2020 IEEE International Conference on Big Data (Big Data) | 978-1-7281-6251-5/20/$31.00 ©2020 IEEE | DOI: 10.1109/BigData50022.2020.9378307

2020 IEEE International Conference on Big Data (Big Data)

A Sensitivity Analysis of

Evolutionary Algorithms

in Generating Secure Configurations

Shuvalaxmi Dass
Computer Science Department
Texas Tech University
shuva93.dass @ttu.edu

Abstract—The growth of Cyber-physical Systems (CPS) has
been increased in recent years. This has led to the coupling
of highly complex cyber-physical components. With the inte-
gration of such complex components, new security challenges
have emerged. Studies involving security issues in CPS have
been quite difficult to be generalized due to the presence of
heterogeneity and the diversity of the CPS components. These
systems are subject to various vulnerabilities, threats and attacks,
as a consequence of complex versions of CPS being introduced
over time. This paper deals with vulnerabilities caused due to
improper configurations in the software component of cyber-
physical systems. Evolutionary algorithms such as Genetic Al-
gorithms (GA) and Particle Swarm Optimization (PSO) can be
employed to adequately test the underlying software for certain
categories of vulnerabilities. This paper provides a detailed
sensitivity analysis of these evolutionary algorithms in order
to find out whether changing parameters involved in tuning
these algorithms affect the overall performance. This analysis
is based on the estimate of the number of generation of secure
vulnerability pattern vectors under the variation of different
parameters. The results indicate that while there is no evidence
of influential parameters in Genetic Algorithms (i.e., mutation
rate and population size), changes in the parameters involved in
Particle Swarm Optimization algorithms (i.e., velocity rate and
fitness range) have some positive impacts on the number of secure
configurations generated.

Index Terms—Cyber-Physical Systems, security, Genetic Algo-
rithm, Particle Swarm Optimization, Sensitivity Analysis.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are an integration of compu-
tation, networking, and physical devices in a closed form [11].
It incorporates various interconnected system that communi-
cate with each other to monitor and control real IoT-related
physical objects and processes. These systems are evolving
continuously to cater to our daily needs in life. As some
useful applications where CPSs are deployed successfully are
electrical power grids, oil and natural gas distribution, trans-
portation systems, health-care devices, household appliances,
and many more. These systems also find their applications
in the infrastructures of critical nature such as life support
devices. On the other hand, these CPS-based platforms are
becoming the target of adversarial attacks. There are constant
threats to security of such systems given what is at stake.
Unfortunately, it is practically impossible for such real-world
systems to be free of vulnerabilities and resistant to all types
of attacks.

978-1-7281-6251-5/20/$31.00 ©2020 IEEE 2065

Akbar Siami Namin
Computer Science Department
Texas Tech University
akbar.namin @ttu.edu

CPS is composed of mixture of different hardware and soft-
ware components. Hardware components include sensors, ac-
tuators, and embedded systems whereas software components
include varied collections of proprietary and commercial third-
party software products which are in charge of control and
monitoring. The presence of such heterogeneous components
which involves interaction between complex characteristics
often put the privacy and security of the system at risk, thereby
exposing vulnerabilities to exploitation. These vulnerabilities
becomes difficult to assess, as new security issues arise or
additional software/hardware components are integrated with
the system.

Moving Target Defense (MTD) [19], [20] is an evolving
defense technique through which the attack surface of the
underlying Cyber Physical System is continuously changing.
The deriving idea is to limit the time allotted and thus increase
the cost for attackers to collect data about the target system
during the reconnaissance stage of attack. Once the attack
surface is changed, it becomes very expensive to attackers
to redo the reconnaissance stage of attacks. However, the
major research question is how the attack surface should be
changed automatically with minimum cost while preserving
the security of the systems. A feasible and economical solution
is to change the configuration of underlying CPS with the
objective of tighten the security of the system in a newly
suggested configuration.

This paper focuses on generating secure configuration for
the aforementioned problem. Here, we extend the initial idea
of our paper [6], in adapting evolutionary algorithms on
vulnerability coverage, to explore it further through Sensitivity
Analysis (SA). In our earlier work [6], we demonstrated that
how evolutionary algorithms can be utilized in generating a set
of secure configurations using CVSS (Common Vulnerability
Scoring System) as the fitness metric.

