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Abstract

High-resolution vehicle trajectory data can be used to generate a wide range of performance measures and facilitate many
smart mobility applications for traffic operations and management. In this paper, a Longitudinal Scanline LiDAR-Camera
model is explored for trajectory extraction at urban arterial intersections. The proposed model can efficiently detect vehicle
trajectories under the complex, noisy conditions (e.g., hanging cables, lane markings, crossing traffic) typical of an arterial
intersection environment. Traces within video footage are then converted into trajectories in world coordinates by matching
a video image with a 3D LiDAR (Light Detection and Ranging) model through key infrastructure points. Using 3D LiDAR data
will significantly improve the camera calibration process for real-world trajectory extraction. The pan-tilt-zoom effects of the
traffic camera can be handled automatically by a proposed motion estimation algorithm. The results demonstrate the poten-
tial of integrating longitudinal-scanline-based vehicle trajectory detection and the 3D LiDAR point cloud to provide lane-by-
lane high-resolution trajectory data. The resulting system has the potential to become a low-cost but reliable measure for

future smart mobility systems.

Traffic operations and management rely heavily on the
traffic data collected from intersections and roads.
Efficient and reliable traffic sensing and detection
empower traffic managers to measure and assess traffic
conditions objectively, mitigate traffic congestion, and
adjust traffic signal timing. With high-resolution vehicle
trajectory data, we can effortlessly estimate intersection
delay, travel time, Level of Service (LOS), and so forth.
The trajectory data can contribute to incident manage-
ment, active traffic control, and speed harmonizing,
improving the safety and mobility—ranging from indi-
vidual intersections to the entire roadway network. In
the era of connected and autonomous vehicles (CAV),
vehicle trajectories obtained from roadside sensors play a
critical role for many V2I (Vehicle to Infrastructure)
applications such as Cooperative Adaptive Cruise
Control, Dynamic Merge Assistance, and Eco-Traffic
Signal Timing. However, many current traffic sensing
technologies cannot satisfy the data needs of CAV appli-
cations. For instance, GPS position data can have errors
up to a few meters, which is not sufficiently accurate for
vehicle positioning. In this paper, we developed a
LiDAR-Camera system to extract vehicle trajectories

from traffic video and then generated physical vehicle
positions by mapping the 2D video to 3D LiDAR data,
considering recent trends of integrating 3D infrastructure
data into infrastructure management and maintenance.
Recently, transportation infrastructure data has
evolved from 2D map data into the high- definition (HD)
3D map data. These HD map data contain rich spatial
information and can provide detailed infrastructure infor-
mation for multi-resolution and multi-level analysis.
Leading technology companies, as well as public agen-
cies, are now shifting to 3D point cloud data for model-
ing complex urban environments. For instance, 23 state
Departments of Transportation in the United States
reported having already transitioned to 3D modeling for
Civil Integrated Management (CIM) including Utah,
Washington, and Oregon (/). With the growing number
of 3D map applications, users such as infrastructure
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administrators, government agencies, and researchers can
now access a large amount of point cloud data.

This paper makes two major contributions. On the
one hand, a new longitudinal scanline-based trajectory
detection model is developed for the more complex arter-
ial intersection environment to provide high-resolution
vehicle trajectory data in traffic videos. The new model
uses an integrated adaptive background and foreground
subtraction method to cope with the complex noise con-
ditions found at arterial intersections. On the other hand,
the 3D infrastructure point clouds collected by static
LiDAR scanning were used to convert pixel trajectories
in video footage to real-world trajectories by matching
feature points between the 2D video image and the 3D
infrastructure point cloud. The combination of 3D infra-
structure data and computer vision can provide a low-
cost, high-accuracy, and more scalable solution for data
collection in traffic operations and smart mobility
applications.

Literature Review
Traffic Video Analytics

Compared with many other traffic sensing devices, traf-
fic cameras have apparent advantages, which can make
them a cost-effective solution in the service of the
infrastructure-based detector. Because of their capability
to provide rich information and a large coverage area,
CCTV Cameras have been applied for vehicle speed
measurement, traffic analytics, near-miss reporting, and
incident review. Their main disadvantage is that vision
sensors are sensitive to illumination changes. The video
image processing relies on external illumination, result-
ing in lower accuracy at night. To resolve this issue, the
video image detector is often used together with other
types of detectors to provide some level of backup, such
as Radar or Remote Traffic Microwave Sensor (RTMS).

Existing video-based vehicle detection and recognition
methods can be categorized as either motion-based meth-
ods or model-based methods. The motion-based method
employs motion information to segment moving objects
from the traffic scene between consecutive frames. In
contrast, the model-based approach identifies objects
based on their appearance using a pre-trained template.
Typical motion-based methods include frame differen-
cing, background subtraction, and the optical flow
method. Model-based methods include a Histogram of
Gradient (HOG) feature detector (2), Deformable Part
Model (3), and deep learning models (4, 5). The rise of
Al and deep learning has significantly advanced image
object detection in recent years. However, deep learning
models usually demand a substantial amount of training
data, severe computational cost, and sophisticated model
design.

Another commonly seen traffic video analysis is scan-
line based. A scanline is a group of pixels on seclected
lanes, which are used for object detection and tracking.
There are two types of scanline. One is the latitudinal
scanline, which is defined across the traveling path (6-9).
The other is the longitudinal scanline that is defined
along the traveling direction (/0—12). Most of the previ-
ous scanline-based vehicle detection can only produce
spot-specific traffic parameters, such as volume, vehicle
type, and spot speed.

