
Mathematische Annalen
https://doi.org/10.1007/s00208-021-02211-9 Mathematische Annalen

Minimal volume entropy of free-by-cyclic groups and
2-dimensional right-angled Artin groups

Corey Bregman1 ·Matt Clay2

Received: 27 August 2020 / Revised: 21 April 2021 / Accepted: 13 May 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Let G be a free-by-cyclic group or a 2-dimensional right-angled Artin group. We
provide an algebraic and a geometric characterization for when each aspherical sim-
plicial complex with fundamental group isomorphic toG has minimal volume entropy
equal to 0. In the nonvanishing case, we provide a positive lower bound to the min-
imal volume entropy of an aspherical simplicial complex of minimal dimension for
these two classes of groups. Our results rely upon a criterion for the vanishing of the
minimal volume entropy for 2-dimensional groups with uniform uniform exponential
growth. This criterion is shown by analyzing the fiber π1-growth collapse and non-
collapsing assumptions of Babenko–Sabourau (Minimal volume entropy and fiber
growth, arXiv:2102.04551, 2020).

1 Introduction

The volume entropy of a finite simplicial complex X equipped with a piecewise Rie-
mannian metric g is defined as

ent(X , g) = lim
t→∞

1

t
log vol(Bx0(t), g̃)

where Bx0(t) is the ball of radius t centered at some point x0 in the universal cover
˜X and g̃ is the pull-back metric on ˜X . This limit always exists and does not depend
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on the choice of x0. Initially defined as a Riemannian manifold invariant, the volume
entropy measures the exponential growth rate of the volume of balls in the universal
cover and is related to the growth of the fundamental group (Švarc [35] and Milnor
[26]) and to the dynamics of the geodesic flow. Specifically, in this context, Dinaburg
showed that the volume entropy gives a lower bound on the topological entropy of the
geodesic flow [14]. Manning further showed that if the sectional curvatures for the
metric are all nonpositive, then the volume entropy equals the topological entropy of
the geodesic flow [24].

In order to obtain a topological invariant of X , it is natural to optimize the volume
entropy over all piecewise Riemannian metrics. To get an invariant that is nonde-
generate, we must take into account the effect of scaling the metric by a constant
and counteract this by multiplying the volume entropy by an appropriate root of the
volume. This leads to the notion of minimal volume entropy, introduced by Gromov
originally in the context of Riemannian manifolds [18]. To this end, we set

ω(X , g) = ent(X , g) vol(X , g)1/ dim(X).

The minimal volume entropy of a finite simplicial complex X is defined by

ω(X) = inf
g

ω(X , g)

where g runs over all piecewise Riemannian metrics on X .
WhenM is a closed, orientable n-manifold,Gromov showed thatω(M)n ≥ cn ‖M‖

where ‖M‖ is the simplicial volume of M and cn > 0 is a constant that only depends
on the dimension [18]. In dimensions at most 3, the invariants ω(M)n and ‖M‖ are
proportional, as we explain below. It is unknown whether or not the reverse inequality
holds up to a constant in higher dimensions. Nevertheless, it is in this sense that
ω(X)dim(X) can be viewed as a substitute for simplicial volume for X when there is
no natural choice of fundamental class.

Katok was the first to realize that minimal volume entropy could select an opti-
mal metric, up to scale. He proved that if M is a closed surface with negative Euler
characteristic then ω(M, g) ≥ ω(M, ghyp) where ghyp is any hyperbolic metric, with
equality if and only if g has constant curvature [21]. This was extended by Besson–
Courtois–Gallot to closed, real hyperbolic manifolds of any dimension. [5].

For simplicial complexes that are not manifolds, there are few results. When X is
a finite connected graph and every vertex has degree at least 3, Lim gave an explicit
description of a metric g0 so that ω(X) = ω(X , g0) [22]. Analogous to the results
for closed real hyperbolic manifolds mentioned above, Lim additionally proves that
this metric is unique up to scale. McMullen gave an alternate proof of this result [25];
I. Kapovich–Nagnibeda gave a proof of this result when every vertex in the graph has
degree 3 [20].

Other general results regarding minimal volume entropy for simplicial complexes
include the fiber π1-growth collapsing/non-collapsing assumptions recently provided
by Babenko–Sabourau that are useful in showing whether or not ω(X) vanishes [1].
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These will play a key role in this paper and are discussed in more detail later on in the
Introduction and in Sect. 3.

Asmentioned above, the volume entropy is related to the growth of the fundamental
group in that it—or a slight variation—can be used to determine the growth type:
polynomial or exponential. However, in general, the minimal volume entropy of a
simplicial complex does depend on more than the fundamental group, as originally
observed by Babenko [2]. (Although it will not play a role in what follows, in the
context of manifolds there are circumstances where the minimal volume entropy is
determined by the fundamental group; see the works of Babenko [2] and Brunnbauer
[8].)

This leads into the central object of study in this paper. For a fixed group G we
study the minimal volume entropy of a G-complex i.e., a finite aspherical simplicial
complex X such that π1(X) ∼= G. By taking the infimum over G-complexes with
minimal dimension, we obtain an invariant of a group G of finite type. We thus define
the minimal volume entropy of G as

ω(G) = inf
X

ω(X)

where X runs over all G-complexes with dim(X) equal to the geometric dimension,
gd(G), i.e., the minimal dimension of a G-complex. For free groups, it was observed
by I. Kapovich–Nagnibeda [20], Lim [22] and McMullen [25] that if X is a finite
graph and π1(X) is isomorphic to a free group of rank n, then ω(X) ≥ (3n − 3) log 2
with equality if and only if every vertex in X has degree 3. Cast in the above language,
this gives ω(Fn) = (3n − 3) log 2.

In this paper we study the minimal volume entropy when G is either a free-by-
cyclic group or a 2-dimensional right-angled Artin group (RAAG). Each such group
G admits a 2-dimensional asphericalG-complex. In each case, we prove that either the
minimal volume entropy vanishes for everyG-complex orω(G) is uniformly bounded
from below. Moreover, as we will describe below, whether or not ω(G) vanishes is
directly related to whether or not G is tubular, i.e., whether it admits a graph of groups
decomposition with vertex groups equal to Z

2 and edge groups equal to Z.
We state our results in these two cases and then describe how we apply the fiber

π1-growth collapsing/non-collapsing assumptions of Babenko–Sabourau.

Free-by-cyclic groups Every free-by-cyclic group is determined by a finite rank free
group Fn and an element φ ∈ Out(Fn), the outer automorphism group of Fn . Denote
by Gφ the free-by-cyclic group associated to φ. Specifically, the group Gφ is given by
the presentation:

Gφ = 〈Fn, t | t xt−1 = �(x)〉

where � ∈ Aut(Fn) represents φ.
We are able give an explicit description—up to passing to a power—for which

outer automorphisms give rise to free-by-cylic groups with vanishing minimal volume
entropy. We call outer automorphisms with such a description geometrically linear
unipotent (GLU) (see Definition 5.4). We prove:
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Theorem 1.1 Suppose that φ is an outer automorphism of a finitely generated free
group. The following are equivalent:

1. ω(X) = 0 for every Gφ-complex X.
2. Gφ is virtually tubular.
3. Some power of φ is geometrically linear unipotent.

If none of these conditions hold, then ω(Gφ) ≥ log 3
12·106 .

There is an established connection between free-by-cyclic groups and mapping tori
M f of homeomorphisms of closed orientable surfaces f : S → S. GLU automor-
phisms have linear growth, and via this connection are reminiscent of a multi-twist
homeomorphism of a closed orientable surface. Pieroni showed that ω(M)3, for M a
closed orientable 3-manifold, equals two times the sum of the volumes of the hyper-
bolic components in the JSJ decomposition [28]. In particular, by the celebrated result
of Thurston, the minimal volume entropy of M f vanishes if and only if some power of
f is homotopic to a multi-twist [34]. In this way, Theorem 1.1 result can be regarded
as a free group analogue. However, in contrast to the case of a mapping class on a
closed surface, not all subexponentially growing outer automorphisms of free groups
have linear growth, and not all Gφ with linearly growing φ have vanishing minimal
volume entropy.

The L2-torsion −ρ(2)(�) is an analytic invariant of certain groups that may also
play the role of volume. Indeed, if M is a closed orientable 3-manifold, then Lück–
Schick proved that −ρ(2)(π1(M)) equals 1

6π times the sum of the volumes of the
hyperbolic components in the JSJ decomposition [23]. By combining the work of
Gromov, Soma and Thurston, we have that ‖M‖ also equals a constant times the
sum of the volumes of the hyperbolic components in the JSJ decomposition in this
case [18,32,33]. Thus we see that these three notions of volume—minimal volume
entropy, L2-torsion, and simplicial volume—are all proportional for closed orientable
3-manifolds, in particular, for mapping tori of homeomorphisms of closed orientable
surfaces.

As there is no well-defined fundamental class for a free-by-cyclic group, there is
no natural way to define the simplicial volume. However, it is interesting to com-
pare the minimal volume entropy and the L2-torsion for free-by-cyclic groups. The
second author proved that −ρ(2)(Gφ) vanishes when φ is polynomially growing
[12]—conjecturally, the converse holds as well. As Theorem 1.1 shows that most free-
by-cyclic groups with polynomially growing monodromy have nonvanishing minimal
volume entropy, we see that these two invariants are not proportional in this setting.
The second author provided an upper bound on −ρ(2)(Gφ) using the dynamics of φ

[12], it would be interesting to find an upper bound on the minimal volume entropy
of Gφ as well.

