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Abstract: There is a need for semi-autonomous systems capable of performing both automated tasks1

and supervised maneuvers. When dealing with multiple robots or robots with high complexity (such2

as humanoids), we face the issue of effectively coordinating operators across robots. We build on our3

previous work to present a methodology for designing trajectories and policies for robots such that4

few operators can supervise multiple robots. Specifically, we: 1) Analyze of the complexity of the5

problem, 2) Design a procedure for generating policies allowing operators to oversee many robots, 3)6

Present a method for designing policies and robot trajectories to allow operators to oversee multiple7

robots, and 4) Include both simulation and hardware experiments demonstrating our methodologies.8

Keywords: Human Robot interaction; Multi-robot coordination; Humanoid Robots; Scheduling and9

Coordination ; Supervisory Control10

1. Introduction11

Multi-robot systems are making a significant impact on fundamental societal areas. From oceanic12

exploration to border surveillance, from robotic warehousing to precision agriculture, and from13

automated construction to environmental monitoring, collaborating groups of robots will play a14

central role in the coming years [1]. In some of these scenarios, however, due to technical, ethical,15

regulatory or safety issues [2], one or more humans should monitor or help the robot during the16

execution of its tasks in certain critical parts . These critical segments of the robot trajectory can be17

kinematically or dynamically complex maneuvers, locations near obstacles, or regions where sensing18

is poor.19

Most teleoperated systems assume more than one human operator per robot. More than a20

human may be required for each subsystem in more complex scenarios, such as humanoids or21

mobile manipulator teleoperation (e.g., manipulation, locomotion, head positioning). For instance,22

in control rooms in Unmanned Aerial Vehicles missions, several operators are needed to operate23

a single drone. While it may remain infeasible to remove altogether the portion of a task which24

cannot be automated, we can efficiently allocate human attention in these portions. As an application25

of our ideas, we envision scenarios where a single operator can coordinate a group of automated26

construction machinery, several agricultural pieces of equipment or even a production line of industrial27

robots. Indeed, the recent pandemic has demonstrated teleoperation control paradigms are favoured28

in situations where remote presence is desirable and where complexity precludes the use of fully29

autonomous systems [3]. Effectively combining the cognitive capabilities of a human operator with30
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robot physical capacities [4] has provided great benefits in industrial applications [5,6] and more31

general methodologies are needed.32

Another motivation behind our ideas is robot-assisted search and rescue. In traditional mobile robot33

search and rescue operations using unmanned vehicles, operators’ ratio to robots is commonly 2 to34

1 [7]. More recently, motivated by disasters such as the Fukushima nuclear plant, there has been a35

need for robots with larger degrees of freedom that can operate in environments designed for humans.36

Concretely, lessons learned analyzing human-robot interfaces used by different teams in the DARPA37

Robotics Challenge (DRC) [8], gave two important reasons motivating our ideas to reduce the number38

of operators: 1) fewer operators reduces confusion and coordination overhead, and 2) the amount of39

human errors (one of the main sources of problems in the DRC [9]) is reduced.40

This work addresses the question of operator attention at critical moments of a teleoperation41

task. In most situations, an operator is only required in specific parts of a robot’s operation. Knowing42

this, we can schedule these operator interactions so that a single operator can perform multiple tasks.43

Thus, our objective is to develop a planning strategy for the remote task involving multiple robots44

such that the operator can pay sufficient attention to each robot during critical operations. This work’s45

contributions are: extending our preliminary ideas from [10,11] in the following directions: First, we46

analyze the complexity of this problem. Secondly, we present a sampling-based approach that allows47

us to design policies for many teleoperators instead of a complete algorithm that only works for a small48

set of operators. Thirdly, we allow re-planning of the robot’s task alongside the operator. Finally, we49

present the results of both simulated and physical experiments using mobile robots and a humanoid.50

Our work deals with planning for robots using a small set of operators that can help the robot51

when needed. As a convention, we will use the term “robot” throughout this paper; however, the52

method is formulated within the robots’ configuration space and is agnostic to the robot type. It can53

model multiple robots and a single robot with multiple degrees of freedom such as a humanoid robot.54

To the best of our knowledge, our contribution is one of the few that attempts to formalize operator55

scheduling problem using a geometric approach.56

The rest of the paper is organized as follows: Section 2 discusses relevant related literature. Section57

3 describes the preliminaries and formulates the problems of interest. Section 4 describes algorithms58

to solve the formulated problems in the previous section. In Section 5, we present an extension of59

the solution in Section 4 which can also re-plan robot trajectories. Section 6 presents both software60

and hardware experimental results, and a case study is provided in Section 7. Conclusions and future61

directions are presented in Section 8.62

2. Related Work63

Teleoperation is an established robot control paradigm with particular widespread use in surgical64

and medical operations [12]. While teleoperation is classically defined using 1 : 1 operator to robot65

ratio [13,14], there is a growing need for systems that facilitate operator oversight of multiple robots [15].66

