
2020 IEEE International Conference on Big Data (Big Data)

978-1-7281-6251-5/20/$31.00 ©2020 IEEE 2087

Email Embeddings for Phishing Detection
Luis Felipe Gutiérrez1, Faranak Abri1, Miriam Armstrong2, Akbar Siami Namin1, and Keith S. Jones2

1Department of Computer Science, 2Department of Psychological Sciences
Texas Tech University

{Luis.Gutierrez-Espinoza, faranak.abri, miriam.armstrong, akbar.namin, keith.s.jones}@ttu.edu

Abstract—The problem of detecting phishing emails through
machine learning techniques has been discussed extensively in
the literature. Conventional and state-of-the-art machine learning
algorithms have demonstrated the possibility of building clas-
sifiers with high accuracy. The existing research studies treat
phishing and genuine emails through general indicators and thus
it is not exactly clear what phishing features are contributing to
variations of the classifiers. In this paper, we crafted a set of
phishing and legitimate emails with similar indicators in order
to investigate whether these cues are captured or disregarded
by email embeddings, i.e., vectorizations. We then fed machine
learning classifiers with the carefully crafted emails to find
out about the performance of email embeddings developed.
Our results show that using these indicators, email embeddings
techniques is effective for classifying emails as phishing or
legitimate.

Index Terms—Natural Language Processing, Phishing Emails,
Email Embeddings

I. INTRODUCTION

Autonomous devices are the integral part of cyber-Physical
Systems (CPS) [1]. These devices are powered by elegant
software applications and utilities to protect against adversar-
ial attacks. Information theoretical solutions along with AI-
enabled autonomous agents are capable of protecting these
critical components from cyber attacks. However, in addition
to these hardware and software devices, there is another
autonomous entity in CPS that is harder to harden their
security defense systems, i.e., humans.

It is known that humans are the weakest link in the
information security chain. Adversarial attacks often exploit
this weakness through sending malicious links to individuals
who are operating critical infrastructure with the hope that the
operators visit malicious links and Websites. These types of
phishing attacks can be in the form of emails, adware, or even
malicious fake Websites [2].

In spite of advancement in security technologies and con-
trols, cyber security attacks through phishing still remain the
number one choice of attackers due to their higher success
rates. Even though many antivirus software and blocking
strategies are able to detect spamicity of emails, these ma-
licious emails are able to get the attention of the target
receivers, pass through the spam detection tools, and thus
being activated.

Machine learning-based approaches have revolutionized the
detection mechanism of spam and phishing emails. However,
the goodness and accuracy of the detection power of these
learning-based algorithms heavily rely on the type of historical

data, as known as training data. Existing studies confirm that
phishing emails are distinguishable from genuine ones based
on features. However, it is unclear whether the historical
data are rich enough to train the classifiers properly. More
specifically, an important question is whether the machine
learning detection-based models are content-aware or they are
content agnostic.

To address this grand problem, this paper studies the per-
formance of email embeddings (i.e., email vectorization) to
detect phishing emails. We created 12 genuine and 12 phishing
emails. The systematically crafted emails are then vectorized
and fed into well-known machine learning classifiers. The
results demonstrate that, even though the contents of both
phishing and legitimate emails are similar, the email embed-
dings technique is able to distinguish between phishing and
genuine emails. To capture the content of the emails into
account, we then embed emails using doc2vec, a vectorization
approach to capture the semantic of a given text.

In our previous work [2], [3], we studied the usage of
linguistic features in the context of fake reviews. We observed
that it is possible to detect fake reviews using linguistic
features. In this paper, we are interested in exploring whether
it is possible to detect phishing emails when the contents of
both phishing and legitimate emails are somewhat similar. The
key contributions of this paper are as follows:

– We introduce a carefully and systematically crafted set
of phishing and legitimate emails to support this line of
research.

– The performance of email embeddings techniques is pre-
sented through a number of machine learning classifiers.

– The results show that even in the presence of similar
contents, the email embeddings are able to distinguish
legitimate emails from the phishing ones.