A recent study by Zhang and Jin (/3) explored the
potential of using a High Angle Spatial-Temporal
Diagram Analysis (HASDA) model to generate high-
resolution vehicle trajectories with longitudinal scanlines
defined on the centerlines of traffic lanes. The proposed
model was developed for traffic video scenarios like
those from the NGSIM (Next-Generation Simulation)
project. However, directly applying HASDA to medium-
angle intersection traffic video can be quite challenging.
HASDA raises several key issues. First, the pixel-to-
physical coordinate transformation methods that require
manually picking and measuring the distance along the
direction of traffic in HASDA will be inefficient for
arterial intersection scenarios with curved vehicle trajec-
tories for turning movements and pan-tilt-zoom (PTZ)
operations by roadside cameras. Second, the noise condi-
tions at arterial intersections are much more complex,
especially considering that an intersection is a space
shared by vehicles and pedestrians and the amount of
traffic control devices, markings, and wirings at the
intersection. Third, with medium-angle cameras, the
vehicle occlusions become more severe. Finally, vehicle
trajectories at arterial intersections have more frequent
stop-and-go trajectories because of signal control. In this
paper, a LIDAR-Camera (3D-2D) matching method is
proposed to address the coordinate transformation
issues. An improved video processing model is proposed
with significant enhancement on most of the modules in
the HASDA model to address the image processing chal-
lenges for medium-angle arterial intersection traffic
video.

Traffic Camera Calibration

Camera calibration is to provide a mapping relationship
between real-world coordinates and a 2D image, which is
the foundation for extracting vehicle trajectories, measur-
ing speeds, and acquiring other traffic information from
video footage. Some camera calibration techniques
require detection of the vanishing point (VP) in the 2D
image, which is the point on the image plane formed by
the convergence of mutually parallel lines in three-dimen-
sions. Others are using reference objects to calculate the
camera pose based perspective transformation. Dailey,
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Cathey, and Pumrin (/4) developed an algorithm to esti-
mate mean traffic speed from uncalibrated cameras with-
out knowing information such as camera focus, tilt, or
angle. Their algorithm is constrained to several assump-
tions, such as the limitation of the speed of the vehicle,
motion constraints on the road plain, linear change of
the scale factor, and known vehicle length distribution.
Schoepflin and Dailey (/5) presented a three-stage
method to calibrate the roadside camera to turn it into a
speed sensor for traffic management. Their model used
the motion of the vehicle to estimate the camera position
and calibrated the camera by determining the VP of the
roadway. Cathey and Dailey (/6) proposed an algorithm
to calibrate a PTZ camera, consisting of three phases: (1)
lane boundary detection, (2) computation of VP and
image straightening transformation, and (3) calculation
of the image-to-highway scale factor (feet per pixel).
Grammatikopoulos, Karras, and Petsa (/7) developed an
approach for the automatic estimation of camera para-
meters (camera constant, location of principal point, and
two coefficients of radial lens distortion) from images
with three VPs of orthogonal directions. Dubska et al.
(18) proposed a fully automatic camera calibration
method without the manual setting under various road
conditions. Their approach detects and tracks local fea-
ture points of moving vehicles and uses the trajectories of
tracked points to obtain VP corresponding to the direc-
tion of moving vehicles. Luvizon et al. (19) used the pla-
nar of the inductive loop detector as a reference object to
construct a homography matrix for measuring vehicle
speed from license plate detection. Do et al. (20) devel-
oped a method of calibration to measure traffic speed by
drawing an equilateral triangle on the ground as a 2D
reference object. Then they solve the three configuration
parameters of height h, the tilt angle {5, and the focus dis-
tance f. You and Zheng (27) developed a dynamic cali-
bration method by obtaining two VPs, namely the VP in
the direction of the lane traveled and the orthogonal van-
ishing point. More recently, Sochor et al. (22) developed
a deep learning model to assign a 3D bounding box for
the detected vehicle. Based on the outputs of the deep
learning model, they can obtain two vanishing points for
camera calibration. Their result reduced the distance
ratio error of vanishing point detection from 0.18 to
0.09, which beat the previous state-of-the-art model.
Sochor et al. (23) established a benchmark dataset for
evaluating different traffic camera calibration methods.
The speed of vehicles in the dataset was collected using
LiDAR and verified through GPS trackers. Bhardwaj
et al. (24) proposed the AutoCalib system for scalable,
automatic calibration of traffic cameras, using a deep
learning model to extract selected key-point features
from vehicle images to produce a robust estimate of
the camera calibration parameters automatically. Their

model relies on the car’s known geometric parameters
(e.g., the distance between the two taillights).

Some of the traffic camera calibration methods men-
tioned above are based on VPs inferred from moving
objects, which make those models sensitive to environ-
mental variations. Other models that are based on refer-
ence objects are hard to deploy in practice because traffic
operators cannot move the reference object every time
the PTZ camera scene changes.

Mobile LiDAR Technology and LiDAR-Camera
Integration

LiDAR sensors, including mobile LIDAR, airborne, and
static LIDAR, have been used extensively in transporta-
tion studies like vehicle and pedestrian detection, object
localization, and trajectory tracking. LiDAR-based map-
ping services and sensing technology play a critical role
in self-driving vehicles executing complex maneuvers. A
wide range of spatial information can be extracted from
LiDAR point cloud data including road level (e.g., road
surface, lane markers, driving lines, cracks, and man-
holes), object-level analysis (e.g., buildings, trees, vehi-
cles, and power lines), to building-structure element level
analysis (e.g., facade, doors, windows, roofs).

A lot of research has explored the use of LIDAR for
automated urban on-road object detection and extraction
(25-27). For example, Zai et al. (28) proposed an effec-
tive 3D road boundary extraction by employing super-
voxels and graph cuts on MLS (Mobile LIDAR System)
data. Other studies, such as Xu et al. (29), developed a
method for automatic extraction of road curbs and eval-
uated their method on a large scale of residential and
urban area mobile LiDAR point clouds. Additionally,
Yang et al. (30) presented a technique that can realize the
automated extraction of road markings from mobile
LiDAR point clouds. In this study, 3D point clouds were
converted into 2D geo-referenced feature images, and
road markings were filtered by controlling LIDAR inten-
sity and elevation value. Finally, road marking outlines
were extracted, based on prior knowledge of road mark-
ing shape and arrangement. Yu et al. (3/) proposed an
algorithm using a multi-thread computing strategy to
detect urban road manhole covers with MLS data. Other
published studies focus on automated urban object
extraction, including traffic signs, trees, buildings, vehi-
cles, powerlines, and so forth (32-35). Yang et al. (36)
proposed a method for urban object extraction with
mobile LiDAR data. They generated multi-scale super-
voxels and reduced computing costs by segmenting
super-voxels. Finally, their approach was validated with
large datasets and achieved accuracy between 90% and
96%. Some studies focus on the building element extrac-
tion from MLS data. For example, MLS data have been
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successfully used in window and fagade detection in the
study of Wang et al. (37) and Arachchige et al. (38).