This work focuses on reducing operator supervision to only temporally critical passages. Previous67

work has taken a different approach, aiming to reduce the cognitive burden on the operator by, for68

instance, using virtual fixtures [16,17]. Virtual fixtures create zones where the robot can operate and69

thus reduce the operators’ supervision load. These zones can be obtained using point cloud data [18],70

shape primitives, [19], manually created [20], selected interactively [21] or generated on-line based on71

obstacle proximity and manipulator capabilities [22]. For the teleoperation of multiple agents, [23]72

proposed a discrete switching control algorithm where an operator can trigger a switch to control73

different robots or different inputs, i.e. position, velocity of the same agent. In [24], the authors propose74

modeling operator behavior in a multi-robot control task and hypothesize that these models can be75

used to improve the teleoperation control strategies. Alternatively, for more complex systems, the76

introduction of a degree of autonomy in the robots’ behavior, often denoted as shared control, can77

enable operators to control multi-agent or complex systems [25]. Utilizing operators alongside partially78

autonomous robots yields systems that are less brittle and more effective than either one working79
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alone [26]. A study case of a foraging task is presented in [27] where queuing techniques were used to80

schedule the operator’s attention. In [28] the output side sensor configuration of a teleoperated system81

is altered to reduce the workload of a remote surgeon.82

While the above techniques enhance the operators’ control of a robot system, we focus on complex83

autonomous systems that require supervision and analyse how this supervising burden may be reduced.84

Using one operator to control multiple robots has benefits in terms of cost and control coherency but85

leads to a higher workload and decrease in situation awareness [29]. The human operator is often86

overlooked when supervising robots [30], despite their workload influencing task performance [31]87

and in fact having long-term negative effects on well-being [32]. Indeed, [33] have demonstrated that88

an increase in the number of robots per human significantly degrades performance and situation89

awareness. An increase in supervision burden has been shown to increase accidents during multi-robot90

control trials [34]. While this may be mitigated by smart alert systems [35,36], it has been shown91

in [37] that too many robot systems will eventually saturate operator capabilities and, in turn, lead92

the operators to neglect some robots. Neglect is mainly due to the robots competing for operator93

attention [38]. In [39], the authors propose real-time measurements of neurophysiological parameters94

to estimate workload as a potential input to new forms of adaptive automation.95

Our work focuses on eliminating this failure mode by judicious scheduling events that are likely96

to require concentrated operator attention.97

We build upon our recent work [10,11], to perform multi-robot planning [40,41]. We also find98

complementary goals in [42] where a robot attempts to move from one location in its environment to99

another by calculating which obstacles can be minimally displaced to generate a feasible trajectory.100

In our work, we will similarly generate a coordination space, where operator “collision obstacles”101

must be avoided, and seek to find the minimal displacement needed to avoid them. In work by102

LaValle and Hutchinson [43,44], as well as by Wang et al. [45], the complexity of coordinating both103

many robots and operators is handled by separating the planning and scheduling aspects into two104

separate steps. This division greatly assists in devising a feasible solution and is echoed here as105

well. Our work develops techniques for planning multi-robot missions that can assist in outlining106

mission requirements and robot policies. There are relevant approaches such as Crandall et al. [46]107

which investigates the effects of allocating operator attention to robots, and [47–49] which investigate108

additional methods of distributing operators across robots and the effects this has. Particularly relevant109

to our research ideas are [50,51] where the expected behaviors of humans in an environment are110

incorporated into the planning phase of robots, allowing them to perform more elaborate plans than111

without this prediction. This argument also extends into more industrial settings, where it is often112

repeated, scheduled interaction between robots and operators [5]. Our work also relates to motion113

planning approaches that generate joint plans for humans and robots [52–54].114

3. Preliminaries115

We start with a set of m of bodies, which can be kinematic chains or mobile robots, A =116

{A1, · · · ,Am}. Each robot Ai ∈ A has a configuration space C i representing the set of all possible117

transformations, where the set of valid configurations is called the free space C i
f ree. Robots also have118

initial qi
I ∈ C i

f ree and goal qi
G ∈ C i

f ree configurations, where the trajectory λi : [0, ti
f ]→ C

i
f ree takes the119

robot from λi(0) - corresponding to qi
I - through C i

f ree to the final configuration λi(ti
f ) - corresponding120

to qi
G, where ti

f is the total runtime for Ai to execute λi given a dedicated operator.121

When executing λi, Ai may enter critical configurations C i
att ⊂ C i

f ree during which it will require122

one of the p operator’s supervision. A conflict occurs when more than p robots require supervision at123

the same time. Given a range of time T = [0, t f ] where the mission is executing, we will attempt to124

minimize t f = max(t1
f , . . . , tm

f ) when all robots have finished, while also providing operator attention125

when required.126
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Figure 1. Overall steps involved in the proposed scheduling approach.