This paper is organized as follows: Section II reviews the
related work in this line of research. In Section III, a brief
technical background of the machine learning models and
embeddings is presented. Section IV presents the experimental
setup and procedure. The results of the study are presented
in Section V. Section VI concludes the paper and highlights
future research directions.

II. RELATED WORK

Machine learning techniques are broadly used for spam
detection. The most important step for developing such a
detection framework is extracting features that are fed into

20
20

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

 D
at

a)
 |

97
8-

1-
72

81
-6

25
1-

5/
20

/$
31

.0
0

©
20

20
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a5

00
22

.2
02

0.
93

77
82

1

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 20:00:59 UTC from IEEE Xplore. Restrictions apply.

2088

classifiers. A very common method used for this step is Bag
of Words (BOW), which utilizes the occurrence frequency
of the words or group of words. Although this method is
computationally fast and easy to implement, it has several
limitations such as ignoring semantics, word order, and a huge
number of features that imposes the curse of dimensionality
on machine learning classifiers [4].

Term frequency-inverse document frequency (tf-idf) is an-
other method for feature extraction that is commonly used
in search engines and is useful for spam detection. It con-
siders the frequency of only the key words by checking the
occurrence frequency of a word in a text or document and
comparing it to its occurrence in the whole document or
corpus. Therefore, words that are repeated in small sections
have higher scores compared to commonly used words in the
whole content.

BOW or tf-idf are less efficient methods for detecting spams,
such as phishing emails, which have more specific content
properties such as a URL link to a malicious source. Given
that sometimes it is desirable to pick out phishing emails
especially from spam emails, more robust features are needed.
Doc2Vec [5] is a document embedding technique in which
similar documents have similar encodings semantically. It is
an unsupervised neural network, which predicts the words in
a document.

Duzi et al. [6] proposed an ensemble method that detects
spam emails by combining the classifying results obtained
from two feature sets. These feature sets extracted using
Doc2Vec and tf-idf methods. They compared different clas-
sifiers with these feature sets on two datasets: 33, 702 emails
from the Enron dataset [7] and 2, 314 emails from the Ling
spam corpus. Using support vector machines, they achieved
98.27% for accuracy and 98.97% for f-score on the Ling spam
dataset and 96.16% for accuracy and 96.07% for f-score on
the Enron dataset, respectively.

Akinyelu and Adewumi [8] evaluated a random forest (RF)
model for classifying phishing emails from legitimate ones.
Using two datasets [9] for legitimate emails and [10] for
phishing emails, a new dataset with a total of 2, 000 emails was
made. They extracted 15 features such as ”URLs Containing
IP Address” and ”Presence of Javascript” from samples. Using
10 fold cross validation by a RF classifier, the best accuracy
achieved with 99.7% along with 99.47%, 97.5%, 98.45% for
precision, recall and f-score, respectively. They also examined
their model on datasets with different sizes and showed that
the performance of the classifier increases using more email
samples.

Unnithan et al. [11] examined several classifiers for phishing
email detection. They used the dataset shared by the ”IWSPA-
AP 2018” workshop, including train and test subsets for emails
with headers and emails without headers separately. The subset
of no-header emails contains 4, 300 samples for the test data
and 5, 700 emails as train data, including 5, 088 legitimate
and 612 phishing emails. Two sets of features were generated
using the Term frequency-inverse document frequency (tf-
idf) and Doc2Vec techniques. They trained seven different

models including: Decision Tree (DT), Naive Bayes (NB),
Ada-boost, Logistic Regression (LR), K-nearest neighbour
(KNN), Support vector machine (SVM), and Random Forest
(RF). They applied the models to both subsets of the data
(emails with and without headers) using both feature sets.
Using the SVM classifier with Doc2Vec feature set on both
datasets, they achieved the best results including: 3, 825 true
positives (TP), 0 true negative (TN), 475 false positive (FP),
and 0 false negative (FN) on emails without header.

