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Abstract: There is a need for semi-autonomous systems capable of performing both automated tasks
and supervised maneuvers. When dealing with multiple robots or robots with high complexity (such
as humanoids), we face the issue of effectively coordinating operators across robots. We build on our
previous work to present a methodology for designing trajectories and policies for robots such that
few operators can supervise multiple robots. Specifically, we: 1) Analyze of the complexity of the
problem, 2) Design a procedure for generating policies allowing operators to oversee many robots, 3)
Present a method for designing policies and robot trajectories to allow operators to oversee multiple
robots, and 4) Include both simulation and hardware experiments demonstrating our methodologies.

Keywords: Human Robot interaction; Multi-robot coordination; Humanoid Robots; Scheduling and
Coordination ; Supervisory Control

1. Introduction

Multi-robot systems are making a significant impact on fundamental societal areas. From oceanic
exploration to border surveillance, from robotic warehousing to precision agriculture, and from
automated construction to environmental monitoring, collaborating groups of robots will play a
central role in the coming 1]. In some of these scenarios, however, due to technical, ethical,
regulatory or 2], one or more humans should monitor or help the robot during the
execution of its tasks in certain critical parts . These critical segments of the robot trajectory can be
kinematically or dynamically complex maneuvers, locations near obstacles, or regions where sensing
is poor.

Most teleoperated systems assume more than one human operator per robot. More than a
human may be required for each subsystem in more complex scenarios, such as humanoids or
mobile manipulator teleoperation (e.g., manipulation, locomotion, head positioning). For instance,
in control rooms in Unmanned Aerial Vehicles missions, several operators are needed to operate
a single drone. While it may remain infeasible to remove altogether the portion of a task which
cannot be automated, we can efficiently allocate human attention in these portions. As an application
of our ideas, we envision scenarios where a single operator can coordinate a group of automated
construction machinery, several agricultural pieces of equipment or even a production line of industrial
robots. Indeed, the recent pandemic has demonstrated teleoperation control paradigms are favoured
in situations where remote presence is desirable and where complexity precludes the use of fully
autonomous systems [3]. Effectively combining the cognitive capabilities of a human operator with
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robot physical capacities [4] has provided great benefits in industrial applications [5,6] and more
general methodologies are needed.

Another motivation behind our ideas is robot-assisted search and rescue. In traditional mobile robot
search and rescue operations using unmanned vehicles, operators’ ratio to robots is commonly 2 to
1 [7]. More recently, motivated by disasters such as the Fukushima nuclear plant, there has been a
need for robots with larger degrees of freedom that can operate in environments designed for humans.
Concretely, lessons learned analyzing human-robot interfaces used by different teams in the DARPA
Robotics Challenge (DRC) [8], gave two important reasons motivating our ideas to reduce the number
of operators: 1) fewer operators reduces confusion and coordination overhead, and 2) the amount of
human errors (one of the main sources of problems in the DRC [9]) is reduced.

This work addresses the question of operator attention at critical moments of a teleoperation
task. In most situations, an operator is only required in specific parts of a robot’s operation. Knowing
this, we can schedule these operator interactions so that a single operator can perform multiple tasks.
Thus, our objective is to develop a planning strategy for the remote task involving multiple robots
such that the operator can pay sufficient attention to each robot during critical operations. This work’s
contributions are: extending our preliminary ideas from [10,11] in the following directions: First, we
analyze the complexity of this problem. Secondly, we present a sampling-based approach that allows
us to design policies for many teleoperators instead of a complete algorithm that only works for a small
set of operators. Thirdly, we allow re-planning of the robot’s task alongside the operator. Finally, we
present the results of both simulated and physical experiments using mobile robots and a humanoid.

Our work deals with planning for robots using a small set of operators that can help the robot
when needed. As a convention, we will use the term “robot” throughout this paper; however, the
method is formulated within the robots’ configuration space and is agnostic to the robot type. It can
model multiple robots and a single robot with multiple degrees of freedom such as a humanoid robot.
To the best of our knowledge, our contribution is one of the few that attempts to formalize operator
scheduling problem using a geometric approach.

The rest of the paper is organized as follows: Section 2 discusses relevant related literature. Section
3 describes the preliminaries and formulates the problems of interest. Section 4 describes algorithms
to solve the formulated problems in the previous section. In Section 5, we present an extension of
the solution in Section 4 which can also re-plan robot trajectories. Section 6 presents both software
and hardware experimental results, and a case study is provided in Section 7. Conclusions and future
directions are presented in Section 8.