In this paper, our objective is to study whether certain
parameters in these evolutionary algorithms are playing more
critical roles in generating secure configurations. We con-
duct sensitivity analysis to assess the impact of independent
variables on dependent variable under certain specific and
controlled conditions. In other words, sensitivity analysis is
a means to quantify the significance of underlying model’s
parameters on the behavior of the system [8]. This paper makes
the following key contributions:

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:53:00 UTC from IEEE Xplore. Restrictions apply.

— We conduct a sensitivity analysis on parameters involved
in evolutionary algorithms to study the significance of
these parameters on the number of secure instances
generated by these evolutionary algorithms.

— We observed that the parameters involved in Genetic
Algorithms such as mutation rate and population size
have little to no impact on the performance of genetic
algorithms.

— Unlike GAs, we observed that the parameters involved
in Particle Swarm Optimization (PSO) play an important
role in the generation of number of instances of secure
configurations.

The remainder of this paper is organized as follows: Section
II reviews the related research work in this line of research.
Section III technical background of evolutionary algorithms
are presented. In Section IV, we briefly discuss our earlier
work related to the problem posed and targeted in this paper.
Section V presents our methodology in conducting sensitivity
analysis on the evolutionary algorithms studied. Section VI
presents the results of the analysis. Section VII concludes the
paper and highlights the future research directions.

II. RELATED WORK

Evolutionary algorithms have been widely used in the field
of security. Crouse and Fulp [4] developed Moving Target
Defense (MTD) platforms using Genetic Algorithm to en-
sure security in computer systems. They introduced temporal
and spatial diversity in computer configuration parameters to
strengthen their security. The authors carried out experiments
conducting MTD using multiple computers initially configured
with extremely vulnerable settings. They implemented GA
with chromosome pool size, crossover and mutation rates set
as 10, 0.08 and 0.02, respectively. Through this experiment,
they reported that both average temporal and spatial diversity
first increase and then decrease and remain constant with
increase in number of iterations.

Crouse and Fulp [5] improved their MTD approach fur-
ther by introducing a modified variation of GA-based MTD
technique and proposed a new approach called chromosome
pool management. This technique was introduced to address
the issue of stagnancy in the pool of configurations. This
stagnancy was caused due to lack of changes occurring in
the set of configurations over a period of time. This approach
overcomes the stagnancy challenge by reducing the fitness
(security) of aging configurations by a decay value based on
the time since they were last active. This approach ensures the
weak configurations are eventually replaced by more secure
ones as number of iterations passes.

John and Furp [9] compared and contrasted two different
genetic algorithms to conduct Moving Target Defense, namely
GA+PVM and GA+PDM. In GA+PVM, mutation operator
mutates the parameter values based on its type (integer, option,
and bit); Whereas, in GA+PDM, mutation operator changes
the domain of the parameter using machine learning algo-
rithms by removing the insecure setting from the parameter’s
domain.

2066

! .
b } :
(SITQI(;) Cthmlsome 0 n a

Fig. 1: The elements of a typical genetic algorithm.

Various types of sensitivity analysis is used in a wide range
of fields, ranging from biology and geography to economics
and engineering. It is also used in the field of security.

Syamsuddin [17] employed sensitivity analysis using several
“what-if” scenarios to measure the consistency of the evalua-
tion of their proposed model called Ternary Analytic Hierarchy
Process (T-AHP) in order to help managers make strategic
evaluation related to information security issues.

Do et al. [10] conducted sensitivity analysis of the finite
moving averages test, which was used for detecting cyber-
physical attacks on Supervisory Control And Data Acquisition
(SCADA) systems. This analysis calculates the likelihood
of wrong decisions with respect to variation of operational
parameter. These results are then utilized to detect an attack
scenario on an SCADA water network.

III. BACKGROUND

This section provides background knowledge on the two
different optimization algorithms: 1) Genetic and evolutionary
algorithms, 2) Particle swarm optimization. We also discuss
CVSS concept for the vulnerability pattern generation target-
ing certain level of CVSS score, as a fitness function.

A. Genetic Algorithms (GA)

Before describing the mechanism of genetic evolutionary
algorithms, let us review the related terminologies in this
context. As Figure 1 illustrates, a genetic algorithm involves
of the following elements:

1) Gene. It is a single cell in a chromosome, which stores
one bit of information, called an allele.

