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Abstract

Let G be a free-by-cyclic group or a 2-dimensional right-angled Artin group. We
provide an algebraic and a geometric characterization for when each aspherical sim-
plicial complex with fundamental group isomorphic to G has minimal volume entropy
equal to 0. In the nonvanishing case, we provide a positive lower bound to the min-
imal volume entropy of an aspherical simplicial complex of minimal dimension for
these two classes of groups. Our results rely upon a criterion for the vanishing of the
minimal volume entropy for 2-dimensional groups with uniform uniform exponential
growth. This criterion is shown by analyzing the fiber 1-growth collapse and non-
collapsing assumptions of Babenko—Sabourau (Minimal volume entropy and fiber
growth, arXiv:2102.04551, 2020).

1 Introduction

The volume entropy of a finite simplicial complex X equipped with a piecewise Rie-
mannian metric g is defined as

1
ent(Xa g) = t1_1>Igo ; log VOI(BXO(t)ﬂ g)

where on (7) is the ball of radius ¢ centered at some point xo in the universal cover
X and g g is the pull-back metric on X. This limit always exists and does not depend
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on the choice of x¢. Initially defined as a Riemannian manifold invariant, the volume
entropy measures the exponential growth rate of the volume of balls in the universal
cover and is related to the growth of the fundamental group (Svarc [35] and Milnor
[26]) and to the dynamics of the geodesic flow. Specifically, in this context, Dinaburg
showed that the volume entropy gives a lower bound on the topological entropy of the
geodesic flow [14]. Manning further showed that if the sectional curvatures for the
metric are all nonpositive, then the volume entropy equals the topological entropy of
the geodesic flow [24].

In order to obtain a topological invariant of X, it is natural to optimize the volume
entropy over all piecewise Riemannian metrics. To get an invariant that is nonde-
generate, we must take into account the effect of scaling the metric by a constant
and counteract this by multiplying the volume entropy by an appropriate root of the
volume. This leads to the notion of minimal volume entropy, introduced by Gromov
originally in the context of Riemannian manifolds [18]. To this end, we set

w(X, g) = ent(X, g) vol(X, g)!/ 4imX)
The minimal volume entropy of a finite simplicial complex X is defined by

w(X) = ir{}fa)(X, g)

where g runs over all piecewise Riemannian metrics on X.

When M is aclosed, orientable n-manifold, Gromov showed that w (M)" > ¢, || M ||
where || M| is the simplicial volume of M and ¢, > 0 is a constant that only depends
on the dimension [18]. In dimensions at most 3, the invariants w(M)" and ||M | are
proportional, as we explain below. It is unknown whether or not the reverse inequality
holds up to a constant in higher dimensions. Nevertheless, it is in this sense that
@ (X)ImX) can be viewed as a substitute for simplicial volume for X when there is
no natural choice of fundamental class.

Katok was the first to realize that minimal volume entropy could select an opti-
mal metric, up to scale. He proved that if M is a closed surface with negative Euler
characteristic then w (M, g) > w (M, gnyp) Where gnyp is any hyperbolic metric, with
equality if and only if g has constant curvature [21]. This was extended by Besson—
Courtois—Gallot to closed, real hyperbolic manifolds of any dimension. [5].

For simplicial complexes that are not manifolds, there are few results. When X is
a finite connected graph and every vertex has degree at least 3, Lim gave an explicit
description of a metric go so that w(X) = w(X, go) [22]. Analogous to the results
for closed real hyperbolic manifolds mentioned above, Lim additionally proves that
this metric is unique up to scale. McMullen gave an alternate proof of this result [25];
1. Kapovich—Nagnibeda gave a proof of this result when every vertex in the graph has
degree 3 [20].

Other general results regarding minimal volume entropy for simplicial complexes
include the fiber m1-growth collapsing/non-collapsing assumptions recently provided
by Babenko—Sabourau that are useful in showing whether or not w(X) vanishes [1].
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These will play a key role in this paper and are discussed in more detail later on in the
Introduction and in Sect. 3.

As mentioned above, the volume entropy is related to the growth of the fundamental
group in that it—or a slight variation—can be used to determine the growth type:
polynomial or exponential. However, in general, the minimal volume entropy of a
simplicial complex does depend on more than the fundamental group, as originally
observed by Babenko [2]. (Although it will not play a role in what follows, in the
context of manifolds there are circumstances where the minimal volume entropy is
determined by the fundamental group; see the works of Babenko [2] and Brunnbauer
(8].)