2. Related Work

Teleoperation is an established robot control paradigm with particular widespread use in surgical
and 12]. While teleoperation is classically defined using 1 : 1 operator to robot
ratio [13,14], there is a growing need for systems that facilitate operator oversight of multiple robots [15].
This work focuses on reducing operator supervision to only temporally critical passages. Previous
work has taken a different approach, aiming to reduce the cognitive burden on the operator by, for
instance, using virtual fixtures [16,17]. Virtual fixtures create zones where the robot can operate and
thus reduce the operators’ supervision load. These zones can be obtained using point cloud data [18],
shape primitives, [19], manually created [20], 21] or generated on-line based on
obstacle proximity and manipulator capabilities [22]. For the teleoperation of multiple agents, [23]
proposed a discrete switching control algorithm where an operator can trigger a switch to control
different robots or different inputs, i.e. position, velocity of the same agent. In [24], the authors propose
modeling operator behavior in a multi-robot control task and hypothesize that these models can be
used to improve the teleoperation control strategies. Alternatively, for more complex systems, the
introduction of a degree of autonomy in the robots” behavior, often denoted as shared control, can
enable operators to control multi-agent or complex systems [25]. Utilizing operators alongside partially
autonomous robots yields systems that are less brittle and more effective than either one working
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alone [26]. A study case of a foraging task is presented in [27] where queuing techniques were used to
schedule the operator’s attention. In [28

While the above techniques enhance the operators’ control of a robot system, we focus on complex
autonomous systems that require supervision and analyse how this supervising burden may be reduced.
Using one operator to control multiple robots has benefits in terms of cost and control coherency but
leads to a higher workload and decrease in situation awareness [29].

30 31

32]. Indeed, [33] have demonstrated that
an increase in the number of robots per human significantly degrades performance and situation
awareness. An increase in supervision burden has been shown to increase accidents during multi-robot
control trials [34]. While this may be mitigated by smart alert systems [35,36], it has been shown
in [37] that too many robot systems will eventually saturate operator capabilities and, in turn, lead
the operators to neglect some robots. Neglect is mainly due to the robots competing for operator
attention [38]. 39

Our work focuses on eliminating this failure mode by judicious scheduling events that are likely
to require concentrated operator attention.

We build upon our recent work [10,11], to perform multi-robot planning [40,41]. We also find
complementary goals in [42] where a robot attempts to move from one location in its environment to
another by calculating which obstacles can be minimally displaced to generate a feasible trajectory.
In our work, we will similarly generate a coordination space, where operator “collision obstacles”
must be avoided, and seek to find the minimal displacement needed to avoid them. In work by
LaValle and Hutchinson [43,44], as well as by Wang et al. [45], the complexity of coordinating both
many robots and operators is handled by separating the planning and scheduling aspects into two
separate steps. This division greatly assists in devising a feasible solution and is echoed here as
well. Our work develops techniques for planning multi-robot missions that can assist in outlining
mission requirements and robot policies. There are relevant approaches such as Crandall et al. [46]
which investigates the effects of allocating operator attention to robots, and [47—49] which investigate
additional methods of distributing operators across robots and the effects this has. Particularly relevant
to our research ideas are [50,51] where the expected behaviors of humans in an environment are
incorporated into the planning phase of robots, allowing them to perform more elaborate plans than
without this prediction. This argument also extends into more industrial settings, where it is often
repeated, scheduled interaction between robots and operators [5]. Our work also relates to motion
planning approaches that generate joint plans for humans and robots [52-54].

3. Preliminaries

We start with a set of m of bodies, which can be kinematic chains or mobile robots, A =
{Al,..., A™}. Each robot A’ € A has a configuration space C' representing the set of all possible

transformations, where the set of valid configurations is called the free space C%_ . Robots also have

ree’

initial 4} € C. , and goal - € Ci. , configurations, where the trajectory A’ : [0, t}} — CL  takes the

ree ree ree

robot from A’(0) - corresponding to g} - through C]icr .. to the final configuration A’ (t}) - corresponding
to qic, where t;} is the total runtime for A to execute A! given a dedicated operator.

When executing A, A’ may enter critical configurations Ci,, C Ci -ce during which it will require
one of the p operator’s supervision. A conflict occurs when more than p robots require supervision at
the same time. Given a range of time T = [0, {¢] where the mission is executing, we will attempt to
minimize tf = max(tjl[, ceey t]’?) when all robots have finished, while also providing operator attention

when required.
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Step 1 Step 2 Step 3 Step 4 Step 5
Create Find Normalized Modified B-RRT* . .
Coordination Space Execution Time in Coordination Space Reandtorn Clomtimcitom [Paila St

Figure 1. Overall steps involved in the proposed scheduling approach.

Problem 1: Scheduling for Multiple Operators: Given p the number of operators, a set of robots A -
each with their trajectories A', and a set of critical configurations CL,, - determine a policy 7' : T — Ck ce JOT
each robot such that 1) all robots are only in critical configurations when an operator can supervise them, 2) the
number of operators requested at any time does not exceed p, and 3) attempt to reduce the total runtime of the
mission ty.