2) Chromosome. It is a collection of genes. The fitness
of each chromosome is evaluated by a fitness function
metric.

3) Fitness Function. This function is dependent on what
problem domain is GA being applied on. The function
gives out a fitness score to the chromosome, which
shows the ability of an individual to “compete” in the
generation.

4) Population. It is a collection of chromosomes. Also
called pool of configurations. The population gives rise
to one generation.

Genetic Algorithm (GA) is a search-based optimization
technique that represents one branch of the field of study called
evolutionary computation. The core functionality of GA is that
they mimic biological process of evolution which comprises

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:53:00 UTC from IEEE Xplore. Restrictions apply.

1 0] 0] ol o]
0 0 o o © — [1]
— 1 1]] [- ! 1
0 0 1 1] o @ — o
I 1 0 1] o] I 0
0 -
[1]
0]
Selection Crossover Mutation

Fig. 2: Genetic algorithm process.

of reproduction and natural selection to solve for the “fittest”
solutions [2].

The concept of GA in programming is inspired by Darwin’s
theory of evolution where the algorithm seeks for optimal
or near-optimal solutions to the system by taking an initial
population of individuals and genetically breeding them over
a series of iterations [1]. This breeding process comprises of
three main operators: selection, crossover, and mutation.

A typical GA algorithm starts with choosing a random set
defined as the initial population of individuals or chromo-
somes, which is made up of genes. A fitness score metric to
calculate the fitness of each individual is also defined [14].
During each generation, the selection operator chooses the
fittest individuals called as parents from the current population
to be part of the population formed in the next generation.
The crossover operation then takes place between the chosen
fittest parents to produce an off-spring, which will carry the
best traits from both parents. Once the off-springs are born,
new traits are introduced in them through mutation. These
processes are repeated until a fixed number of generations is
reached or when an acceptable fitness level has been reached
for the last population [13]. Figure 2 shows the pictorial
representation of the breeding process.

B. Particle Swarm Optimization (PSO)

PSO is another widely used optimization technique based
on the social behaviour of bee swarms and bird flocking. In
PSO, concept of swarm is analogous to that of population in
GA. Similarly, a solution/individual in PSO is called a particle
analogous to a chromosome in GA.

Even though PSO belongs to a different branch of evolution-
ary computation techniques from GA, they do share some sim-
ilarities in their functionalities. For instance, both algorithms
start off with a random set of initial population/solutions until a
fixed number of generations is reached or when an acceptable
fitness level has been reached for the last population [12]. In
contrast to GA, there is no concept of crossover and mutation
operations to update the particles. Modification of the particles
in PSO is instead achieved by directing them towards the
global optimum by their personal best position along with the

2067

Initialize particles

|

Calculate fitness score(f)

Yes Current
T Fitness No
Value(f) >
T DBest ?
Assign pBest =f Keep pBest unchanged
T
Assign gBest = Best particle’s ‘

pBest

Calculate particle’s velocity(v)

Use v to update particle’s data

No Maximum Yes
iteration/Tar :x[L

get Reached?

Fig. 3: The PSO’s general strategy.

swarm’s best position in the search space. This makes PSO
easier to implement in contrast to GA as it has comparatively
fewer parameters to adjust [15].

Taking the bird flocking scenario into consideration [18],
each bird in the flock represents a particle and the flock is
represented by swarm. Each particle in the swarm has 1)
data, which represents a possible solution, 2) velocity, which
indicates how much of the data can be modified, and 3) the
fitness value associated to it evaluated by the fitness function.
These parameters guide the particles (i.e., birds) towards the
global optimum by updating swarms. In every iteration, each
particle is updated based on two best scores: 1) personal best
fitness score it has achieved so far, and 2) the global best fitness
score achieved by any particle in the swarm so far. Figure 3
shows the general strategy of PSO where pBest and gBest
are the local and global best fits, respectively.

C. CVSS

The Common Vulnerability Scoring System (CVSS) is a
free and open framework to measure the severity and the
characteristics of vulnerabilities present in an affected system
and calculates its severity score. It comprises of three metric
groups: Base, Temporal, and Environmental, each representing
different qualities of the vulnerability. The base group repre-
sents the intrinsic qualities whereas the temporal and environ-
mental groups represent time-changing properties and user’s
environment specific properties of vulnerabilities respectively.

