2020 IEEE International Conference on Big Data (Big Data) | 978-1-7281-6251-5/20/$31.00 ©2020 IEEE | DOI: 10.1109/BigData50022.2020.9439088

Ethereum Smart Contracts: Vulnerabilities and their
Classifications

Zulfigar Ali Khan
Department of Computer Science
Texas Tech University
zulfi.khan@ttu.edu

Abstract—Smart contract (SC) is an extension of BlockChain
technology. Ethereum BlockChain was the first to incorporate SC
and thus started a new era of crypto-currencies and electronic
transactions. Solidity helps to program the SCs. Still, soon after
Solidity’s emergence in 2014, Solidity-based SCs suffered many
attacks that deprived the SC account holders of their precious
funds. The main reason for these attacks was the presence of
vulnerabilities in SC. This paper discusses SC vulnerabilities
and classifies them according to the domain knowledge of the
faulty operations. This classification is a source of reminding
developers and software engineers that for SC’s safety, each SC
requires proper testing with effective tools to catch those classes’
vulnerabilities.

Index Terms—Smart Contract, Ethereum, EVM, vulnerabili-
ties, Solidity, tools

I. INTRODUCTION

BlockChain is the most significant development to pro-
mote crypto-currencies. There are variations of BlockChain.
Ethereum BlockChain, also known as Ethereum Virtual Ma-
chine (EVM) allows various unknown individuals to join hands
and work together under a digital agreement known as a
SC. Contracts require rules, but in this case, a programming
language called Solidity embeds the rules within the SC itself.
SC does not contain any “main” method, so it’s not self-
executable.

SC is deterministic. This constraint generates the same
output when any node of the Ethereum network executes the
SC. Nodes can be users, or nodes can be miners responsible for
validating SCs by solving a mathematical puzzle. The math-
ematical puzzle should generate the same result on all nodes,
and this validation process follows the consensus protocol.

Once the mining process completes, its owner uploads the
SC on the BlockChain. If the contract does not fit according to
Ethereum rules, miners discard it. This process might follow
the re-submission of SC. Thus the consensus protocol becomes
a method for developing trust among the parties.

The trust is that there exists no error or fraud. But once
the owner uploads the SC, it becomes immutable. Thus an
unsafe SC can shatter the trust. Hackers can misuse it, causing
considerable losses to the SC account holders. Therefore it
is necessary to identify the vulnerabilities of SC before one
uploads the SC on the BlockChain.

This survey research paper focuses on 20 vulnerability pat-
terns. We have also provided the Solidity code corresponding
to each vulnerability. We have used the context of SC’s faulty

Akbar Siami Namin
Department of Computer Science
Texas Tech University
akbar.namin @ttu.edu

operation for the classification of vulnerabilities. For brevity
reasons, we have skipped the mitigation techniques.

II. MOTIVATION

Previous research work has created several taxonomies
related to vulnerabilities of SCs. The typical approach is to
categorize the vulnerabilities based upon EVM, BlockChain,
and Solidity associated issues as discussed in [1]. The above
three are broader classes and give less information to the
readers about the code’s internal drawback.

Similarly, the survey in [2] classifies the SC vulnerabilities
in the context of EVM and Solidity. Other significant survey
grouped the vulnerabilities based upon layering [3] like appli-
cation layer, data layer, and consensus layer. Furthermore, the
work in [4] used NIST Bugs Framework for the classification.
However, SC introduced new kinds of vulnerabilities [3] not
common in traditional programming paradigms.

We are the first to classify SC’s security issues according
to the vulnerable operation’s domain knowledge. A good
understanding of vulnerabilities requires coding examples
along with description. Work in [2], [3] also provided coding
examples, but we address a different set of vulnerabilities. It
is worth mentioning that the most relevant survey on the SC
attacks with vulnerable SC code is available in [5], published
in 2017. Since then, the Solidity programming language has
undergone major changes. In this survey paper, we replicate
vulnerabilities in Solidity code using the “solc” compiler
version 5.0. The key contributions of this survey paper are:

— A classification of the SC vulnerabilities according to the
domain knowledge.

— A description of SC vulnerabilities through updated sam-
ple code.

— A discussion of twenty SC vulnerabilities along with
twenty-four SC vulnerability detection tools.

— A discussion on the regeneration of deprecated Var
vulnerability (section IV-D2).

The remainder of this paper is organized as follows: section
IIT presents our classification of SC’s vulnerabilities. Section
IV presents the description of SC vulnerabilities with respect
to domain knowledge along with some sample code. Section V
lists the testing tools developed for SCs. Section VI concludes
the paper and highlights the future research directions.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 20:09:55 UTC from IEEE Xplore. Restrictions apply.

(9)Gas Related Issues
““(s9Transactional Vulnerabilities
() Deprecated Vulnerabilities
#% Randomization
1, Vulnerabilities
" Call Stack Depth

@ Inter-Contractual Vulnerabilities
+1) Contractual Vulnerabilities_—

% Integer Bugs

() i)

\Co/ Y
Unchecked Maths TOD
Integer Overflow TSD

Reentrancy
Denial of Service Type Inference (Integer Overflow)

Mishandled Ekception Tx.Origin Type Inference (Out of Gas)
Gasless Send
Call Transfers All Gas
Frozen Ether Dos
Integer Overflow Causing Out of gas Eexception

Wallet Griefing Causing Out of Gas Exception

SelfDestructible
Stealing Ether
Gasper Patterns

Fig. 1. Classification of Ethereum SC vulnerabilities into seven categories.

III. A CLASSIFICATION OF SC’S VULNERABILITIES
BASED ON DOMAIN KNOWLEDGE

SCs are susceptible to coding threats. One research classifies
the vulnerabilities into security, functional, operational, and
developmental categories [6]. These categories do not neces-
sarily reflect any knowledge specific to SC.

Our research classifies the vulnerabilities using the domain
knowledge of operations performed by vulnerable SC. For
instance, SCs communicate with each other by invoking
methods. This inter-SC communication operation can pave the
way for several coding irregularities like reentrancy, denial
of service, mishandled exception, and so on. In the same
way, other SC specific operational knowledge helped us to
create vulnerability categories like Contractual, Arithmetic,
Gas Related, Transactional, Randomization and Deprecated
vulnerabilities. The domain knowledge-based -classification
provides (i) more knowledge about the cause of vulnerability
(as compared to previous taxonomies discussed above) and
(i) we can drill down to the specific instructions (in some
cases). For instance, in case of inter-contractual vulnerabilities,
we can infer that call is behind this vulnerability. Due to
space limits, we have excluded randomization and deprecated
vulnerabilities from the discussion.

Figure 1 depicts our classifications of SC’s vulnerabilities.
As shown in Figure 1, the SC’s vulnerabilities are grouped
into 1) inter-contractual, 2) contractual, 3) integer bugs, 4) gas
related, 5) transnational, 6) deprecated, and 7) randomization
vulnerabilities.