Building on this problem, we can add the following condition: Is it possible to yield a shorter
mission runtime by generating alternative trajectories for bodies such that they do not require
supervision simultaneously as other robots in the first place, thus avoiding operator attention
“collisions” altogether? This question leads us to a concrete extension of Problem 1:

Instead of a pre-determined trajectory, we use a sequence of waypoints T = [T{, ..., Ti] - where
each waypoint is a specific configuration the robot must achieve, and the application-specific function
plan(A!,T',t4,,) yields a trajectory that visits T while avoiding C’,, during operator-denied times ¢4,
- an example of which can be found in Section 6.

Problem 2: Scheduling with Re-Planning: Given p operators, a set of robots Aeach with a sequence
of sub-goals T', and a set of critical configurations C.,,. Determine a trajectory A* and policy 7' : T — C, for
each robot satisfying the waypoints such that 1) robots are in critical configurations only when an operator can
supervise them, 2) the number of operators requested at any time is less than or equal to p, and 3) an effort is
made to minimize the ending time of the mission t .

4. Scheduling Operator Attention

This section will propose solutions to Problem 1 defined in Section 3. A schematic representation
of the steps of our approach is outlined in Figure 1. Details of the method will be explained below.

4.1. Computational Complexity of Scheduling for Multiple Operators

In our previous work [11], we described the operator scheduling problem and presented a
geometric approach for its solution. There were several issues with the proposed methodology related
to the computational complexity of creating the entire set of obstacles with the coordination space. To
solve this problem, we give a proof sketch proving the complexity of this problem.

We prove that Problem 1 is NP-Hard by using the technique or restriction ( [55], pg 63). An
NP-Hardness proof by restriction consists of showing that a problem II (in our case, Problem 1)
contains a known NP-Hard IT’ as a special case.

In our proof, Pi’ is the Multiprocessor Scheduling problem ( [55], pg 238), which consists of a set of
] jobs, each job j has a corresponding length I'. Given p processors, we must schedule this set of jobs
so that they 1) do not overlap and 2) execute in the minimum amount of time.

Starting from problem 1 (our operator scheduling problem), assume that all possible
configurations for the robot will require operator attention, meaning that the entire execution of
Af will need an operator. This plan’s runtime is #;, and is analogous to the length of a job in the original
Multiprocessor Scheduling problem. These jobs are scheduled and allocated to p operators, which
would be the processors in the original formulation. This problem then reduces to the Multiprocessor
Scheduling problem where we schedule j jobs across p processors and indicates that the problem we
are trying to solve is NP-hard.
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4.2. A sampling-based solution

Knowing that the problem is NP-hard we ask, we will propose heuristics to find feasible solutions.
We start by by creating a Coordination Space X = |0, t}] X - x [0, t;”] (following a procedure
similar to [56]) representing all possible configurations of the robots along their trajectories. Each of

~ . ~ ¥
the m axes corresponds to the normalized execution time #; of robot A’, given by t', = —f,
f f max(t},...,t’”)

f
with the position along the axis corresponding to progress along the trajectory. Let X,;,; be the

set of invalid configurations where the number of robots requesting supervision exceeds p, and
Xfree = X \ X,ps be the set of all valid configurations where the number of requests does not exceed p.
At Xiyit = (0,...,0) € Xy all robots are in their initial configurations, and at xg, = (t}, ey t?l) € Xfree
all robots are in their final configuration.

We define auxiliary functions, borrowing the notation from [57]: d(x1, x) is the Euclidean distance
between two points, and ¢(+) is the cost of a path corresponding to the sum of the pairwise Euclidean
lengths of the pairwise linear points within it.

The above formulation serves to create a coordination space where the position along axes
represents robot configurations and invalid configurations where multiple robots request obstacles
represent an operator. This process allows us to convert the coordination problem into a path-planning
problem. We must find a path /1 : [0,1] — X, from 1(0) = Xyt to h(1) = Xxgpq. Following h will
give us an implicit representation of time with each robot’s positions along their trajectory, such that
each robot will move from its initial state to its goal state, with at most p robots requiring operator
attention. We performed this calculation by mapping / to the trajectory A’ corresponding to a particular
robot. Define ¢ : h — [0, t;}], which indicates the position of the robot along its trajectory A’ at the
corresponding point of path i through Xy,,.. We then perform the composition ¢ : A o ¢, which yields
¢ : h — Cfpee, mapping from the path h to Cy,,. This allows us to determine the configuration of a
robot at any point g in h via ¢(q) = A(c(q)). We can now obtain the series of configurations ¥ for each
robot that will guarantee that at most p robots require operator attention at any given time and reduces
the total run-time of the mission.