Problem 1: Scheduling for Multiple Operators: Given p the number of operators, a set of robots A -127

each with their trajectories λi, and a set of critical configurations C i
att - determine a policy πi : T → C i

f ree for128

each robot such that 1) all robots are only in critical configurations when an operator can supervise them, 2) the129

number of operators requested at any time does not exceed p, and 3) attempt to reduce the total runtime of the130

mission t f .131

Building on this problem, we can add the following condition: Is it possible to yield a shorter132

mission runtime by generating alternative trajectories for bodies such that they do not require133

supervision simultaneously as other robots in the first place, thus avoiding operator attention134

“collisions” altogether? This question leads us to a concrete extension of Problem 1:135

Instead of a pre-determined trajectory, we use a sequence of waypoints τi = [τi
1, . . . , τi

o] - where136

each waypoint is a specific configuration the robot must achieve, and the application-specific function137

plan(Ai, τi, tden) yields a trajectory that visits τi while avoiding C i
att during operator-denied times tden138

- an example of which can be found in Section 6.139

Problem 2: Scheduling with Re-Planning: Given p operators, a set of robots Aeach with a sequence140

of sub-goals τi, and a set of critical configurations C i
att. Determine a trajectory λi and policy πi : T → C i

f ree for141

each robot satisfying the waypoints such that 1) robots are in critical configurations only when an operator can142

supervise them, 2) the number of operators requested at any time is less than or equal to p, and 3) an effort is143

made to minimize the ending time of the mission t f .144

4. Scheduling Operator Attention145

This section will propose solutions to Problem 1 defined in Section 3. A schematic representation146

of the steps of our approach is outlined in Figure 1. Details of the method will be explained below.147

4.1. Computational Complexity of Scheduling for Multiple Operators148

In our previous work [11], we described the operator scheduling problem and presented a149

geometric approach for its solution. There were several issues with the proposed methodology related150

to the computational complexity of creating the entire set of obstacles with the coordination space. To151

solve this problem, we give a proof sketch proving the complexity of this problem.152

We prove that Problem 1 is NP-Hard by using the technique or restriction ( [55], pg 63). An153

NP-Hardness proof by restriction consists of showing that a problem Π (in our case, Problem 1)154

contains a known NP-Hard Π′ as a special case.155

In our proof, Pi′ is the Multiprocessor Scheduling problem ( [55], pg 238), which consists of a set of156

J jobs, each job ji has a corresponding length li. Given p processors, we must schedule this set of jobs157

so that they 1) do not overlap and 2) execute in the minimum amount of time.158

Starting from problem 1 (our operator scheduling problem), assume that all possible159

configurations for the robot will require operator attention, meaning that the entire execution of160

λi will need an operator. This plan’s runtime is ti
f , and is analogous to the length of a job in the original161

Multiprocessor Scheduling problem. These jobs are scheduled and allocated to p operators, which162

would be the processors in the original formulation. This problem then reduces to the Multiprocessor163

Scheduling problem where we schedule j jobs across p processors and indicates that the problem we164

are trying to solve is NP-hard.165
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4.2. A sampling-based solution166

Knowing that the problem is NP-hard we ask, we will propose heuristics to find feasible solutions.167

We start by by creating a Coordination Space X = [0, t̃1
f ] × · · · × [0, ˜tm

f ] (following a procedure168

similar to [56]) representing all possible configurations of the robots along their trajectories. Each of169

the m axes corresponds to the normalized execution time t̃i
f of robotAi, given by t̃i

f =
ti

f

max(t1
f , . . . , tm

f )
,170

with the position along the axis corresponding to progress along the trajectory. Let Xobs be the171

set of invalid configurations where the number of robots requesting supervision exceeds p, and172

X f ree = X\Xobs be the set of all valid configurations where the number of requests does not exceed p.173

At xinit = (0, ..., 0) ∈ X f ree all robots are in their initial configurations, and at xgoal = (t̃1
f , ..., ˜tm

f ) ∈ X f ree174

all robots are in their final configuration.175

We define auxiliary functions, borrowing the notation from [57]: d(x1, x2) is the Euclidean distance176

between two points, and c(·) is the cost of a path corresponding to the sum of the pairwise Euclidean177

lengths of the pairwise linear points within it.178

The above formulation serves to create a coordination space where the position along axes179

represents robot configurations and invalid configurations where multiple robots request obstacles180

represent an operator. This process allows us to convert the coordination problem into a path-planning181

problem. We must find a path h : [0, 1] → X f ree from h(0) = xinit to h(1) = xgoal . Following h will182

give us an implicit representation of time with each robot’s positions along their trajectory, such that183

each robot will move from its initial state to its goal state, with at most p robots requiring operator184

attention. We performed this calculation by mapping h to the trajectory λi corresponding to a particular185

robot. Define σ : h → [0, ti
f ], which indicates the position of the robot along its trajectory λi at the186

corresponding point of path h through X f ree. We then perform the composition φ : λ ◦ σ, which yields187

φ : h → C f ree, mapping from the path h to C f ree. This allows us to determine the configuration of a188

robot at any point q in h via φ(q) = λ(σ(q)). We can now obtain the series of configurations x̃ for each189

robot that will guarantee that at most p robots require operator attention at any given time and reduces190

the total run-time of the mission.191

Our preliminary solution [11] required generating the entire set of obstacles within the192

coordination space. Here, we instead use a lazy approach which only checks sampled locations.193