Theorem 1.1 provides a characterization of free-by-cyclic groups that are virtually
tubular. We note that Button has provided a characterization of tubular groups that are
free-by-cyclic [9].

Right-angled Artin groups Let � be a finite simplicial graph. The right-angled Artin
group A� is the group whose generators are the vertices of � and whose relations
are commutations between generators when the vertices are incident on an edge in �.
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That is, A� is given by the presentation:

A� = 〈V� | vw = wv if v and w are incident on an edge in �〉.

Right-angled Artin groups, though simple to define, form an essential class of groups
in low-dimensional topology and geometric group theory. Partly, this is due to the
suprising richness of their subgroups, their role as an interpolation between free groups
and free abelian groups and also the frequency at which they arise as subgroups of
geometrically defined groups.

The group A� has geometric dimension equal to 2 if and only if � has at least one
edge (i.e., A� is not free) and � has no triangles (i.e., K3 is not a subgraph of �)
[10, Corollary 1.4.2]. In this case an A�-complex, known as the Salvetti complex S� ,
is built out of unions of circles S1 and tori S1 × S1 that are identified along certain
cyclic subgroups. This structure seems reminiscent of a tubular group, however, not
all 2-dimensional right-angled Artin groups are (free products of) tubular groups. In
fact, whether or not a 2-dimensional right-angled Artin group is tubular is directly
related to its minimal volume entropy.

Theorem 1.2 Suppose that A� is a right-angled Artin group with gd(A�) = 2. The
following are equivalent.

1. ω(X) = 0 for every A�-complex X.
2. A� is a free product of tubular groups and a free group.
3. � is a forest.

If none of these conditions hold, then ω(A�) ≥ log 3
2·106 .

We remark that according to Droms, A� is a 3-manifold group exactly when � is a
disjoint union of trees and triangles [15]. Since a triangle corresponds to Z

3, � is a
forest exactly when A� is a 3-manifold group with geometric dimension at most 2.

It seems likely a characterization for the vanishing of minimal volume entropy of
right-angled Artin groups of arbitrary dimension is possible, although the statement
may not be so neat.

Fiber π1-growth assumptions Both theorems above are consequences of the fiber
π1-growth collapsing/non-collapsing assumptions of Babenko–Sabourau [1]. These
assumptions relate the vanishing of the minimal volume entropy of a simplicial com-
plex X to the existence or non-existence of maps f : X → P to lower dimensional
complexes, based on the π1-growth of fibers. Briefly, the two assumptions are:

• Fiberπ1-growth collapsing assumption (FCA)—For some simplicialmap f : X →
P , every induced subgroup π1( f −1(x)) ⊆ π1(X) is subexponentially growing
with subexponential growth rate less than 1 − dim P

dim X .• Fiber π1-growth non-collapsing assumption (FNCA)—There is a constant δ >

0 such that for every simplicial map f : X → P , some induced subgroup
π1( f −1(x)) ⊆ π1(X) has uniform exponential growth rate at least δ.

Although the two criteria are not a priori complementary, we show that they are
in the case of free-by-cyclic groups and 2-dimensional right-angled Artin groups.
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Moreover, the two assumptions are complementary when the fundamental group of
X has uniform uniform exponential growth and satisfies a technical condition on
subexponentially growing subgroups (see Definition 2.1 and Proposition 3.10).

When X is a 2-dimensional simplicial complex, the fiber π1-growth assumptions
consider maps f : X → P where P is a finite simplicial graph. Applying standard
geometric group theoretic techniques, when X satisfies the FCA there is an induced
graph of groups decomposition on π1(X) where the vertex and edge groups are all
subexponentially growing (Proposition 4.1).

When a group G has uniform uniform exponential growth (denoted by δ(G) > 0
in the following), we prove the following vanishing criteria:

Theorem 1.3 Let G be a groupwith gd(G) = 2. Suppose δ(G) > 0 and that the subex-
ponentially growing subgroups of G belong to the collection {{1}, Z, Z

2, BS(1,−1)}.
Then ω(X) = 0 for every G-complex X if and only if G is the fundamental group
of a graph of groups where the edge groups belong to the collection {{1}, Z} and the
vertex groups belong to the collection {Z, Z

2, BS(1,−1)}.

Remark 1.4 The Baumslag–Solitar group BS(1,−1) = 〈a, t | tat−1 = a−1〉 is the
fundamental group of the Klein bottle. By a result of Degrijse, ifG has cohomological
dimension equal to 2, has subexponential growth and the group algebraC[G] does not
have zero-divisors, then G is either Z

2 or BS(1,−1) [13, Theorem B]. Conjecturally,
if G is torsion-free then C[G] does not contain any zero-divisors, which would render
this hypothesis unnecessary. Therefore conjecturally, Theorem1.3 applies to any group
with gd(G) = 2 and δ(G) > 0.

Theorem 1.3 applies to the case of groups G with gd(G) = 2 that act freely and
cocompactly on CAT(0) cube complexes with isolated flats by recent work of Gupta–
Jankiewicz–Ng [19].

1.1 Outline of paper

In Sect. 2, we discuss notions of growth in groups and show that the vanishing ofω(X)

is a homotopy invariant of G-complexes of minimal dimension. Section 3 recalls the
fiber π1-growth collapsing/non-collapsing assumptions of Babenko–Sabourau [1] and
proves that these are complementary when G has PropertyU . After briefly reviewing
graphs of groups, in Sect. 4 we prove Theorem 1.3. In Sect. 5 we prove Theorem 1.1
regarding the minimal volume entropy of free-by-cyclic groups. Finally, in Sect. 6,
we prove Theorem 1.2 regarding the minimal volume entropy of 2-dimensional right-
angled Artin groups.

2 Entropy and volume in groups

In this section we discuss growth in groups and the relation between the minimal
volume entropy of a group and the minimal volume entropy of a finite index subgroup.
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2.1 Growth in groups

Let G be a finitely generated group and suppose that S ⊂ G is a finite generating set.
For an element h ∈ G, by ‖h‖S we denote the word length of h with respect to S.

The growth rate of G with respect to S is the quantity

δ(G, S) = lim
t→∞

1

t
log #{h ∈ G | ‖h‖S ≤ t}.

We observe that if X is the Cayley graph of G with respect to the generating set S and
g is the piecewise Riemannian metric on X for which each edge of X is isometric to
the unit interval, then ent(X , g) = δ(G, S). If δ(G, S) > 0 for some finite generating
set S ⊂ G, then it is known that δ(G, S′) > 0 for all finite generating sets S′ ⊂ G.
In this case, the group G is said to have exponential growth. Else, the group is said to
have subexponential growth. If further we have that #{h ∈ G | ‖h‖S ≤ t} is bounded
by a polynomial, the group G is said to have polynomial growth.

In the case of subexponential growth, we consider the subexponential growth rate
of G which is defined by

ν(G) = lim
t→∞

log log #{h ∈ G | ‖h‖S ≤ t}
log t

.

This quantity is independent of S and satisfies 0 ≤ ν(G) ≤ 1. We remark that if G
has polynomial growth, then ν(G) = 0.

In the case of exponential growth, to get a quantity that is independent of the
generating set, we can take the infimum. This leads to the uniform growth rate of G
which is defined by

δ(G) = inf
S

δ(G, S)

where S runs over all finite generating sets for S. The group G is said to have uniform
exponential growth if δ(G) > 0. There are examples of finitely generated groups with
exponential growth, but not uniform exponential growth [36].

Taking this concept one step further, we can consider the infimum over all finitely
generated exponentially growing subgroups of G as well. This leads to the uniform
uniform growth rate of G which is defined by

δ(G) = inf
H

δ(H)

where H runs over all finitely generated subgroups ofG with exponential growth. The
group G is said to have uniform uniform exponential growth if δ(G) > 0.

Finally, the following property is relevant to the sequel.

Definition 2.1 A finitely generated group G has Property U if δ(G) > 0 and if H is
a subgroup of G with subexponential growth, then ν(H) = 0.

In particular, if δ(G) > 0 and every subexponentially growing subgroup of G has
polynomial growth, then G has Property U .
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2.2 Monotonemaps and finite index subgroups

Let X and Y be simplicial complexes with dim(X) = dim(Y ) = m. A simplicial
map f : Y → X is said to be n-monotone for n ≥ 0 if the preimage of any open
m-simplex in X consists of at most n open m-simplices in Y . The following lemma
gives a relation between the minimal volume entropy of X and Y using a n-monotone
map f : Y → X . This lemma appears in a paper by Brunnbauer [8, Lemma 4.1]. The
proof is attributed to Babenko [2] and appears in a paper by Sabourau [29, Lemma 3.5].

Lemma 2.2 Let f : Y → X be an n-monotone map between m-dimensional finite
simplicial complexes. If f∗ : π1(Y ) → π1(X) is injective, then

n1/m · ω(X) ≥ ω(Y ).

There are two useful consequences of this bound.

Proposition 2.3 Let G be a group of finite type and let X and Y be G-complexes with
dim(X) = dim(Y ). Then ω(X) = 0 if and only if ω(Y ) = 0.

Proof Let f : X → Y be a homotopy equivalence and let f ′ : Y → X be the homo-
topy inverse to f . By the simplicial approximation theorem, we may assume that both
of these maps are simplicial. Let m denote the common dimension of X and Y . By
finiteness, each m-simplex of Y has at most n preimages for some n > 0 under f .
Similarly, there exists n′ > 0 such that each m-simplex of X has at most n′ preim-
ages under f ′. The proposition now follows from Lemma 2.2, since n and n′ are both
positive. ��

We record the following corollary of Proposition 2.3.