Another important topic about LiDAR is the sensor
fusion of LiIDAR and camera, which has received increas-
ing attention over the years. Cameras can provide rich tex-
ture and color information, while LiDAR can provide
accurate spatial data. When fusing them, it can provide
depth information for the pixels in the camera image with
reliable 3D point clouds, which are useful in velocity estima-
tion for precise vehicle tracking and autonomous driving.
Extensive studies have been explored on the registration
between LIDAR and camera imagery. The most common
approaches require the existence of known targets in the
scene (39—43). In these studies, checkerboards and other
types of target (e.g., triangles, circles, or white-to-black tran-
sitions) that are observable by both LiDAR and camera
were used. For example, Zhang et al. (39) exploited a planar
checkerboard and used nonlinear least-squares optimiza-
tions to calibrate a single optical camera with a 2D scanner.
In a study by Narodistsky et al. (42), the calibration prob-
lem is described as a set of polynomial equations, and six
correspondences are minimally required for the alignment
of the LIDAR-Camera system. Recently, more research has
attempted to automate the calibration process using fea-
tures in the observed scene, without markers or targets. For
example, Pandey et al. (44) addressed automatic targetless
extrinsic calibration by maximizing mutual information
between the image and the 3D LiDAR-Camera. It used the
known intrinsic value of the camera and estimated the
extrinsic parameters to project LIDAR onto camera ima-
gery. The mutual information value was computed by com-
paring the LiDAR reflectivity with the intensities value
from camera images. In another study proposed by Li et al.
(45), the registration of a panoramic image sequence and
mobile laser scanning point clouds in the urban environ-
ment were estimated by using parked vehicles as registra-
tion primitives.

In contrast, there has been minimal research on PTZ
camera calibration using infrastructure 3D LiDAR data
for vehicle trajectory detection. Previously published
studies of the combination of LiDAR (for range informa-
tion) and camera systems (“for better recognition”) have
focused on the dynamic data fusion between image
objects detected in traffic video and the corresponding
3D point cloud clusters identified in mobile LIDAR data.

In this paper, the focus is to use the static LIDAR 3D
point cloud to assist the physical trajectory extraction.
The camera and LiDAR capture data at the same time
and in the same location in existing papers (43—45).
Those methods assume the LiDAR-Camera alignment
can be accurately estimated when the camera and
LiDAR are capturing the same scene on a mobile plat-
form. Such an assumption cannot apply to the proposed
LiDAR-Camera system for vehicle trajectory detection.

Video Streams 3D Infrastructure Point Cloud Data

Raw Video data Raw LiDAR data

l l

PTZ Camera
Motion Estimation

| l

Scanline-based Vehicle Calibration fJfLiDAR
Trajectory Detection (2D) And CCTV Camera

I I
}

Real World Trajectory Outputs

LiDAR Processing

Figure I. Dataflow of LiDAR-assisted longitudinal-scanline-based
traffic video analysis.
Note: LiDAR = light detection and ranging; PTZ = pan-tilt-zoom.

In this paper, the traffic cameras capture the dynamic
roadway conditions, while the pre-collected static
LiDAR 3D model is used as the basis for mapping pixel
trajectories to 3D coordinates.

Methodology
Overall Workflow

The proposed model will use both static and dynamic data
for vehicle trajectory generation. The overall workflow is
illustrated in Figure 1. As a preprocessing step, the 3D
infrastructure point cloud data are used to establish coor-
dinate transformation matrices between video and physical
coordinates. The main video analytic workflow is depicted
on the left branch in which raw video data are processed
and analyzed to generate pixel trajectory, while the right
branch uses LiDAR data to conduct 2D-3D matching to
convert the pixel coordinates into State Plane Coordinates
for the generation of physical trajectories.

Scanline-Based Trajectory Extraction

The scanline-based trajectory extraction consists of four
main steps, including the spatial-temporal map (ST Map)
generation, preprocessing, vehicle strand detection, and
pixel trajectory detection.

Scanline Generation

Scanlines are defined as the centerline of traveling lanes
within the detection areas. They consist of a complete
pixel line L= {(X1,11), (X2, 12), ';"({(1’ Y;)}A defined

through  turning  points  {(Xe1,Ye1), (X2, Vo),
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e, ()? em> Yem) }. In the scanline-based method, the vehi-
cle movements are considered as the predictable factor
that follows the center of lanes traveled. To obtain each
pixel coordinate along scanline, a line-drawing algorithm
is introduced (46) as follows.