Our preliminary solution [11] required generating the entire set of obstacles within the
coordination space. Here, we instead use a lazy approach which only checks sampled locations.
This is combined with a modified version of the Bidirectional RRT* originally described in [57-59],
and shown in Algorithm 2 for reference. Define graphs G, = (Vo = {x{,},E = @) € Xfp,,
Gy =V, ={xb,}LE=0) € Xfree, Where xf . = xpjr and xb = Xgoa1- The objective will be to
derive an obstacle-free path 11 : [0,1] — X, such that h(0) = x;yit, h(1) = xg041- Given a user-defined
function that can estimate when robots will enter a critical section S < CriticalSegments(A) we can
check if a point x € X is obstacle-free as in Algorithm 1, where for the point being evaluated, we iterate
over each robot’s critical segments (lines 3, 4) and check if the corresponding axis of x lies within the
segment (line 5). If the number of collisions is greater than the number of operators (line 7), then the
location is not obstacle-free. With some abuse of notation, we also use this to refer to checking if an
edge is obstacle-free by sampling along the edge and checking if the samples are all within Xp,,.

The modified Bidirectional RRT* is presented in Algorithm 2 In lines 1, 2, we initialize the final
path as currently being none, and the corresponding cost to be infinite. Subsequently, we perform the
following procedure over N samples: Beginning with G, — the graph starting at the origin - in lines 4,
5 we draw a randomly-selected point from Xy,... Checking if the point lies within Xy, is done using
Algorithm 1, and select the nearest point in the graph (we use an r-tree to accomplish this efficiently).
In line 6, create a point X,y that is closer to x,,,,7 than Xpearest- Then in lines 7-9, select the r points in
G, that are nearest to x,., and sort them in order of increasing distance from x,.», where the sorted
list Ls consists of tuples of the form (x/,¢’, "), where X" € X;¢qr, 0’ is an edge from x’ to Xy, and ¢’ is
the cost of that path, and select the closest one with an obstacle-free path to X, as in [60]. If there is a
valid “best parent” — defined as the vertex with the lowest combined cost-to-come and cost-to-go -
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Algorithm 1: CollisionCheck

Input :Point x; Number of operators p; robots A
Output: True if obstacle-free, False otherwise

1 Mepps = 0

2 fori € [1,m] do

3 | g+ Al(x;)if g € C,, then
4 Neolls <= Neolts + 1

5 if 115 > p then

6 | return False

7 end

8 end

9 end

10 return True

we insert it into the graph and rewire as in [60] (lines 10-13). We then attempt to connect both trees. In
lines 14-17, we select the nearest vertex in the opposite graph G and attempt to draw a straight path
from the newly-added vertex xyey € Ga to Gy, if possible. We then check if the resulting path is better
than our current best-path oy,5; and update oy, if necessary.

At this point in the algorithm, we may have a valid path 0y through X¢,,. We then perform
RandomContraction as in [60] to attempt reducing the length of ¢},.5;. The user may assign a probability
Pearly, corresponding to the likelihood of checking for an early-exit solution; this is to balance between
the run-time of B-RRT* and yielding a better path. We evaluate this in lines 20-23, returning a valid
solution if one exists. Otherwise, we swap G, and G, and continue until all N samples have been
drawn and return oy,;.

We then proceed by mapping & to the sequence of configurations # that correspond to robot .A'.
Movement parallel to an axis corresponds to that robot moving at full speed, perpendicular segments
indicate the robot is paused, and diagonal segments to velocity-tuning depending on the slope.

To the best of our knowledge, our approach is one of the first to use geometric and motion
planning techniques to schedule operators” attention. Since most previous methods are based on
human factor techniques or combinatorial scheduling algorithms, head-to-head comparison is difficult.
Furthermore, our study cases (multi-robot control and humanoid manipulation) are different from the
ones presented in related work (e.g., foraging [27]). In the near term, one direction for comparison
would be applying our techniques to previously used study cases and benchmark the approach.

We believe that our proposed method has a good scaling behavior. An additional robot and
its constraints represent an additional variable in our coordination space. Since we are using
sampling-based methods for finding a feasible solution (which have been used in large dimensions [61]),
we believe that our method can scale to larger groups. Furthermore, in sampling-based motion
planning, a significant part of the computational cost is collision checking, and since this is simple in
our formulation (obstacles are hypercubes), there is good potential for scaling.