This leads into the central object of study in this paper. For a fixed group G we
study the minimal volume entropy of a G-complex i.e., a finite aspherical simplicial
complex X such that 71(X) = G. By taking the infimum over G-complexes with
minimal dimension, we obtain an invariant of a group G of finite type. We thus define
the minimal volume entropy of G as

(G) = inf w(X)
X

where X runs over all G-complexes with dim(X) equal to the geometric dimension,
2d(G), i.e., the minimal dimension of a G-complex. For free groups, it was observed
by I. Kapovich-Nagnibeda [20], Lim [22] and McMullen [25] that if X is a finite
graph and 1 (X) is isomorphic to a free group of rank n, then w(X) > (3n — 3) log2
with equality if and only if every vertex in X has degree 3. Cast in the above language,
this gives w (F,;) = 3n — 3) log 2.

In this paper we study the minimal volume entropy when G is either a free-by-
cyclic group or a 2-dimensional right-angled Artin group (RAAG). Each such group
G admits a 2-dimensional aspherical G-complex. In each case, we prove that either the
minimal volume entropy vanishes for every G-complex or w (G) is uniformly bounded
from below. Moreover, as we will describe below, whether or not w(G) vanishes is
directly related to whether or not G is tubular, i.e., whether it admits a graph of groups
decomposition with vertex groups equal to Z? and edge groups equal to Z.

We state our results in these two cases and then describe how we apply the fiber
mr1-growth collapsing/non-collapsing assumptions of Babenko—Sabourau.

Free-by-cyclic groups Every free-by-cyclic group is determined by a finite rank free
group F, and an element ¢ € Out(F},), the outer automorphism group of F,. Denote
by G the free-by-cyclic group associated to ¢. Specifically, the group G is given by
the presentation:

Gy = (Fu,t | txt™ ! = ®(x))

where & € Aut(F,) represents ¢.

We are able give an explicit description—up to passing to a power—for which
outer automorphisms give rise to free-by-cylic groups with vanishing minimal volume
entropy. We call outer automorphisms with such a description geometrically linear
unipotent (GLU) (see Definition 5.4). We prove:
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Theorem 1.1 Suppose that ¢ is an outer automorphism of a finitely generated free
group. The following are equivalent:

1. w(X) = 0 for every Gy-complex X.
2. G is virtually tubular.
3. Some power of ¢ is geometrically linear unipotent.

If none of these conditions hold, then w(Gg) > %.

There is an established connection between free-by-cyclic groups and mapping tori
M ¢ of homeomorphisms of closed orientable surfaces f: S — S. GLU automor-
phisms have linear growth, and via this connection are reminiscent of a multi-twist
homeomorphism of a closed orientable surface. Pieroni showed that w(M)?3, for M a
closed orientable 3-manifold, equals two times the sum of the volumes of the hyper-
bolic components in the JSJ decomposition [28]. In particular, by the celebrated result
of Thurston, the minimal volume entropy of M ¢ vanishes if and only if some power of
f is homotopic to a multi-twist [34]. In this way, Theorem 1.1 result can be regarded
as a free group analogue. However, in contrast to the case of a mapping class on a
closed surface, not all subexponentially growing outer automorphisms of free groups
have linear growth, and not all G4 with linearly growing ¢ have vanishing minimal
volume entropy.

The L?-torsion —p®(+) is an analytic invariant of certain groups that may also
play the role of volume. Indeed, if M is a closed orientable 3-manifold, then Liick—
Schick proved that —p(2) (1 (M)) equals é times the sum of the volumes of the
hyperbolic components in the JSJ decomposition [23]. By combining the work of
Gromov, Soma and Thurston, we have that ||M|| also equals a constant times the
sum of the volumes of the hyperbolic components in the JSJ decomposition in this
case [18,32,33]. Thus we see that these three notions of volume—minimal volume
entropy, L2-torsion, and simplicial volume—are all proportional for closed orientable
3-manifolds, in particular, for mapping tori of homeomorphisms of closed orientable
surfaces.

