espinozal, Faranak Abri!, Akbar Siami Namin!, Keith S. Jones2, and David R. W. Sears?
"Department of Computer Science, 2Department of Psychological Sciences, *Performing Arts Research Lab
Texas Tech University
{Luis.Gutierrez-Espinoza, faranak.abri, akbar.namin, keith.s.jones, david.sears} @ttu.edu

Abstract—Customers represent their satisfactions of consum-
ing products by sharing their experiences through the utilization
of online reviews. Several machine learning-based approaches
can automatically detect deceptive and fake reviews. Recently,
there have been studies reporting the performance of ensem-
ble learning-based approaches in comparison to conventional
machine learning techniques. Motivated by the recent trends
in ensemble learning, this paper evaluates the performance of
ensemble learning-based approaches to identify bogus online
information. The application of a number of ensemble learning-
based approaches to a collection of fake restaurant reviews
that we developed show that these ensemble learning-based
approaches detect deceptive information better than conventional
machine learning algorithms.

Index Terms—Ensemble learning, deception detection.

I. INTRODUCTION

There are several factors that contribute to the success or
failure of a business, and customer satisfaction is always listed
as one of the most important ones. Customer satisfactions
and good reputation is a matter of life and death for many
businesses. It is important to take customer’s reviews into ac-
count seriously and address their concerns concisely. However,
online reviews can also be abused by adversaries for differ-
ent reasons. It is therefore important to distinguish between
genuine and dubious reviews. The automatic detection of fake
online reviews is an inherent instance of a simple binary clas-
sification problem. As a result, conventional machine learning-
based classification or simple statistical-based approaches can
be applicable to this problem. Given the natural language-
based nature of reviews and the hidden features that might be
latent for explicit modeling, the accuracy might vary.

The use of the most accurate classification algorithms
available for deception is essential in order to design the best
possible detection platforms. Conventional machine learning
algorithms have been extensively used in the literature con-
cerned with the detection of deceptive and/or fake reviews.
These conventional approaches offer relatively accurate results
for the underlying classification problem [1]. More notably,
support vector machines (SVM) are frequently reported as
the best classifier for a wide range of application domains.
However, recent studies are demonstrating the efficacy of “en-
semble learning” approaches [2], which have been shown to
outperform conventional machine learning approaches such as
SVM [3]. In particular, recently developed ensemble learning-
based approaches such as gradient-boosting machines are
demonstrating very promising results for classification.

Motivated by the recent research on ensemble learning-
based approaches to classification problems [4], [5], this paper
investigates and compares the performance of these ensemble-
based techniques with conventional machine learning algo-
rithms. More specifically, ensemble learning-based techniques
(e.g., bagging and boosting) are integrated into conventional
Support Vector Machines and extreme gradient-boosting ma-
chines and are compared with the conventional algorithms.

To accomplish this experimental study, our research team
created a repository, called hereafter the “Restaurant Dataset,”
for which a group of undergraduate students created fake
reviews for three restaurants. The results of our experimental
study, conducted on a repository of fake and deceptive reviews
created by our research team, validate the hypothesis that the
ensemble learning-based approaches outperform their conven-
tional machine learning counterparts. The key contributions of
this research are as follows:

o Introducing a new dataset on fake reviews, called the

“Restaurant Dataset.”

« Investigating the performance of ensemble learning-based
approaches to the problem of identifying fake reviews.

« Reporting the results of experiments that compare the per-
formance of ensemble learning-based approaches using
different machine learning techniques for classification.

This paper is organized as follows: Section II highlights
the goals of this research work and the objectives. Section
IIT reviews the literature. A brief technical background of
ensemble learning and the classifiers studied is presented in
Section IV. The experimental setup of the study is discussed in
Section V. The results of the experimental study are presented
in Section VI. Finally, Section VII offers conclusions and
sheds some light on future work.

II. RESEARCH QUESTIONS AND OBJECTIVES

The objectives of this paper are two-fold: 1) introducing a
newly produced dataset of fake reviews, called the “Restaurant
Dataset,” and 2) investigating the performance of ensemble
learning-based methodologies in comparison with conven-
tional machine/deep learning approaches to the fake-review
detection problem. More specifically, this paper addresses the
following questions:

1) Are standard forms of machine/deep learning algorithms

effective in the context of fake review identification?