Corollary 2.4 Let G be a group of finite type and suppose that ω(X) = 0 for some
G-complex with dim(X) = gd(G). Then ω(X) = 0 for every G-complex X with
dim(X) = gd(G).

The other useful consequence is with regards to finite index subgroups.

Proposition 2.5 Suppose that G is a group of finite type. If H is a subgroup of G and
[G : H ] = n, then

n1/ gd(G) · ω(G) ≥ ω(H).

Proof Let G and H be as in the statement. As G has finite type, so does H and
moreover gd(G) = gd(H).

Suppose that X is aG-complexwith dim(X) = gd(G). Let f : Y → X be the cover
corresponding to the subgroup H . Then f is n-monotone and f∗ : π1(Y ) → π1(X)

is injective. Hence by Lemma 2.2 we have that

n1/ gd(G) · ω(X) ≥ ω(Y ).
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As X is an arbitrary G-complex with dim(X) = gd(G) and ω(Y ) ≥ ω(H) for any
H -complex Y with dim(Y ) = gd(H), the result follows. ��

In particular, if ω(H) > 0 for some finite index of a group G of finite type, then
ω(G) > 0 as well.

3 Fiber �1-growth assumptions

In this section we recall the fiber π1-growth collapsing and non-collapsing assump-
tions, introduced by Babenko–Sabourau [1]. The collapsing assumption provides a
sufficient condition for theminimal volume entropy to vanish,while the non-collapsing
assumption guarantees the minimal volume entropy is nonzero, and also provides a
lower bound.

3.1 Fiber�1-growth collapsing assumption

First we discuss the collapsing assumption. Let X be a simplicial complex. A closed
subset F ⊆ X has subexponential growth if for every connected component F0 ⊆ F ,
the inclusion induced image of π1(F0) in π1(X) has subexponential growth.

Definition 3.1 (Babenko–Sabourau [1]) A simplicial complex X of dimension m sat-
isfies the fiber π1-growth collapsing assumption (FCA) if there exists a simplicial
map f : X → P to a finite simplicial complex P of dimension k such that for every
p ∈ P , the fiber f −1(p) has subexponential growth with subexponential growth rate
less than m−k

m .

Babenko–Sabourau prove that the FCA is sufficient to ensure that the minimal vol-
ume entropy vanishes.Wewill provide a proof of a weaker version that is sufficient for
our needs. Namely, we will show that satisfying the FCA with the stronger assump-
tion that the subexponential growth rate of the fibers is less than 1/ dim(X) implies
that the minimal volume entropy vanishes. Our proof is based on their outline but the
assumption about the subexponential growth rate of the fibers simplifies the argument.

To do this, we need some facts about subexponential functions. Let φ : [0,∞) →
[0,∞) be a non-decreasing, subexponential function. By definition, for every 0 <

λ ≤ 1, there exists Tλ ∈ [0,∞) such that for all t ≥ Tλ

φ(t) ≤ exp(λt).

Wemay assume Tλ is the largest t such that φ(t) = exp(λt). The next lemma describes
the dependence of Tλ on λ.

Lemma 3.2 Suppose that φ : [0,∞) → [0,∞) is a non-decreasing, subexponential
function and that φ(t0) > 1 for some t0 ∈ (0,∞). The following statements hold.

1. The function λ �→ Tλ is strictly decreasing on (0, λ0] where λ0 =
min{1, 1

t0
logφ(t0)}.

2. limλ→0+ Tλ = ∞.
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3. Suppose (tn) ⊂ [t0,∞) and (λn) ⊂ (0, λ0] are sequences such that tn → ∞ and
Tλn = tn. Then for any ε > 0 we have

lim sup
n→∞

λn

tν+ε−1
n

≤ 1

for where ν is the subexponential growth rate of φ(t).

Proof For 0 < λ < μ ≤ λ0, as exp(λt) < exp(μt) for t > 0, we find that exp(λTμ) <

exp(μTμ) = φ(Tμ). Thus Tλ > Tμ. This shows that Tλ is strictly decreasing on (0, λ0],
equivalently, strictly increasing as λ → 0+. This completes the proof of (1).

Suppose Tλ → T0 < ∞ as λ → 0+. Since Tλ is strictly decreasing on (0, λ0],
we have that T0 > Tλ0 ≥ t0. Therefore for all λ > 0, we have φ(T0) < exp(λT0)
and hence φ(T0) ≤ limλ→0+ exp(λT0) = 1. However, φ(T0) is strictly greater than
1, since t0 < T0 and φ is increasing, a contradiction. Therefore we conclude that
limλ→0+ Tλ = ∞. This shows (2).

Finally, suppose that 0 ≤ ν ≤ 1 is the subexponential growth rate of φ(t). Thus
for any ε > 0 we have that φ(t) ≤ exp(tν+ε) for large t . Hence for large enough n,
we have exp(λntn) = φ(tn) ≤ exp(tν+ε

n ). This gives λn ≤ tν+ε−1
n for large enough n

and thus lim supn→∞ λn

tν+ε−1
n

≤ 1. This shows (3). ��

Given a simplicial map f : X → P , we will call an edge e of X long if f (e) is an
edge of P , and short otherwise, in which case f (e) is a vertex of P .

Theorem 3.3 (Babenko–Sabourau [1, Theorem 2.6]) Let X be a finite, connected,
simplicial complex. If X satisfies the FCA, then ω(X) = 0.

Proof when subexponential growth rate of fibers is less than 1/dim(X) Let m denote the
dimension of X . Suppose f : X → P is a simplicial map where dim P < m and for
every p ∈ P , the fiber f −1(p) has subexponential growth with subexponential growth
rate ν where ν < 1/m. Without loss of generality, we may assume that f : X → P
is surjective and has connected fibers (see, for example, Proposition 2.1 of [1]). Fix
piecewise Riemannian metrics gX , gP on X and P respectively, where the metrics on
each simplex agree with that of a Euclidean simplex whose edges all have length 1.
We can pull back the metric f ∗(gP) to X , where it is everywhere degenerate because
the dimension of P is strictly smaller than m. Consider a new metric gs for s > 0
defined pointwise by

gs = f ∗(gP) + s2gX .

Since f ∗(gP) is everywhere degenerate, we clearly have lims→0+ vol(X , gs) = 0.
However, it is not the case in general that ent(X , gs) stays bounded as s →
0+ and so we need to analyze these quantities further. We will prove the theo-
rem by finding a sequence of positive real numbers (sn) such that ω(X , gsn ) =
ent(X , gsn ) vol(X , gsn )

1/m goes to 0 as n → ∞.

We start with the following inequality.
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Claim 3.4 There is a constant V such that vol(X , gs) ≤ sV .

Proof of Claim Let σ be a simplex of dimensionm in X . We will show that the volume
of σ with respect to the restriction of gs is bounded by a constant times s. As there are
only finitely many simplicies in X , the claim follows.

At each point of σ , we can express the metric gX as a matrix [x1| . . . |xm] where
each xi ∈ R

m . Likewise, we can express f ∗(gP) as a matrix [y1| . . . |ym] where each
yi ∈ R

m . Let 
m denote the collection of subsets of {1, . . . ,m}. We then compute

det(gs) = det([y1 + s2x1| . . . |ym + s2xm])
=

∑

S∈
m

s2|S| det([zS,1| . . . |zS,m])

where zS,i = xi if i ∈ S and zS,i = yi if i /∈ S. As f ∗(gP) is everywhere degenerate,
we have det([y1| . . . |ym]) = 0. Hence every term in the above summation expressing
det(gs) contains s2n for some n ≥ 1. As σ is compact, each term det([zS,1| . . . |zS,m])
is bounded on σ . From this it follows that det(gs) is bounded by a constant times s2

on σ and thus the volume of σ is bounded by a constant times s, as desired. ��
To calculate the volume entropy we will estimate the number of homotopy classes

in X of gs-length at most t , as t becomes large.
Let us first estimate the number of homotopy classes in fibers. Since gs reduces to

s2gX along fibers, we can choose s sufficiently small so that each fiber has diameter
at most 1

2 . Suppose Fv = f −1(v) is a fiber over some vertex v ∈ P . Fix a basepoint
x ∈ Fv , and for t ≥ 0 letNs(Fv, x; t) denote the number of homotopy classes of loops
in Fv based at x whose gs-length is at most t . Then since gs scales the gX (= g1)-length
of edges in Fv by s, we have

Ns(Fv, x; t) = N1

(

Fv, x; t
s

)

.

As each fiber is subexponentially growing by assumption and since there are only
finitely many vertices in P , for every 0 < λ ≤ 1, there exists Tλ such that for all
t ≥ Tλ and vertex v ∈ P , we have

N1 (Fv, x; t) ≤ exp(λT ).

DefineN (t) = maxv∈P N1 (Fv, x; t). We define Cλ = N (Tλ), so that for all vertices
v ∈ P and for all t ≥ 0,

N1 (Fv, x; t) ≤ Cλ exp(λt).

For fixed s, we can let λ depend on s. Suppose that N (t0) > 1 for some t0 > 0
so thatN (t) satisfies the hypotheses of Lemma 3.2. Let λ0 = min{1, 1

t0
logN (t0)} as

defined in Lemma 3.2. Define s0 to be equal to 1
Tλ0

. Since Tλ is strictly decreasing on

(0, λ0] and limλ→0+ Tλ = ∞, there is decreasing sequence of positive real numbers
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(sn) starting with s0 such that sn → 0 as n → ∞ and for which there exist positive
real numbers (λn) such that Tλn = 1

sn
. If N (t) ≤ 1 for all t , we take sn = 1/n and

λn = 0.
An arbitrary loop γ in X can be represented as an edge path in the 1-skeleton.