IV. DESCRIPTIONS OF SC VULNERABILITIES
A. Inter-Contractual Vulnerabilities

Listing 1! shows an example of inter-contractual
communication between ModifiedBank and
ModifiedMalicious SCs using call modified from
[7] in the context of a bank and an attacker. call can
also generate reentrancy attack. Solidity provides send,
transfer, and call functions for contract-wide Ether
transfers along with an external payable fallback function
(FF) at the receiving SC. FF is an anonymous function, which
retrieves the transferred Ether in the global state variable
msg.value. Transferring Ether incurs gas charges. send

IThis paper lists the EVM opcodes in capital letters and references the
Solidity functions and contents of Listings in this font.

and transfer can compensate for 2300 [1] amount of gas
which is sufficient only for executing FF not linked to state
changes. call can transfer entire gas, which can initiate
reentrancy attack, as discussed below:

1 pragma solidity "0.5.1;
2 contract ModifiedMalicous{
3 ModifiedBank mb;
4 constructor (address payable addressOfBank,
uint amount) public{
5 mb=ModifiedBank (addressOfBank) ;
6 mb.withdraw (amount) ;
7 }
8 function () external payable{ mb.withdraw (
msg.value); }
9 1}
0 contract ModifiedBank{
1 mapping (address=>uint)bal;
2 //more
3 function withdraw (uint _amount) public
returns (bytes memory message) {
4 if (bal[msg.sender]>= _amount) {
5 (bool success, bytes memory returnsMessage) =
msg.sender.call.value (_amount) ());
6 bal [msg.sender] —-=_amount;
7 /*morex/}}
8 function () external payable{}}

Listing 1. Example Solidity Code of Reentrancy, modified from [7].

1) Reentrancy: Reentrancy is a devastating attempt to de-
prive the investors of their precious cash. Even though the
reentrancy attack (or the DAO attack [8]) did not knock
out the newly born SC technology, but created a stir in the
Ethereum community. Reentrancy problem soon became an
exciting topic of discourse among the BlockChain researchers
because of two reasons: its inherent characteristics (discussed
below) and the enormity of Ether flown out from SC as a
result of it.

Reentrancy problem occurs when an attacker reenters the
SC repeatedly. This reentrance sparks of multiple issues like
fueling out the entire gas of the victim, hijacking of the
victim’s SC , execution of two functions at the same time and
undue transfer of funds from victim’s SC to the attacker’s ac-
count. Developmental issues coupled with the built-in implicit
invoking nature of FF provide a stimulus for this attack.

There are several variants of this type of attacks like same
or cross-function reentrancy ([9]), “Single-entrancy” ([10]),
and the state-of-the-art reentrancy attacks discussed in [11].
Reentrancy is a repeated operation and the statements execute
in a cycle as shown in Figure 2. As discussed above, Listing 1
tries to simulate the banking application. However, the banking
contract provides only the withdraw (...) method with a
flaw. The attacker ModifiedMalicious exploits this flaw
to drain the Ether from the bank into its own account.

Listing 1 demonstrates how the ModifiedMalicious
contract exploits the flaw in line#16. Firstly, the attacker’s
SC ModifiedMalicious calls the ModifiedBank SC’s
withdraw method in line#6 to retrieve balance amount
from her SC account. As the SC ModifiedBank executes
line#15 (using call) for transferring, the action results in the
voluntary invoking of the costly FF of the attacker in line#8.
It is costly because the FF in line#8 is not empty and contains

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 20:09:55 UTC from IEEE Xplore. Restrictions apply.

Steps:

Repeat
1. ModifiedMalicious::Constructor(...)> mb.withdraw(...)
/IAttacker calls withdraw(...) of modified bank contract
Lwithdraw(...)> msg.sender.call.value(_amount)()

until No-Gas

Fig. 2. The reentrancy cycle, (Solidity-like) code modified from [7], [12].

the code to invoke the withdraw method of ModifiedBank
in line#8. This process repeats until the bank or the attacker
reaches out of gas state. However, in the meantime attacker
may drain handsome amount from the bank because the debit
process never deducts her balance, i.e., line#16 never executes.

2) Denial of Service (Unexpected throw): Denial of
Service occurs due to various reasons. External functions may
contain broken linkage due to the use of throw (depre-
cated). Listing 2 (excerpted from [5]) shows the contracts
(i.e., MKOotET1, MKotET1_1). Both are related to a game
to acquire the throne of KingofEther. The throne’s price is
the money required by current king to leave the throne along
with some processing fee to the SC’s owner. However both
the contracts suffer from Denial of Service vulnerability.
MKotET1 (starting from line#1) exhibits Denial of Service
threat using transfer in line#7 and MKotET1_1 (starting
from line#12) displays Denial of Service threat using call
in line#17. MKotET1 and MKotET1 1 use transfer and
call respectively to deliver Ether to SC MMallory (starting
from line#22), which contains a risky FF, in line#23, which
reverts in line#24, throwing an exception unconditionally. Both
transfer and call fail to deliver Ether to ‘MMallory’
due to the revert in line#24.

1 contract MKotETI1 {
address payable emperor; uint public
rewardPrice = 500;
arations for MfindCrownPrice() &
dPrice()
function() external payable ({
require (msg.value >= rewardPrice);
uint MCrownPrice = MfindCrownPrice();
emperor.transfer (MCrownPrice);
emperoror = msg.sender;//Unreachable
rewardPrice= NRewardPrice();//Unreac
‘xmorex/}//MKotET1 ends
//modified KotET using Call
contract MKotETI1_1{
// some declarations
function() external payable{
require (msg.value >= rewardPrice);
uint MCrownPrice = MfindCrownPrice();
(bool success,) = emperor.call.value (
MCrownPrice) ("");
require (success);//throw if
emperor= msg.sender; //Unrea
rewardPrice = NewRewardPrice();//
Unreachable
/+xmore x/}//MKotET1_1 ends
contract MMallory {
function () external payable {
revert(); } }//MMallory

//dec

W

hable

NN EAEWN—= OV I N A

S ©

ottt
A W=

ends

Listing 2. KingOfEtherThrone threat variants:Transfer, Call [5].

3) Mishandled Exception: Mishandled Exception [13] is a
frequently occurring threat [14] and appears by other names in
the surveyed literature such as “Unchecked send”’, “Unchecked
External Call”, and “Exception Disorders.” Exceptions are
run-time errors. One of the well-known exceptions in the
Ethereum network is the out-of-gas exception. However, when
a SC invokes an untrusted external function, a programmer
must take extra care. For instance, sending Ether, implicitly
invokes the FF of another SC. FF may fail and the reason
might not be the out-of-gas exception [15].

In Solidity, we can use transfer, send, and call for
sending Ether to another SC. If an exception occurs in the
callee, t rans fer propagates the exception in the caller’s SC,
which is safe. APIs like call, send, and delegatecall
return false and the execution continues [16]. Thus, if the
programmer skips the checking of the false returned value,
execution would continue resulting in an inconsistent state
[17]. Surveyed literature argues that the owner deliberately
does not throw an exception if the send operation fails. This
attitude may result in exceeding the call-depth stack (i.e. CDS,
which is a deprecated vulnerability) [S], [18]. MMallory
contract in Listing 3 undo the transfer of Ether to itself.
The payable directive facilitates the importing of Ether, as
discussed in section IV-B under frozen Ether vulnerability.
However, anybody sending Ether to MMallory will suffer
from exception due to revert in line#2.