2) Can ensemble learning-based approaches improve the

accuracy rate for this problem?

978-1-7281-7303-0/20/$31.00 ©2020 IEEE
DOI 10.1109/COMPSAC48688.2020.00-73

1320

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:31:01 UTC from IEEE Xplore. Restrictions apply.

3) How much would the accuracy be improved through
hyperparameter optimization?

III. RELATED WORK

Fuller et al. [6] developed three classification techniques —
artificial neural networks, decision trees and logistic regression
— along with an information fusion-based ensemble method for
automated deception detection. They extracted 31 text-based
deception features (cues) from the labeled statements of crime
scenarios. They reported 74% accuracy with their fusion based
model, 73.46% with the artificial neural network, and 71.60%
with the decision tree model, respectively.

Xu et al. [7] introduced their approach on deception de-
tection called “Unified Review Spamming Model” (URSM).
The approach is a unified probabilistic graphical model for
deception detection in reviews from three online services
(Amazon, Yelp and TripAdvisor). By using the hierarchical
Latent Dirichlet Allocation (hLDA) model [8], the model
ranks the reviews, the reviewers, and the offers based on the
degree of deceptivity. They compared this model with human
judgments and a classifier trained using n-gram features. They
achieved higher performance such as 78.8% accuracy for a
TripAdvisor dataset compared to other methods.

Conroy et al. [9] provided a survey for deception detection
in the context of implementing fake news detecting systems.
They focused on two main methods: the linguistic cue ap-
proach and network analysis approach. Their study showed
that the performance of linguistic approaches is topic-oriented
and successful in some domains. Also, the performance of
network approaches varies from average to high based on
the knowledge-base which was used. They argued for an
approach that combines linguistic cue and machine learning
with network-based behavioral data, and explained the features
for implementing such a system.

Crawford et al. [1] conducted a study on deception de-
tection in reviews using supervised, unsupervised, and semi-
supervised techniques. First, they investigated different ap-
proaches for feature extraction and divided them into “review-
centric,” which uses the content of the review, and “reviewer-
centric,” which uses review metadata related to the reviewers.

Levitan et al. [10] compared different machine learning
techniques with various feature sets and proposed a hybrid
deep neural network approach which uses a combination of
audio and textual features (spectral, acoustic-prosodic, and
lexical) for deception detection. They utilized a subset of the
Columbia X-Cultural Deception (CXD) Corpus to evaluate
their models and achieved F1-score of 63.90% for their deep-
hybrid model and precision of 76.11% for their random forest
model. In their next work [11], they examined automatic
deception detection in the interview scenario. They used differ-
ent sets of features: semantic features collected using LIWC,
linguistic featured collected from previous study, personal
traits (gender and native language) and also emotional level
and detail level scores collected using Dictionary of Affect
Language (DAL). Applying three different classifiers (Random

1321

Forest, Logistic Regression, and SVM), they achieved 72.74%
for Fl-score as the best performance by random forest.

Grondahl and Asokan [12] surveyed deception detection
from textual format and provided their arguments for different
questions in this subject. Based on their findings, linguistic
features are not enough for textual deception detection and it is
better to also consider approaches, which are based on content
comparison. They also discussed adversarial “stylometry,” the
identification of authors based on writing style.

IV. ENSEMBLE LEARNING AND CLASSIFIERS

This section presents background information regarding
ensemble learning and the classifiers examined in this paper.

A. Ensemble Learning

Using ensemble learning, the performance of poorly per-
forming classifiers can be improved by creating, training, and
combining the output of multiple classifiers and thus result in
a more robust classification. There are three main approaches
for developing an ensemble learner [13]:

e Boosting, often uses homogeneous-base models trained
sequentially;

e Bagging, which often uses homogeneous-base models
trained in parallel; and

o Stacking, which uses mostly heterogeneous-base models
trained in parallel and combined using a meta-model.

By averaging (or voting) the outputs produced by the pool
of classifiers, especially for small dataset, ensemble methods
provide better predictions and avoid overfitting. Another rea-
son that contributes to the better performance of ensemble
learning is its ability in escaping from the local minimum. By
using multiple models, the search space becomes wider and
the chance for finding a better output becomes higher [14]. En-
semble learning may solve some machine learning limitations
and challenges such as class imbalance, concept drift (change
of features or labels over time), and curse of dimensionality.