This paper only deals with the Base group metric. The
base metric further consists of two sub-metric fields: Ex-
ploitability metrics and the Impact metrics. These sub-
metrics constitute of various vector fields like AV, AC,
etc., which contribute in scoring a vulnerability. The CVSS
base score ranges from 0.0 to 10.0. As we go higher,
the severity of vulnerability gets higher. More informa-
tion on CVSS can be found at their official website!.
Figure 4 shows an instance of CVSS vector represented
by CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H where

Thttps://www.first.org/

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:53:00 UTC from IEEE Xplore. Restrictions apply.

Severity SESVIEINERSN CSs Version 2.0

CVSS 3.x Severity and Metrics:

§ A NIST: NVD

Vector: CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H

Base Score: [FHGH]

Fig. 4: Example of a CVSS pattern.

[(*CVSS:3.0/AV:P/AC:H/PR:N/UI:R/S:C/C:N/I:L/A:N',
('CVSS:3.0/AV: P/AC:H/PR:N/UL:R/S:C/(

2. 0) & CVSS 3.0/AV: P/AC H/PR N/UI N/S U/C:N/I:L/A:N",
[: 1€/

(" CVSS:3.0/AV: P/AC: L/PRi /U :N/S:C//
('CVSS:3.0/AV: P/AC:L/PR

~
BNNRrLMNNESY

(" CVSS:3.0/AV: P/AC: H/PREH/UL:N/S:C//
('CVSS:3.0/AV:P/AC:L/PR:

100) "
(CVSS 3 Q/AV P/AC H/PR N/LII R/S: C/C H/I:L/A:L", 100] o CVSS 3 O/AV P/AC H/PR L/UI R/S C/C:N/I:N/A:N",

Fig. 5: A snapshot of CVSS vector patterns with their scores.

CVSS score is 7.8 denoting the severity of the vulnerability
is high?.

IV. OUR PREVIOUS WORK

This section quickly briefs upon the methodology employed
on vulnerability coverage in our previous papers [6], [7]. In
our previous work, we proposed the concept of “vulnerability
coverage” as an adequacy criterion for testing the wide-
ranging vulnerabilities present in the underlying software
applications. The main goal is to identify a set of vulnerability
patterns that belong to a certain level of CVSS score. In
order to achieve this, the key idea is to utilize Common
Vulnerability Scoring System (CVSS) as a fitness metric.
We implemented the two evolutionary algorithms, GA and
PSO, to generate a set of vulnerability patterns for adequacy
testing of underlying system. Once we obtain the pool of
vulnerability patterns, we choose the representative sets of
vulnerabilities with similar vulnerability vector patterns for
further inspection of the system under test. Figure 5 shows
a snapshot of vulnerability patterns generated by GA along
with their CVSS scores. The following section extends this
work by performing sensitivity analysis on both algorithms
(i.e., PSO and GA) to study the impact of involved parameters
on generation of secure configuration.

V. SENSITIVITY ANALYSIS
This section describes the methodology and algorithms of
PSO and GA for sensitivity analysis.
A. Particle Swarm Optimization

A typical PSO algorithm consists of two parameters 1)
velocity, and 2) fitness. These two parameters cooperate in
order to locate the best possible configurations. In order to
understand whether any of these parameters contribute more

Zhttps://nvd.nist.gov/

2068

to the final best solution or if there is any interaction between
them, we performed a sensitivity analysis on three scenarios,
as follows:

1) Keeping particle fitness value range constant between
[2,3) (Algorithm I).
Keeping particle velocity value range constant as [0,1]
(Algorithm 2).
Changing both velocity and particle fitness value range
simultaneously (Algorithm 3).

2)

3)

The sensitivity analysis enables us to count how many
particles with scores 2.0 the PSO algorithm would generate
in every iteration. In following, we explain the algorithms in
details.

1) Keep Fitness Value Constant: In Algorithm 1, PSO runs
over the entire range of velocity from 0 to 8 taking two integer
values (vl and v2) at a time sequentially in every iteration of
the For loop while keeping the fitness value range constant
between [2, 3). In line 5, variable particle_fitness is
assigned a list of 100 (pop_size) initial random pbest float
values between 2 and 3. In line 6 particle_vel is assigned
a list of 100 initial random velocity integer values between v1
and v2 inclusive, where v1 and v2 keeps changing. These two
lists are then passed as an argument to the PSO algorithm
which runs the PSO algorithm on these given initial lists and
returns the count. The implementation of PSO algorithm called
in line 7 is described in detail in paper [6].