1 contract MMallory({
2 function() external payable { revert (); }}

Listing 3. ’revert’ in line#2, causes mishandled exception [5] to the caller.

4) Gasless send [13]: send is associated with a fixed gas
stipend of 2300 [12], which is enough to execute an empty FF.
If the FF modifies the state of the SC, then the required gas
can increase beyond 2300. This costly FF results in an out-
of-gas exception [5]. Costly FF can be due to the developer’s
mistake instead of a malicious activity [19]. In other words, if
the “gas used” is high, an exception occurs, and the malicious
miner may keep the untransferred amount.

1 contract Sender {

2 function pay (uint val, address payable _recv
ypublic { //_recv points to contract
Recelver

3 if (_recv.send(val)){ } else { } }}

4 contract Receiver ({

5 uint public TotalBal = 0;//state variable

6 function() external payable {

7 TotalBal = TotalBal + msg.value; } }

Listing 4. Receiver SC’s FF is costly: alters *TotalBal’, line#7, [20].

But in some cases, the malicious SC owner may keep
the non-transferred amount and miner only gets his fee.
call mitigates this threat but transfers all gas which causes
reentrancy. Listing 4 shows two SCs, Sender line#l and
Receiver line#4 modified from [5]. Sender transfers funds
to Receiver using send in line#3 but Receiver retrieves the
Ether using a costly FF in line#6. Transfer increments the state
variable TotalBal in line#7. But transfer in line#3 becomes

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 20:09:55 UTC from IEEE Xplore. Restrictions apply.

a threat as send uses 2300 amount of gas, which is not enough
to execute a costly FF.

5) call Transfers All Gas: At the bytecode level, So-
lidity’s send and transfer translate into CALL (EVM
bytecode). CALL executes the FF of the calling SC and can
fail due to insufficient gas. It consists of four stack arguments:
1) the amount of gas required for the transaction, recipient’s
address, 2) the amount of Ether to be transferred , 3) size, and
4) the location of input data along with the size and location
of return data [21], [22]. call can provide the stimulus for
reentrancy attack by forwarding all the gas [6]. However,
implicit call statements are also possible. Listing 5 shows
the code modified from [23]. Line #7 uses call implicitly,
which is vulnerable; the first parameter is the Ether value,
while the second parameter is the argument of £ (..).

1 contract testl {

function f (int x) public payable returns (

int) { return x;} }

3 contract test2 {
4 function testA (address _addl)
5 testl a = testl (_addl);
6 uint amount = 500;
7
8
9

[\

public {

a.f.value (amount) (2);//vulne
a.f.value (amount);//

b}

1on—-vuln

Listing 5. test2: implicit CALL sends amount to £ (), in line#7 [23].

B. Contractual Vulnerabilities

Contractual bugs impact the SC itself. Both the attacker and
owner exploit them for causing harm to the SC users. The
owner can design the SC to prevent leakage (or transfer) of
any Ether, thus turning the SC into a black hole. However,
the worst happens when an attacker uses the unprotected
selfdestruct command to destroy the SC. The attacker
enjoys the balance of the account if the attacker changes the
ownership of SC before destroying it.

1) Frozen Ether: Also known as “Locked Money” [6] or
“be no black hole” [24]. The frozen Ether threat deprives the
SC account holders of Ether worth millions of dollars, as in
the case of parity wallet SC. One atypical impact of the above
exploits resulted after the accidental killing of the library SC,
which provided an external route to Ether in parity Wallet SC
(and to other multisigWallet-like SCs [25]).

Apart from the accidental execution of suicide command,
which the hobbyist confessed of doing in his issue# 6995
on Github [26], there could be coding loopholes in the SC,
which can prevent exporting of Ether from the SC. Program-
matically, exporting Ether weakness applies to SCs, which
lack statements like call, send, or transfer, which
move the funds outside the SC, along with the presence
of payable directive in the SC, which on the other hand
facilitates importing of Ether. To summarize, “frozen Ether”
vulnerability occurs when:

1) SC permits inbound Ether traffic but shuts the outbound

Ether traffic. Reference [25] labels such SCs as greedy.
FF handles inbound Ether traffic but call, send and
transfer handle outbound Ether traffic. Listing 6 uses

a SC modified from [24], which shows the freezing Ether
vulnerability because the SC contains a method hav-
ing payable directive in line#2 but does not contain
program paths leading to CALL, DELEGATECALL, or
SELFDESTRUCT opcodes:

1 contract ModifiedBitway{
2 function () external payable { } }

Listing 6. payable directive creates an Ether receiving FF in line#2.

2) Wallet SC relies on another SC or library. The library SC
provides functions to support the Wallet, for instance, the
library can provide function for transferring Ether. But
if the library SC eventually kills herself by executing
selfdestruct command or some other SC (or an
attacker) accidentally (or deliberately) kills the library
SC, then it would close the doors of Ether extraction
from the wallet SC. Listing 7, modified from [27], shows
the use of delegatecall in line#4 to load the code
from the address OxNewLibrary, line#2, containing
the library’s withdraw () method.

1 contract testDC{

2 address _nl = OxNewLibrary;

3 function withdrawM() {

4 _nl.delegatecall (msg.data); } }

Listing 7. withdrawM() uses library through hardcoded address
(line#2) and delegatcall (line#4) using that address [27].

2) Self-Destructible: selfdestruct (previously known
as suicide) allows a SC to destroy itself by releasing
the Ether of account holders. SC uses this alternative in
emergencies. Research conducted by [25] terms a SC suicidal
(i.e. vulnerable for SELDESTRUCT opcode) if the SC does
not correctly guard the sel fdestruct command. Attacker
requires two things to kill a SC: (1) reaching into the con-
ditional statement enclosing the selfdestruct statement,
and (2) attaining the ownership of SC.

selfdestruct causes unresponsiveness [8] of the SC
resulting in “Denial of Service.” selfdestruct deletes
the SC’s code permanently [28], [29]. All the SC’s funds
would transfer to the account associated with SC. This transfer
will not trigger FF [28]. A beneficiary can be an existing
account or the account may not exist. In the latter case, the
destruction process creates the account and charges fees for
it [21]. Contract MDiscontinue in Listing 8 provides a
TerminateMe function to destroy the contract with unpro-
tected selfdestruct (i.e., without any i f block) in line#6,
modified from [30]:

1 contract MDiscontinue({

2 address payable owner;

3 constructor () public {

4 owner = msg.sender; }

5 function TerminateMe () public ({

6 selfdestruct (owner);}}//suicidal

Listing 8. selfdestruct, line#6, without any guard, suicidal SC [30].

3) Stealing Ether: Stealing Ether vulnerability (or Unse-
cured Balance) surfaces when the SC initializes the owner field
indirectly as in line#4 of Listing 9 in a function other than the

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 20:09:55 UTC from IEEE Xplore. Restrictions apply.

constructor. The use of a function for initialization of owner
address (as in line#3) can lead to a problematic situation. This
situation is similar to parity SC, which doomed the multi-
signature SC of 30m dollars [31].