Decompose such a path γ as

γ = ε1σ1 . . . εkσk,

where the εi are long edges, and the σi are edge paths consisting of edges in some
fiber Fvi .

Connect the endpoints of each σi to the basepoint xi ∈ Fvi to form a loop σ i at
the expense of adjoining to paths of length at most diam(Fvi , gsn ) < 1

2 . Hence if σi
has gsn -length ti then the length of σ i is at most ti + 2 diam(Fvi , gns ) ≤ ti + 1. Up to
homotopy, the number of possible σi of length at most ti is then bounded above by

Ns(Fvi , xi ; ti + 2 diam(Fvi , gsn )) ≤ N1

(

Fvi , xi ;
ti + 1

sn

)

≤ Cλn exp

(

λn
ti + 1

sn

)

.

Let Ne be the total number of edges in X . On the one hand, each long edge εi has
gsn -length at least 1, hence k is at most the length of γ . On the other hand, we also
have

∑k
i=1 ti is less than the length of γ . Thus, we can bound the total number of

possible paths of gsn -length at most some integer t by

Nt
e

t
∏

i=1

Cλn exp

(

λn
ti + 1

sn

)

= Nt
eC

t
λn

exp

(

λn

sn

t
∑

i=1

ti

)

exp

(

λnt

sn

)

≤ Nt
eC

t
λn

exp

(

λnt

sn

)

exp

(

λnt

sn

)

.

Taking the logarithm, dividing by t and letting t → ∞ we obtain:

ent(X , gsn ) ≤ log(Ne) + log(Cλn ) + 2λn
sn

Recall now thatCλm = N (Tλn ) = N
(

1
sn

)

. Let ε = 1
2 (1/m−ν) so that ν+2ε = 1/m.

By Lemma 3.2(3) we have λn ≤ s1−(ν+ε)
n for sufficiently large n. Thus, for such n,

we have

ent(X , gsn ) ≤ log(Ne) + logN
(

1

sn

)

+ 2

sν+ε
n

.

By Claim 3.4, there is a constant V such that vol(X , gsn ) ≤ snV . Therefore, the

normalized volume of gsn is bounded by s
1/m
n V 1/m . Multiplying the above by this we

get
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ent(X , gsn ) vol(X , gsn )
1
m ≤ s1/mn V 1/m log(Ne) + s1/mn V 1/m logN

(

1

sn

)

+ 2sε
nV

1/m .

Recall that sn → 0 as n → ∞. Thus, the first and third terms on the right hand side
clearly go to 0 as n → ∞. Likewise, the middle term goes to 0 as n → ∞ because
N is a subexponential function with subexponential growth rate less than 1/m. Thus,
the left hand side must go to 0 as n → ∞, so the sequence of metrics (X , gsn ) shows
that ω(X) equals 0. ��
Remark 3.5 The Gap Conjecture of Grigorchuk states that if a finitely generated group
G satisfies ν(G) < 1/2 then G has polynomial growth [17]. If this conjecture is true,
then the proof of Theorem 3.3 only applies to the case when the fibers have polynomial
growth.

As a consequence of Theorem 3.3, we get the following strengthening of Corol-
lary 2.4.

Proposition 3.6 Let G be a group of finite type. Then the following are equivalent:

1. ω(X) = 0 for some G-complex X with dim(X) = gd(G).
2. ω(X) = 0 for every G-complex X.

Proof Suppose that ω(X) = 0 where dim(X) = gd(G) and let Y be a G-complex.
If dim(Y ) = dim(X), then ω(Y ) = 0 by Corollary 2.4. Else we have that dim(Y ) >

dim(X). Let f : Y → X be a homotopy equivalence. As in Proposition 2.3, we may
assume that f is simplicial. As f is a homotopy equivalence, every fiber f −1(p)
has subexponential growth with subexponential growth rate 0. Indeed, the inclusion
induced image of π1( f −1(p)) in π1(Y ) is trivial. Therefore Y satisifes the FCA and
ω(Y ) = 0 by Theorem 3.3. This shows that (1) implies (2).

The other implication is obvious. ��

3.2 Fiber�1-growth non-collapsing assumption

Next, we discuss the non-collapsing assumption.

Definition 3.7 (Babenko–Sabourau [1]) A simplicial complex X of dimension m sat-
isfies the fiber π1-growth non-collapsing assumption (FNCA) if there exists a constant
δ = δ(X) > 0 such that for every simplicial map f : X → P to a finite simplicial
complex P of dimension at mostm−1, there exists p ∈ P and a connected component
F0 ⊆ f −1(p) such that the inclusion induced image of π1(F0) in π1(X) has uniform
exponential growth at least δ.

Babenko–Sabourau prove that the FNCA is sufficient to ensure non-vanishing of
the minimal volume entropy and moreover provide a positive lower bound in this case.

Theorem 3.8 (Babenko–Sabourau [1, Theorem 3.6])If X is a connected, finite simpli-
cial complex with dimension m satisfying the FNCA, then ω(X) > 0. More precisely,
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we have

ω(X) ≥ δ

2 · Cm

where δ = δ(X) and Cm > 0 is a constant depending only on the dimension m.

Remark 3.9 As we are primarily concerned with 2-dimensional simplicial complexes,
we note that according to Papasoglu one may take C2 = 106 [27].

3.3 FCA and FNCA are complementary for groups with Property U

As pointed out by Babenko–Sabourau, the definitions of FCA and FNCA are not
complementary. The subtlety lies in the subexponential growth rate in the definition
of the FCA and the uniformity of the constant δ in the definition of the FNCA. If we
assume that the fundamental group of the complex has Property U , then this issue
disappears.

Lemma 3.10 Let G be a group of finite type and suppose that G has Property U. Then
any G-complex either satisfies the FCA or the FCNA.

Proof Let G be as in the statement and let X be a G-complex.
Suppose that X does not satisfy the FCA.Hence, given any simplicialmap f : X →

P where P is a simplicial complex with dim(P) < dim(X), there is some point p ∈ P
and a component F0 ⊆ f −1(p) such that the inclusion induced image of π1(F0) in
π1(X) has exponential growth. As G ∼= π1(X), we must have that the uniform growth
rate of the inclusion induced image of π1(F0) is at least δ(G). Thus we see that X
satisfies the FNCA for δ(X) = δ(G). ��

Combining Lemma 3.10 with Theorem 3.3, Proposition 3.6 and Theorem 3.8 we
obtain the following dichotomy for any group of finite type with Property U .

Proposition 3.11 Let G be a group of finite type with m = gd(G) and suppose that G
has Property U. Then either

1. ω(X) = 0 for every G-complex, or
2. ω(G) ≥ δ(G)

2·Cm
.

Proof If someG-complex X with dim(X) = gd(G) satisfies the FCA, thenω(X) = 0
by Theorem 3.3. Thus by Proposition 3.6, we get that ω(X) = 0 for every G-complex
X and thus (1) holds.

Else, by Lemma 3.10, every G-complex X with dim(X) = gd(G) satisfies the
FNCA with δ(X) = δ(G). Thus ω(X) ≥ δ(G)

2·Cm
by Theorem 3.8. As X is an arbitrary

G-complex with dim(X) = gd(G), we see that (2) holds. ��

4 Vanishing criterion when gd(G) = 2

In this section we prove the first main result of this paper. Theorem 1.3 provides a
characterization of whenω(X) = 0 for everyG-complex X , provided that gd(G) = 2,
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δ(G) > 0, and the subexponentially growing subgroups of G belong to the collection
{{1}, Z, Z

2, BS(1,−1)}. (In particular, such a G has Property U .) Specifically, the
minimal volume entropy vanishes for each G-complex precisely when G is the fun-
damental group of a graph of groups where the edge groups belong to the collection
{{1}, Z} and the vertex groups belong to the collection {Z, Z

2, BS(1,−1)}. Before we
prove this theorem in Sect. 4.3, we recall the definition of a graph of groups and set
some notation in Sect. 4.1. Then in Sect. 4.2, we show that if a G-complex of min-
imal dimension satisfies the FCA and gd(G) = 2, then G is the fundamental group
of a graph of groups where the vertex groups and edge groups are subexponentially
growing. We complete the proof of Theorem 1.3 in Sect. 4.3.

4.1 Graphs of groups

General references for thematerial in this section are the works of Bass [3], Scott–Wall
[30], and Serre [31].

A graph of groups consists of the following data.

1. A finite connected graph Y with vertex set VY and edge set EY . By o(e) and τ(e)
we denote the originating and terminal vertices of an edge e respectively, and ē
denotes the edge with opposite orientation. We have ¯̄e = e and o(ē) = τ(e).

2. For each vertex v ∈ VY , there is an associated group Gv .
3. For each edge e ∈ EY , there is an associated group Ge. We have Gē = Ge.
4. For each edge e ∈ EY , there is an injective homomorphism he : Ge → Go(e).