III. MODELS AND ALGORITHMS

A. Feature Extraction

1) Doc2Vec: Doc2Vec is a technique to generate document
embeddings through a neural network-based approach [5],
similar to what Word2Vec [12] achieves with words. Figure
1 shows the Doc2Vec model adapted from [5]. As it is
observable, the inclusion of a paragraph id in the training
phase is a difference with respect to the original Word2Vec
model. Note that although in [5] the term used is paragraph
id, normally, this method is used to embed full documents.
Given that all words in a specific document are trained using
the id assigned to the document, the resulting vector (i.e.,
embedding) for the document encodes meaning according to
the words it contains. Furthermore, as both word and document
embeddings are generated during the same training procedure,
both words and documents are embedded in the same semantic
vector space.

Hence, the resulting vector space has the capability to en-
code semantic similarities, i.e., vectors that are close together
tend to share semantic properties, as Doc2Vec works under the
Distributional Hypothesis of linguistics [12] (i.e., words that
are used in similar contexts tend to hold similar meaning).

Fig. 1. Doc2Vec model (adapted from [5]).

Doc2Vec generates dense feature vectors, in contrast to
the sparse representations produced by frequency-based tech-
niques (e.g., BOW). Because of this, there exists a trade-
off between sparsity of the features and interpretability, as
the features extracted by Doc2Vec are considered opaque,
since there is no direct interpretation for the values in each
dimension.

B. Dimensionality Reduction

1) Principal Component Analysis: Principal Component
Analysis (PCA) is a technique that is commonly used in
dimensionality reduction [13]. The dimensionality reduction
is performed by considering the m principal components in

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 20:00:59 UTC from IEEE Xplore. Restrictions apply.

2089

the dataset, while retaining as much variance of the original
dataset as possible. However, there are three important as-
sumptions of the given data when PCA is utilized [13]:

1) Linearity of the data should be present,
2) Large variances denote an important structure, and
3) The principal components are orthogonal.
In addition, when PCA is used for visualization purposes,

the value for m (i.e., the number of principal components) is 2
or 3. In this work, we set m = 2 to visualize the data and also
to explore the results of classification using the 2-D projection
of the document embeddings.

2) Kernel Principal Component Analysis: In some cases,
the linear nature of the data that PCA takes as an assumption
might not hold, and a non-linear structure could explain the
underlying phenomena more accurately. Using this idea, PCA
can still be applied to such datasets using a non-linear mapping
that takes the samples in the original space, often called input
space, to a higher dimensional space, also called feature space,
and then performing PCA in the resulting feature space [14].
The mapping function is often referred to as Kernel, and the
full algorithm as Kernel PCA. Like the case of SVMs, several
types of kernels can be utilized to model different patterns in
the data. In our work, we used the Gaussian or RBF kernel.

C. Classifiers

Brief descriptions of the classifiers that we experimentally
compared are as follows:

1) Random Forest: The random forest classifier, also
known as ensemble of decision trees, combines the prediction
of several weak classifiers (i.e. decision trees) and produces a
final classification through voting. The main hyperparameter
of this model is the number of weak classifiers to combine.
Due to the fact that decision trees are weak classifiers, their
corresponding hyperparameters are also present in this model.

2) Support Vector Machine: Support Vector Machines
(SVMs) determine a hyperplane that maximizes the margin
between itself and the nearest samples of each data class.
Such nearest samples are known as support vectors. This
construction can be performed in the original input space, or
a feature space that is generated by applying a kernel function
to each pair of samples, which allows the decision boundary
to be non-linear. In our work, we used the linear, Radial Basis
Function (RBF), polynomial, and sigmoid kernels. An SVM
converges towards non-linearly separable classes using the
C hyperparameter, where C controls the number of samples
that can be misclassified, and its optimal value is problem-
dependent. Moreover, there exist additional hyperparameters
for each kernel, such as the degree in the polynomial kernel,
or the gamma term in the RBF kernel.

3) Logistic Regression: In binary classification, logistic
regression assigns the probability that a sample, denoted by
the feature vector x, belongs to a class C1 as [15]:

P (C1|x, α) =
1

1 + exp (−α · x)
where α is the set of parameters of the model. The probability
P (C2|x, α) is calculated as 1−P (C1|x, α). Usually, the learn-

ing of the α parameter is conducted through the optimization
of the cross-entropy loss function [15].