B. Machine/Deep Learning Classifiers

We conducted our experiments using four classifiers: Deci-
sion Tree, Random Forest, Support Vector Machines (SVMs),
Extreme Gradient-Boosting Trees (XGBT), and Multilayer
Perceptron.

V. EXPERIMENTAL SETUP
A. Data Collection: “Restaurant Dataset”

We developed our own fake reviews dataset (the “Restaurant
Dataset)’) in order to support research community with new
dataset and thus help in addressing threats to the external
validity of the experiments. The dataset consists of reviews of
three restaurants, each of which has equal numbers of fake and
real reviews, as well as positive and negative ones. We targeted
restaurants that offered the same type of food, in order to avoid
external bias. To collect these reviews, four undergraduate
students wrote fake reviews (positive and negative) for three
restaurants, each one paragraph in length. In addition, they
collected real reviews for those three restaurants that were

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:31:01 UTC from IEEE Xplore. Restrictions apply.

available from Google. To make sure that the real reviews were
credible, we selected reviews from verified users. Finally, all
the reviews and their labels were added to the dataset. The
dataset includes 86 reviews of which 43 were fake reviews
and 43 were real reviews, across all three restaurants.

B. Document Embedding for the “Restaurant Dataset”

For all classifiers in this work, we generated the features
for our reviews using Doc2Vec [15]. Doc2Vec is an extension
of Word2Vec. Similar to the way Word2Vec aims to represent
words as vectors, Doc2Vec embeds documents as vectors [15].
In order to generate the document embedding, we preprocessed
the dataset removing special characters, stop words, and punc-
tuation marks.

C. Classification Metrics

We employed widely adopted classification metrics, such
as accuracy, precision, recall, and F} score. An accuracy of
1.0 indicates that the predicted labels and observed labels are
identical. Precision is the ratio of true positives against all
predicted positive labels. Recall is the ratio of predicted true
positives against all observed true positive labels. The F} score
is the harmonic mean of precision and recall, which yields
a more informative performance metric when precision and
recall have dissimilar values. Although we report accuracy and
F, we determine overall model performance using accuracy,
because our balanced dataset prevents accuracy to report
misleading values.

D. The Hyperparameter Optimization Algorithm

We developed Python scripts for the chosen classifiers and
used the Scikit-learn library and XGBoost for the Extreme Gra-
dient Boosting Trees [16]. We carried out several experiments
to identify the best hyperparameters for each classifier.

Let X and y be the samples and their labels, respectively,
C be a classifier with [hyperparameters to be tuned, and
H be a list where the i*" element is either a probability
distribution for the values of the i*" hyperparameter of C, or a
list of equiprobable categorical values for the hyperparameter.
A randomized search takes hyperparameter values from H
for a fixed number of iterations, builds an instance of C
using them, and performs the classification. In our work, we
executed the randomized search 100 times, saving the model
estimated in each round for future comparison. Each model
was also fitted using K-fold cross-validation with K = 10 in
each iteration. Once all iterations were completed, we selected
the best model according to its accuracy, and returned both
the model and its set of best hyperparameters. Our approach
is defined in Algorithm 1. Algorithm 1 also returns X;.s; and
Ytest- These sets comprise unseen data and are used for the
optimal classification and computing the final test errors.

The number of models estimated during the randomized
search is limited to the number of iterations; however, fewer
models are estimated in the event that the possible combi-
nations of hyperparameters are fewer than the number of

Algorithm 1 Hyperparameters selection via randomized
search
Input
X Samples;
y Samples labels
H Probability distributions for the [hyperparameters
C Classification model
Output
M’ Best model
H' Best set of hyperparameters
Xiest Test samples
Ysest Lest samples labels

Xtrai'ru Ytrain, Xtestv Ytest — Split_dataset(Xv y)
M={}
for i < 1 to 100 do
h; < sample(H)
Model = Fit*K*FOdecV(Xtraina Ytrain, Ca hZ)
M + M U Model
end for
M’ = GetBestModel(M)
H' = GetParams(M')
return M’ H' Xyest, Ytest

Rl A A e

—
=4

iterations. This procedure also prevents us from generating
duplicated sets of hyperparameters.
The probability distribution over the values, or the possible
categorical values, of the classifiers’ hyperparameters, follows:
1) Decision Tree
o Max depth: discrete uniform distribution over [3, 5).
This range was obtained empirically considering the
size of our dataset, in order to prevent over-fitting.
o Splitter: best, random.
o Criterion: gini, entropy.
2) Random Forest
o Number of weak classifiers: discrete uniform distri-
bution over [100, 1000).
e Max depth: discrete uniform distribution over [3, 5).
o Criterion: gini, entropy.
3) Support Vector Machine

o Kernel: RBF, linear, polynomial, sigmoid.