This is combined with a modified version of the Bidirectional RRT∗ originally described in [57–59],194

and shown in Algorithm 2 for reference. Define graphs Ga = (Va = {xa
init}, E = ∅) ∈ X f ree,195

Gb = (Vb = {xb
init}, E = ∅) ∈ X f ree, where xa

init = xinit and xb
init = xgoal . The objective will be to196

derive an obstacle-free path h : [0, 1]→ X f ree such that h(0) = xinit, h(1) = xgoal . Given a user-defined197

function that can estimate when robots will enter a critical section S ← CriticalSegments(A) we can198

check if a point x ∈ X is obstacle-free as in Algorithm 1, where for the point being evaluated, we iterate199

over each robot’s critical segments (lines 3, 4) and check if the corresponding axis of x lies within the200

segment (line 5). If the number of collisions is greater than the number of operators (line 7), then the201

location is not obstacle-free. With some abuse of notation, we also use this to refer to checking if an202

edge is obstacle-free by sampling along the edge and checking if the samples are all within X f ree.203

The modified BidirectionalRRT∗ is presented in Algorithm 2 In lines 1, 2, we initialize the final204

path as currently being none, and the corresponding cost to be infinite. Subsequently, we perform the205

following procedure over N samples: Beginning with Ga — the graph starting at the origin - in lines 4,206

5 we draw a randomly-selected point from X f ree. Checking if the point lies within X f ree is done using207

Algorithm 1, and select the nearest point in the graph (we use an r-tree to accomplish this efficiently).208

In line 6, create a point xnew that is closer to xrand than xnearest. Then in lines 7-9, select the r points in209

Ga that are nearest to xnew and sort them in order of increasing distance from xnew, where the sorted210

list Ls consists of tuples of the form (x′, c′, σ′), where x′ ∈ Xnear, σ′ is an edge from x′ to xnew, and c′ is211

the cost of that path, and select the closest one with an obstacle-free path to xnew as in [60]. If there is a212

valid “best parent” — defined as the vertex with the lowest combined cost-to-come and cost-to-go -213
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Algorithm 1: CollisionCheck
Input :Point x; Number of operators p; robots A
Output :True if obstacle-free, False otherwise

1 ncolls ← 0
2 for i ∈ [1, m] do
3 q← λi(xi) if q ∈ C i

att then
4 ncolls ← ncolls + 1
5 if ncolls ≥ p then
6 return False
7 end
8 end
9 end

10 return True

we insert it into the graph and rewire as in [60] (lines 10-13). We then attempt to connect both trees. In214

lines 14-17, we select the nearest vertex in the opposite graph Gb and attempt to draw a straight path215

from the newly-added vertex xnew ∈ Ga to Gb, if possible. We then check if the resulting path is better216

than our current best-path σbest and update σbest if necessary.217

At this point in the algorithm, we may have a valid path σbest through X f ree. We then perform218

RandomContraction as in [60] to attempt reducing the length of σbest. The user may assign a probability219

pearly, corresponding to the likelihood of checking for an early-exit solution; this is to balance between220

the run-time of B-RRT∗ and yielding a better path. We evaluate this in lines 20-23, returning a valid221

solution if one exists. Otherwise, we swap Ga and Gb and continue until all N samples have been222

drawn and return σbest.223

We then proceed by mapping h to the sequence of configurations x̃i that correspond to robot Ai.224

Movement parallel to an axis corresponds to that robot moving at full speed, perpendicular segments225

indicate the robot is paused, and diagonal segments to velocity-tuning depending on the slope.226

To the best of our knowledge, our approach is one of the first to use geometric and motion227

planning techniques to schedule operators’ attention. Since most previous methods are based on228

human factor techniques or combinatorial scheduling algorithms, head-to-head comparison is difficult.229

Furthermore, our study cases (multi-robot control and humanoid manipulation) are different from the230

ones presented in related work (e.g., foraging [27]). In the near term, one direction for comparison231

would be applying our techniques to previously used study cases and benchmark the approach.232

We believe that our proposed method has a good scaling behavior. An additional robot and233

its constraints represent an additional variable in our coordination space. Since we are using234

sampling-based methods for finding a feasible solution (which have been used in large dimensions [61]),235

we believe that our method can scale to larger groups. Furthermore, in sampling-based motion236

planning, a significant part of the computational cost is collision checking, and since this is simple in237

our formulation (obstacles are hypercubes), there is good potential for scaling.238

5. Scheduling with Re-Planning239

The previous solution provides us with a coordination space and corresponding path that yields240

a velocity-tuning approach preventing operator collisions. We now look for a solution that yields a241

shorter mission runtime by also altering the robot trajectories. This solution is found by comparing the242

current path through the coordination space h and the desired shortest-path path hdes which would be243

a straight line. Given the example in Figure 2a, b, where we see the robots and environment, and the244

resulting coordination space, we indicate an “ideal” path as in Figure 2c. When searching for a path245

through the coordination space, we may find a point x ∈ X such that hdes(x)
⋂

Xobs 6= ∅, representing246

an obstacle. In the example shown in Figure 2c, this is indicated by the blue region, meaning that the247

ideal path is not valid as it intersects the obstacle. In these situations, the solution is to either plan248
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Algorithm 2: B-RRT∗