1 contract CompWallet {

2 address payable owner;//state variable

3 function initComWallet (address payable _owner)
public{

4 owner = _owner, } //’{11‘,;' user can Ch{il‘x’]% owner

5 function withdraw (uint _amount) public {

6 if (msg.sender == owner) {

7 if (!owner.send(_amount)) {}

8 else {}}}}

Listing 9. owner initialized in line#4, outside constructor [27].

C. Arithmetic Bugs

This problem occurs as a result of a mathematical operation.
Most significant bug is the integer overflow/underflow, which
is a common problem in programming languages. Increments
beyond the maximum or decrements below the lowest value
(i.e. wrap-around) may generate wrong results. Thus, devel-
opers must perform manual checking (i.e., employ a human
expert to check the code); otherwise, code may create a wrap-
around error. One solution is to use SafeMath library. The
latest research recommends using the “solc-verifier” tool.

1) Integer Overflow/Underflow: Ethereum has nothing to
do with data types leaving the compiler responsible for catch-
ing integer overflows and under-flows [17], [32]. Solidity is
rich in integer data types with flexible sizes (uint8, uintl6,
uint24,..uint256, int8, int16, int24,..int256) but does not sup-
port floating-point math [6]. Thus, the diversity of integer data
types provides no benefit to SC. Work in [17], [33] provides
an example code generating integer bugs. Figure 3 shows an
underflow SC and its output on Remix (0 changes to 255 on
decrements).

pragma solidity
contract MUFTestl {

29.5.1;
uint8 testVal =0;

1
2
3
4 function testFunc() public returns (uint8) {
5 testVal--;

6

return testVal;}}
/IDebugging on Remix IDE
Decoded output {
0" “unit8: 255"

}
0:0x00ff

Fig. 3. Underflow SC, MUFTestl, modified from [34], and the result of
debugging it on REMIX IDE.

SafeMath [6], [35] provides several functions to replace
the ordinary arithmetic operations in SCs. Listing 10, lines#2-
4, show the logic of SafeMath library’s method sub (. .).
Figure 3 SC, MUFTest 1, is modified from [34]. We replaced
the line#5 in Figure 3 by sub (..) method of SafeMath
library as shown in Listing 10, line#9, of SC MUFTest2.

2) Unchecked Maths: Unchecked math means that a SC is
not using strategies to protect mathematical statements from
overflows/underflows. A good practice is to protect the code

using assertions and SafeMath library as shown again in
Listing 10, line#9.

1 library SafeMath ({
2 function sub (uint8 x, uint8 vy)
pure returns (uint8) {
assert (y <= x);
return x - y; } }
contract MUFTest2 {
using SafeMath for uint8;
uint8 testvVal= 0;
function Utest () public returns
testVal= testVal.sub(l);
//instead of : testVal- - (in
return testVal; } }

internal

(uint8) {

line#5, Fig. 3)

— OOV W

Listing 10. Use of sub (..) function, line#9, to avoid underflow [34].

D. Gas Related Issues

The gas serves two essential purposes for the EVM network.
Firstly, gas serves as compensation to the miners’ efforts for
recording transactions. Secondly, the gas acts as a fuel for
running a transaction and thus prevents long transactions from
hijacking the EVM scheduling scheme. Logically, it means
that if the user does not pay enough gas fee as required for
the transaction, the transaction will fail by generating an “out
of gas” exception. Surprisingly, an integer overflow can also
cause “out of gas.” Other examples are Denial of Service, and
Wallet Griefing, as discussed below:

1) Denial of Service (Costly Loops Causing Out of Gas
Exception): EVM protects programs from Denial of Service
attacks by forced termination. EVM allocates gas at the start of
execution, and each execution step results in some deduction.
If the remaining amount after deduction is less than the
amount required for execution, EVM [15] terminates the SC’s
execution, causing partial or full rollback [36]. The termination
can occur even without the influence of an attacker [37].

An attacker can manipulate the arr, line#4, in Listing 11
by adding additional addresses. Thus, increasing the execution
cost and transfer to manipulated addresses. In the worst case,
the entire gas may be exhausted, resulting in full revert.
Denial of Service can occur due to the presence of revert
in external function, as in Listing 2, line#24.

1 contract testLL({

2 uint constant LARGEGAS =

3 address payable addrArr;

4 function LongList (uint256 memory nextV,
uint[] memory arr, address payable
_addr) public {

100000;

5 uint256 i= nextV;

6 addrArr = _addr;

7 for (;i < arr.length && gasleft() >
LARGEGAS; i++) {

8 addrArr.send(arr[i]); }

9 nextV = i; } }

Listing 11. Unbounded mass operation: traversing an unsized array [15].

Another example is the Denial of Service due to a costly
for or a while loop. This may cause depletion of gas in
each iteration and finally resulting in Denial of Service. Work
presented by [15] renames this vulnerability, as “Unbounded
mass operations due to an unsized array variable arr in

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 20:09:55 UTC from IEEE Xplore. Restrictions apply.

line#7, Listing 11, and [15] have proposed resumable loops.
Function LongList (..), line#4, in Listing 11, is excerpted
from [15]. In the case of revert, due to “out of gas” threat,
nextV, in line#9, points to the arr index, from where to
resume.

2) Integer Overflow (Causing Out of Gas Exception):
Authors of SmartCheck [6] and MadMax [15] discuss about
the integer overflow issue in a loop in the context of Var
(deprecated, Solidity used Var for Type Inference [6], [9]).
However, an integer overflow can occur even when Var does
not determine the type of loop index (i.e., uint8) variable.
By this, we mean that integer overflow can occur if the type
of loop index variable is a short integer at run-time. Listing 12
shows an overflow without using Var, as in line#4 in Listing
12 when the loop counter variable becomes greater than or
equal to 255.

1 contract Overflow {

2 int [300] emp;

3 function testOF () public returns (bool) ({

4 for (uint8 i = 0; i < emp.length; ++i) { }}}

Listing 12. Short integer overflows even without Var [38] in line#4.

3) Wallet Griefing Causing Out of Gas Exception: This
vulnerability occurs if a SC uses a loop to send Ether to
multiple SCs. Thus, if one receiver fails, then the entire
transaction fails. The receiver can fail due to a bad FF (line#2,
Listing 3). If the sending SC uses a throw (i.e., revert) to
handle the failure of send then it can exacerbate the situation
because throw consumes the entire gas [14], [39]and locks
the sender’s SC [15], [40]. Repeated attempts may also fail
due to “out of gas” situation, as in line#6, Listing 13, modified
from [15]. However, the latest version in can achieve the same
effect by using require and transfer instead of send
and revert.

1 for (uint i = 0; i < employee.length ; i++) {

2 if (employee [i].paid < min_salary) {

3 // sentinel for making a payment.

4 // ¢ may lock the SC

5 // due to {\tt revert} consuming all gas.

6 if (! (employee [i].addr.send (employee [i].
bonusAmount))) revert () ;

7 employee [i] = newEmployee ; } }

Listing 13. Wallet Griefing using revert, send fails in line#6, [15].