4) Naive Bayes: The Naive Bayes classifier performs clas-
sification using the strong assumption that all features in a
vector X = (X1, ..., Xn) are statistically independent with
respect to the class C. This is,

P (X|C) =
n∏

i=1

P (Xi|C).

This model assigns a predicted class label ŷ according to

ŷ = argmax
k

P (Ck)

n∏
i=1

P (xi|Ck)

where Ck is the k-th class.
Because the features of our dataset are generated using

Doc2Vec document embeddings, we used the Gaussian Naive
Bayes in order to estimate the conditional probabilities with a
dataset of continuous features. Given a class Ck, a variance σ2

k,
a mean µk (both σ2

k and µk are estimated from the samples),
and an observed value x̂ for the feature, the probability
P (x = x̂|Ck) can be estimated using

P (x = x̂|Ck) =
1√
2πσ2

k

exp (− (x̂− µk)

2σ2
k

).

Although this assumption is unnatural and it does not
hold for most situations, the Naive Bayes classifier has been
adopted successfully in tasks such as spam filtering, medical
diagnosis, and text classification [16]

IV. EXPERIMENTAL SETUP

A. Scripts and Libraries

We developed Python 3 scripts for running our experiments.
We used the classifiers’ implementation provided by the Scikit-
learn library. To obtain the Doc2Vec document embeddings,
we used the Gensim library [17]. For stemming, we used the
Porter algorithm provided by the NLTK library [18].

B. Data Collection

Twenty-four email stimuli were created for an experiment
with human subjects. The content of the emails was modeled
off legitimate emails found in the authors’ inboxes or online.
For all emails, a sender address, subject line, email body, and
URL were created. The body of all emails was 50-100 words
long and contained a hyperlink. Because the email stimuli were
created to later show to research participants, this method for
creating emails and the characteristics of the email stimuli are
similar to those used in other phishing experiments [19]–[21].

Twelve of the 24 email stimuli were legitimate emails, and
the other 12 emails were phishing. All legitimate emails shared
two characteristics. First, the URL in the legitimate emails
went to a real and safe web address. All legitimate email
URLs began with HTTPS. Second, the body of legitimate
emails contained targeted messaging. All email stimuli were
addressed to a fictional university student. Email stimuli with
targeted messaging referenced the student by name, referenced
their position as a student, or referenced the city in which the
student attended university.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 20:00:59 UTC from IEEE Xplore. Restrictions apply.

2090

The 12 phishing emails were designed to mimic non-
targeted phishing emails. The non-targeted phishing emails
differed from the other types of emails in terms of both their
URL and email body. The URLs of the non-targeted phishing
emails did not contain HTTPS and had at least two additional
characteristics of suspicious links [22]: five or more dots in the
domain, over 75 characters long, contained an IP address, or
contained misspellings. The email body contained no targeted
messaging; non-targeted phishing emails were designed to be
emails to could be sent to anyone.

C. Data Preprocessing
We used standard techniques for text preprocessing in order

to clean the dataset. These are removal of 1) punctuation
marks, 2) URLs, 3) email addresses, and 4) stopwords. We
also used the Porter stemmer [23] to perform stemming for
each remaining token.

D. Classification Metrics
Consider a confusion matrix with counts of samples classi-

fied as True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN). We report the results of our
experiments using accuracy, F1 measure, precision, and recall,
which are defined as

Accuracy =
TP + TN

TP + TN + FP + FN
,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 =
2× Precision×Recall
Precision+Recall

.

E. Hyperparameters Tuning
We performed several exhaustive grid search in order to find

the best set of hyperparameters for SVM, Logistic Regression,
and Random Forest. For SVM, we tried different values for
the C constant, kernel type, degree of the polynomial in case
of using polynomial kernel, and the gamma value in case of
the Gaussian kernel. For logistic regression, we tried different
values for the regularization parameter. For random forests,
we tried different number of estimators, maximum tree depth,
minimum number of samples per leaf, minimum number of
samples per split, and criterion to choose one split over others.