5. Scheduling with Re-Planning

The previous solution provides us with a coordination space and corresponding path that yields
a velocity-tuning approach preventing operator collisions. We now look for a solution that yields a
shorter mission runtime by also altering the robot trajectories. This solution is found by comparing the
current path through the coordination space & and the desired shortest-path path /4,; which would be
a straight line. Given the example in Figure 2a, b, where we see the robots and environment, and the
resulting coordination space, we indicate an “ideal” path as in Figure 2c. When searching for a path
through the coordination space, we may find a point x € X such that h4,.5(x) N X,ps # O, representing
an obstacle. In the example shown in Figure 2c, this is indicated by the blue region, meaning that the
ideal path is not valid as it intersects the obstacle. In these situations, the solution is to either plan
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Algorithm 2: B-RRT*

early exit pegy € [0,1]

Output: Obstacle-free path oy, through X

1 Opest < O;
2 Cpest <— OO,
3 fori € [0,N] do

4

© NN G

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Xpand < SampleFree;
Xnearest < NeareSt(xmnd/ ga)}
Xnew Extend(xnearest/ xmnd);
Xuear Near(xnew/ Ga, 7’)}
Ls < Sort(xnew/ Xnear);
Xmin < BestParent(Ls);
if x,,;, # @ then
Ga < Insert(Xuew, Xmin, Ga);
Ga < Rewire(xpew, Ls, E);
end
Xconn <— NEE”’ESt(xnew/ gb)}
Onew <— Conned(xnew/ Xconn, gb)}
if Opew # @ and c(Opew) < c(0pest) then
| Opest < Onew;
end
RandomContraction(0pes;);
u ~ U([o,1]);
if Opest # D and u < Pearly then
| return Opeg;
end
SwapTrees(Ga, Gp);

end

26 return 0yeg;

Input :Coordination Space X, Operators p; Critical Segments S; Samples N, Probability of
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Figure 2. Example Environment and resulting Coordination Space

(a) A planar environment with dangerous regions requiring operator supervision to traverse shown in blue, and
robot trajectories in yellow. (b) The 2-dimensional Coordination Space resulting from (a). Each axis corresponds to
the positions of robots along with their trajectories. The red line indicates an attention-conflict-free path through
the coordination space. (c) Coordination space from (b), with the desired (optimal) policy shown as the red line.

around the obstacle, corresponding to tuning the velocity of the robots involved - as in the solution
for Problem 1 - or creating alternative plans for the robots. In the latter case, the number of operators
requested during the original set of times corresponding to the obstacle can now be fulfilled, potentially
reducing the overall mission runtime if the resulting plans are shorter than the wait times.

A critical side-effect to keep in mind is that by modifying robots’ trajectories when avoiding
collisions caused by conflicting operator attention requests, we are also potentially changing later parts
of their trajectory. This change will lead to a different coordination space and the possibility of shifting,
creating, or removing subsequent obstacles. As an illustrative example, Figure 3a shows two robots,
which enter regions requiring supervision at the same time and produce the coordination space in
Figure 3b. The vertical segment of the path & shown in red corresponds to the collision being resolved
by pausing robot 1 until robot 2 has finished its operator request before continuing. This scenario
could also be solved by re-planning robot 2 so that it avoids operator requests during the original
times. However, robot 1 will then require more time to travel around the dangerous region, causing it
to encounter its second critical section at a later time — precisely when robot 1 is entering its second
request as well (Figure 3c) — creating another conflict that must be solved.

This setup yields our initial solution via velocity-tuning. Then create an ideal path hopt, given
by a straight line that assumes no robots require supervision (line 3). Next, we verify if the optimal
solution is valid by checking for collisions between h;,; and obstacles in the coordination space and
return the first obstacle encountered — if any in line 4. FirstObstacle returns the robots involved in
the “collision” 0 4, , along with the corresponding configurations oc,,, and times that each robot has in
conflict o4, . If the ideal path is invalid (line 5), we can resolve this in two ways:

1. Alter the involved robots policies (as in the previous solution).
2. Re-plan the involved robots trajectories to eliminate the obstacle.

We now describe how to re-plan the robot’s trajectories. Given the robots involved in the collision,
04,,,» We sort them in order of ascending length of execution time and select the shortest [04, | —p -
the minimum number of robots to re-plan to remove the attention collision (lines 6, 7). This procedure



Version July 31, 2021 submitted to Robotics 9 of 20

Algorithm 3: Scheduler

Input :.A, robots to plan
Output:}, path through X used to derive policy

1 Xinit <= (0,...,0); Xgoa1 = (f}, f?)

2 Xeurr [t;lc/ sy t;ﬂ} heurr B'RRT*(Xcurrr Xinits Xgoals P Cutt)
3 Xges < [0, t)lfr sy t;n]/'hdes < line(xinit, xgoal);cdesatt A
4 0 < FirstObstacle(hgps, Catt)
5 while 0 # @ do
6 Ajno  Sort(og,,,)
7 Amin <~ -Ainv [0 : ‘O.Aim,| - P]
8 A (A\-Amm)
9 plan( A’ th, VA" € Ay
10 A -Aalt~U Apin
11 Xaltgoal < (t}, ceey t?)V.AZ e A
12 if d(xinir, xaltgogl) < c(hcurr) then
>< .