E. Transactional Irregularities

EVM transactions become a source of greed for the miner,
which validates them. Thus some miners can influence the
transactions resulting in vulnerabilities like Transaction Or-
dering Dependence and Time Stamp Dependence.

1) Transaction Ordering Dependence (TOD): TOD is also
known as “front running race condition” [16]. This attack,
“selfish mining attack”, occurs due to the mishandling of
transaction queue by miners. The owner/user incentivizes the
miner to change the order of the transaction [18].

One example of TOD is the case of marketplace SC as
shown in Listing 14 modified from [18] in which a miner
may not honor a leading buyer’s request at the cost of some

other transaction. The buyer sends the transaction to buy at
cost 100, line#7, Listing 14. At the same time, owner sends
the transaction with a high gas fee to increase the price, line#4,
Listing 14. The owner’s transaction executes first due to the
higher gas price incentive. The buyer’s transaction completes
next but the buyer pays more.

1 contract MMarketPlace {

2 uint private cost=100 ;

3 uint private inventory= 100; //more
declarations

4 function incPrice (uint _incCost) {

5 require (msg.sender == owner)

6 cost = cost + incCost ; }

7 function buy () returns (uint) {

8 require (msg.value == cost);

9 require (inventory > 0));

0 inventory -= 1; /% more x/ } }//use of
SafeMath recommended

Listing 14. Miner alters lines#5-8, causing TOD: marketplace [18].

Contrary to the general notion about a miner in connection
with TOD, the recent research conducted by [17] argues that
it is hard to exploit TOD threat because the attacker should
be a miner, and there are less financial gains. Apart from this,
there are some other programming problems. State variables
often have a dependency on the function, which changes their
values. Thus, coding such a function when multiple users are
invoking that function is a concurrent programming issue.

The concurrency in SCs requires some mechanism like
semaphore to control access to the state variable. Reference
[9] argues that Solidity does not support concurrency. Thus,
manipulation by a miner is a limitation of BlockChain rather
than a bug. However, EVM must provide some solution for
miner’s problems, as the miners also contribute to immense
power consumption. One solution proposed by [41] is to
delegate miners’ role to a SC. Another name for this problem
is the unpredictable state problem. This is because multiple
invocations of a dependent function make it difficult to predict
what the state and the values stored within a SC will be when
a user executes the function.

2) TimeStamp Dependence [I3]: Each block within the
BlockChain contains three pieces of information: 1) times-
tamp, 2) cryptographic hash, and 3) the transaction data.

— Timestamp represents the time when the miner verifies
all the transactions within the block after computing the
proof-of-work puzzle. A miner can manipulate the block
timestamp but has to complete the validation within 900s
[18]; otherwise other miners would reject the block.

— Cryptographic hashesare deterministic functions. Miners
exploit the deterministic hash values to verify the integrity
of the block’s data. Cryptographic hash chains the current
block with the previous block as there is a dependency
between hash values of the two said blocks.

— Transaction data can vary based upon transactions. Still,
for the most straightforward transactions between two SC
accounts, the transaction data would be the sender’s and
receiver’s SC account addresses and the amount of Ether
sender transfers to the receiver.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 20:09:55 UTC from IEEE Xplore. Restrictions apply.

Despite the doubtful accuracy, SCs use the timestamp for
random number generation. Due to the miner’s involvement
in setting the timestamp’s value, the timestamp becomes a
so-called deterministic random value. Hence, the usage of
the timestamp as a random value in lottery implementation
is vulnerable [21]. Programmatically, block.timeStamp
retrieves the timestamp associated with a block. However, one
can just use now (alias for block.timestamp) also to retrieve
the timestamp, as in Listing 15, lines#3-4. Solidity uses now
for simplicity and bytecode implementation. But Solidity does
not discriminate between now and block.timeStamp and
hence both are vulnerable.

contract TSD{

1

2 function Mpay () public{

3 uint tTime = now;

4 if (tTime > (now + 2)){ if (!msg.
sender.send (200)) { } else { } }

b}

Listing 15. Miner’s misuse of now (lines#3-4) causes TSD.

3) tx.origin: tx.origin is a transaction state variable
which indicates the originator of the transaction. Other trans-
action state variables also exist like tx.GasPrice. But
tx.GasPrice has a fixed value so the adversary cannot
change it [9]. On the other hand, tx.origin can vary.
This variation can lead to attacks because we cannot use
tx.origin to ratify the contract’s owner, as shown in
Listing 16.

Lines#1-9 in Listing 16 show the victim’s SC (ie.,
TxUserWallet) and lines#10-11 show the interface (i.e.,
TxUserWallet). Note that the names of the victim’s SC
and the interface are the same but they are in different files.

contract TxUserWallet {
address owner;
constructor () public ({
owner = msg.sender; }
function sendTo (address dest, uint256 amount)
payable public returns (bytes memory
theMessage)
{require (tx.origin == owner);
(bool success, bytes memory returnMessage) =
dest.call.value (amount) () ;
require (success);
return returnMessage; }
interface TxUserWallet {
function sendTo (address dest, uint amount)
external; }
contract TxAttackWallet {
address owner;
constructor () public {
owner = msg.sender; }
function () external payable ({
TxUserWallet (msg.sender) .sendTo (owner,
.sender.balance); }

AW =

R o)

/* more x/}

==

NN AW

msg
/+ more =/}

Listing 16. Example of tx.origin [42], Victim’s SC (i.e. TxUserWallet).

The rest of the code from lines#12-17 show the attacker’s SC,
TxAttackWallet. The surveyed literature recommends the
replacement of tx.origin with msg. sender particularly
for authenticating the sender of a message [14]. tx.origin
represents the address of the first account in the call chain (i.e.,

the list of calls related to the currently executing transaction),
whereas msg. sender is the original caller [6], [25].

V. TooLs FOR TESTING SMART CONTRACTS

we provide a brief description of SC tools developed for
detecting above mentioned vulnerabilities. We grouped the
testing tools into dynamic and static-based tools.

A. Testing Tools based on Static Analysis of SCs

There are a good number of static-analysis for testing SCs:

— Zeus [9]. Zeus is a tool for formal verification of
SCs using abstract interpretation and symbolic model
checking. Zeus works directly on the high-level of
SC code. Zeus detects threats like reentrancy (section
IV-Al), Unchecked and Failed send (section IV-A3),
Integer Overflows (section IV-C1), and Timestamp de-
pendency(section IV-E2).

— VeriSolid [43]. VeriSolid is a SC development tool.
VeriSolid uses a transition system model to generate
Solidity-based formally verified SCs. Automatic code
generation is an important achievement in the context of
formal verification tools. VeriSolid prevents reentrancy
(section IV-A1) by design and uses liveness property to
prevent Denial of Service (section IV-A2, IV-D1).

— Vandal [14]. Vandal is a static analysis tool. Vandal
performs security analysis of EVM bytecode using a
logic language, called Souffle, to transform the analysis
into C + +. Vandal’s static analysis library functions
detect threats like “Unchecked Send” (section IV-A3),
Reentrancy (section IV-A1), UnSecured Balance (section
IV-B3), Destroyable SC (section IV-B2) [14].