F. Experiments Flowchart
Figure 2 shows the flowchart of the experiments carried

out in our work. After the feature extraction step, there are
three scenarios in which the classification task was applied: 1)
directly using the 20-dimensional Doc2Vec email embeddings,
2) using the linear PCA 2-D projections of the embeddings,
and 3) using the Kernel PCA 2-D projections of the embed-
dings. Whether it is using the full high-dimensional features
or a 2-D projection of it, the next step is the hyperparameter
tuning, in which the best hyperparameters for the classifiers
are set. Once the hyperparameters are found, the classifiers
are fit using them and report the classification metrics using
10-fold cross-validation.

Fig. 2. Flowchart of the experiments conducted in our work.

V. RESULTS AND DISCUSSION

A. Classification

We report the averages of accuracy and F1 score obtained
after running the experiments using 10-fold cross-validation.
Table I shows the results for the classifiers using the full
20-dimensional space provided by the document embeddings.
SVM reports accuracy and F1 score of 81.6% and 76.6%,
respectively, which is significantly higher than that of the next
classifier, the random forest.

TABLE I
PERFORMANCE SCORES FOR THE CLASSIFIERS IN THE 20-DIMENSIONAL

DOC2VEC FEATURE SPACE.

Classifier Accuracy F1 score Precision Recall
SVM 0.816 0.766 0.750 0.750

Logistic Regression 0.616 0.566 0.600 0.700
Random Forest 0.583 0.483 0.533 0.600

Naive Bayes 0.600 0.553 0.616 0.750

Table II shows the results for the classifiers trained using
only the first two components projections of linear PCA. In
general, these results are consistently higher than those of in
Table I. This is an interesting finding as it suggests that the
variance present in the first two components of PCA is not
only enough to maintain the performance of the classifiers,
but it also increases the performance. Random forest reports
the highest accuracy and F1 score with 91.6% and 90.0%,
respectively. However the margin between the performance of
random forest and the rest of the classifiers is also reduced,
the SVM and Naive Bayes classifiers having similar values
performance-wise.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 20:00:59 UTC from IEEE Xplore. Restrictions apply.

2091

TABLE II
PERFORMANCE SCORES FOR THE CLASSIFIERS IN THE 2-D LINEAR PCA

SPACE.

Classifier Accuracy F1 score Precision Recall
SVM 0.900 0.866 0.800 0.800

Logistic Regression 0.750 0.700 0.650 0.600
Random Forest 0.916 0.900 0.800 0.750

Naive Bayes 0.900 0.866 0.850 0.900

Table III shows the results for the classifiers trained using
the first two components projections of the RBF Kernel PCA.
Unlike the results for linear PCA, the performance of the
classifiers is diminished with respect to the results in the
original 20-dimensional space. In this case, the best results are
reported by SVM, with an accuracy and F1 score of 78.3%
and 76.6%, respectively.

TABLE III
PERFORMANCE SCORES FOR THE CLASSIFIERS IN THE 2-D RBF KERNEL

PCA SPACE.

Classifier Accuracy F1 score Precision Recall
SVM 0.783 0.766 0.800 0.700

Logistic Regression 0.600 0.520 0.516 0.800
Random Forest 0.700 0.700 0.750 0.700

Naive Bayes 0.600 0.520 0.516 0.800

One interesting finding of these results is that the linear PCA
representation of the document embeddings yields to better
classification results. This is worth noting as the document
embeddings often contain an underlying non-linear structure.
Because Doc2Vec embeds the document vectors in a semantic
vector space, this suggests that the content of the emails
can be segmented according to the class through a linear
transformation of the vectors.

B. Visualization of Email Embeddings

Figure 3 shows the 2-dimensional plot for the email embed-
dings using the first two linear PCA components where the
x-axis represents the first principal and the y-axis holds the
values for the second principal. Additionally, we plotted the
decision boundary of a SVM with RBF kernel that was fitted
using the 24 emails only for visualization purposes. It is visible
that the distribution of document embeddings follows a pattern
that is easily captured by the decision boundary of the SVM.
In this projection, phishing emails are contained in a blob
located near the center of the plot, with only two legitimate
emails within or in the border of the decision boundary. This
finding agrees with the notoriously high performance of the
classifiers using the linear PCA 2-D projections. However,
note that even though the projection is obtained as linear, the
decision boundary is not linear, which also explains the high
performance for non-linear classifiers.