We will denote a graph of groups by G = (Y , {Gv}, {Ge}, {he}).
Associated to a graph of groups G = (Y , {Gv}, {Ge}, {he}) is the fundamental

group of the graph of groups, denoted π1(G). Briefly, it is constructed by repeatedly
taking amalgamated free products and HNN-extensions using the data in G. In more
detail, as a generating set of π1(G) we take the set

(

⋃

v∈VY

Gv

)

∪ {xe | e ∈ EY }

where each xe is an abstract letter.
All of the relations in the vertex groups hold plus some more that use the data in

G. To write down these additional relations for π1(G), we need to fix a maximal tree
T ⊆ Y . Using the tree T , the additional relations for π1(G) are as follows:

xehe(a) = hē(a)xē, for each edge e ∈ EY and element a ∈ Ge = Gē

xexē = 1, for each edge e ∈ EY

xe = 1, for each edge e ∈ ET

The isomorphism type ofπ1(G) does not depend on the choice ofmaximal tree T ⊆ Y .
Consider two graphs of groups G = (Y , {Gv}, {Ge}, {he}) and G′ = (Y ′, {G ′

v},
{G ′

e}, {h′
e}) where
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1. Y ′ is a subgraph of Y ,
2. G ′

v = Gv for each vertex v ∈ VY ′,
3. G ′

e = Ge for each edge e ∈ EY ′, and
4. h′

e = he for each edge e ∈ EY ′.

Then π1(G′) is isomorphic to a subgroup of π1(G).
Given a graph of groups G = (Y , {Gv}, {Ge}, {he}), there is an associated graph

of spaces X = (Y , {Xv}, {Xe}, { fe}), which is well-defined up to homotopy. For each
vertex v ∈ VY , we set Xv = K (Gv, 1). Likewise, for each edgewe set Xe = K (Ge, 1)
and further we fix a map fe : Xe → Xv so that ( fe)∗ = he. There is an associated
space |X |, called the realization of the graph of spaces, obtained by gluing the spaces
together using the graph Y . Specifically, we define

|X | =
(

⋃

v∈VY

Xv ∪
⋃

e∈EY
Xe × [0, 1]

)

/

(x, 0) ∈ Xe × [0, 1] ∼ fe(x) ∈ Xo(e) and
(x, 1) ∈ Xe × [0, 1] ∼ (x, 1) ∈ Xē × [0, 1]

We have that π1(|X |) ∼= π1(G).
Let G = (Y , {Gv}, {Ge}, {he}) be a graph of groups. Suppose that e0 is an edge

in Y so that o(e0) �= τ(e0), i.e., e0 is not a loop. If the inclusion map he0 : Ge0 →
Go(e0) is an isomorphism, then we say that the edge e0 is collapsible. In this case,
we may collapse e0 and obtain a new graph of groups G′ = (Y ′, {G ′

v}, {G ′
e}, {h′

e}).
The underlying graph Y ′ is obtained by removing the edge e0 from Y and identifying
the vertices o(e0) and τ(e0); we denote this image of these vertices by v′ and define
G ′

v′ = Gτ(e). All other vertices and edges of Y ′ correspond to a vertex or edge
of Y and we define the vertex group G ′

v or edge group G ′
e accordingly. As the map

he0 : Ge0 → Go(e0) is an isomorphism, we can considerGo(e0) as a subgroup ofGτ(e0)

via hē0h
−1
e0 . Thus for an edge e in Y where o(e) = o(e0), the injective homomorphism

he : Ge → Go(e) naturally defines an injective homomorphism h′
e : G ′

e → G ′
o(e). For

all other edges, we have that h′
e = he. We say that G′ is obtained from G by collapsing

the edge e. This does not change the fundamental group, i.e., π1(G) ∼= π1(G′). This
follows because of the isomorphism A ∗C C ∼= A.

If no edge of Y is collapsible, we say that G is reduced. If G is not reduced, we may
repeatedly collapse edges to obtain a reduced graph of groups decomposition whose
fundamental group is π1(G).

There is a correspondence between decompositions of G as a graphs of groups,
i.e., isomorphisms G ∼= π1(G), and actions of G on simplicial trees ˜Y . In this cor-
respondence, the vertex groups and edge groups of G correspond to the conjugacy
classes of the vertex stabilizers and edge stabilizers respectively for the action of G.
The underlying graph of G is G\˜Y .

4.2 FCA induces a graph of groups decomposition

We will now show how the FCA induces a graph of groups decomposition when
gd(G) = 2.
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Proposition 4.1 Suppose that G is a group with gd(G) = 2. If X is a G-complex with
dim(X) = 2 and X satisfies the FCA, then G is isomorphic to the fundamental group
of a graph of groups where the vertex groups and the edge groups are subexponentially
growing.

Proof Let G be as in the statement and let X be a G-complex that satisfies the FCA.
Hence, there is a graph � and a simplicial map f : X → � with connected fibers such
that for each x ∈ �, the image of π1(Fx ) in π1(X) has subexponential growth where
Fx = f −1(x).

The function f : X → � induces a graph of groups decomposition of G as in the
statement of the proposition as we now recall. For further details, we refer the reader
to the work of Dunwoody [16]. For each edge e of �, fix a point xe in the interior of
the edge. Let ˜X be the universal cover of X and let p : ˜X → X be the covering map.
We consider the lift of the fibers Fxe to ˜X and define the two subsets of ˜X

E = ∪{p−1(Fxe) | e is an edge of �} and V = ˜X − E .

For each component ε ∈ π0(E), there are exactly two components ofV whose closures
in ˜X contain ε. Therefore, in the obvious way, we get a graph T with vertices π0(V)

and edges π0(E). The graph T is clearly connected and as each ε ∈ π0(E) separates
˜X , we see that T is a tree.

The stabilizer of a component of E is a conjugate of the image of π1(Fxe) in π1(X)

for some edge e of �. Given a component c ∈ π0(V), the subset p(c) deformation
retracts onto Fv for some vertex v of �. Hence the stabilizer of a component of V is a
conjugate of the image of π1(Fv) in π1(X) for some vertex v of �.

Therefore G acts on a tree where the stabilizer of any point is subexponentially
growing. As stated in Sect. 4.1, by Bass–Serre theory this implies thatG is isomorphic
to the fundamental group of a graph of groupswhere the vertex groups and edge groups
are subexponentially growing. ��

4.3 Proof of Theorem 1.3

Before can prove Theorem 1.3, we need a lemma that shows that certain subgroups
are prohibited in groups with gd(G) = 2.

Lemma 4.2 Suppose that H1, H2 and K belong to the collection {Z2, BS(1,−1)}.
The geometric dimension of an amalgamated free product H1 ∗K H2 is equal to 3 if
both inclusions are proper. The geometric dimension of an HNN-extension H1∗K is
equal to 3.

Proof Let H1, H2 and K be as in the statement. For each of H1 ∗K H2 and H1∗K ,
the respective graphs of spaces using S1 × S1 for each Z

2 and the Klein bottle for
each BS(1,−1) have dimension equal to 3. Since S1 × S1 and the Klein bottle are
aspherical, the respective graphs of spaces are also aspherical [30, Proposition 3.6(ii)].
Thus gd(H1 ∗K H2) ≤ 3 and gd(H1∗K ) ≤ 3.

The cohomological dimension of H1 ∗K H2 is equal to 3 if both inclusions are
proper. Likewise, the cohomological dimension H1∗K is equal to 3. See the work of
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Bieri [6, Corollaries 6.5 and 6.7] for complete details. As the geometric dimension is
bounded from below by the cohomological dimension, the result follows. ��

Proof of Theorem 1.3 Suppose that G is a group with gd(G) = 2, δ(G) >

0, and that every subexponentially growing subgroup belongs to the collection
{{1}, Z, Z

2, BS(1,−1)}.
First, we assume that ω(X) = 0 for every G-complex X . As δ(G) > 0, by Theo-

rem 3.8 and Lemma 3.10 there is someG-complex X that satisfies the FCA. Therefore
by Proposition 4.1 we have thatG is isomorphic to the fundamental group of a graph of
groups G = (Y , {Gv}, {Ge}, {he}) with subexponentially growing vertex groups and
edge groups. By collapsing any collapsible edges, we may assume that G is reduced.

If Gv is trivial for some vertex v ∈ VY , then every edge incident on v is a loop
as G is reduced. This implies that G ∼= π1(G) is a free group. This is contrary to the
assumption that gd(G) = 2. Hence the vertex groups of G belong to the collection
{Z, Z

2, BS(1,−1)}.
By Lemma 4.2, the groups Z

2 and BS(1,−1) cannot appear as edge groups since
G is reduced and gd(G) = 2. Thus, the edge groups of G belong to the collection
{{1}, Z}.

Next, we assume that G is isomorphic to the fundamental group of a graph
of groups G = (Y , {Gv}, {Ge}, {he}) where vertex groups belong to the collec-
tion {Z, Z

2, BS(1,−1)} and the edge groups belong to the collection {{1}, Z}. Let
X = (Y , {Xv}, {Xe}, { fe}) be the corresponding graph of spaces built using a point,
S1, S1 × S1 and the Klein bottle respectively for each {1}, Z, Z

2 and BS(1,−1)
respectively. Then |X | is a G-complex with dim(|X |) = 2 = gd(G) and there is a
map p : |X | → Y where each of the fibers either a point, S1, S1 × S1 or BS(1,−1).
This shows that |X | satisfies the FCA and hence ω(|X |) = 0 by Theorem 3.3. By
Proposition 3.6, we conclude that ω(X) = 0 for every G-complex X . ��

5 Free-by-cyclic groups

In this section we examine the minimal volume entropy of free-by-cyclic groups and
prove Theorem 1.1. To prove this theorem we must show that the following three
statements are equivalent for a free-by-cyclic group Gφ .

1. ω(X) = 0 for every Gφ-complex X .
2. Gφ is virtually tubular.
3. Some power of φ is geometrically linear unipotent power.

First we prove that (1) implies (3) in Proposition 5.7. This takes place in Sect. 5.2 after
we formally define a geometrically linear unipotent outer automorphism. Following
this, in Sect. 5.3 we complete the proof of Theorem 1.1 by showing that (3) implies
(2) and observing that (2) implies (1) by Theorem 1.3 and Proposition 2.5.