Bresenham’s Line Pixel Algorithm

Input: Given two consecutive control points (X ens Y, cn)
and (Xc(n +1)» Yc(n + l))
Outputs: The set Q of the coordinates of all pixels on
the straight line  between (Xon, Yeon)  and
(Xen+ 1) Yo+ 1)
Algorithm:
Initialization:
Calculate the STLine pixel spans and directions for
x and y coordinates, respectively:
Ax = abs(f(c(n +1) _ch): Ay = abs(?c(n +1) — i/cn)
S = Sgn(Xc(n +1) _ch)a S = Sgn(flc(n +1) — ?cn

-1, x<0
where sgn(x) = ¢ 0, x=0
1, x>0

Point Generation:
Initialize the STLine point set Q = {(X ens Yen) s
If Ax <Ay, then
E=2Ay — Ax,4 =2Ay, B=2Ay —2Ax,d =0
Fori=1,2, ..., Ax, Repeat the following
IfE<0:X=X+S8,,E=E+ 4
Else: Y=Y+ S8, X=X+S,E=E+B
Add (X, Y) to the STLine point set Q
Else (Ax = Ay):
E =2Ax — Ay, A = 2Ax, B = 2Ax — 2Ay
Fori=1,2,...,Ay, Repeat the following
IfE<0: Y=Y+ S, E=E+ A4
Else: Y=Y+ S8, X=X+S,E=E+B
Add (X, Y) to the STLine point set

Add Endpoint (Xc(n + 1) Ve + 1)) to Q

Figure 2 illustrates the user-defined scanlines in the
tested videos, which covered nine lanes at the signalized
intersection next to a train station to be used for model
evaluation.

Spatial-Temporal Map Generation. An ST Map (r,1)z 7 is
defined as the stacked scanline pixels from all video
frames,

where

r is the ordered position of an scanline pixel,

¢ 1s the video frame index,

R is the total number of points on the ST line, and

T is the total number of video frames in the evaluation
period.

The ST Map preserves trajectories of any moving objects
passing along the scanline over time. Each moving object

Figure 2. Scanlines defined at the experimental intersection site
near a train station.

Figure 3. ST Map and vehicle trajectories.
Note: ST = spatial-temporal.

will leave a trace that shows the path of the object, which
is named as vehicle strands. Each strand on the ST Map
represents a unique vehicle, as illustrated in Figure 3. By
using ST Maps for vehicle trajectory extraction, the con-
ventional two-step trajectory extraction algorithm con-
sisting of object detection and tracking over the full video
footage is simplified as a one-step algorithm of segment-
ing out the vehicle strands on ST Maps.

ST Map Preprocessing and Shadow Removal. Preprocessing
modules are necessary to remove the noise before trajec-
tory extraction, such as shadow removal and background
subtraction. However, because of the complexity of the
scene at the arterial intersections, a more adaptive back-
ground subtraction method is proposed to segment out
vehicle strands.

The shadow removal module uses a 3-by-3-pixel
neighborhood area to search for low-intensity and
texture-free areas that are induced by shadows. The
shadow removal results can be found in Figure 4.

ST Map Background Subtraction and Vehicle Strand Detection.
One key challenge of computer vision on arterial
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Figure 4. Sample results of shadow detection on ST Map.
Note: ST = spatial-temporal.

intersection video is its complex environment where
hanging wires, lane markings, roadside objects, and
crossing vehicles can all leave irregular stains that can
affect trajectory detection. However, ST Map has a use-
ful characteristic in that its background stays relatively
stable, and the normal changes in the background are
gradual. Applying background detection to ST Maps
becomes feasible and more efficient than conventional
frame-by-frame background subtraction methods. This
is a major improvement from the HASDA (/3) model in
which the targeted freeway scenes have mostly uniform
pavement colors.

In the proposed model, three major features, includ-
ing edge features, color features, and motion features are
fully integrated as an adaptive model for the complex
conditions of varying road surface color, infrastructure
noise conditions, and the traces of crossing traffic. The
three modules work as follows.

Adaptive Background Detection and Noise Removal. We
assume that the intensity level of the roadway pavement
and other static objects (e.g., light poles, cables, lane
markings) follows a normal distribution, while the vehi-
cle textures are usually randomly distributed, which is
shown in a histogram in Figure S5a. Different from
HASDA (/3), only one background color range is used
for the entire video because of the uniform color of each
freeway lane. The background scene studied in the pro-
posed model often has multiple colors, even on the same
STLine. Therefore, an adaptive background color thresh-
olding method is proposed to process the background
subtraction on each line of the ST Map.

The probability of any intensity level z given by the
intensity distribution of background and vehicle fore-
ground can be described as follows.

P(z) = Py'py(2) + Py'py(2) (1)

where
pi(z) is the probability distribution of background,

py(z) is the probability distribution of vehicles,

Py is the a-priori probabilities of background, and

P, is the a-priori probabilities of vehicles.

The intensity of roadway pavement and intensity of vehi-
cle strands often occupy different ranges on the histo-
gram. Considering that the background roadway is the
majority, the road pixel intensities can be defined by
background thresholds (77, 7,). Finding the optimal
background threshold and detecting background is
described in the following algorithm.

Algorithm: Histogram Based Background Detection

Input:

RGB Spatial-Temporal Map: S
Output:

Spatial-Temporal Map with uniform Background: Sy
Compute the median RGB value of ST Map
(Rum> Goi» Buy).

Convert S to Gray level image G.
For each row r in G: do

Compute the histogram of intensity distribution

H(r)

Find the valleys of H(r) on both sides as (7, T»)

If pixel(r) = T} and pixel(r) < T,

Set pixel(r) on S as (R, Gy, Bu).
End for
Ss =38
Return S;

Figure 5b shows a typical ST Map background from an
arterial scanline with multi-layer colors and different
types of static noises. Figure 5¢ shows the results of repla-
cing all background pixels with the uniform color.

The background detection module is the most critical
part of the scanline algorithm. In the previous HASDA
method (/3), the background thresholding method was
applied against the entire ST Map. However, the assump-
tion of the previous method does not hold in the new sce-
nario as the pavement color along the scanline may not
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Figure 5. Histogram thresholding based background detection method and sample results: (a) a normal distribution with the vehicle
textures randomly distributed, (b) a typical ST Map background from an arterial scanline with multi-layer colors and different types of
static noises; (c) the results of replacing all background pixels with the uniform color.

Note: ST = spatial-temporal.

Figure 6. Before-after histogram thresholding: (a) original ST Map
with multi-layer background noises and static noises, and (b) cleaned
ST Map after adaptive row-by-row background thresholding.