« C: continuous uniform over [0.1,1000).

e Degree: discrete uniform distribution over [3,10).
Only considered when the kernel is polynomial.

o Gamma (v): scale, auto. Only considered when the
kernel is RBF.

4) Extreme Gradient Boosting Trees

o Number of stages: discrete uniform distribution over
[100, 1000).

o Max depth: discrete uniform distribution over [3, 5).

e Gamma (7). continuous uniform distribution over

[0, 10).
e Learning rate (a): continuous uniform distribution
over [0.01,1).

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:31:01 UTC from IEEE Xplore. Restrictions apply.

5) Multilayer Perceptron

o Maximum iterations: uniformly sampled from the
set {600, 800, 1000, 1200}.

e Hidden layers size: sampled from a discrete uniform
distribution over [2,5). The number of units in each
layer is uniformly sampled, once per layer, from
{5,10, 15, 20, 25, 30, 35, 40,45, 50}.

o Activation function: ReLU, hyperbolic tangent, lo-
gistic sigmoid, identity function.

VI. RESULTS AND DISCUSSION

Table I shows the top set of hyperparameters that result
in higher accuracy during the random search for Decision
Tree, Random Forest, SVM, XGBT, and MLP, respectively.
We report the five best sets of hyperparameters for each
classifier, except for the Random Forest, which has only three
possible combinations of hyperparameters reporting a different
accuracy. The accuracy and F) scores reported in Table I
represent the mean of the estimates calculated during the 10-
fold cross-validation for each model, using X;,qin and Yirqin
of Algorithm 1 to fit them, so they correspond to training
errors.

As Table I shows, the Decision Tree has the highest training
accuracy, with 79.6%, where the “best” splitter and the Gini
criterion for information gain yield the highest metrics by a
margin of 7.8%. In this model, the value of maximum tree
depth does not seem to make a difference in the performance.

XGBT follows in accuracy with 78.3%. The metrics for
XGBT suggest smaller values for the learning rate (), in
addition to higher values of the regularization coefficient (v),
generate better accuracy and Fj scores. Moreover, the two
top results show the trade-off between maximum tree depth
and the number of estimators in the ensemble, where high
performance can be achieved by increasing the maximum
depth with fewer numbers of estimators, or maintaining a
lower depth with more estimators.

Next, SVMs report 72.6% accuracy. The RBF kernel in each
set of hyperparameters suggests that the Doc2Vec represen-
tation of our dataset benefits from the non-linear mapping
of the RBF kernel; this finding agrees with the high values
for C, which controls the width of the soft margin in the
SVM restricting samples within the margin in non-linearly
separable data. y is set to “scale” in all results, which shows
that considering the variance of all our samples, in addition
with the number of features to calculate v, leads to a better
accuracy. The Degree is ignored by the model, as it is used
only when the kernel function is polynomial.

Random Forest reports 71.5% accuracy in training stage.
The results for Random Forest show that a relatively high
number of estimators achieves high accuracy independent
of the maximum depth of the tree. This is consistent with
the improvement in the performance of the weak classifier
(decision tree) according to the number of estimators [17].

Finally, the MLP achieves 68% accuracy in training stage.
As expected, the most important factor of the performance
of the network is its architecture. Each value of the “Hidden

1323

layers & units” is a tuple ¢ of positive integers, where
size(t) = # of hidden layers, and the i-th element of ¢ corre-
sponds the number of neurons in the ¢-th hidden layer. The five
results were generated using an MLP with 4 hidden layers, the
maximum number possible in our experiments. The number
of iterations and number of neurons per layer do not seem
to affect the performance of the MLP, as the values for these
hyperparameters range over all possible values. Regarding the
activation function, ReLu and hyperbolic tangent were chosen
over the rest; this agrees with the choice of the RBF kernel
for the SVMs, as the ReLu and hyperbolic tangent functions
allow the model to generalize in a non-linear way.