— Teether [22]. Teether focuses on the same idea of critical
paths as in [24]. Teether constructs the CFG of the SC
using the EVM bytecode, which helps to detect critical
paths. The authors discussed the peculiar problem of
backward traversal associated with JMP because of IMP’s
similarity with x86’s return statement.

— SmartScopy [44]. SmartScopy is an attack synthesizer.
SmartScopy performs summary-based symbolic evalu-
ation, which reduces the program size for symbolic
analysis (SA) required for automatic generation of ad-
versarial SC. The adversarial SC confirms the presence
of vulnerability in the victim SC, detected by manual
analysis. SmartScopy detects threats like reentrancy (sec-
tion IV-A1), timestamp dependence (section IV-E2), and
Gasless send (section IV-A4).

— SmartCheck [6]. SmarkCheck helps to remove the simple
bugs quickly. However, for removing non-trivial bugs,
[6] recommends using more sophisticated techniques
like taint analysis (TA). The authors identified several
coding threats like reentrancy (section IV-A1, Mishandled
Exception IV-A3, call transfers all gas, and so on. The
SmartCheck [6] related research provides a comprehen-
sive list of threats based upon exploits related to security,
functional, operational, and developmental issues.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 20:09:55 UTC from IEEE Xplore. Restrictions apply.

— Securify [27]. Securify is a static analysis tool, focusing

on patterns (compliance or violation). The tool extracts
the domain knowledge from patterns related to a security
property. Securify detects threats like Stealing (section
IV-B3) and frozen Ether (section IV-B1), Reentrancy
(section IV-Al), Mishandled Exception (section IV-A3)
and Transaction Ordering Dependence (section IV-El).
Related violation properties with regarding threats are
restricted write, Ether liquidity, no writes after calls,
handled exception, restricted transfer and TOD [27].
Oyente [18]. Oyente performs static analysis of SCs.
[18] recommend the extension of Oyente and is a reality
when one reads the details of the tools mentioned in
[45]. Oyente detects threats like TOD (section IV-E1),
TimeStamp Dependence (section IV-E2), and Mishandled
Exception (section IV-A3).

OSIRIS [32]. OSIRIS employs a strategy based upon taint
analysis and symbolic execution and consists of an integer
detection module. Symbolic execution module constructs
a control flow graph (CFG) from the bytecode. The CFG
processes different paths of the SC using symbolic values,
as in Maian [25]. Osiris [32] detects arithmetic bugs
(overflow/underflow (section IV-C1) and division by 0),
truncation bugs (converting from a larger to smaller data
size, e.g., 64-bit data to 16-bit data), and signedness bugs
(converting a signed integer to an unsigned integer of the
same width and vice versa).

MadMax [15]. MadMax focuses on automatic detection
of gas-focused threats. Like Vandal [14], MadMax per-
forms the de-compilation of EVM bytecode and similarly
uses a logic-based approach to produce a high-level
representation of the program model. MadMax defines
strategies for surviving out of gas conditions in the con-
text of resumable loops (section IV-D1), loops bounded
by induction variable, and dynamically bounded loops.
KFrameWork-EVM-Semantics (KEVM) [36]:KEVM is a
semantic analysis tool based upon SE. KEVM’s devel-
opment framework integrates a semantic debugger and a
program verifier. Tool encapsulates a gas analyzer that
computes gas bounds during execution and can help
in detecting “Denial of Service”(section IV-A2, section
IV-D1) threats.

— Interactive Theorem Provers (ITP) [46]. Interactive The-

orem Prover combines the idea of theorem proving with
testing. Initially, this tool presents the desired behavior of
EVM in LEM [47]. Authors used both the community-
based test suits and interactive theorem provers like
Isabelle/HOL to test their EVM definitions. The authors
divided the formalization into deterministic and non-
deterministic formalization. The basic assumption for
non-deterministic formalization was to segregate the en-
vironment from the system. This helped to reason about
the adversarial attack and to model the reentrancy attack
(section IV-Al).

Gasper [48]. Gasper uses Oyente Engine to generate the
CFG and identifies the code for optimization. [48] points

out seven gas costly-patterns. Due to shortage of space,
we have not discussed Gasper patterns in this paper.
FSolidM [49].FSolidM allows development of secure SCs
using Finite State Machines (FSMs) [16]. FSolidM uses
a set of plugins and design patterns that developers can
add to the SC for implementing locking, maintaining
transaction counter, and enforcing timed transitions to
safeguard against reentrancy (section IV-A1l), transaction
ordering dependence (section IV-E1), and time constraint,
respectively.

FVF* [7]. The research work in [7] describes the ver-
ification of Ethereum SCs using F* (FVF* stands for
formal verification using F*). The work in [7] added
an effect system in F* which helps in the detection
of “unchecked send” (section IV-A3) and destructive
patterns like reentrancy (section IV-Al).

EtherTrust [50]. Authors used the tool to prove the reach-
ability property for SC’s bytecode. EtherTrust ensures
two things about the SC: (i) FFs should not result in DAO
type of attack (section IV-Al) (ii) data is not vulnerable
to miner’s manipulation.

DappGaurd [19]. DappGaurd detects the diverse type of
threats. However, instead of relying on bytecode or So-
lidity code, DappGaurd focuses on Transaction Receipts,
which analyze live SCs, but the authors do not provide the
source for retrieving TRs. DappGaurd’s prototype version
detects several threats, and for this purpose, DappGard
incorporates the Oyente engine.

sCompile [24]. sCompile exploits the notion of “critical
paths” i.e., in place of identifying a program to be
vulnerable, sCompile identifies critical paths (i.e., money
related inter-contractual paths involving call) in the
program. Developed in C' + +, sCompile uses Z3 SMT
Solver for SE. sCompile detects threats like reentrancy
(section IV-A1l), be no black hole (section IV-B1, and
unguarded selfdestruct (section IV-B2).

B. Testing Tools based on Dynamic Analysis of SCs

— Vultron [51]. Vultron is still in infancy stages and the au-

thors have tested the prototype using truffle suite. Vultron
is a test oracle, which stores bookkeeping information in
variables. Vultron compares these variables with account
balances related to SCs to determine the inconsisten-
cies. Vultron can identify threats like reentrancy (sec-
tion IV-Al), exception disorder (section IV-A3), integer
overflow/underflow (section IV-C1), and “gasless send”
(section IV-A4).

Sereum [11]. Sereum modifies the “goethereum” client
“geth” and adds an attack detector and taint engine.
Sereum works at the bytecode level and the binary
level does not keep type information. This fact makes
it challenging to infer about the sensitivity of data [30].
Sereum related research reports a reentrancy attack (sec-
tion IV-Al).

Regaurd [52]. Regaurd is a dynamic analysis tool and
incorporates a fuzzing based analyzer. Regaurd focuses

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 20:09:55 UTC from IEEE Xplore. Restrictions apply.

on automatic detection of common threats in SCs like
reentrancy bugs (section IV-Al). Regaurd transforms the
code into an intermediate representation (IR) (Abstract
Syntax Tree). Finally, Regaurd executes the SC (with
transactions as input) and forwards the dump of relevant
operations of run-time analysis to the core detector to
detect reentrancy bugs.