13 Xalt — [O/ tjlt‘} o X [O/ tjrn}; hult < B-RRT* (Xalt/ Xinits xgoal/ p, Catt)
14 if c(hyy < c(heyrr) then

15 Xgoal < xultgoul?hcurr < hay
16 Xeurr < Xalt; Xdes — thlt
17 A+ (A\Amm) U Aat

18 else

19 ‘ Cdesutt — Cdesatt U 0C,it

20 end

21 else

22 ‘ Caesatt < Caesart U 0C,s

23 end

24 Rges <= B-RRT*(Xes, Xinit, Xgoals Pr Catt)
25 0 < FirstObstacle(Nges, Catt)

26 end

27 return h,
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Figure 3. Example Environment, resulting Coordination Space, and Shifting Conflict Regions

(a) Robots in their environment, and their expected trajectories; (b) Original Coordination Space resulting from (a);
(c) Final Coordination Space after re-planning around the first attention obstacle.

is performed on the robots with the shortest current plans so that extensions to their plans due to
re-planning should have a minimal effect on the mission’s overall length. Then generate alternative
trajectories for the robots, provided operator-denied times o;,,, and create an alternative goal location
Xaltgoal t0 account for any shifts in the ending times of the robot plans (lines 8 - 11).

Suppose the distance between x;,; and the alternative X444 is longer than the current solution.
In that case, velocity-tuning will yield a better solution, and we incorporate the obstacle into the
“desired” set of obstacles (lines 12, 22). Otherwise, we test if the alternative, a re-planned solution is
better (lines 13, 14). If it is, then update the robots with their re-planned trajectories, and replace the
current coordination space and goal to account for any changes in execution times (lines 15 - 17); else
we incorporate the obstacle into the “desired” set of obstacles as before (line 19).

We repeat this process of generating desired solutions (line 24) and testing them until the desired
path 14, no longer intersects any obstacles. At this point, we return the final k. that will have no
operator conflicts.

6. Experimental Results

In this section, we cover the design and of both simulated and physical experiments, and the
results obtained.

6.1. Software Simulation for Scheduling with Re-Planning

Here we describe our simulation and provide an example plan algorithm that re-plans a robot’s
trajectory around unsafe areas in the environment — which would require operator supervision
— given operator-denied times.

The simulated environment consisted of a discretized 2-dimensional grid-world where robots can
only move either horizontally or vertically. The environment also contains hazardous regions (shown
in blue) which require operator supervision to traverse, corresponding to configurations in Cgy;.

Example Re-plan Algorithm: The plan algorithm used in this example attempts to find the
shortest path between xfm-t and x/ a1 Within the robot’s environment, which can be easily attained via
the A* algorithm [62,63]. However, this path may intersect with regions requiring supervision. First,
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(c) (d)
Figure 4. Example Simulation Environment

Example simulation. The robots are numbered 1, 2, 3 from top to bottom. (a) Robot 3 stops while Robot 2 passes
through its dangerous region. (b) Robot 3 has re-planned its trajectory and is going around the dangerous area,
allowing Robot 2 to be supervised. (c) Robot 1 stops to allow Robot 3 enter its dangerous area with supervision.
(d) All robots continue to their final goal locations.

denote the starting time of the mission as T; = 0. Given times when an operator will not be available
for the robot, t4,,, we modify A* as follows: Augment A*’s nodes with an additional time parameter.
When visiting a node, update its neighbor’s time attributes to time + travel_time where time is the
current time, and travel_time is the time required to move from the current node to the neighbor. If
the neighbor physically resides within C,+ and the neighbors time is inside tfi o then we treat it as an
obstacle. This modification of A* provides paths that circumvent obstacles during operator-denied
times, with an example shown in Figure 4.

In Figure 4, we show a simulated example given an environment with three robots. The blue
areas in the environment are dangerous, and require operator supervision to prevent an accident. The
example was designed to show several operator attention “collision” scenarios. As the robots move
from left to right, the following operator requests might arise:

o Al requiring an operator

Al and A? require an operator at the same time

Al, A2, A3 require an operator at the same time

o A3 requiring an operator while .A! and .42 leave their critical regions
A2 requiring an operator

Al and A2 require an operator at the same time

The resulting coordination space is shown in Figure 5, where (a, b) is only velocity-tuning, and (c,
d) is with re-planning the robot trajectories, which yields a slightly shorter mission ending time than
strictly velocity-tuning.

For further validation, simulations were run using 2-dimensional environment populated with
a set of randomly-sized, randomly-placed dangerous regions, and robots placed in randomized
obstacle-free starting and goal locations along with a corresponding path between them as shown in
Figure 6. Across each iteration of the simulations, environments and the starting and goal positions
for the robots were randomly generated. In each generated environment, trials were run using 2, 4,
or 8 robots, moving at 1 cell/second. These trials were then solved using the solutions for Problem 1
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Figure 5. Example Simulation Coordination Space resulting from the example shown in Figure 4.