Note: ST = spatial-temporal.

be consistent because of the complex surrounding envi-
ronment. In this paper, the histogram thresholding
method was applied for each row on the ST Map, consid-
ering that the color of each row does not vary within a
certain time interval. Although the ST Map from a com-
plex intersection can be untidy because of additional
noise. We can easily clean out the static noise and ghost
vehicle strands by applying the histogram thresholding
method as shown in Figure 6.

Edge Detection based Strand Detection. The edge detection
methods are similar to those used in HASDA (73). The

Figure 7. Sample edge detection results for vehicle strands.

Canny edge detector is used to detect edges across different
directions adaptively. However, the outputs of the Canny
edge detector are incomplete and often lead to cracked seg-
ments, as is shown in Figure 7. Some additional morpholo-
gical operators are applied to fill the small gaps in-between
detected edges to form the vehicle strands.

ST Map Time Differencing. Time differencing on the ST
Map is defined as the maximal absolute differences of

RGB colors between two neighboring columns on the
ST Map (r,?)

AR(r,t) = |R(r,t) — R(r,t — 1)
AG(r,t) = |G(r,t) — G(r,t — 1)] (2)
AB(r,t) = |B(r,t) — B(r,t — 1)]

where AR(r,t), AG(r,t), and AB(r,t) are the absolute
color differences between the current ST Map point and
its point to the left. A motion point is determined by
checking if the maximal values of its absolute time differ-
encing from all three channels to its two neighboring
points exceed the threshold Tiot0n as follows
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Motion(r, t) = { 0

Figure 8 shows a sample time differencing result.

After background detection, edge detection, and time
differencing, we combine the three results together to
obtain the foreground vehicle strands. Then a connected
component labeling is used to connect all 8-direction con-
nected foreground areas.

Connected-Component-Based Denoising. In the HASDA (13)
model, because of the cleanness of the freeway scene, the
connected components only need minor image morpho-
logical operations. In arterial intersection scenarios, the
connected components generated from vehicle strand
detection still contain noise from crossing traffic and resi-
duals of background subtraction.

e Background residuals: In the proposed algorithms,
a moving window is defined to detect and remove
horizontal background noise. If there is a horizon-
tal line with a length longer than 1/2 of the win-
dow, then the static line is identified. The detected
line is then compared with a vertical threshold, for
example, 10 pixels, to ensure it is not induced by
stopped vehicles at intersection or congestion.

Figure 9a shows a residual background noise from a sta-
tic object. The noise was removed through the moving-
window-based line detection and removal.

e Crossing traffic: Crossing vehicles are typically
small foreground areas with limited temporal
span. Thresholds on the total pixel count and the
duration of a connected area are used to eliminate
those crossing traffic noises. Figure 10 illustrates
how those crossing vehicles are identified and
removed with the crossing traffic removal module.

1, ifmax(AR(r,t),AG(r,t),AB(r,t), AR(r,t + 1),AG(r,t + 1),AB(r,t + 1))> Tiyotion

(3)

Otherwise

Pixel Trajectory Extraction. Similar to the pixel trajectory
extraction methods in the HASDA model, we extract
trajectory by detecting the bottom-left edges of vehicle
strands. The edges of vehicle strands correspond to the
movement of the front bumpers of vehicles. Therefore,
the complete movement of the car along the scanline can
be obtained. On completion of trajectory profiles on the
ST Map, we can acquire the vehicle trajectories in video
image coordinates, as we know the video pixel coordi-
nates of all points of the scanline. The results of gener-
ated trajectory profiles on the ST Map are plotted in
Figure 11.

Several post-processing modules were added to the
HASDA vehicle trajectory extraction algorithm to fix
some irregularities in the detected vehicle trajectories.

e Backward travel removal: The connected trajec-
tories are processed to ensure no background tra-
veling occurs by always setting the final pixel
trajectory

r (1) = max(r(1),7 € [0,1]) (4)

where r(¢) is the raw trajectory detected.

e Zigzagging removal: Zigzagging is a phenomenon
when two close-by vehicle trajectories have broken
pieces that may be interconnected.

As illustrated in Figure 12a, two trajectories, one from
a stopped vehicle at the intersection and another from an
approaching vehicle upstream, are stitched together,
resulting in zigzagging. Some motion constraints used to
prevent the zigzag connections between two trajectories.
After processing the zigzagging trajectory, the trajectory
vehicle is realistic, as shown in Figure 125.

Figure 8. Sample strands detection results using time differencing.
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(a)

(b)

Figure 9. Sample results for background residual noise removal: (a) binary connected components with horizontal noises, and (b) clean

binary connected components of vehicle strands.

Figure 10. Sample results for crossing traffic removal: (a) binary connected components with crossing traffic; and (b) binary connected

components after removing crossing traffic.

Figure 11. Sample detected pixel trajectories on ST Map.
Note: ST = spatial-temporal.

LiDAR Processing and Camera Calibration

Estimating Video Distortion. Correcting the lens distortions is
critical to an accurate projection result. Without a reason-
able estimate of the camera distortion, it is difficult to cal-
culate the precise projection between the video frame and

point cloud. The camera calibration and lens un-distortion
steps are implemented with the OpenCV toolbox.

Raw LIiDAR Processing. The New Brunswick mobile
LiDAR dataset is hosted in the online mapping system
(Figure 13b). LiDAR data can be retrieved by entering
the GPS information of the study area (40.496326 N and
—74.446131 W). The raw LiDAR point cloud obtained
from the online mapping system is shown in Figure 13d.
After this step, we first removed the highlighted building
in Figure 13¢, which blocks the studied area (see Figure
13¢). Then, we removed the point cloud out of the cam-
era view and cleaned the target area by eliminating the
noise points, and the points belong to vehicles, pedes-
trians, trees, and so forth. The point cloud model study
area after cleaning is shown in Figure 13f.