— Maian [25]. Maian is a static analysis tool but also
performs dynamic analysis of SC. For offline inspection,
Maian’s input is the EVM bytecode and the SC’s initial
state retrieved from the BlockChain. SA generates actual
values for the transaction given SC’s bytecode and analy-
sis specification i.e., vulnerability category to search like
Suicidal (same as selfdestruct, IV-B2) or Greedy
(same as Frozen Ether, section IV-B1) as input. Maian
then uses the actual values in the validation step.

— EasyFlow [35]. EasyFlow is a specialized tool focusing
on integer overflow. EasyFlow uses taint analysis for
overflow detection. Detection algorithm analyzes transac-
tion instructions and mathematical instructions (at byte-
code level) like EXP, ADDMOD, and MULMOD and
even the instructions protected by SafeMath library.

— ContractFuzzer [12]. Fuzzing is a technique which can
perform both static and dynamic analysis independently
or at the same time. [53] discusses an example of fuzzing
with SC by mounting the Truffle project to a docker
image. ContractFuzzer detects threats like “Gasless send”
(section 1V-A4), “Exception disorder” (section IV-A3),
Reentrancy (section IV-Al), TSD (section IV-E2), and
Freezing Ether (section IV-B1).

VI. CONCLUSION AND RESEARCH DIRECTIONS

We have provided classification of SC vulnerabilities but
this can be further enhanced. In fact, security of SC is vital for
strengthening the concept of BlockChain. Consistent efforts
from academia have provided great solutions and this should
continue. Our future research would be related to identifying
randomization vulnerabilities. Following are the suggestion to
fill the gaps in previous research and to advance the current
research:

— For EVM researcher: a) there is a need for run-time
environment within the Ethereum (i.e. EVM) and all the
newly launched SC must be tested using this environ-
ment. This would take care of SC which are launched
without testing, and b) Many good tools have been
developed by academia and it would be a good approach
to incorporate them on the Remix website as plug-ins.

— For Solidity researcher: Solidity interpreter needs more
improvements to catch the vulnerabilities. For catching
mathematical errors, Solidity can incorporate a solver.
This addition can also pave the way for detection of
reentrancy error, which occurs due to the misplacement
of account deduction statement

— For general researcher: Improving and developing new
tools and techniques is important. Some examples areas
where tools can be developed are: i) to catch new

vulnerability patterns such as reported in [11], [40], ii)
to make the use of libraries safe for SC, and iii) design
strategies to reduce the miner’s time to generate a block
that is currently 900 seconds.

For Security Researchers: It is also important to develop
more effective security testing and adequacy criteria that
are unique for testing SC [54]. It is also important to
develop algorithmic [55] and machine learning [56], and
deep learning [57] approaches for detecting vulnerabili-
ties and security defects in SCs.

ACKNOWLEDGMENT

This research work is supported by National Science Foun-
dation (NSF) under Grant No: 1821560.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

H. Hasanova, U.-j. Baek, M.-g. Shin, K. Cho, and M.-S. Kim, “A survey
on blockchain cybersecurity vulnerabilities and possible countermea-
sures,” International Journal of Network Management, vol. 29, p. €2060,
2019.

A. K. J. C. M. A. A. Alkhalifah, A. Ng and P. Watters, “A taxonomy
of blockchain threats and vulnerabilities,” 2019.

H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on ethereum
systems security: Vulnerabilities, attacks, and defenses,” ACM Comput.
Surv., vol. 53, 2020.

N.F. A. L. P.J. P. E. B. W. Dingman, A. Cohen and L. Deng, “Defects
and vulnerabilities in smart contracts, a classification using the nist
bugs framework,” International Journal of Networked and Distributed
Computing, vol. 7, p. 121-132, 2019.

N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in Proceedings of the 6th International Confer-
ence on Principles of Security and Trust - Volume=10204. Springer-
Verlag, 2017, pp. 164-186.

S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in /st IEEE/ACM International Workshop
on Emerging Trends in Software Engineering for Blockchain, WET-
SEB@ICSE 2018, Gothenburg, Sweden, May 27 - June 3, 2018. 1EEE,
2018, pp. 9-16.

K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy, and S. Zanella-Beguelin, “Formal verification of smart
contracts: Short paper,” in PLAS ’16 Proceedings of the 2016 ACM
Workshop on Programming Languages and Analysis for Security, Octo-
ber 2016, pp. 91-96.

Known attacks. [Online]. Available: https://consensys.github.io/smart-
contract-best-practices/known_attacks/

S. Kalra, S. Goel, M. Dhawan, and S. Sharma, ‘“Zeus: Analyzing
safety of smart contracts,” in Network and Distributed System Security
Symposium, 2018.

1. Grishchenko, M. Maffei, and C. Schneidewind, “Foundations and tools
for the static analysis of ethereum smart contracts,” in Lecture Notes in
Computer Science. Springer, Cham., 2018, pp. 51-78.

M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protect-
ing existing smart contracts against re-entrancy attacks,” CoRR, vol.
abs/1812.05934, 2018.

B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart contracts
for vulnerability detection,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. New
York, NY, USA: ACM, 2018, pp. 259-269.

Bankex. (2018, aug) Nine pitfalls of ethereum smart contracts to
be avoided. [Online]. Available: https://blog.bankex.org/nine-pitfalls-of-
ethereum-smart-contracts-to-be-avoided-f7464761211c

L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,
and B. Scholz, “Vandal: A scalable security analysis framework for smart
contracts,” CoRR, vol. abs/1809.03981, 2018.

N. Grech, M. Kong, A. Jurisevic, L. Brent, B. J. Scholz, and Y. Smarag-
dakis, “Madmax: Surviving out-of-gas conditions in ethereum smart
contracts,” Proc. ACM Program. Lang., vol. 2, oct 2018.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 20:09:55 UTC from IEEE Xplore. Restrictions apply.

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[37]

[38]

M. di Angelo and G. Salzer, “A survey of tools for analyzing ethereum
smart contracts,” in 2019 IEEFE International Conference on Decentral-
ized Applications and Infrastructures (DAPPCON). 1EEE, 2019, pp.
69-78.

D. Pérez and B. Livshits, “Smart contract vulnerabilities: Does anyone
care?” CoRR, vol. abs/1902.06710, 2019.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254-269.
T. Cook, A. Latham, and J. H. Le, “Dappguard : Active monitoring and
defense for solidity smart contracts,” 2017.

zak100 and goodvibration. (2019, jun) Gasless
send: Keeping of ether wrongfully. [Online]. Avail-
able: https://ethereum.stackexchange.com/questions/71870/gasless-send-
keeping-of-ether-wrongfully

1. Grishchenko, M. Maffei, and C. Schneidewind, “A semantic frame-
work for the security analysis of ethereum smart contracts,” CoRR, vol.
abs/1802.08660, 2018.

J. Krupp and C. Rossow, “teether: Gnawing at ethereum to automatically
exploit smart contracts,” in 27th USENIX Security Symposium (USENIX
Security 18). Baltimore, MD: USENIX Association, aug 2018, pp.