Algorithm 1 PSO on Constant Fitness Value Range.

1: procedure CONSTANT_FITNESS
2 particle_velocity_range = [0,1,2,3,4,5,6,7, 8]
3: pop_size = 100
4 for v1,v2 in particle_velocity_range do
5 particle_fitness
random.uni form(2, 3, pop_size)
6 particle_vel =
7: random.randint(vl,v2, (pop_size))
8 cf = PSO(particle_fitness, particle_vel)
9: end for
10: end procedure

2) Keep Velocity Value Constant: Algorithm 2 lists an
algorithm similar to Algorithm 1 except that this time the
velocity remains constant; whereas, the fitness values change
systematically.

3) Change Fitness and Velocity Values: Furthermore, Algo-
rithm 3 lists a scenario in which both parameters (i.e., fitness
and velocity) are changing systematically.

B. Genetic Algorithm

Similar to the PSO’s implementation, the GA part is devel-
oped in Python version 3.6. The GA outputs a pool of secure
vulnerability pattern, where a pattern represents a chromosome
in GA. The values it takes act as genes and the fitness function
is dictated by the CVSS scores. The algorithm takes input,
the best score, which is set 2.0 (i.e., the best and more secure

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:53:00 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 PSO on Constant Velocity Value Range.

Algorithm 4 Pseudocode for GA.

procedure CONSTANT_VELOCITY
particle_fitness_range = [2,3,4,5,6,7,8,9,10]
pop_size = 100
for f1,f2 in particle_fitness_range do

particle_fitness

random.uniform(f1, f2, pop_size)

6 particle_vel = random.randint(0, 1, (pop_size))

7: cv = PSO(particle_fitness, particle_vel))

8

9

1:
2
3:
4
5

end for
: end procedure

1: procedure GA(best_score=2.0, gen=50, mut_rate,
pop_size)

2 Initialize g = 1

3 Initialize pool of pop_size patterns

4 while g!=50 do Selection based on score

5: Crossover between chosen parent patterns

6 Mutate child when random.random > mut_rate

7 g=g+1

8 end while

9: return pool of secure patterns

10: end procedure

Algorithm 3 PSO on Changing Fitness and Velocity Value
Ranges.

1: procedure CONSTANT_VELOCITY

2 particle_fitness_range = [2,3,4,5,6,7,8,9,10]

3 particle_velocity_range = [0,1,2,3,4,5,6,7, 8]

4: pop_size = 100

5 fit_vel = dict(zip(particle_fitness_range,

6 particle_velocity_range))

7 for f,v in fit_vel do > f & v each is a tuple taking
2 values at a time

8: pbest = random.uni form(f[0], f[1], pop_size)

9: particle_vel =

10: random.randint(v[0], v[1], (pop_size))
11 cfv = PSO(particle_fitness, particle_vel)
12: end for

13: end procedure

fitness score), number of iteration/generation = 50, mutation
rate, and population size.

Algorithm 4 shows the pseudocode of how GA works. In-
depth implementation of GA can found in paper [6]. We
carried out sensitivity analysis on GA to see the effect on
the number of secure (with score = 2.0) patterns generated
by:

1) varying values of mutation rate from 0.2 to 1.

2) varying values of population size from 100 to 500 with

an interval of 100.

We kept rest of the parameters constant. The next section
discusses the results derived from sensitivity analysis.

VI. RESULTS OF SENSITIVITY ANALYSIS

This section presents the results of sensitivity analysis
conducted on model parameters of both Particle Swarm Op-
timization (PSO) and Genetic Algorithm (GA) and discusses
whether there is any changes in performance when some of
the key parameters are treated as constants.

A. PSO Results

The PSO algorithm involves two parameters: 1) velocity,
and 2) fitness. In this analysis, first we fix fitness values,
and then observe the performance of the model (i.e., number
of secure configuration generated) when changing velocity.

2069

Second, the velocity is fixed and the performance is captured
for varying fitness values. Finally, we repeat the process for
varying both velocity and fitness values. The results evaluated
in this section is for a single run of PSO. That means, the
PSO script was run only once for every scenario described in
the previous section. To be consistent with GA, every run of
PSO is repeated through 50 iterations.