In our study, the LiDAR data used for camera-
LiDAR calibration are supposed to contain only the
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(a)

(b)

Figure 13. Demonstration of the mobile LiDAR based 3D infrastructure point cloud data collection and processing: (a) Rutgers mobile
LiDAR system, (b) New Brunswick mobile mapping database, (c) study area on Google Map, (d) raw LiDAR data, (e) LiDAR data of test

site before cleaning, and (f) LiDAR data after cleaning.
Note: LiDAR = light detection and ranging.

static infrastructure objects to avoid the misalignment of
the feature points. We consider the points to belong to
non-infrastructure objects (e.g., vehicles, pedestrians,
etc.) as noise points and should be removed before cam-
era-LiDAR calibration.

Camera Calibration with 3D LiDAR Data. The camera cali-
bration process is to identify the relationship between
image pixels with real-world coordinates, where the

relationship is determined by both intrinsic and extrinsic
parameters. Intrinsic parameters are fixed values that are
composed of focal length, optical center, and screw coef-
ficients. Extrinsic parameters are usually decomposed to
rotation and translation concerning world coordinate.
Figure 14 shows how to relate the trajectory points
from the ST Map to video image coordinates and then
transform the trajectory points to real-world coordinates.
The following part of this section will explain how
to link video coordinates (u,v) to real-world GPS
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Figure 14. Three coordinate systems in LIDAR-Camera system using scanline method: (a) spatial-temporal map coordinates, (b) traffic

video coordinates, and (c) LIDAR model coordinates.
Note: LIiDAR = light detection and ranging

coordinates (X, Y,Z) using matched features on both a
2D camera and the 3D LiDAR model. The relationship
between 2D points and 3D points are represented as
Equation 5:

. X
Alv|=p|Y (5)
! I

where

(u, v) are video image pixel coordinates for a reference
point,

(X,Y,Z) is world GPS coordinates for a reference
point,

\ is a scalar,

Kin = intrinsicparameters,

Ky = extrinsicparameters, and

P = Kintkext, P is 3*4 projective matrix.

The intrinsic parameter can be obtained through cam-
era calibration in the lab or from known camera model
parameters. The method used to compute matrix P given
intrinsic parameter is called the PnP problem. “Given n
(n= 3) 3D reference points in the object framework and
their corresponding 2D projections, to determine the
orientation and position of a fully calibrated perspective
camera is known as the perspective-n-point (PnP) prob-
lem” (47).The following equations describe how to solve
the PnP problem using reference points.

Equation 5 can be rewritten as Equation 6

P | X (6)

where P; is the ith row in P and X is the world coordinate
of reference point.

_PX

"= pX ™
_ PX

Y= PX ®)

Equations 7, 8 can be written as:

(Pl—llpg)X:() (9)

(P2 — VP3)X =0 (10)
By rearranging the items, we obtain Equation 11 as:

PT
—uX’ ] 0
)=o)

Py

X of
<0T X’

For n points, we can stack Equation 11 for all refer-
ence points into a big equation:

b el 0; —ulX; 0
T
0 Xl ) _VIX1 PlT 0
P | = (12)
. PT .
XT o7 —u,XT ’ 0
of XxI' —v, X! 0

Equation 12 can be simply represented as the Equation 11
AX =0 (13)

where A is a 2n * 12 matrix, which is known from 3D
and 2D reference points and X is 12 by one matrix that
contains all parameters in projection matrix P.

The problem of solving parameter in P is converted to
the problem to minimize 4X?, which can be considered
as the least square problem.
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As we know the projection matrix P = Ki, [Rt], where
R is the rotation matrix and t is the translation vector. So,
the rotation matrix can be recovered through Equation 14.
R = K (P13 (14)
where P is the first three columns of projection matrix
P.
To enforce the orthogonal property of rotation matrix
R, we need to do the Singular Value Decomposition
(SVD) in Equation 15.

UDV! =R (15)

Then we obtain optimized rotation matrix
Randtranslationvectort through the equation below.

R" =UVT (16)
t = K 'Py/o, where diag(o),05,03) =D.  (17)

Therefore, we reconstruct the projection matrix P
through the equation below.

P=K[R"{] (18)

OpenCV’s Camera Calibration and 3D Reconstruction
API (Application Programming Interface) are used in
this research to obtain all projection matrix parameters.

PTZ Camera Recdlibration using Motion Estimation. One cru-
cial issue for traffic monitoring is the ever-changing
remote-controlled PTZ cameras. In our system, The
LiDAR-Camera model mentioned above is initially well-
calibrated at the time when the traffic camera is in use.
To restore the 3D/2D relationships of the PTZ camera,
the relative camera motion between the pre-calibrated
camera and zoomed/rotated camera is identified. There
are two categories of motion estimation methods, direct
methods versus indirect methods. Direct methods include
phase correlation, block matching, and optical flow.
Indirect methods often refer to feature-based methods.
In this study, the indirect method of motion estimation is
used to estimate the camera movement.

Figure 15 shows the matched SIFT (scale-invariant
feature transform) features (48) between a calibrated
camera and a moving camera. Once the matched features
are found, we can establish the coordinate system trans-
formation between the calibrated camera image and the
real-time camera using perspective transformation. Any
pixel from the video frames after PTZ operations will be
projected onto the pre-calibrated camera image.
Therefore, the PTZ camera 2D coordinates can be trans-
formed into 3D coordinates using the calibrated
LiDAR-Camera system.

Figure 15. SIFT feature matching between the original image and
image after PTZ operations and sample ST line recalibration results.
Note: SIFT = scale-invariant feature transform; PTZ = pan-tilt-zoom; ST =
spatial-temporal.

Multiple images from different angles will be pre-
calibrated using the LIDAR model during the initial stage
to cover the entire surveillance areca. The pre-calibrated
camera images will be used as static data. Every time the
traffic operator moves the PTZ camera, the program will
automatically find the best match from candidate cali-
brated images to build a new 2D-3D transformation. This
method indirectly recalibrates the PTZ camera by match-
ing the new camera scene with pre-calibrated photos,
resulting in better accuracy and quick response.