1317-1333.

zak100, user19510, and itsHarshad. (2019, jun) Parsererror:
Expected identifier but got ’address’. [Online]. Avail-
able: https://ethereum.stackexchange.com/questions/71895/parsererror-

expected-identifier-but-got-address/71902

J. Chang, B. Gao, H. Xiao, J. Sun, and Z. Yang, “scompile: Crit-
ical path identification and analysis for smart contracts,” CoRR, vol.
abs/1808.00624, 2018.

I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Find-
ing the greedy, prodigal, and suicidal contracts at scale,” CoRR, vol.
abs/1802.06038, 2018.

ghost. (2017, nov) Anyone can kill your contract. [Online]. Available:
https://github.com/openethereum/openethereum/issues/6995

P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Biinzli, and
M. Vecheyv, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 67-82.

J. Chen, X. Xia, J. G. David Lo, D. X. Luo, and T. Chen, “Domain
specific code smells in smart contracts,” CoRR, vol. abs/1905.01467,
2019.

(2018, Oct) Smart contracts-solidity. [Online]. Avail-
able: https://fullstacks.org/materials/ethereumbook/08_smart-contracts-
solidity.html

J. Newsome and D. Song. (2017, Jan) Dyanmic taint analysis.
[Online]. Available: https://www.cs.ucr.edu/ heng/teaching/cs260-
winter2017/tainting.pdf

J. Alois. (2017, Nov) Ethereum parity hack may im-
pact eth 500,000 or $146 million. [Online]. Avail-
able: https://www.crowdfundinsider.com/2017/11/124200-ethereum-
parity-hack-may-impact-eth-500000-146-million/

C. F. Torres, J. Schiitte, and R. State, “Osiris: Hunting for integer bugs in
ethereum smart contracts,” in Proceedings of the 34th Annual Computer
Security Applications Conference. ACM, 2018, pp. 664-676.

W. A. W, G. J. Pace, and G. Schneider, “Smart contracts: A Kkiller
application for deductive source code verification,” 2018.

zak100 and S. Fontaine. (2019, Jun) Com-
pilation error using safemath. [Online]. Avail-
able: https://ethereum.stackexchange.com/questions/71726/compilation-
error-using-safemath

J. Gao, H. Liu, C. Liu, Q. Li, Z. Guan, and Z. Chen, “Easyflow: Keep
ethereum away from overflow,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), 2019, pp. 23-26.

E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu, “Kevm: A
complete semantics of the ethereum virtual machine,” in 2018 IEEE

31st Computer Security Foundations Symposium (CSF). 1EEE, 2018,
pp. 204-217.

(2020) Dos with block gas limit. [Online]. Available:
https://swcregistry.io/docs/SWC-128

zak100 and user19510. (2019) Error in declaring a
sized array: Generating no gas exception. [Online].

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

Available: https://ethereum.stackexchange.com/questions/71734/error-
in-declaring-a-sized-array-generating-no-gas-exception

P. Hall, eth, Oxcaff, axic, R. McCone, P. Bylica, and T. Hess. (2017,
Jan) Why does a solidity throw consume all gas? [Online]. Avail-
able: https://ethereum.stackexchange.com/questions/2307/why-does-a-
solidity-throw-consume-all-gas

P. Vessenes88. (2016, jun) Send with throw is dangerous.
[Online]. Available: https://vessenes.com/ethereum-griefing-wallets-
send-w-throw-considered-harmful/

S. Gholami. (2019, apr) What-is-smart-blockchain? [Online]. Available:
https://hackernoon.com/what-is-smart-blockchain-4b134275e90f

R. R. Padalia and abb. (2018, Jan) Un-
able to replicate tx.origin attack. [Online]. Avail-
able: https://ethereum.stackexchange.com/questions/38490/unable-to-

replicate-tx-origin-attack,

A. Mavridou, A. Laszka, E. Stachtiari, and A. Dubey, “Verisolid:
Correct-by-design smart contracts for ethereum,” CoRR, vol.
abs/1901.01292, 2019.

Y. Feng, E. Torlak, and R. Bodik, “Precise attack synthesis for smart
contracts,” CoRR, vol. abs/1902.06067, 2019.

E. Albert, P. Gordillo, B. Livshits, A. Rubio, and I. Sergey, “Ethir: A
framework for high-level analysis of ethereum bytecode,” CoRR, vol.
abs/1805.07208, 2018.

Y. Hirai, “Defining the ethereum virtual machine for interactive theorem
provers,” in Financial Cryptography and Data Security - FC 2017
International Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA,
Sliema, Malta,, vol. 10323. Springer, 2017, pp. 520-535.

D. P. Mulligan, S. Owens, K. E. Gray, T. Ridge, and P. Sewell, “Lem:
Reusable engineering of real-world semantics,” SIGPLAN Not., vol. 49,
pp. 175-188, 2014.

T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts
devour your money,” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2017, pp.
442-446.

A. Mavridou and A. Laszka,
contracts: A finite state machine based approach,”
abs/1711.09327, 2017.

I. Grishchenko, M. Maffei, and C. Schneidewind, “Ethertrust: Sound
static analysis of ethereum bytecode,” 2018.

H. Wang, Y. Li, S.-W. Lin, L. May, and Y. Liu, “Vultron: Catching
vulnerable smart contracts once and for all,” in Proceedings of the
41st International Conference on Software Engineering: New Ideas and
Emerging Results. 1EEE Press, 2019, p. 1-4.

C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard:
Finding reentrancy bugs in smart contracts,” in 20/8 IEEE/ACM 40th
International Conference on Software Engineering: Companion (ICSE-
Companion). 1EEE, 2018, pp. 65-68.

N. Ambroladze, “Fast and scalable analysis of smart contracts,” Master’s
thesis, ETH Zurich, Departement of Computer Science.

S. Dass and A. S. Namin, “Vulnerability coverage for adequacy security
testing,” in SAC '20: The 35th ACM/SIGAPP Symposium on Applied
Computing, online event, [Brno, Czech Republic], March 30 - April 3,
2020, 2020, pp. 540-543.

——, “Evolutionary algorithms for vulnerability coverage,” in 44th
IEEE Annual Computers, Software, and Applications Conference,
COMPSAC 2020, Madrid, Spain, July 13-17, 2020, 2020, pp. 1795-
1801.

F. Abri, S. Siami-Namini, M. A. Khanghah, F. M. Soltani, and A. S.
Namin, “Can machine/deep learning classifiers detect zero-day malware
with high accuracy?” in 2019 IEEE International Conference on Big
Data (Big Data), Los Angeles, CA, USA, December 9-12, 2019, 2019,
pp- 3252-3259.

N. Tavakoli, “Seq2image: Sequence analysis using visualization and
deep convolutional neural network,” in 44th IEEE Annual Comput-
ers, Software, and Applications Conference, COMPSAC 2020, Madrid,
Spain, July 13-17, 2020, 2020, pp. 1332-1337.

“Designing secure ethereum smart
CoRR, vol.

Authorized licensed use limited to: Texas Tech University. Downloaded on July 31,2021 at 20:09:55 UTC from IEEE Xplore. Restrictions apply.