Before we begin the proof of Theorem 1.1, in Sect. 5.1 we classify subexponentially
growing subgroups of free-by-cyclic groups and show that free-by-cyclic groups have
uniform uniform exponential growth (with a uniform constant).
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5.1 Growth of subgroups of free-by-cyclic groups

Let φ be an outer automorphism of a finitely generated free group Fn and let Gφ be
the corresponding free-by-cyclic group.

Lemma 5.1 Any nontrivial finitely generated subgroup of Gφ with subexponential
growth is isomorphic to Z, Z2 or BS(1,−1).

Proof Write Gφ = Fn �� Z where � ∈ Aut(Fn) represents the outer automorphism
φ and let π be the projection onto the cyclic factor. Let H be a nontrivial finitely
generated subgroup of Gφ that has subexponential growth. As H is nontrivial and has
subexponential growth, H ∩ Fn is either trivial or isomorphic to Z.

If H ∩ Fn is trivial, then π maps H injectively to Z hence H ∼= Z.
Otherwise, we have that H ∩ Fn = 〈a〉 for some nontrivial a ∈ Fn . If π(H) is

trivial then H = 〈a〉 ∼= Z. Else, let h be an element of H that generates π(H) ∼= Z.
Then hah−1, h−1ah ∈ H ∩ Fn = 〈a〉 and so hah−1 = ak and h−1ah = a� for some
nonzero integers k, �. Since a = h−1(hah−1)h = ak� we have that k equals either 1
or −1 and hence hah−1 = a or hah−1 = a−1. As h generates π(H), this implies that
H ∼= Z

2 in the case hah−1 = a and that H ∼= BS(1,−1) in the case hah−1 = a−1.
��

Lemma 5.2 Suppose H is a finitely generated subgroup of Gφ that is exponentially
growing. Then δ(H) ≥ 1

6 log 3. In particular, δ(Gφ) ≥ 1
6 log 3.

Proof Write Gφ = Fn �� Z where � ∈ Aut(Fn) represents the outer automorphism
φ.

Suppose H is a finitely generated subgroup of Gφ with exponential growth and let
S be a finite generating set for H . The commutator subgroup [H , H ] is contained in
Fn and is normally generated by C = {[si , s j ] | si , s j ∈ S}. As H has exponential
growth we must have that [H , H ] is nontrivial.

Suppose that [H , H ] = 〈c〉 is infinite cyclic, generated by some element c ∈ Fn .
If so, there is a short exact sequence

1 → 〈c〉 → H → A → 1

where A is a finitely generated abelian group. In particular, an index two subgroup
of H is nilpotent. This implies that H has subexponential growth, contrary to our
hypothesis.

Therefore, [H , H ] is not cyclic and hence free and nonabelian. If elements
[si , s j ], [sk, s�] ∈ C do not commute, then they generate a group isomorphic to
F2. Else, C is a subset of an infinite cyclic subgroup 〈c〉 ⊂ Fn . We must have that
sk[si , s j ]s−1

k /∈ 〈c〉 for some [si , s j ] ∈ C and sk ∈ S. Indeed, otherwise every conju-
gate of an element in C by an element in H lies in 〈c〉 and since C normally generates
[H , H ] this would imply that [H , H ] is abelian, which is a contradiction. Thus [si , s j ]
and sk[si , s j ]s−1

k generate a group isomorphic to F2. To summarize, there are two ele-
ments of [H , H ] of length at most 6 that generate a group isomorphic to F2. Therefore
δ(H , S) ≥ 1

6 log 3.
As S was an arbitrary generating set for H , we have δ(H) ≥ 1

6 log 3. ��
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Lemmas 5.1 and 5.2 show that free-by-cyclic groups have Property U .

5.2 Geometrically linear unipotent outer automorphisms

In this section we will define a geometrically linear unipotent outer automorphism of
a free group and prove that if ω(X) = 0 for every Gφ-complex X , then some power
of φ is geometrically linear unipotent.

Definition 5.3 A primitive free splitting of Fn is a graph of groups decomposition of
Fn where each vertex group is Z and each edge group is trivial.

Given a primitive free splitting of Fn , F = (Y ′, {Fv}, {Fe}, {ie}), a model for
the corresponding graph of spaces is obtained by attaching a loop edge αv to each
vertex v ∈ VY ′. We will denote this graph by K (F). By choosing a maximal tree
T ⊆ Y ′ (equivalently a maximal tree in K (F), and fixing generators av ∈ Fv , a subset
E+(Y ′ − T ) ⊂ EY ′ − ET that contains one edge from each pair {e, ē} ⊆ EY ′ − ET
and a vertex v0 ∈ VY ′, the set

{av | v ∈ VY ′} ∪ {xe | e ∈ E+(Y ′ − T )}

is a basis for Fn via the isomorphism Fn ∼= π1(K (F), v0).

Definition 5.4 An outer automorphism φ ∈ Out(Fn) is geometrically linear unipotent
(GLU) if there is a representative � ∈ Aut(Fn), a primitive free splitting of Fn ,
F = (Y ′, {Fv}, {Fe}, {ie}) of Fn , a maximal tree T ⊆ Y ′ and vertex v0 ∈ VY ′ such
that the following holds.

1. For every e ∈ ET where o(e) lies between v0 and τ(e), there is an integer pe.
2. For each v ∈ VY ′, �(av) = wvavw

−1
v where (e1, e2, . . . , em) is the minimal

length edge path in T from v0 to v and

wv = a
pe1
o(e1)

a
pe2
o(e2)

. . . a
pem
o(em ).

3. For each e ∈ E+(Y ′ − T ), �(xe) = wo(e)a
qe
o(e)xea

re
τ(e)w

−1
τ(e) for some qe, re ∈ Z.

Example 5.5 Consider the primitive free splitting of F3 = 〈a, b, c〉, where the
underlying graph has two vertices v1, v2 and two (geometric) edges e1, e2 where
o(e1) = τ(e2) = v1 and τ(e1) = o(e2) = v2, and where the vertex groups are
Fv1 = 〈a〉 and Fv2 = 〈b〉. Let T be the single edge e1. See Fig. 1 below.

Fix integers p, q, and r . The automorphism

�(a) = a; �(b) = a pba−p; �(c) = a pbqcar

represents a GLU outer automorphism.

Remark 5.6 From the definition, we see that GLU outer automorphisms are linearly
growing. Moreover, there exists a topological representative f : K (F) → K (F) for
φ defined by the following.
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a b a b

Fig. 1 The primitive free splitting of Example 5.5 is shown on the left, and its associated geometric
realization on the right. The tree T is colored in red

1. For every v ∈ VY ′, f (αv) = αv .
2. For every e ∈ ET where o(e) lies between v0 and τ(e), f (e) = α

pe
o(e)e.

3. For every e ∈ E+(Y ′ − T ), f (e) = α
qe
o(e)eα

re
τ(e).

Conversely, any outer automorphism that has such a geometric representative is GLU.

Thus, eachGLUautomorphismhas a geometric representative of a highly restrictive
form. In the action of a GLU automorphism on the abelianization of Fn , it will be
represented by a linearly growing unipotentmatrix.Of course, not every automorphism
with this property will be GLU. The terminology geometrically linear unipotent is
meant to indicate that even on the level of homotopy the automorphism resembles a
linear unipotent automorphism.

Proposition 5.7 If ω(X) = 0 for every Gφ-complex X, then some power of φ is
geometrically linear unipotent.

Proof Write Gφ = Fn �� Z = 〈Fn, t | tat−1 = �(a), ∀a ∈ Fn〉 where � ∈
Aut(Fn) represents the outer automorphism φ. Suppose that ω(X) = 0 for every
Gφ-complex X . We will show that the automorphism obtained by replacing � with
a power and composing the result by an inner automorphism satisfies the conditions
in Definition 5.4. On the level of the presentation, this is accomplished by replacing t
with atk for some k ∈ Z and a ∈ Fn .

As gd(Gφ) = 2, Lemmas 5.1 and 5.2 show that we may apply Theorem 1.3
to Gφ . Since Gφ is 1-ended, Theorem 1.3 yields a graph of groups decomposition
G = (Y , {Gv}, {Ge}, {he}) of Gφ where all vertex groups belong to the collection
{Z, Z

2, BS(1,−1)} and every edge group is equal to Z. We may assume that G is
reduced. ��

Let˜Y be the tree corresponding to the decompositionGφ
∼= π1(G), so thatGφ\˜Y =

Y . The normal subgroup Fn ⊂ Gφ acts on ˜Y and the quotient Y ′ = Fn\˜Y yields a
graph of groups decomposition F = (Y ′, {Fv}, {Fe}, {ie}) of Fn . Let π : Y ′ → Y be
the quotient map induced the action of 〈t〉. Following an observation of Brinkmann
[7], we claim:

Claim 5.8 The graphY ′ is finite, each vertex group Fv belongs to the collection {{1}, Z}
and each edge group Fe is trivial.