Table IT shows the training and test errors for the classifiers.
To report the training errors, we fit each classifier with the
Xirain and Yirqin dataset using the best set of hyperparameters
presented in Table II. The test error was reported by making
predictions with the classifiers using the X;.s; and yiest
dataset. Xirqin, Ytrains Xtests and Yiest correspond to the
datasets described in Algorithm 1.

We trained an ensemble of SVMs and MLPs fitted with their
respective best hyperparameters. We trained both ensembles
using the bagging and adaboost techniques, with the number of
estimators ranging from 2 to 22 in steps of 2. Table II includes
the lowest test error for the four aforementioned ensembles.
For both SVM and MLP, the adaboost ensembles produce the
best test error, with 0.273 for SVMs (16, 18, and 20 estimators)
and 0.227 for MLPs (4 estimators).

Figures 1 and 2 show the training and testing errors for
SVMs using bagging and adaboost, respectively. Figures 3
and 4 show the training and testing errors for MLPs using
bagging and adaboost, respectively. The learning rates for
adaboost were obtained empirically. The results of the en-
semble of SVMs and MLPs suggest that the classification
of Doc2Vec document embedding for the restaurant dataset
benefits from adaboost over bagging. This finding might be
because adaboost fits the estimators sequentially using the
whole dataset, adjusting the ensemble to fit it in the best way;
whereas bagging fits the estimators with different datasets that
were sampled using a bootstrap from the original one [13].
This finding is consistent with the overall trend of the training
error in Figure 2, where it decreases steadily as the number of
estimators grows, and Figure 3, where this decreasing trend
is also present, although with a few jumps. It is worth noting
that the MLP adaboost ensemble fits the training data perfectly
with 14 or more estimators; however, the testing error trend
is less obvious for MLP ensembles. This result might be due
to the limited number of samples in our dataset, as neural
networks require several samples to be trained properly.

VII. CONCLUSION AND FUTURE WORK

In this work, we present a novel dataset of fake reviews,
along with the results of the binary classification using
machine/deep learning techniques. Additionally, we applied
ensemble learning-based approaches using Random Forest,
bagging, and adaboost ensembles, with SVMs and MLPs as
weak classifiers with optimized hyperparameters. Our results

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:31:01 UTC from IEEE Xplore. Restrictions apply.

TABLE 1
BEST HYPERPARAMETERS TUNING (TRAINING STAGE).