Input :Coordination Space X, Operators p; Critical Segments S ; Samples N, Probability of
early exit pearly ∈ [0, 1]

Output :Obstacle-free path σbest through X
1 σbest ← ∅;
2 cbest ← ∞;
3 for i ∈ [0, N] do
4 xrand ← SampleFree;
5 xnearest ← Nearest(xrand,Ga);
6 xnew ← Extend(xnearest, xrand);
7 Xnear ← Near(xnew,Ga, r);
8 Ls ← Sort(xnew, Xnear);
9 xmin ← BestParent(Ls);

10 if xmin 6= ∅ then
11 Ga ← Insert(xnew, xmin,Ga);
12 Ga ← Rewire(xnew, Ls, E);
13 end
14 xconn ← Nearest(xnew,Gb);
15 σnew ← Connect(xnew, xconn,Gb);
16 if σnew 6= ∅ and c(σnew) < c(σbest) then
17 σbest ← σnew;
18 end
19 RandomContraction(σbest);
20 u ∼ U([0, 1]);
21 if σbest 6= ∅ and u ≤ pearly then
22 return σbest;
23 end
24 SwapTrees(Ga,Gb);
25 end
26 return σbest;
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(a) (b)

(c)

Figure 2. Example Environment and resulting Coordination Space

(a) A planar environment with dangerous regions requiring operator supervision to traverse shown in blue, and
robot trajectories in yellow. (b) The 2-dimensional Coordination Space resulting from (a). Each axis corresponds to
the positions of robots along with their trajectories. The red line indicates an attention-conflict-free path through
the coordination space. (c) Coordination space from (b), with the desired (optimal) policy shown as the red line.

around the obstacle, corresponding to tuning the velocity of the robots involved - as in the solution249

for Problem 1 - or creating alternative plans for the robots. In the latter case, the number of operators250

requested during the original set of times corresponding to the obstacle can now be fulfilled, potentially251

reducing the overall mission runtime if the resulting plans are shorter than the wait times.252

A critical side-effect to keep in mind is that by modifying robots’ trajectories when avoiding253

collisions caused by conflicting operator attention requests, we are also potentially changing later parts254

of their trajectory. This change will lead to a different coordination space and the possibility of shifting,255

creating, or removing subsequent obstacles. As an illustrative example, Figure 3a shows two robots,256

which enter regions requiring supervision at the same time and produce the coordination space in257

Figure 3b. The vertical segment of the path h shown in red corresponds to the collision being resolved258

by pausing robot 1 until robot 2 has finished its operator request before continuing. This scenario259

could also be solved by re-planning robot 2 so that it avoids operator requests during the original260

times. However, robot 1 will then require more time to travel around the dangerous region, causing it261

to encounter its second critical section at a later time — precisely when robot 1 is entering its second262

request as well (Figure 3c) — creating another conflict that must be solved.263

This setup yields our initial solution via velocity-tuning. Then create an ideal path hopt, given264

by a straight line that assumes no robots require supervision (line 3). Next, we verify if the optimal265

solution is valid by checking for collisions between hdes and obstacles in the coordination space and266

return the first obstacle encountered — if any in line 4. FirstObstacle returns the robots involved in267

the “collision” oAinv , along with the corresponding configurations oCatt and times that each robot has in268

conflict otden . If the ideal path is invalid (line 5), we can resolve this in two ways:269

1. Alter the involved robots policies (as in the previous solution).270

2. Re-plan the involved robots trajectories to eliminate the obstacle.271

We now describe how to re-plan the robot’s trajectories. Given the robots involved in the collision,272

oAinv , we sort them in order of ascending length of execution time and select the shortest |oAinv | − p -273

the minimum number of robots to re-plan to remove the attention collision (lines 6, 7). This procedure274
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Algorithm 3: Scheduler
Input :A, robots to plan
Output : h, path through X used to derive policy

1 xinit ← (0, . . . , 0); xgoal ← (t̃1
f , ˜tm

f )

2 Xcurr ← [t̃1
f , . . . , ˜tm

f ]; hcurr ← B-RRT∗(Xcurr, xinit, xgoal , p, Catt)

3 Xdes ← [0, t̃1
f , . . . , ˜tm

f ]; hdes ← line(xinit, xgoal); Cdesatt ← ∅
4 o ← FirstObstacle(hdes, Catt)
5 while o 6= ∅ do
6 Ainv ← Sort(oAinv)

7 Amin ← Ainv[0 : |oAinv | − p]
8 Aalt ← (A\Amin)

9 plan(Ai, ti
den)∀A

i ∈ Amin
10 Aalt ← Aalt

⋃Amin

11 xaltgoal ← (t̃1
f , . . . , ˜tm

f )∀A
i ∈ Aalt

12 if d(xinit, xaltgoal) ≤ c(hcurr) then
13 Xalt ← [0, t̃1

f ]× · · · × [0, ˜tm
f ]; halt ← B-RRT∗(Xalt, xinit, xgoal , p, Catt)