Indeed, the quotient map π induces an injection on edge and vertex groups. In
particular, as F is a decomposition of Fn and all vertex groups in G are either Z, Z

2

or BS(1,−1), we must have that each vertex group of F is either Z or trivial.
For any edge e of Y , the map ρe : Y → Ye that collapses the components of the

complement of e induces a graph of groups decomposition Ge for Gφ with a single
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edge where the edge group is Z, i.e., a splitting over Z. That is, there is a tree ˜Ye
and Gφ-equivariant map ρ̃e : ˜Y → ˜Ye with connected fibers inducing the map ρe
on quotients where Gφ\˜Ye consists of a single edge. In particular, the edge group
of e is the same in either graph of groups. Brinkmann showed that for any splitting
of a free-by-cyclic group over Z, the induced graph of groups decomposition on Fn ,
Fe = (Y ′

e, {F ′
v}, {F ′

e}, {i ′e}) has Y ′
e a finite graph and F ′

e = {1} for each edge [7,
Section 1]. Therefore for each e we have a pullback square

Y ′ π

ρ′
e

Y

ρe

Y ′
e πe

Ye

The map ρ′
e : Y ′ → Y ′

e collapses the components of the complement of π−1(e). As
above, the edge groups for Fe are the same as the corresponding edge groups in F .
Hence the edge group for an edge in π−1(e) is trivial. As e was arbitrary, this shows
that the edges groups in F are all trivial. Further, as Y ′

e is a finite graph, we see that
π−1(e) consists of finitely many edge for any edge e of Y . This shows that Y ′ is a
finite graph. This proves the claim. ��

Since Y ′ is finite, the stable letter t acts on Y ′ by a finite order automorphism. Thus
some power of t , tk , acts as the identity on Y ′ and also on each vertex group Fv since
each such group has at most two automorphisms. We replace Gφ with the finite index
subgroup Gφk . For the action of Gφ on ˜Y we now have that Gφ\˜Y = Y ′ = Fn\˜Y . We
continue to denote the graph of group decomposition of Gφ by G.

The graph of groups decomposition F may not be reduced. As t acts trivially on
Y ′, if an edge e is collapsible for F , it is also collapsible for G. This follows as the
Gφ-stabilizer of an edge in ˜Y is generated by at for some a ∈ Fn since t acts as
the identity on Y ′ and such an element does not have a proper root. Therefore, we
may collapse edges in Y ′ so that F is reduced. We will continue to denote by Y ′ the
underlying graph.

If Y ′ has a single vertex v and Fv is trivial, then we collapse one of the incident
loops and change the vertex group to Z. Hence Fv = Z for all v ∈ Y ′ and Fe = {1}
for all e ∈ EY ′. In other words, F is a primitive free splitting.

Let T ⊆ Y ′ be a maximal tree. Choose a basepoint v0 ∈ T and fix a subset
E+(Y ′−T ) ⊂ EY ′−ET that contains one edge from each pair {e, ē}. A lift ˜T ⊆ ˜Y of
T , determines for each v ∈ ˜T an elementav that generates Fv . For each e ∈ E+(Y ′−T )

we obtain a hyperbolic element xe ∈ Fn that identifies an edge ẽ1—which is a lift of
e—at the lift of o(e) in ˜T , with an edge ẽ2—which is also a lift of e—at the lift of τ(e)
in ˜T . See Fig. 2.

Since t acts trivially on Y ′, for every point x ∈ ˜Y , there exists g ∈ Fn such that
(gt).x = x . In particular, for each vertex ṽ ∈ ˜T , we can find gv ∈ Fn such that
(gvt).ṽ = ṽ. By the choice of t , this implies that (gvt)av(gvt)−1 = av for all v, or
in other words, that all vertex stabilizers are Z

2. Moreover, replacing t with gv0 t , we
may assume the stabilizer of ṽ0 is 〈a0, t〉.
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Fig. 2 The lifts ẽ1 and ẽ2 of
e ∈ E+(Y ′ − T ) are identified
by the hyperbolic translation xe .
The axis for the action of xe is
the dotted line in blue, while a
portion of ˜T is the thickened
tripod in red

ẽ2

ẽ1

xe

Let γv = (e1, . . . , em) be the minimal length edge path in T from v0 to v. We
claim that there exists integers pe such that for the word wv = a

pe1
o(e1)

a
pe2
o(e2)

. . . a
pem
o(em )

we have t .ṽ = wv.ṽ. Note, the integers pe only depend on the edges and not the vertex
v. We prove this by induction on m + 1 ≥ 0, where wv0 is understood to be trivial.
In the base case, we have already chosen t so that t .ṽ0 = ṽ0. Suppose now that the
claim holds for some m ≥ 0, and that γv has length m + 1. Then removing the last
edge of γv is the path from v to vm , so there exist integers pe such that for the word
wvm = a

pe1
o(e1)

a
pe2
o(e2)

. . . a
pem−1
o(em−1)

we have t .ṽm = wvm .ṽm . Let ẽ be the lift of em , which

is the final edge of γv , to ˜T . Since w−1
vm

t fixes ṽm , there is some power a−pe
vm such that

a−pe
vm (w−1

vm
t).ẽ = ẽ. Thus, t .ẽ = (wvma

pe
vm ).ẽ and hence

t .ṽ =
(

wvma
pem
o(em )

)

· ṽ =
(

a
pe1
o(e1)

. . . a
pem−1
o(em−1)

a
pem
o(em )

)

· ṽ,

as desired. It follows that for each v, (w−1
v t)av(t−1wv) = av . Hence, tavt−1 =

wvavw
−1
v . This proves that the t-action on the basis elements av has the form indicated

in Definition 5.4.
Consider now an edge e ∈ E+(Y ′ − T ) and let ṽ1 and ṽ2 be the lifts to ˜T of the

vertices v1 = o(e) and v2 = τ(e) respectively. There are lifts ẽ1 and ẽ2 of e where
o(ẽ1) = ṽ1 and τ(ẽ2) = ṽ2 and such that xe.ẽ1 = ẽ2. Since w−1

v1
t fixes ṽ1, there exists

a power a−qe
v1 such that (a−qe

v1 w−1
v1

t).ẽ1 = ẽ1. Similarly, there exists a power arev2 such
that (arev2w

−1
v2

t).ẽ2 = ẽ2. Then we obtain

(

(t−1wv1a
qe
v1

)xe(a
re
v2

w−1
v2

t)
)

.ẽ1 = xe.ẽ2

Since edge stabilizers for the Fn-action are trivial we have that xe is the unique element
of Fn taking ẽ1 to ẽ2. Hence, recalling that v1 = o(e) and v2 = τ(e), we conclude that
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t xet
−1 = wo(e)a

qe
o(e)xea

re
τ(e)w

−1
τ(e).

As explained in the beginning of the proof, this shows that some power of φ is
geometrically linear unipotent. ��

5.3 Proof of Theorem 1.1

There are two items left to show for Theorem 1.1. We must show that if some power
of an outer automorphism is geometrically linear unipotent (3), then Gφ is virtually
tubular (2) and that if Gφ is virtually tubular (2), then ω(X) = 0 for every Gφ-
complex X (1). Additionally, we must show that if none of these conditions holds
that ω(Gφ) is bounded away from zero. This last statement follows immediately from
Proposition 3.11 and Lemma 5.2.

Proof of Theorem 1.1 First we show that (3) implies (2). Replacing φ with a power
replaces Gφ with a finite-index subgroup. We will therefore assume φ is itself GLU,
and prove that in this case Gφ is tubular. Let F , T ⊆ Y ′, v0 ∈ T and � be as in
Definition 5.4. These data give us a basis {av, xe}, where v ∈ VY ′ runs over the vertex
set of Y ′, and e ∈ E+(Y ′ − T ) runs over the edges in the complement of the maximal
tree T .

First we show that the subgroup G0 = 〈t, av | v ∈ VY ′〉 is tubular. For each av we
have tavt−1 = �(av) = wvavw

−1
v . Rearranging we obtain

(w−1
v t)av(t

−1wv)a
−1
v = [w−1

v t, av] = 1,

or in other words 〈av, w
−1
v t〉 ∼= Z

2. Let γv = e1, . . . , em be the minimal length edge
path from v0 to v in T . The condition that φ is GLU states that

wv = a
pe1
o(e1)

. . . a
pem
o(em ) = wv′a

pem
v′ ,

for some collection of integers pe depending only on the edge e, andwhere v′ = o(em).
In particular, w−1

v t ∈ 〈av′ , w−1
v′ t〉. We then build a graph of groups decomposition

with graph T , vertex groups 〈av, w
−1
v t〉 and edge groups Z: the edge between v and

v′ identifies 〈w−1
v t〉 in each. Thus G0 is tubular.

To finish the proof, we show that adding the elements xe for each e ∈ E+(Y ′ − T )

exhibits Gφ as an iterated HNN-extension of G0 over Z edge groups. Each extension
is independent of the others, so that the result is tubular. For each element xe, we have
t xet−1 = �(xe) = wo(e)a

qe
o(e)xea

re
τ(e)w

−1
τ(e), or written differently:

xe
(

areτ(e)w
−1
τ(e)t

)

x−1
e = w−1

o(e)a
−qe
o(e) t

Clearly, areτ(e)w
−1
τ(e)t ∈ 〈aτ(e), w

−1
τ(e)t〉 while w−1

o(e)a
−qe
o(e) t ∈ 〈ao(e), w−1

o(e)t〉. We see that
the addition of each edge e ∈ E+(Y ′ − T ) adds a generator conjugating an infinite
cyclic subgroups of the τ(e) vertex group to one of the o(e) vertex group. Hence Gφ

is tubular.
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Next, we observe that (2) implies (1). IfGφ is virtually tubular, then by Lemma 2.2,
after passing to a tubular finite index subgroup, we have that ω(X) = 0 for every Gφ-
complex by Theorem 1.3 as δ(Gφ) > 0 (Lemma 5.2).

Finally, by Proposition 3.11 and Lemma 5.2, if ω(X) �= 0 for some Gφ-complex
X then

ω(Gφ) ≥ δ(Gφ)

2 · 106 = log 3

12 · 106 .