Model Validation and Evaluation

Scanline Detection Validation and Evaluation Process

The trajectory detection results of the proposed model
are validated and evaluated based on both the trajectory
level and the point level. The ground-truth traffic volume
data were provided through a commercial video analysis
platform (49). We validated the trajectory-level perfor-
mance by comparing the ground-truth traffic volume
with the proposed scanline-based traffic volume at four
cross-sections, as shown in Figure 16a.

To evaluate the point-level performance of scanline-
based trajectory model, we developed a manual video
counting tool with VLC (VideoLAN Client) media player
API to collect the sampled video timestamps of vehicles
passing some pre-determined scanline points as shown in
Figure 16b. Two points were pre-defined along each
scanline. One is the entry point, representing the point
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Figure 16. 2D video detection and 3D LiDAR model validation: (a) ground-truth volume data, (b) virtual lane detector (VLD) for
trajectory point validation, (c) reference points for camera calibration in both video coordinates and GPS coordinates, and (d) 2D-3D

matching results.
Note: LiDAR = light detection and ranging.

where vehicles are getting on the scanline. The other
point is the exit point, representing the point where cars
are getting off the scanline. When a vehicle hits the entry
point or endpoint along its traveling direction, we click
the button of the lane number on the VLC interface to
record the timestamp of that event. We then compare the
manually collect trajectory points with trajectory points
using the proposed method to evaluate the accuracy of
our proposed model.

The two-level trajectory detection results are presented
in the result analysis section.

LiDAR-Camera Projection Validation

We calculated the projective transformation matrix
between the LiIDAR point cloud and the CCTV video by
picking five key points in the study area (selected loca-
tions can be seen in Figure 16¢). To quantify the perfor-
mance and accuracy of the 2D-3D matching algorithm,

we prepared a validation dataset consisting of six points.
The pixel coordinates and GPS coordinates of each fea-
ture point in the validation set were recorded. We then
applied the computed 2D-3D projection matrix to trans-
form the 3D coordinates back to 2D pixel coordinates.
We used the Mean Squared Error (MSE) to estimate the
difference between the values of the projection result and
the recorded pixel coordinates. The MSE for validation
feature points is 1.7025 pixels given 2.7K image resolu-
tion, indicating good accuracy.

Table 1 shows the validation data, project errors, and
calibrated projection parameters for this LIDAR-Camera
system.

Study Area and Dataset
Video Data

The selected signalized intersection belongs to a small
urban corridor in the city of New Brunswick in New
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Table I. Validation of Proposed Calibration Method with Ground-Truth GPS and Photo Information

Point number Feature pixel coordinates

Actual world GPS

Calculated pixel with calibration

A [1334, 1343]

B [1464, 1285]

C [1650, 1208]

D [1712,1218]

E [1613, 1378]

F [1545, 1366]

Projection error

Calibration parameters Tx(m) Ty(m)
-280.279 149.841

[507030.1097,605701.4065,43.9999]
[507067.4849,605714.5925,43.6899]
[507130.5481,605736.7185,42.3899]
[507135.3601,605726.0935,41.8599]
[507054.9209,605662.6563,42.9499]
[507050.2029,605673.6563,43.2799]
MSE = 4.7106 pixel; Average pixel discrepancy = 1.7025 pixel
Tz(m)
141.0

[1334.11,1343.65]
[1462.95 1286.45]
[1653.95 1206.58]
[1713.00 1218.45]
[1614.62 1378.71]
[1546.61 1365.96]

o(deg)
1.83592

B(deg)
-1.11952

p(deg)
0.934099

Note: MSE = mean squared error.

Table 2. Scanline Vehicle Detection Validation Results

Trajectory-level comparisons

Direction number Direction Scanline detection volume Ground-truth data volume  Traffic count accuracy

| Southbound right 55 55 100.00%

2 Southbound left 132 120 90.00%

3 Eastbound through 119 126 94.44%

4 Westbound through 148 115 71.30%
Total count 454 416 90.87%

Point-level comparisons

Lane number Direction Number of sampled trajectory points Point-level time accuracy

| Southbound right turn 30 86.667%

2 Southbound left turn 94 80.85%

3 Westbound through 57 100%

4 Eastbound through 66 84.85

Average 88.09%

Jersey, which has access to a major highway, transit sta-
tion, university, hospitals, important company center
(Johnson & Johnson headquarters), and planned innova-
tion hub buildings. The testing video was taken during
the afternoon peak (4:30-5:00 pm) on Monday,
February 17, 2020. The camera was set up on the roof-
top of the 10th-floor parking garage with approximately
45° angle toward the intersection. By zooming in to the
intersection, the video mimics a typical roadside CCTV
traffic camera view.

LiDAR Data

LiDAR data were obtained by the Rutgers MLS, as
shown in Figure 13. The Velodyne LiDAR HDL-32E
was used in this case study. It has 32 channels and can
collect around 1.39 million points per second while main-
taining a precision accuracy of = 2 cm. The LiDAR data
collection range is between 80 m and 100 m. Mobile
LiDAR data for New Brunswick downtown were

collected on 02/17/2018. The test site (40.496326 N and —
74.446131 W) is close to New Brunswick Train Station
along Albany Street, which is one of the busiest streets in
relation to traffic volume in the city of New Brunswick.

Result Analysis

In this section, we will discuss the scanline-based vehicle
trajectory detection result, present projected physical tra-
jectory with a 3D LiDAR road map, and demonstrate
the potential benefits of using LiDAR-assisted video traf-
fic analysis.

Scanline-based vehicle trajectory detection results
(Table 2) show the detected vehicle data and ground-
truth data at both trajectory level and point level. The
total volume detection accuracy is 90.87% for all four
main approaches. Because of the tilted camera angle, the
scanline on one lane might capture vehicles from the
adjacent lane. The invasions of adjacent-lane vehicles
lead to duplicated counts of vehicle volume. A potential
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Figure 17. Color-coded vehicle trajectory for major directions: (a) southbound right turn, (b) southbound left turn, (c) westbound

through, and (d) eastbound through.

solution to remove duplicated counts is to find the con-
current detections on adjacent lanes.