Figure 4 shows the 2-dimensional plot using the first two
RBF Kernel components. Like Figure 3, we also plotted the
decision boundary of a SVM that was fitted using all the
samples and a RBF kernel. However, unlike Figure 3, the
document embeddings are not clearly segmented by class.
Legitimate emails are grouped closely together with the ex-
ception of emails 9 and 2, which are the same emails that

Fig. 3. SVM: decision boundary on the 2-D linear PCA projection.

lie within or near the wrong side of the decision boundary in
Figure 3. Nevertheless, there are several phishing emails on
the wrong side of the decision boundary. In this sense, this
projection presents a less useful representation for class seg-
mentation when compared to linear PCA, which can be seen
in its classification results in Table III. The slight difference
between the results in Table I and Table III might suggest that
the document embeddings follow a similar configuration in the
20-dimensional feature space.

Fig. 4. SVM: decision boundary on the 2-D Kernel PCA projection.

C. Explained Variance of Linear PCA

Given that we obtained better classification results using the
linear PCA projection, we performed an explained variance
analysis for this PCA. Figure 5 shows the cumulative explained
variance per number of components using PCA. The x-axis
represents the number of components; whereas, the y-axis
shows the cumulative explained variance ratio Rn, defined as
Rn =

∑n
i=1 ri, where n is the number of components and ri

is the portion of variance explained by the i-th component. In
this plot, the 90% of the explained variance is reached using 12

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 20:00:59 UTC from IEEE Xplore. Restrictions apply.

2092

components. The results in Table II are reported using the first
two PCA components, which approximately comprise the 25%
of the total variance. Hence, one surprising finding is that the
91.6% accuracy of the random forest classifier was achieved
using only 25% of the original variance.

Fig. 5. Cumulative explained variance of linear PCA vs. # of components.

VI. CONCLUSION AND FUTURE WORK

In this work, we generated document embeddings using
Doc2Vec and performed binary classification using SVM,
Logistic Regression, Random Forest, and Naive Bayes. We
executed the experiments on the full 20-dimensional feature
space generated by Doc2Vec, and additionally we calculated
the 2-D projections of linear PCA and RBF Kernel in order
to run the experiments in the low-dimensional projections.

In the original feature space, SVM reports the highest
classification performance with an accuracy and F1 score
of 81.6% and 76.6%, respectively. The results using the 2-
D linear PCA projections are higher than those of the 20-
dimensional feature space, where the Random Forest reports
an accuracy and F1 score of 91.6% and 90.0%, respectively,
using only 25% of the original variance. The results using the
2-D RBF Kernel PCA projections are slightly lower than those
of the 20-dimensional feature space, where the SVM reports an
accuracy and F1 score of 78.3% and 76.6%, respectively. The
highest results using the linear PCA projections suggests that
the underlying structure of the Doc2Vec document embeddings
is likely to be linear. The overall high classification results
suggest that the semantic vector space in which the document
vectors are is appropriate for this classification task. Moreover,
the semantics of the emails’ content are well suited for the
class segmentation.

As future work, we will explore the use of features that
permit an easier interpretation and provide a deeper insight
into phishing and legitimate emails. There are some other
intriguing approaches to address the phishing email detection
problem. A possible approach is the use of evidence theory and
fusion in formulating the problem [1] where a set of linguistic
features and evidence can be used to decide pignistic probabil-
ity of whether an email is phishing. It is also possible to model

the phishing email detection through exploring some other
machine learning techniques [24] or emerging deep/machine
learning techniques such as reinforcement learning [22].

ACKNOWLEDGMENT

This research work is supported by National Science Foun-
dation (NSF) under Grant No: 1723765.

REFERENCES

[1] M. Chatterjee, A. S. Namin, and P. Datta, “Evidence fusion for malicious
bot detection in IoT,” in IEEE Big Data, 2018, pp. 4545–4548.