Classifier Hyperparameters Mean Std Mean Std
Decision Tree Criterion Max Depth Splitter — Acc. Acc. Fy F1
gini 3 best - 0.796 | 0.097 | 0.769 | 0.123
gini 4 best - 0.772 | 0.115 | 0.751 0.137
gini 3 random - 0.694 | 0.096 | 0.620 | 0.136
entropy 3 random — 0.683 | 0.092 | 0.598 | 0.123
entropy 4 random - 0.657 | 0.095 | 0.576 | 0.148
Hyperparameters Mean Std Mean Std
Random Forest Criterion Max Depth N Estimators — Acc. Acc. I3 F
entropy 3 931 - 0.715 | 0.115 | 0.673 | 0.158
gini 4 827 - 0.703 | 0.118 | 0.664 | 0.156
gini 3 659 - 0.690 | 0.131 | 0.658 | 0.168
Hyperparameters Mean Std Mean Std
Support Vector Machine C Degree ¥ Kernel Acc. Acc. P F
21.832 6 scale RBF 0.726 | 0.116 | 0.699 | 0.130
38.581 7 scale RBF 0.704 | 0.075 | 0.669 | 0.092
33.202 5 scale RBF 0.693 | 0.087 | 0.662 | 0.102
5.404 4 scale RBF 0.682 | 0.083 | 0.613 | 0.117
4.843 9 scale RBF 0.671 | 0.091 | 0.589 | 0.144
Hyperparameters Mean Std Mean Std
Extreme Gradient Boosting Trees ¥ « M. depth N Estimators Acc. Acc. 1 F1
9.08 0.035 4 421 0.783 | 0.094 | 0.726 | 0.151
8.214 0.036 3 895 0.772 | 0.071 | 0.714 | 0.134
8.977 0.409 4 791 0.761 | 0.078 | 0.706 | 0.134
7.144 0.231 3 544 0.750 | 0.082 | 0.697 | 0.140
2913 0.183 3 406 0.740 | 0.097 | 0.702 | 0.156
Hyperparameters Mean Std Mean Std
Multilayer Perceptron Max iterations | Hidden layers & units | Activation Function - Acc. Acc. 1 F1
1000 (35, 40, 20, 5) relu - 0.680 | 0.100 | 0.685 | 0.082
400 (5, 15, 45, 10) tanh - 0.671 | 0.120 | 0.682 | 0.107
800 (40, 10, 20, 30) relu - 0.669 | 0.146 | 0.651 | 0.168
600 (50, 5, 15, 45) relu - 0.668 | 0.124 | 0.647 | 0.154
600 (10, 30, 20, 35) tanh - 0.667 | 0.147 | 0.678 | 0.135
TABLE II based on this dataset meaningful. We also intend to perform
TRAINING AND TEST ERRORS FOR THE CLASSIFIERS. the classification with another set of features that allows more
Classifier Training Error | Test Error interpretability than Doc2Vec’s document embedding, and pro-
Decision Tree 0.102 0.455 vides more linguistic insights into deceptive texts. The focus
Randg;r/l]\/][’orest 8~g§; gi(l)g of this work was on analyzing static texts. In more challenging
XGBT 0132 0364 settiqgs, wheg there are interactions bétween two part'ies (e.g.,
MLP 0.0 0318 chatting and lie detection), more sophisticated analysis would
Bagging Ensemble (SVM) 0.227 0.318 be needed to take into account the time dimension (i.e., a time
Adaboost Ensemble (SVM) 0.250 0.273 . ~
Bagging Ensemble (MLP) .03 0318 series probllem) §uch as Long 'Short Term Memory [18], [}9]
Adaboost Ensemble (MLP) 0.068 0227 and clustering using deep learning [20], reinforcement learning

show that, using document embedding from Doc2Vec and
after hyperparameter optimization, stand-alone classifiers can
achieve up to 68.2% accuracy in the case of MLP. Ensemble
learning-based classifiers achieve up to 77.3% accuracy with
the adaboost ensemble of MLPs. In every case, the ensem-
ble of classifiers outperforms their respective base classifier,
either Random Forest and XGBT with Decision Tree, or the
bagging/adaboost ensembles with their respective SVMs or
MLPs. Regarding the ensemble approach, adaboost seems to
produce the most consistent results. As future work, we can
utilize heuristics in order to find optimum values for the
hyperparameters of the models. Moreover, we need to explore
our method with other different datasets, and also expand the
Restaurant dataset in order to make any statistical analysis

[21], and evidence theory [22].

ACKNOWLEDGMENT

Thanks to Pritish Ayer, Sagar Lamichhane, Omer Qureshi,
and Pranaya Sharma for contributions to the Restaurant dataset
creation. This research work is supported by National Science
Foundation under Grant No: 1723765.

REFERENCES

[1] M. Crawford, T. M. Khoshgoftaar, J. D. Prusa, A. N. Richter, and

H. Al Najada, “Survey of review spam detection using machine learning

techniques,” Journal of Big Data, vol. 2, no. 1, 2015.

T. Dietterich, “Ensemble methods in machine learning,” in /st Interna-

tional Workshop on Multiple Classifier Systems, 2000, pp. 1-15.

[3] A. Statnikov, L. Wang, and C. Aliferis, “A comprehensive comparison
of random forests and support vector machines for microarray-based
cancer classification,” BMC Bioinformatics, vol. 9, no. 319, 2008.

=

1324

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:31:01 UTC from IEEE Xplore. Restrictions apply.

error

Bagging ensemble SVM

0.50
0.45
0.40

0.35 - m

0.30 1
0.25 1 _,_,_,\—/
0.20 1
0.15 1
0.10 1
0.05 1
000 =176 & 10 12 14 16 18 20 22
n_estimators

—— training error
—— testing error

Fig. 1. Training and test error for different number of estimators in the
bagging ensemble for SVMs.

error

0 56£\daboost ensemble SVM (learning rate = 0.9)

0.45 - —— training error

0.40 4
0.35
0.30

—— testing error

0.25 —
0.20
0.15
0.10 -
0.05
0.00 — T T T T T T T T T T

2 4 6 8 10 12 14 16 18 20 22

n_estimators

Fig. 2. Training and test error for different number of estimators in the
adaboost ensemble for SVMs.