As there is no well-defined fundamental class for a free-by-cyclic group, there is
no natural way to define the simplicial volume. However, it is interesting to com-
pare the minimal volume entropy and the L>-torsion for free-by-cyclic groups. The
second author proved that —p(z)(G¢) vanishes when ¢ is polynomially growing
[12]—conjecturally, the converse holds as well. As Theorem 1.1 shows that most free-
by-cyclic groups with polynomially growing monodromy have nonvanishing minimal
volume entropy, we see that these two invariants are not proportional in this setting.
The second author provided an upper bound on —p® (G¢) using the dynamics of ¢
[12], it would be interesting to find an upper bound on the minimal volume entropy
of Gy as well.

Theorem 1.1 provides a characterization of free-by-cyclic groups that are virtually
tubular. We note that Button has provided a characterization of tubular groups that are
free-by-cyclic [9].

Right-angled Artin groups Let I" be a finite simplicial graph. The right-angled Artin
group Ar is the group whose generators are the vertices of I' and whose relations
are commutations between generators when the vertices are incident on an edge in I'.
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That is, Ar is given by the presentation:
Ar = (VI' | vw = wv if v and w are incident on an edge in I').

Right-angled Artin groups, though simple to define, form an essential class of groups
in low-dimensional topology and geometric group theory. Partly, this is due to the
suprising richness of their subgroups, their role as an interpolation between free groups
and free abelian groups and also the frequency at which they arise as subgroups of
geometrically defined groups.

The group Ar has geometric dimension equal to 2 if and only if I" has at least one
edge (i.e., Ar is not free) and I has no triangles (i.e., K3 is not a subgraph of I')
[10, Corollary 1.4.2]. In this case an Ar-complex, known as the Salvetti complex Sr,
is built out of unions of circles S! and tori S' x S that are identified along certain
cyclic subgroups. This structure seems reminiscent of a tubular group, however, not
all 2-dimensional right-angled Artin groups are (free products of) tubular groups. In
fact, whether or not a 2-dimensional right-angled Artin group is tubular is directly
related to its minimal volume entropy.

Theorem 1.2 Suppose that Ar is a right-angled Artin group with gd(Ar) = 2. The
following are equivalent.

1. w(X) = 0 for every Ar-complex X.
2. Ar is a free product of tubular groups and a free group.
3. T is a forest.

log 3

If none of these conditions hold, then w(Ar) > 3106

We remark that according to Droms, Ar is a 3-manifold group exactly when I is a
disjoint union of trees and triangles [15]. Since a triangle corresponds to Z>, " is a
forest exactly when Ar is a 3-manifold group with geometric dimension at most 2.

It seems likely a characterization for the vanishing of minimal volume entropy of
right-angled Artin groups of arbitrary dimension is possible, although the statement
may not be so neat.

Fiber mi-growth assumptions Both theorems above are consequences of the fiber
m1-growth collapsing/non-collapsing assumptions of Babenko—Sabourau [1]. These
assumptions relate the vanishing of the minimal volume entropy of a simplicial com-
plex X to the existence or non-existence of maps f: X — P to lower dimensional
complexes, based on the 1-growth of fibers. Briefly, the two assumptions are:

e Fiber m1-growth collapsing assumption (FCA)—For some simplicialmap f: X —
P, every induced subgroup 71 (f~!(x)) € m1(X) is subexponentially growing
with subexponential growth rate less than 1 — g}ﬁ )};.

e Fiber mi-growth non-collapsing assumption (FNCA)—There is a constant § >
0 such that for every simplicial map f: X — P, some induced subgroup

m(f ~1(x)) € 71(X) has uniform exponential growth rate at least &.

Although the two criteria are not a priori complementary, we show that they are
in the case of free-by-cyclic groups and 2-dimensional right-angled Artin groups.
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Moreover, the two assumptions are complementary when the fundamental group of
X has uniform uniform exponential growth and satisfies a technical condition on
subexponentially growing subgroups (see Definition 2.1 and Proposition 3.10).

When X is a 2-dimensional simplicial complex, the fiber m1-growth assumptions
consider maps f: X — P where P is a finite simplicial graph. Applying standard
geometric group theoretic techniques, when X satisfies the FCA there is an induced
graph of groups decomposition on 71 (X) where the vertex and edge groups are all
subexponentially growing (Proposition 4.1).