��

6 2-Dimensional right-angled Artin groups

In this section we consider 2-dimensional right-angled Artin groups and prove Theo-
rem 1.2. This theorem asserts the equivalence of the following three conditions for a
2-dimensional right-angled Artin group A� .

1. ω(X) = 0 for every A�-complex X .
2. A� is a free product of tubular groups and a free group.
3. � is a forest.

The equivalence of (1) and (2) will follow from Theorem 1.3. Indeed, that (1) is
a consequence of (2) follows immediately from Theorem 1.3 once we show that
δ(H) ≥ log 3 for a nonabelian subgroup of a right-angled Artin group (Lemma 6.2).
For the converse, we will show how to modify the graph of groups decomposition
ensured by Theorem 1.3 when ω(X) = 0 for every A�-complex X in Lemma 6.3
to get the requirements on the vertex groups. In Lemmas 6.4 and 6.5 we establish
the equivalence of (2) and (3). Before we prove these lemmas, we recall a theorem of
Baudisch regarding subgroups of a right-angledArtin group generated by two elements
which is important for our analysis.

6.1 Baudisch’s theorem and consequences

Baudisch proved that the subgroup generated by two elements in a right-angled Artin
group is either free or abelian [4]. We record two consequences of this fact.

Lemma 6.1 Groups in the following classes are not isomorphic to a subgroup of a
right-angled Artin group:

1. Baumslag–Solitar groups BS(p, q) = 〈a, t | ta pt−1 = aq〉 if p, q �= 1,
2. torus knot groups Z ∗Z Z = 〈x, y | x p = yq〉 if p �= 1 or q �= 1, and
3. amalgamated free products Z ∗Z Z

2 = 〈x, y, z | x p = w(y, z), yz = zy〉 where
w(y, z) is a nontrivial element of the subgroup 〈y, z〉 ∼= Z

2 if p �= 1.

Proof The first two classes are immediate since they are generated by two elements and
are neither free nor abelian. For the third class of groups, notice that eitherw(y, z) �= y
or w(y, z) �= z. Hence one of the subgroups 〈x, y〉 or 〈x, z〉 is neither free nor abelian
if p �= 1. ��
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Another consequence of Baudisch’s theorem is that right-angled Artin groups have
uniform uniform exponential growth (with a uniform constant).

Lemma 6.2 Let A� be a right-angled Artin group. Suppose H is a finitely generated
nonabelian subgroup of A� . Then δ(H) ≥ log 3. In particular, if A� is nonabelian,
then δ(A�) ≥ log 3.

Proof Suppose A� is a right-angled Artin group and that H is a finitely generated
nonabelian subgroup of A� . Let S be a finite generating set for H . As H is nonabelian,
there are two element x, y ∈ S that do not commute. Hence as x and y do not commute,
they must generate a nonabelian free group by Baudisch’s theorem and therefore
δ(H , S) ≥ log 3. ��

In particular, any subexponentially growing subgroup of a right-angled Artin group
is abelian and hence right-angled Artin groups have Property U .

6.2 Proof of Theorem 1.2

We can now prove the lemmas showing the equivalences of the three items in Theo-
rem 1.2.

Lemma 6.3 Suppose that A� is a right-angled Artin group with gd(A�) = 2. If
ω(X) = 0 for every A�–complex X, then A� is a free product of tubular groups
and a free group.

Proof Let A� be a right-angled Artin group where gd(A�) = 2 and let X be an A�–
complex where ω(X) = 0. By Theorem 1.3 we have that A� is the fundamental group
of a graph of groups G = (Y , {Gv}, {Ge}, {he}) where the edge groups belong to the
collection {{1}, Z} and the vertex groups belong to the collection {Z, Z

2, BS(1,−1)}.
As BS(1,−1) is not isomorphic to a subgroup of A� (Lemma 6.1), we can in fact
conclude that the vertex groups belong to the collection {Z, Z

2}.
As in the proof of Theorem 1.3, we may assume that G is reduced. We will show

that by altering G that we can arrange that all of the vertex groups are Z
2. This will

complete the proof of the lemma.
To this end, suppose that there is a vertex v in Y with Gv = Z. Further suppose that

there is an e with o(e) = τ(e) = v and Ge = Z. Then vertex v and edge e correspond
to an HNN-extension Z∗Z ∼= BS(p, q). By Lemma 6.1, we must have p = q = 1.
Hence, we can remove the edge e and replace the vertex group Gv with Z

2.
Next suppose that for every edge e with o(e) = v we have Ge = {1}. In this case,

we can add a new edge e′ that is a loop based at v with group Ge′ = {1} and replace
the vertex group Gv with {1}. The resulting graph of groups is not reduced. Indeed, if
it were then every edge incident on v is loop which implies that A� is free. Thus, there
is some edge incident to v that is collapsible. When we collapse this edge we obtain a
reduced graph of groups decomposition for A� which has fewer vertices with vertex
group Z and has not created a vertex with vertex group {1}.

Finally, we deal with the case that there are no loops at v with edge group equal
to Z and that there is an edge e with o(e) = v such that Ge = Z. Then the subgroup
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Go(e) ∗Ge Gτ(e) is either a torus knot group Z ∗Z Z or an amalgamated free product
Z ∗Z Z

2. By Lemma 6.1, we must have that he : Ge → Go(e) or hē : Ge → Gτ(e)

is surjective, contradicting the assumption that the graph of groups decomposition is
reduced. ��
Lemma 6.4 Suppose that A� is a right-angled Artin group with gd(A�) = 2. If A� is
a free product of tubular groups and a free group, then � is a forest.

Proof Let A� be a 2-dimensional right-angled Artin group and suppose that A�
∼=

G1 ∗ . . . ∗ Gk ∗ Fn where G1, · · · ,Gk are tubular groups and Fn is a free group. As
tubular groups are one-ended, this decomposition must be the Grushko decomposition
and thus we must have that Gi ∼= A�i for i = 1, . . . , k where �1, . . . , �k are the
connected components of � that have at least two vertices. Therefore, it suffices to
show that if � is connected and A� is tubular, then � is a tree.

To this end, suppose that we have a graph of groups decomposition of A� where
each edge group isZ and each vertex group isZ

2.Wewill use the calculation of the the
JSJ-decomposition of a one-ended right-angled Artin group over cyclic subgroups by
the second author [11, Section 3]. The vertex groups of the JSJ-decomposition of A�

correspond to the biconnected components of �. Specifially, vertex groups are of the
form A�0 where �0 ⊆ � is a biconnected component. The most important property of
this decomposition is that the vertex groups are subgroups of conjugates of the vertex
groups for any graph of groups decomposition of A� in which the edge groups are
each equal to Z [11, Lemma 3.3]. Hence A�0 = Z

2 for each biconnected component
�0 ⊆ � and thus every biconnected component is a single edge. Therefore every edge
of � is separating and hence � is a tree. ��
Lemma 6.5 Suppose that A� is a right-angled Artin group with gd(A�) = 2. If � is
a forest, then A� is the free product of tubular groups and a free group.

Proof As in the proof of Lemma 6.4, it suffices to show that if � is a nontrivial tree,
then A� is tubular. We do so by showing that A� is the fundamental group of a graph
of groups G = (Y , {Gv}, {Ge}, {he}) where all of edges groups are equal to Z and all
of the vertex groups are equal to Z

2.
Let ̂Y by the graph obtained by subdivision of �. We will first construct a graph of

groups ̂G with underlying graph ̂Y so that π1(̂G) = A� . As ̂Y is the subdivision of �,
we can consider V� as a subset of V̂Y . For each vertex v ∈ V� we set Gv = Z and
for each vertex v ∈ V̂Y − V� we set Gv = Z

2. In the latter case, there are exactly
two edges e, e′ ∈ ÊY with o(e) = o(e′) = v. Decompose Ge into the direct sum of
two copies of Z denoted Ze and Ze′ respectively so that Gv = Ze ⊕Ze′ . For each edge
e ∈ ÊY we setGe = Z. The inclusionmaps he : Ge → Go(e) are defined as follows. If
o(e) lies in V�, thenGo(e) = Z andwe define he : Ge → Go(e) to be an isomorphism.
Else we have that Go(e) = Z

2 = Ze ⊕ Ze′ and we define hE : Ge → Go(e) to have
Ze as image. We set ̂G to be the graph of groups (̂Y , {Gv}, {Ge}, {he}).

As � is a tree, the presentation for π1(̂G) shows that π1(̂G) ∼= A� .
Notice that ̂G is not reduced. Indeed, for every vertex in V�, there is an incident edge

that is not a loop and for which the inclusion map is an isomorphism. For each vertex
in V�, we fix one such edge and perform the collapse. Let G = (Y , {Gv}, {Ge}, {he})
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be the resulting graph of groups. We then observe that the vertex set VY corresponds
to the set V̂Y − V� and hence Gv = Z

2 for each vertex v ∈ VY . The edge groups do
not change and hence Ge = Z for each edge e ∈ EY . As π1(G) = π1(̂G) ∼= A� , we
have shown that A� is tubular. ��

Proof of Theorem 1.2 Let A� be a right-angled Artin group where gd(A�) = 2.
The equivalences of items (1) and (2) follow from Theorem 1.3 and Lemmas 6.2

and 6.3. The equivalences of items (2) and (3) follow immediately from Lemmas 6.4
and 6.5.

Finally, by Proposition 3.11 and Lemma 6.2, if ω(X) �= 0 for some A�-complex
X then

ω(A�) ≥ δ(A�)

2 · 106 = log 3

2 · 106 .

��
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