(4]
(5]

(8]

(91

[10]

[11]

Y. Pang, X. Xue, and A. S. Namin, “Early identification of vulnerable
software components via ensemble learning,” in /EEE ICMLA, 2016.
F. Abri, S. Siami-Namini, M. A. Khanghah, F. M. Soltani, and A. S.
Namin, “Can machine/deep learning classifiers detect zero-day malware
with high accuracy?” in IEEE Big Data, 2019, pp. 3252-3259.

C. Fuller, D. Biros, and D. Delen, “An investigation of data and text
mining methods for real world deception detection,” Expert Syst. Appl.,
vol. 38, pp. 8392-8398, 07 2011.

Y. Xu, B. Shi, W. Tian, and W. Lam, “A unified model for unsupervised
opinion spamming detection incorporating text generality,” in 24th
International Conference on Artificial Intelligence, 2015, pp. 725-731.
D. M. Blei, T. L. Griffiths, and M. 1. Jordan, “The nested chinese restau-
rant process and bayesian nonparametric inference of topic hierarchies,”
J. ACM, vol. 57, no. 2, pp. 7:1-7:30, 2010.

N. Conroy, V. Rubin, and Y. Chen, “Automatic deception detection:
Methods for finding fake news,” in Proceedings of the Association for
Information Science and Technology, 2016.

G. Mendels, S. I. Levitan, K.-Z. Lee, and J. Hirschberg, “Hybrid
acoustic-lexical deep learning approach for deception detection,” in Proc.
Interspeech, 2017, pp. 1472-1476.

S. I. Levitan, A. Maredia, and J. Hirschberg, “Linguistic cues to de-
ception and perceived deception in interview dialogues,” in Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1, 2018.

Bagging ensemble MLP

0.50
0.45 |
0.40
- _/—\/_
0.30
0.25 1
0.20
0.15
0.10
0.05 1 M
0.00 |

2 4 6 8 10 12 14 16 18 20 22

n_estimators

—— training error

error

—— testing error

Fig. 3. Training and test error for different number of estimators in the
bagging ensemble for MLPs.

o S%daboost ensemble MLP (learning rate = 0.05)

0.45 - —— training error
—— testing error

0.40
0.354
0.30
0.25 1
0.20
0.154
0.10
0.05 1
0.00

error

2 4 6 8 10 12 14 16 18 20 22
n_estimators

Fig. 4. Training and test error for different number of estimators in the
adaboost ensemble for MLPs.

[12] T. Grondahl and N. Asokan, “Text analysis in adversarial settings: Does
deception leave a stylistic trace?”” ACM Comput. Surv., vol. 52, no. 3,
pp. 45:1-45:36, Jun. 2019.

[13] Z.-H. Zhou, “Ensemble learning,” in Encyclopedia of Biometrics, 2009.

[14] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 8, 2018.

[15] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in ICML, 2014, pp. 1188-1196.

[16] T. Chen, T. He, M. Benesty, V. Khotilovich, and Y. Tang, “Xgboost:
extreme gradient boosting,” R package version 0.4-2, pp. 1-4, 2015.

[17] L. Breiman, “Random Forests,” Machine learning, vol. 45, no. 1, pp.
5-32, 2001.

[18] S. Siami-Namini, N. Tavakoli, and A. S. Namin, “A comparison of
ARIMA and LSTM in forecasting time series,” in JEEE ICMLA, 2018.

, “The performance of LSTM and BiLSTM in forecasting time
series,” in IEEE Big Data, 2019, pp. 3285-3292.

[20] N. Tavakoli, S. Siami-Namini, M. A. Khanghah, F. M. Soltani, and A. S.
Namin, “An autoencoder-based deep learning approach for clustering
time series data,” Springer Nature (SN) Applied Sciences, 2020.

[21] M. Chatterjee and A. S. Namin, “Detecting phishing websites through
deep reinforcement learning,” in JEEE COMPSAC, 2019, pp. 227-232.

, “Detecting web spams using evidence theory,” in COMPSAC,

2018, pp. 695-700.

[19]

[22]

1325

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:31:01 UTC from IEEE Xplore. Restrictions apply.