(a) Original Coordination Space resulting from the environment and robots in Figure 4; (b) Side view of (a); (c)
Final Coordination Space after replanning; (d) Side view of (c)

Figure 6. Example Random Environment

Example of a randomly-generated environment and trajectories intersecting critical regions.

Table 1. Average time savings via re-planning vs velocity-tuning

Robots | Operators | Average Savings
2 1 1.126
2 2 0

2 4 0

2 8 0

4 1 1.937
4 2 3.402
4 4 0

4 8 0

8 1 NA
8 2 0.218
8 4 5284
8 8 0

(Scheduling) and Problem 2 (Scheduling with Re-Planning), with 1, 2, 4, or 8 operators. The results can
be found in Table 1.

There is an increase in average time saved when dealing with larger numbers of robots, as
re-scheduling can simultaneously resolve multiple robots at once. We purposefully ran the simulations
with equal numbers of robots and operators to ensure that there would be no time saved - as there
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Figure 7. Hardware Experiment Example
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(a) Simulated Environment; (b) Coordination Space resulting from (a); (c) Analogous hardware simulation at
t = 1, (d) Hardware simulation at t = 5.

would be no obstacles generated in the first place - and this performed as expected. All tests with 2
and 4 robots completed successfully. In trials with 8 robots and single operator, a solution was not
found with the RRT* parameters that were used. Given 2 operators, 30% completed, and 60% for 4
operators. This result was due to the low sample count used when running Attention RRT*, and the
large steer length, which prevented it from exploring paths in narrow gaps between obstacles. The
tuning of the sample count, steer length and rewire count lie outside the scope of this work, but is
nonetheless an interesting problem we expect to incorporate in future work.

6.2. Hardware Experiment for Scheduling with Re-Planning

Here, we further illustrate the problem and solution via a hardware example. This example
consisted of a single operator that had to be allocated across three line-following robots in a discrete
grid environment.

The robots use a deterministic finite state machine to keep track of the position and orientation,
and a transition function given by a second transition-state machine that ensures the robots inter-state
path does not deviate from a grid line.

The hardware experiment in Figure 7 has an equivalent simulated environment shown in Figure
7a. The robots have initial trajectories shown in yellow, which pass through dangerous areas of the
environment (blue) requiring operator supervision. The physical implementation represents the
dangerous areas using red/yellow squares, in the same locations as in the virtual simulation. The
resulting coordination space in Figure 7b, provides a set of policies enabling the robots to execute
their trajectories while ensuring that the operator is not split among multiple robots at the same time.
The robots then executed their corresponding policies, moving and pausing when appropriate, with
at most one robot entering a dangerous region at a time. Additional experiments and videos can be
found at:

http:/ /users.cis.fiu.edu/ jabobadi/oa/.

The hardware experiments that were run and shown in the above link show successful runs using
the above procedures to design trajectories and policies for three different robots under the supervision
of a single operator. The mission ended in the shortest time possible, and the operator did not receive
multiple concurrent requests.


http://users.cis.fiu.edu/%7Ejabobadi/oa/
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Figure 8. (Left) NASA’s humanoid robot Valkyrie. (Middle, Right) Experimental setup showing
coordination space obstacles and kinematic chains that are treated as independent robots.

7. Study Case: Humanoid Robots

In this section, an application of the proposed method to NASA’s humanoid robot Valkyrie [64]
as shown Fig. 8, is presented. Humanoid robots are high degree of freedom complex systems that
have been proposed for diverse applications including nuclear-decommissioning tasks [65,66], disaster
response assistance [67], and vehicles of space exploration [64]. For many of these tasks, it is desirable
to have a human-in-the-loop controller to ensure critical and hazardous sub-tasks are completed. The
supervised autonomy frameworks to make humanoid robots applicable in performing complex tasks
require an effective design for a shared operator control interface which remains an open question.
As seen during the DRC, completion of complex tasks in simulated environments with humanoids
requires large teams of operators and shared control is indispensable [67]. Indeed even a simple
manipulation task requires coherent operator collaboration or inter-operator communication problems
can have detrimental effects [9]. Thus it is preferable to enforce a 1:1 ratio between humanoids and
operator [8].