1) Varying Velocity Values: Figure 6a shows a scatter line
plot for varying velocity value range in which count of
particles/cvss vector strings with score 2.0 (y-axis) is plotted
against every iteration (x-axis) for 50 iterations. Each coloured
line plot represents different velocity value ranges PSO took
as an input along with constant fitness range (i.e., [2, 3)).

From the plot, we observe that PSO generated 11 best
particles with velocity value range [0, 1] and fitness range set
to constant in the [2,3). The constant trend of the number
of generated instances over 50 iterations for all cases indicate
that the velocity parameter does not interact with fitness values
and thus the variable is independently optimized itself. In other
words, there is no observed interconnection between these two
parameters.

On the other hand, the number of instances of best particles
changes while the range of velocity values change. The maxi-
mum number of instances of best particles is achieved for [0, 1]
with 11 number of instances; whereas, the minimum number
of instances of best particles is obtained for the velocity range
[5,6] with only one instance produced (the 50-th iteration).
This may indicate that for certain ranges of velocity, there
is no improvement on performance even with the increasing
number of iterations.

2) Varying Fitness Values: Figure 6b plots the results for
the case when the fitness values are changed while the velocity
value is kept in the constant range of [0,1]. The maximum
number of instances of the best vulnerable vectors is achieved
for the fitness values in the range of [2,3) with 14 instances
on the 50-th iterations. Whereas, the minimum number of
instances (i.e., 3) is produced when the fitness value is in
the range of [8,9). Unlike the previous scenario in which the
velocity was changing and the number of produced instances
was constant, in this case, the number of instances produced
by the PSO algorithm is increasing over the iterations. A
comparison of Figures 6a and 6b indicates that the fitness

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:53:00 UTC from IEEE Xplore. Restrictions apply.

Count

-

VAN

Varying Velocity Value

A4

A\

K,_/\k

N\

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

—[01] =——[12] 123] 34

Iteration

[45] [56] —(67] —7g]

(a) PSO on varying velocity range (constant fitness [2, 3)).

Count Varying Fitness Value
16
14
12
10 V4

/[

6 / /
. —
2 /——/—
0 —

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
2

—23) —[34) 145 (56) =——I[67) ——[7,8) =—=[89) =—=[5,10) Iteration
(b) PSO on varying fitness range (constant velocity [0, 1]).

Count Both fitness and velocity varing
10
8
.

AN

A N IT LS

/

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

—(23)[01] —[34)(1,2] [4,5):12,3] 15611341

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

——(67)145] ——[78)(56] =—(8{67] =—[9,10)7,8] Iteration

(c) PSO on both varying fitness and velocity range

Fig. 6: Sensitivity

parameters positively contribute more to the PSO algorithm
in producing best particles than the velocity parameter.

3) Varying Velocity and Fitness Values: Furthermore, in
order to capture any possible interactions between velocity
and fitness, we conducted a sensitivity analysis where both
parameters are changing. Figure 6c¢ illustrates the scenario
where both velocity and fitness parameters are changing
simultaneously. Each line plot is represented by [f1, £2) :
[vl,v2] where f; and v; represent the raneg of fitness and
velocity, respectively. As figure demonstrates, PSO generated
maximum of 9 best particles in its 50-th iteration for the input
range [6,7) : [4,5] where fitness range is [6,7) and velocity
range is [4,5] with nine best particles produced. The trends

2070

analysis of PSO.

captured in Figure 6¢ does not strongly indicates the existence
of any interactions between these two parameters. However,
it is important to note that our observation is limited to a
few cases, as highlighted in the legend of Figure 6¢c. Some
other combinations of velocity and fitness values may exhibit
different behaviors.

B. GA Results

Similar to PSO, two parameters are involved in genetic
algorithms (GAs): 1) mutation rate, and 2) population size.
Similar to the sensitively analysis performed for PSA, we fix
one parameter at a time and change the values of the other
parameter and capture the changes occurred by this controlled

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:53:00 UTC from IEEE Xplore. Restrictions apply.

experimentation. Accordingly, we ran our GA script for 50
iterations.