14 if c(halt ≤ c(hcurr) then
15 xgoal ← xaltgoal ; hcurr ← halt
16 Xcurr ← Xalt; Xdes ← Xalt
17 A ← (A\Amin)

⋃Aat
18 else
19 Cdesatt ← Cdesatt

⋃
oCatt

20 end
21 else
22 Cdesatt ← Cdesatt

⋃
oCatt

23 end
24 hdes ← B-RRT∗(Xdes, xinit, xgoal , p, Catt)

25 o ← FirstObstacle(hdes, Catt)
26 end
27 return hdes
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(a) (b)

(c)

Figure 3. Example Environment, resulting Coordination Space, and Shifting Conflict Regions

(a) Robots in their environment, and their expected trajectories; (b) Original Coordination Space resulting from (a);
(c) Final Coordination Space after re-planning around the first attention obstacle.

is performed on the robots with the shortest current plans so that extensions to their plans due to275

re-planning should have a minimal effect on the mission’s overall length. Then generate alternative276

trajectories for the robots, provided operator-denied times otden , and create an alternative goal location277

xaltgoal to account for any shifts in the ending times of the robot plans (lines 8 - 11).278

Suppose the distance between xinit and the alternative xaltgoal is longer than the current solution.279

In that case, velocity-tuning will yield a better solution, and we incorporate the obstacle into the280

“desired” set of obstacles (lines 12, 22). Otherwise, we test if the alternative, a re-planned solution is281

better (lines 13, 14). If it is, then update the robots with their re-planned trajectories, and replace the282

current coordination space and goal to account for any changes in execution times (lines 15 - 17); else283

we incorporate the obstacle into the “desired” set of obstacles as before (line 19).284

We repeat this process of generating desired solutions (line 24) and testing them until the desired285

path hdes no longer intersects any obstacles. At this point, we return the final hdes that will have no286

operator conflicts.287

6. Experimental Results288

In this section, we cover the design and of both simulated and physical experiments, and the289

results obtained.290

6.1. Software Simulation for Scheduling with Re-Planning291

Here we describe our simulation and provide an example plan algorithm that re-plans a robot’s292

trajectory around unsafe areas in the environment — which would require operator supervision293

— given operator-denied times.294

The simulated environment consisted of a discretized 2-dimensional grid-world where robots can295

only move either horizontally or vertically. The environment also contains hazardous regions (shown296

in blue) which require operator supervision to traverse, corresponding to configurations in Catt.297

Example Re-plan Algorithm: The plan algorithm used in this example attempts to find the298

shortest path between xi
init and xi

f inal within the robot’s environment, which can be easily attained via299

the A∗ algorithm [62,63]. However, this path may intersect with regions requiring supervision. First,300
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(a) (b)

(c) (d)

Figure 4. Example Simulation Environment

Example simulation. The robots are numbered 1, 2, 3 from top to bottom. (a) Robot 3 stops while Robot 2 passes
through its dangerous region. (b) Robot 3 has re-planned its trajectory and is going around the dangerous area,
allowing Robot 2 to be supervised. (c) Robot 1 stops to allow Robot 3 enter its dangerous area with supervision.
(d) All robots continue to their final goal locations.

denote the starting time of the mission as Ti = 0. Given times when an operator will not be available301

for the robot, tden, we modify A∗ as follows: Augment A∗’s nodes with an additional time parameter.302

When visiting a node, update its neighbor’s time attributes to time + travel_time where time is the303

current time, and travel_time is the time required to move from the current node to the neighbor. If304

the neighbor physically resides within Catt and the neighbors time is inside ti
den, then we treat it as an305

obstacle. This modification of A∗ provides paths that circumvent obstacles during operator-denied306

times, with an example shown in Figure 4.307

In Figure 4, we show a simulated example given an environment with three robots. The blue308

areas in the environment are dangerous, and require operator supervision to prevent an accident. The309

example was designed to show several operator attention “collision” scenarios. As the robots move310

from left to right, the following operator requests might arise:311

• A1 requiring an operator312

• A1 and A2 require an operator at the same time313

• A1,A2,A3 require an operator at the same time314

• A3 requiring an operator while A1 and A2 leave their critical regions315

• A2 requiring an operator316

• A1 and A2 require an operator at the same time317

The resulting coordination space is shown in Figure 5, where (a, b) is only velocity-tuning, and (c,318

d) is with re-planning the robot trajectories, which yields a slightly shorter mission ending time than319

strictly velocity-tuning.320

For further validation, simulations were run using 2-dimensional environment populated with321

a set of randomly-sized, randomly-placed dangerous regions, and robots placed in randomized322

obstacle-free starting and goal locations along with a corresponding path between them as shown in323

Figure 6. Across each iteration of the simulations, environments and the starting and goal positions324

for the robots were randomly generated. In each generated environment, trials were run using 2, 4,325

or 8 robots, moving at 1 cell/second. These trials were then solved using the solutions for Problem 1326
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(a) (b)

(c) (d)

Figure 5. Example Simulation Coordination Space resulting from the example shown in Figure 4.