7.1. Methodology

We propose partitioning the humanoid robot into two serial kinematic chains, the left and right
arm, which are denoted as A’ and A" respectively. The desired task is modeled as a typical pick and
place operation where the robots must visit designated picking and placing zones defined by the
bounding boxes Xj_1._ . For example, A" picks an object from X; and places it in &;. Next, Al collects
the object from &, and places it in a final location A3. The picking and placing actions are executed by
the end effectors of the right and left arms whose positions are respectively given by p” and p'. When
an end effector (robot’s hand) is within a bounding box X;_._,, it requires operator attention, i.e., the
action is considered sensitive and require operator supervision. Thus Xj_ _, constitute configuration
space constraints that must be transformed into critical regions in the coordination space. Thus, the
constraints are represented in the configuration space as follows:

M)A (1) =@Vt € [0, £ A (1), A (1) € X

Additionally, the re-planning algorithm is modified as follows: Given a set of waypoints T and
operator-denied times t4,,, plan will re-plan sections of A that reside within & during times ¢4, if
possible. If re-planning is not possible, or if there are critical waypoints that should not be altered
(such as waypoints denoting pick and place actions) the waypoints and relevant sections of A will be
untouched and returned to the scheduler as-is.

7.2. Results

The simulation experiments are executed using the dynamic simulator Gazebo. An initial set of
waypoints are defined for A’ and .A”. These waypoints consist of a set of Cartesian positions and
velocities for the kinematic chains such that A" and A/ satisfy the pick and place task constraints. The
initial waypoints are passed to the scheduling algorithm which generates a new set of waypoints
that - when separated by a monotonic time step - satisfy both the configuration and coordination
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(b) Rescheduled and re-planned trajectory with three attention zones
Figure 9. Pick and place task with three attention obstacles. The planning reference frame is located
at the wrist of the respective arms and is highlight by a red square. Left: Both plans start in a valid
position. Middle: Both plans approach the bounding in the same manner, but in the rescheduled case,
the right arm execution is slowed down to ensure that before entering the bounding box the left hand
has already left the attention zone (Right).

(b) Rescheduled and re-planned trajectory with two attention zones

Figure 10. Pick and place task with two attention obstacles. The planning reference frame is located
at the wrist of the respective arms and is highlight by a red square. Left: Both plans start in a valid
position. Middle: The initial trajectory immediately violates attention constraints while the rescheduled
trajectory slows the left arm to prevent entry into the area. Right: The right arm is slightly withdrawn
(re-planning) to ensure target frame is outside the bounding box before the left has to enter.

space constraints. A cubic interpolation of the waypoints is used to generate a continuous trajectory
for execution on the robot. A comparison between the executions before and after the scheduling
algorithm is shown in Figure 9 and Figure 10. The coordination space of these trajectories is shown in
Figure 11.

The two original trajectories shown in Figures 11a and 11b have conflicts in critical areas as
illustrated by the line passing through purple areas. The reduced purple areas in Figures 11c and 11d
demonstrate the re-planning of waypoints, and the altered slope of the line through space indicates
a change in time through the waypoints. Both trajectories use a combination of re-planning and
rescheduling to generate a collision-free path through the coordination space.

8. Conclusions and Future Work

This work provides a geometric approach for converting robot trajectories and supervision
requests into a set of policies for the robots that permit operators to oversee critical sections of robot
plans without being over-allocated. The provided solution is also capable of determining when
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Figure 11. Purple areas represent times when both palms will be in a critical zone while the red line is
the scheduled times to reach a point for each palm.

re-planning robots would yield a better solution than velocity-tuning.There are exciting avenues for
future work.

In the short term, we would like to look at the effects that robot movement has on an operator’s
effectiveness in overseeing them [68], and incorporate this effect into our solution. As an example,
operators require time to switch their attention from one robot to another. This context switching time
might be represented by extending obstacles in the coordination space towards the origin. Similarly, a
robot’s path may have some element of uncertainty, especially when outside of a factory setting. In
this case, we can “inflate” the obstacles within the coordination space, which would provide a more
cautious solution.

We are also interested in improving our modeling of context switching times by using
constructions from Human-Robot Interaction research. Potential sources of information that can
be incorporated are mental states (MS) modeling and physiological factors [30]. We believe that the
combination of realistic human cognition models and algorithmic, scalable methodologies such as the
one we proposed in this paper can lead to fundamental insights.

Searching through the coordination space might be modified to use a receding horizon approach
to allow for more rapidly changing robot plans if presented with a dynamic environment. We would
like to include the stability constraints and interdependence between kinematic chains when working
with robots with large degree of freedom.

We studied the complexity of problem 1 and argued that it is NP-Hard by using the technique or
restriction, and we proceeded to propose feasible heuristics to solve it. A natural direction will be to
carefully study approximation algorithms [69] for scheduling problems [70] that can be translated into
our framework. This can help us calculate approximation ratios and performance guarantees for our
approach.



457

458

459

460

461

462

463

Version July 31, 2021 submitted to Robotics 17 of 20

In our paper, we have presented two study cases to show our approach’s practical feasibility
and range of applications. The first scenario is on a set of mobile robots, and the second is on a robot
with several degrees of freedom. We want to continue exploring applications and extend this work to
human studies to investigate the framework’s effectiveness for complex teleoperation tasks.
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