[2] F. Abri, L. Gutierrez-Espinoza, A. S. Namin, K. S. Jones, and D. R. W.
Sears, “Linguistic features for detecting fake reviews,” in ICMLA, 2020.

[3] L. Gutierrez-Espinoza, F. Abri, A. S. Namin, K. S. Jones, and D. R. W.
Sears, “Ensemble learning for detecting fake reviews,” in IEEE COMP-
SAC, 2020, pp. 1320–1325.

[4] “Machine learning for email spam filtering: review, approaches and open
research problems,” Heliyon, vol. 5, no. 6, p. e01802, 2019.

[5] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in ICML, 2014, pp. 1188–1196. [Online]. Available:
http://proceedings.mlr.press/v32/le14.html

[6] S. Douzi, F. AlShahwan, M. Lemoudden, and B. Ouahidi, “Hybrid email
spam detection model using artificial intelligence,” International Journal
of Machine Learning and Computing, vol. 10, pp. 316–322, 02 2020.

[7] B. Klimt and Y. Yang, “The enron corpus: A new dataset for email
classification research,” vol. 3201, 09 2004, pp. 217–226.

[8] A. Akinyelu and A. Adewumi, “Classification of phishing email using
random forest machine learning technique,” Journal of Applied Mathe-
matics, vol. 2014, 04 2014.

[9] “Apache spamassassin project,” 2006. [Online]. Available: http:
//spamassassin.apache.org/

[10] J. Nazario, “Phishingcorpus,” 2006. [Online]. Available: http://monkey.
org/7Ejose/wiki/doku.php?id=PhishingCorpus

[11] N. Unnithan, H. NB, V. R, S. Kp, and S. Sundarakrishna, “Detecting
phishing e-mail using machine learning techniques cen-securenlp,” 03
2018.

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[13] J. Shlens, “A tutorial on principal component analysis,” arXiv preprint
arXiv:1404.1100, 2014.

[14] A. Ghodsi, “Dimensionality reduction a short tutorial,” Department of
Statistics and Actuarial Science, Univ. of Waterloo, Ontario, Canada,
vol. 37, no. 38, p. 2006, 2006.

[15] S. Dreiseitl and L. Ohno-Machado, “Logistic regression and artificial
neural network classification models: a methodology review,” Journal
of biomedical informatics, vol. 35, no. 5-6, pp. 352–359, 2002.

[16] I. Rish et al., “An empirical study of the naive bayes classifier,” in IJCAI
2001 workshop on empirical methods in artificial intelligence, vol. 3,
no. 22, 2001, pp. 41–46.

[17] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks, 2010, pp. 45–50.

[18] E. Loper and S. Bird, “Nltk: the natural language toolkit,” arXiv preprint
cs/0205028, 2002.

[19] C. I. Canfield, B. Fischhoff, and A. Davis, “Quantifying phishing
susceptibility for detection and behavior decisions,” Human factors,
vol. 58, no. 8, pp. 1158–1172, 2016.

[20] J. S. Downs, M. Holbrook, and L. F. Cranor, “Behavioral response to
phishing risk,” in Proceedings of the anti-phishing working groups 2nd
annual eCrime researchers summit, 2007, pp. 37–44.

[21] K. Parsons, A. McCormac, M. Pattinson, M. Butavicius, and C. Jerram,
“The design of phishing studies: Challenges for researchers,” Computers
& Security, vol. 52, pp. 194–206, 2015.

[22] M. Chatterjee and A.-S. Namin, “Detecting phishing websites through
deep reinforcement learning,” in IEEE COMPSAC, vol. 2, 2019, pp.
227–232.

[23] M. F. Porter et al., “An algorithm for suffix stripping.” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[24] F. Abri, S. Siami-Namini, M. A. Khanghah, F. M. Soltani, and A. S.
Namin, “Can machine/deep learning classifiers detect zero-day malware
with high accuracy?” in IEEE Big Data, 2019, pp. 3252–3259.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 20:00:59 UTC from IEEE Xplore. Restrictions apply.