1) Varying Mutation Rates: Unlike PSO, the sensitivity
analysis performed on varying mutation rates while population
size is fixed did not exhibit any clear pattern regarding im-
provement or effects of mutation rate on the number of secure
configuration generated. Figure 7a demonstrates the results of
sensitivity analysis. As it is apparent from the figure, there is
no clear effects on the performance of the GA algorithm when
mutation rates are systematically changed across different
ranges of secure configuration. As there was no major pattern
observed on the count of secure configurations generated on
changing mutation rates for 0.2 to 1.0, we did not explore any
other ranges for the rates.

2) Varying Population Sizes: Similarly, no clear changes
were observed for the cases when the population size is
varied. Figure 7b demonstrates the trends of changes observed
in the performance of the GA algorithm (i.e., number of
secure configuration generated) for varying population size.
The results of sensitivity analysis performed on GA indicates
that none of the parameters are influential in generating a better
number and instances of secure configurations.

VII. CONCLUSION AND FUTURE WORK

Cyber-Physical Systems are emerging technology and plat-
forms in modern ubiquitous computing. The deployment of
these systems has become more prevalent in recent years.
Moving Target Defense (MTD) is an emerging technology
in cyber defense. Enabling MTD allows modification of the
underlying systems such that the surface exposed to cyber
attacks are rapidly changing yet revealing minimal information
to adversaries.

From theoretical standing point of view, it is feasible to
change the configuration and settings of the underlying system
continuously and thus implement an operation platform for de-
ploying MTD systems. However, from practical point of view,
it is also important that each newly generated configuration
is as secure as the previous ones with minimal attack surface
exposed to adversaries and fewer known vulnerabilities.

In our earlier work , we [6], [7] demonstrated how evolu-
tionary algorithms such as Genetic Algorithms and Particle
Swarm Optimizations can be useful in generating a set of
secure configurations meeting required security expectations.
In this paper, we presented a more in-depth analysis of show-
ing the role of the parameters involved in these evolutionary
algorithms. More specifically, we studied the importance of
mutation rate and population size in Genetic Algorithms as
well as the significance of velocity and fitness values in
Particle Swarm Optimizations through sensitivity analysis.

The results of sensitivity analysis we conducted indicate
that the GA’s parameters (mutation rate and population size)
are less influential on the performance of the algorithm where
the performance is measured in terms of number of secure
instances and configurations generated by GA. On the other
hand, the parameters involved in Particle Swarm Optimizations
algorithms are more influential in generating more secure

2071

configurations. In other words, changing the values of velocity
and fitness values can affect the number of instances generated
by the algorithm and thus should be taken into account
when designing such evolutionary-based MTD platforms. Fur-
thermore, our results show that employing Particle Swarm
Optimization algorithms might be a better choice compared
to Genetic Algorithms because of the influence of changing
its parameters on improving the performance.

There exist some other research questions that need to be
tackled in future. A critical research problem is the exploration
of some other Al-based search problems in generating set
of secure configurations. In particular, logic-based approaches
such as Answer Set Programming (ASP) [16] can be useful for
addressing the problem discussed in this paper. ASP solvers
are able to generate answer sets, where each set is a secure
configuration of the underlying system. The prominent prob-
lem is the logical representation of the secure configuration
problem in terms of Answer Set Programming. In addition to
logic-based approaches, it is also possible to formulate such
problem with machine learning modules such as reinforcement
learning in order to generate a set of secure configurations [3].

ACKNOWLEDGMENT

This research work is supported by National Science Foun-
dation (NSF) under Grant No: 1821560.