The second half of Table 2 shows the point-level trajec-
tory detection results by comparing manually extracted
points with the model trajectory. An event is defined as a
vehicle hitting either the enter point or the exit point on the
scanline. The timestamps were recorded when we observed
a vehicle passing through the virtual lane detector on the
video. The average detection rate for point-level validation
is 88.09%. In Figure 17, most of the sampled points are
aligned with the trajectory outputs, which indicates a good
model performance for trajectory detection.

LiDAR-Camera Projection

Figure 17, a—d, shows the detected trajectories based on
travel distance along the scanline, including four major
directions for eight signal cycles in 10 min. The trajec-
tories are color coded, where red indicates a slower speed,
and blue indicates a faster speed. The black crossings are
sampled trajectory points using a virtual video counter to
validate the model at the point level.

In Figure 18, one cycle of trajectory data is presented
to provide the close inspection of model results. To better
illustrate how the trajectory on the ST Map is converted
into a physical trajectory. We provide the ST Map trajec-
tory picture in Figure 18e. As shown in Figure 18, d and
e, the physical trajectories are consistent with the vehicle
movement captured by the ST Map. Some issues can be
identified by comparing the pixel trajectory with the
physical trajectory. The vehicle trajectories at the bottom
of the ST Map are not detected efficiently. Because those
vehicles are too far from our camera, they overlap
together on the ST Map. In future improvement, the
remaining textures in these occluded areas, especially
those line features will be further explored.

Figure 19 illustrates the physical trajectory projected
on the 3D urban infrastructure map by using the 3D/2D
mapping method. This picture demonstrates many more
prominent features using the LiDAR system than other
camera calibration models. With the growth of large-
scale digital mapping systems, we can acquire more and
more realistic and extensible trajectory data using the
proposed system to build traffic flow profiles and pro-
mote various traffic studies.
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Figure 18. Examples of miss detection because of severe occlusions within one signal cycle: (a) southbound right turn, (b) southbound
left turn, (c) eastbound through, (d) westbound through, and (e) westbound through trajectory on the ST Map.

Note: ST = spatial-temporal.

Trajectory-Based Traffic Performance Measurement

Figure 20 is the illustration of two performance metrics
that can be used as intersection performance mea-
surements for operational analysis. Figure 20a is the

frequency heat map that shows the frequencies of
detected vehicles. The brighter areas indicate the higher
detected vehicle frequency, implying a queuing/conges-
tion issue, long waiting time, and limited capacity. As we
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Figure 19. Sample projected physical trajectories on high-
resolution 3D street model.

can see, the waiting time for the westbound lane is the
highest, which is consistent with our observation from
the video. This detection frequency map can be used to
diagnose traffic congestion to accommodate fluctuated
traffic.

Figure 20b is created after calculating the moving
speed of each object using the GPS position of each tra-
jectory point. The average speed heat map is a useful
performance metric for intersection safety management,
because of many crashes being speed-related. Speed pro-
file is critical to optimize signalized intersection based on
traffic flow theory, as there is a fundamental relationship
between speed, queue, and volume. However, without
LiDAR assistance, it is usually too difficult to know the
real-world speed characteristic of traveling vehicles from
just CCTV cameras.

In the future, CAV technology such as Eco-intersec-
tion Approach and Intelligent Signal Control will lead to
more harmonized speed characteristics. The performance
metrics generated from trajectory data are critical for
CAV-based traffic operation, as they can provide proac-
tive solutions and depict a better picture of the traffic
network.

Conclusion

Different from conventional detector data, trajectory-
based traffic data often provide greater detail and flexi-
bility when generating various types of performance
measure data for traffic operations and management.
However, real-time operational systems require accurate
but computationally efficient algorithms that can gener-
ate vehicle trajectories in real-time with conventional
CCTV traffic camera systems.

The proposed Longitudinal Scanline LiDAR-Camera
(LSLC) model has been built with significant improve-
ment to address the challenges brought by the complex
road surface, occlusion, noise because of hanging wires,
lane markings, control devices, stopping, and crossing
traffic. An adaptive background subtraction algorithm is
introduced to eliminate noises on ST Maps caused by
multi-color road surfaces, line blockages by intersection
control devices, wiring, and lane markings. A suite of
processing modules, including connected component fil-
tering and zigzagging removals, is proposed to signifi-
cantly improve the quality of the results. A proposed
recalibration algorithm further allows the proposed
model to quickly realign ST lines and re-project vehicle
coordinates after PTZ operations by estimating the cam-
era motion using the automatic SIFT feature matching
algorithm.

Westbound is
More Congested

p

..r""r Turning Vehicles
Have Lower Speed

Figure 20. Traffic analysis using scanline detection and LiDAR-assisted calibration: (a) detection frequency heat map, and (b) intersection

speed heat map.
Note: LIiDAR = light detection and ranging.
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The 3D point cloud collected from static LIDAR scan-
ning is used to build a clean 3D infrastructure model of the
arterial infrastructure. The resulting 3D model can then be
used to establish the 2D-3D transformation model to con-
vert pixels in the video frame and their physical points in
the 3D model to generate vehicle trajectories in world coor-
dinates. Compared with previous traffic camera calibration
methods, the LIDAR-assisted traffic video analysis method
does not rely on VP detection, reference objects, or statistic
assumptions about average speed or vehicle dimensions.
The proposed model turns the ubiquitous CCTV traffic
camera into a high-fidelity data source that can facilitate
innovative traffic management and a variety of CAV appli-
cations in the future.

Future work in this study includes the further explora-
tion of computer vision algorithms that can deal with
severe occlusions among remote pixels and other poten-
tial computer vision noise caused by weather, illumina-
tion, and heavy vehicles. Furthermore, it is crucial to
study the scaling of the proposed applications to large
arterial networks through cloud computing platforms.
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