(a) Original Coordination Space resulting from the environment and robots in Figure 4; (b) Side view of (a); (c)
Final Coordination Space after replanning; (d) Side view of (c)

Figure 6. Example Random Environment

Example of a randomly-generated environment and trajectories intersecting critical regions.

Table 1. Average time savings via re-planning vs velocity-tuning

Robots Operators Average Savings
2 1 1.126
2 2 0
2 4 0
2 8 0
4 1 1.937
4 2 3.402
4 4 0
4 8 0
8 1 NA
8 2 0.218
8 4 5.284
8 8 0

(Scheduling) and Problem 2 (Scheduling with Re-Planning), with 1, 2, 4, or 8 operators. The results can327

be found in Table 1.328

There is an increase in average time saved when dealing with larger numbers of robots, as329

re-scheduling can simultaneously resolve multiple robots at once. We purposefully ran the simulations330

with equal numbers of robots and operators to ensure that there would be no time saved - as there331
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(a) (b)

(c) (d)

Figure 7. Hardware Experiment Example

(a) Simulated Environment; (b) Coordination Space resulting from (a); (c) Analogous hardware simulation at
t = 1; (d) Hardware simulation at t = 5.

would be no obstacles generated in the first place - and this performed as expected. All tests with 2332

and 4 robots completed successfully. In trials with 8 robots and single operator, a solution was not333

found with the RRT∗ parameters that were used. Given 2 operators, 3̃0% completed, and 6̃0% for 4334

operators. This result was due to the low sample count used when running Attention RRT∗, and the335

large steer length, which prevented it from exploring paths in narrow gaps between obstacles. The336

tuning of the sample count, steer length and rewire count lie outside the scope of this work, but is337

nonetheless an interesting problem we expect to incorporate in future work.338

6.2. Hardware Experiment for Scheduling with Re-Planning339

Here, we further illustrate the problem and solution via a hardware example. This example340

consisted of a single operator that had to be allocated across three line-following robots in a discrete341

grid environment.342

The robots use a deterministic finite state machine to keep track of the position and orientation,343

and a transition function given by a second transition-state machine that ensures the robots inter-state344

path does not deviate from a grid line.345

The hardware experiment in Figure 7 has an equivalent simulated environment shown in Figure346

7a. The robots have initial trajectories shown in yellow, which pass through dangerous areas of the347

environment (blue) requiring operator supervision. The physical implementation represents the348

dangerous areas using red/yellow squares, in the same locations as in the virtual simulation. The349

resulting coordination space in Figure 7b, provides a set of policies enabling the robots to execute350

their trajectories while ensuring that the operator is not split among multiple robots at the same time.351

The robots then executed their corresponding policies, moving and pausing when appropriate, with352

at most one robot entering a dangerous region at a time. Additional experiments and videos can be353

found at:354

355

http://users.cis.fiu.edu/ jabobadi/oa/.356

The hardware experiments that were run and shown in the above link show successful runs using357

the above procedures to design trajectories and policies for three different robots under the supervision358

of a single operator. The mission ended in the shortest time possible, and the operator did not receive359

multiple concurrent requests.360

http://users.cis.fiu.edu/%7Ejabobadi/oa/
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Figure 8. (Left) NASA’s humanoid robot Valkyrie. (Middle, Right) Experimental setup showing
coordination space obstacles and kinematic chains that are treated as independent robots.

7. Study Case: Humanoid Robots361

In this section, an application of the proposed method to NASA’s humanoid robot Valkyrie [64]362

as shown Fig. 8, is presented. Humanoid robots are high degree of freedom complex systems that363

have been proposed for diverse applications including nuclear-decommissioning tasks [65,66], disaster364

response assistance [67], and vehicles of space exploration [64]. For many of these tasks, it is desirable365

to have a human-in-the-loop controller to ensure critical and hazardous sub-tasks are completed. The366

supervised autonomy frameworks to make humanoid robots applicable in performing complex tasks367

require an effective design for a shared operator control interface which remains an open question.368

As seen during the DRC, completion of complex tasks in simulated environments with humanoids369

requires large teams of operators and shared control is indispensable [67]. Indeed even a simple370

manipulation task requires coherent operator collaboration or inter-operator communication problems371

can have detrimental effects [9]. Thus it is preferable to enforce a 1:1 ratio between humanoids and372

operator [8].373

7.1. Methodology374

We propose partitioning the humanoid robot into two serial kinematic chains, the left and right
arm, which are denoted as Al and Ar respectively. The desired task is modeled as a typical pick and
place operation where the robots must visit designated picking and placing zones defined by the
bounding boxes Xi=1...n. For example, Ar picks an object from X1 and places it in X2. Next, Al collects
the object from X2 and places it in a final location X3. The picking and placing actions are executed by
the end effectors of the right and left arms whose positions are respectively given by pr and pl . When
an end effector (robot’s hand) is within a bounding box Xi=1...n, it requires operator attention, i.e., the
action is considered sensitive and require operator supervision. Thus Xi=1...n constitute configuration
space constraints that must be transformed into critical regions in the coordination space. Thus, the
constraints are represented in the configuration space as follows:

λl(t)
⋂

λr(t) = ∅|∀t ∈ [0, t f ]; λl(t), λr(t) ∈ X

Additionally, the re-planning algorithm is modified as follows: Given a set of waypoints τ and375

operator-denied times tden, plan will re-plan sections of λ that reside within X during times tden if376

possible. If re-planning is not possible, or if there are critical waypoints that should not be altered377

(such as waypoints denoting pick and place actions) the waypoints and relevant sections of λ will be378

untouched and returned to the scheduler as-is.379

7.2. Results380

The simulation experiments are executed using the dynamic simulator Gazebo. An initial set of381

waypoints are defined for Al and Ar. These waypoints consist of a set of Cartesian positions and382

velocities for the kinematic chains such that λr and λl satisfy the pick and place task constraints. The383

initial waypoints are passed to the scheduling algorithm which generates a new set of waypoints384

that - when separated by a monotonic time step - satisfy both the configuration and coordination385
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(a) Initial trajectory with three attention zones

(b) Rescheduled and re-planned trajectory with three attention zones
Figure 9. Pick and place task with three attention obstacles. The planning reference frame is located
at the wrist of the respective arms and is highlight by a red square. Left: Both plans start in a valid
position. Middle: Both plans approach the bounding in the same manner, but in the rescheduled case,
the right arm execution is slowed down to ensure that before entering the bounding box the left hand
has already left the attention zone (Right).

(a) Initial trajectory with two attention zones

(b) Rescheduled and re-planned trajectory with two attention zones
Figure 10. Pick and place task with two attention obstacles. The planning reference frame is located
at the wrist of the respective arms and is highlight by a red square. Left: Both plans start in a valid
position. Middle: The initial trajectory immediately violates attention constraints while the rescheduled
trajectory slows the left arm to prevent entry into the area. Right: The right arm is slightly withdrawn
(re-planning) to ensure target frame is outside the bounding box before the left has to enter.

space constraints. A cubic interpolation of the waypoints is used to generate a continuous trajectory386

for execution on the robot. A comparison between the executions before and after the scheduling387

algorithm is shown in Figure 9 and Figure 10. The coordination space of these trajectories is shown in388

Figure 11.389

The two original trajectories shown in Figures 11a and 11b have conflicts in critical areas as390

illustrated by the line passing through purple areas. The reduced purple areas in Figures 11c and 11d391

demonstrate the re-planning of waypoints, and the altered slope of the line through space indicates392

a change in time through the waypoints. Both trajectories use a combination of re-planning and393

rescheduling to generate a collision-free path through the coordination space.394

8. Conclusions and Future Work395

This work provides a geometric approach for converting robot trajectories and supervision396

requests into a set of policies for the robots that permit operators to oversee critical sections of robot397

plans without being over-allocated. The provided solution is also capable of determining when398
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(a) Trajectory of Figure 9a (b) Trajectory of Figure 10a

(c) Trajectory of Figure 9b (d) Trajectory of Figure 10b
Figure 11. Purple areas represent times when both palms will be in a critical zone while the red line is
the scheduled times to reach a point for each palm.

re-planning robots would yield a better solution than velocity-tuning.There are exciting avenues for399

future work.400

In the short term, we would like to look at the effects that robot movement has on an operator’s401

effectiveness in overseeing them [68], and incorporate this effect into our solution. As an example,402

operators require time to switch their attention from one robot to another. This context switching time403

might be represented by extending obstacles in the coordination space towards the origin. Similarly, a404

robot’s path may have some element of uncertainty, especially when outside of a factory setting. In405

this case, we can “inflate” the obstacles within the coordination space, which would provide a more406

cautious solution.407

We are also interested in improving our modeling of context switching times by using408

constructions from Human-Robot Interaction research. Potential sources of information that can409

be incorporated are mental states (MS) modeling and physiological factors [30]. We believe that the410

combination of realistic human cognition models and algorithmic, scalable methodologies such as the411

one we proposed in this paper can lead to fundamental insights.412

Searching through the coordination space might be modified to use a receding horizon approach413

to allow for more rapidly changing robot plans if presented with a dynamic environment. We would414

like to include the stability constraints and interdependence between kinematic chains when working415

with robots with large degree of freedom.416

We studied the complexity of problem 1 and argued that it is NP-Hard by using the technique or417

restriction, and we proceeded to propose feasible heuristics to solve it. A natural direction will be to418

carefully study approximation algorithms [69] for scheduling problems [70] that can be translated into419

our framework. This can help us calculate approximation ratios and performance guarantees for our420

approach.421
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In our paper, we have presented two study cases to show our approach’s practical feasibility422

and range of applications. The first scenario is on a set of mobile robots, and the second is on a robot423

with several degrees of freedom. We want to continue exploring applications and extend this work to424

human studies to investigate the framework’s effectiveness for complex teleoperation tasks. A domain425

of interest where our ideas can apply are one-to-many (OTM) scenarios where a human operator needs426

to monitor and coordinate multiple multiple autonomous vehicles [39].427
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