REFERENCES
[1] Keivan Borna and Vahid Haji Hashemi. An improved genetic algorithm
with a local optimization strategy and an extra mutation level for solving
traveling salesman problem. International Journal of Computer Science,
Engineering and Information Technology, 4(4):47-53, Aug 2014.
J. Carr. An introduction to genetic algorithms. 2014.
Moitrayee Chatterjee and Akbar Siami Namin. Detecting phishing
websites through deep reinforcement learning. In IEEE COMPSAC,
pages 227-232, 2019.
M. Crouse and E. W. Fulp. A moving target environment for computer
configurations using genetic algorithms. In 2011 4th Symposium on
Configuration Analytics and Automation (SAFECONFIG), pages 1-7,
Oct 2011.
Michael B. Crouse, Errin W. Fulp, and Daniel A. Cafias. Improving the
diversity defense of genetic algorithm-based moving target approaches.
2012.
S. Dass and A. Siami Namin. Evolutionary algorithms for vulnerability
coverage. In 2020 IEEE 44th Annual Computers, Software, and
Applications Conference (COMPSAC), pages 1795-1801, 2020.
Shuvalaxmi Dass and Akbar Siami Namin. Vulnerability coverage for
adequacy security testing. In Proceedings of the 35th Annual ACM
Symposium on Applied Computing, SAC *20, page 540-543, New York,
NY, USA, 2020. Association for Computing Machinery.
Stefan Hoops, Raquel Hontecillas, Vida Abedi, Andrew Leber, Casandra
Philipson, Adria Carbo, and Josep Bassaganya-Riera. Chapter 5 - ordi-
nary differential equations (odes) based modeling. In Josep Bassaganya-
Riera, editor, Computational Immunology, pages 63 — 78. Academic
Press, 2016.
David J. John, Robert W. Smith, William H. Turkett, Daniel A. Canas,
and Errin W. Fulp. Evolutionary based moving target cyber defense.
In Proceedings of the Companion Publication of the 2014 Annual
Conference on Genetic and Evolutionary Computation, GECCO Comp
’14, pages 1261-1268, New York, NY, USA, 2014. ACM.
V. Long Do, L. Fillatre, and I. Nikiforov. Sensitivity analysis of
the sequential test for detecting cyber-physical attacks. In 2015 23rd
European Signal Processing Conference (EUSIPCO), pages 2261-2265,
2015.

[2]
[3]

[4]

[5

[ty

[6]

[7

—

[8

=

[9

—

(10]

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:53:00 UTC from IEEE Xplore. Restrictions apply.

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

b

Aol
v»/'v 9‘ {“{‘4'5

?

A\’

: A »\M
‘ ,li“fé'\\'&«m’ “

0

Varying Mutation Rate

12 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

—MR=01 ——MR=02 ——MR=03

MR=04 ——MR=05 ——MR=06 ——MR=07 ——MR=0.8 ——MR=0.9 ——MR=10

ITERATION#

(a) Varying mutation rate in GA

)

IS
rry

Varying population size

“&" il' "

12 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

—o—size =100 —o—size=200 ~—o-—size=300

size=400 —o—size =500 iteration#

(b) Varying population size in GA

Fig. 7: Sensitivity analysis of GA.

Yuriy Zacchia Lun, Alessandro D’Innocenzo, Francesco Smarra, Ivano
Malavolta, and Maria Domenica Di Benedetto. State of the art of cyber-
physical systems security: An automatic control perspective. Journal of
Systems and Software, 149:174-216, 2019.

Mei-Ping Song and Guo-Chang Gu. Research on particle swarm opti-
mization: a review. In International Conference on Machine Learning
and Cybernetics, 2004.

Zbigniew Michalewicz. Genetic algorithms+ data structures= evolution
programs. Springer Science & Business Media, 2013.

Caroline Anne Odell. Using genetic algorithms to detect security related
software parameter chains. Master’s thesis, Wake Forest University
Graduate School Of Arts And Sciences, Winston-Salem, North Carolina,
5 2016.

Riccardo Poli, James Kennedy, and Tim Blackwell.
optimization. Swarm intelligence, 1(1):33-57, 2007.
Sara Sartoli and Akbar Siami Namin. Modeling adaptive access control
policies using answer set programming. J. Inf. Secur. Appl., 44:49-63,
2019.

Irfan Syamsuddin. Multicriteria evaluation and sensitivity analysis on
information security. International Journal of Computer Applications,
69(24):22-25, May 2013.

Xiaohui Hu, Yuhui Shi, and R. Eberhart. Recent advances in particle
swarm. In Proceedings of the 2004 Congress on Evolutionary Compu-
tation (IEEE Cat. No.0O4TH8753), volume 1, pages 90-97 Vol.1, June
2004.

Jianjun Zheng and Akbar Siami Namin. A markov decision process to
determine optimal policies in moving target. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,

Particle swarm

2072

CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 2321-
2323, 2018.

[20] Jianjun Zheng and Akbar Siami Namin. A survey on the moving target

defense strategies: An architectural perspective. J. Comput. Sci. Technol.,
34(1):207-233, 2019.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 19:53:00 UTC from IEEE Xplore. Restrictions apply.