When a group G has uniform uniform exponential growth (denoted by §(G) > 0
in the following), we prove the following vanishing criteria:

Theorem 1.3 Let G be a group with gd(G) = 2. Suppose §(G) > 0 and that the subex-
ponentially growing subgroups of G belong to the collection {{1}, Z, 7Z*, BS(1, —1)}.
Then w(X) = 0 for every G-complex X if and only if G is the fundamental group
of a graph of groups where the edge groups belong to the collection {{1}, Z} and the
vertex groups belong to the collection {Z, Z*, BS(1, —1)}.

Remark 1.4 The Baumslag—Solitar group BS(1, —1) = (a,t | tat™' = a~') is the
fundamental group of the Klein bottle. By a result of Degrijse, if G has cohomological
dimension equal to 2, has subexponential growth and the group algebra C[G] does not
have zero-divisors, then G is either Z2 or BS (1, —1) [13, Theorem B]. Conjecturally,
if G is torsion-free then C[G] does not contain any zero-divisors, which would render
this hypothesis unnecessary. Therefore conjecturally, Theorem 1.3 applies to any group
with gd(G) = 2 and §(G) > 0.

Theorem 1.3 applies to the case of groups G with gd(G) = 2 that act freely and
cocompactly on CAT(0) cube complexes with isolated flats by recent work of Gupta—
Jankiewicz—Ng [19].

1.1 Outline of paper

In Sect. 2, we discuss notions of growth in groups and show that the vanishing of w (X)
is a homotopy invariant of G-complexes of minimal dimension. Section 3 recalls the
fiber 7r1-growth collapsing/non-collapsing assumptions of Babenko—Sabourau [1] and
proves that these are complementary when G has Property U. After briefly reviewing
graphs of groups, in Sect. 4 we prove Theorem 1.3. In Sect. 5 we prove Theorem 1.1
regarding the minimal volume entropy of free-by-cyclic groups. Finally, in Sect. 6,
we prove Theorem 1.2 regarding the minimal volume entropy of 2-dimensional right-
angled Artin groups.

2 Entropy and volume in groups

In this section we discuss growth in groups and the relation between the minimal
volume entropy of a group and the minimal volume entropy of a finite index subgroup.
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2.1 Growth in groups

Let G be a finitely generated group and suppose that S C G is a finite generating set.
For an element i € G, by |||l ¢ we denote the word length of / with respect to S.
The growth rate of G with respect to S is the quantity

1
5(G.$) = lim —log#{h € G | llhlls <1).

We observe that if X is the Cayley graph of G with respect to the generating set S and
g is the piecewise Riemannian metric on X for which each edge of X is isometric to
the unit interval, then ent(X, g) = 6(G, §). If 6(G, S) > 0 for some finite generating
set S C G, then it is known that §(G, S") > 0 for all finite generating sets S’ C G.
In this case, the group G is said to have exponential growth. Else, the group is said to
have subexponential growth. If further we have that #{h € G | ||h||g¢ < t} is bounded
by a polynomial, the group G is said to have polynomial growth.

In the case of subexponential growth, we consider the subexponential growth rate
of G which is defined by

loglog # hlle <
v(G)=tlim oglog#{h € G | || ||s_t}'
—00

logt

This quantity is independent of S and satisfies 0 < v(G) < 1. We remark that if G
has polynomial growth, then v(G) = 0.

In the case of exponential growth, to get a quantity that is independent of the
generating set, we can take the infimum. This leads to the uniform growth rate of G
which is defined by

8(G) = ir;fS(G, S)

where S runs over all finite generating sets for S. The group G is said to have uniform
exponential growth if §(G) > 0. There are examples of finitely generated groups with
exponential growth, but not uniform exponential growth [36].

Taking this concept one step further, we can consider the infimum over all finitely
generated exponentially growing subgroups of G as well. This leads to the uniform
uniform growth rate of G which is defined by

8(G) = inf 5(H)

where H runs over all finitely generated subgroups of G with exponential growth. The
group G is said to have uniform uniform exponential growth if §(G) > 0.
Finally, the following property is relevant to the sequel.

Definition 2.1 A finitely generated group G has Property U if §(G) > 0 and if H is
a subgroup of G with subexponential growth, then v(H) = 0.

In particular, if §(G) > 0 and every subexponentially growing subgroup of G has
polynomial growth, then G has Property U.
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2.2 Monotone maps and finite index subgroups

Let X and Y be simplicial complexes with dim(X) = dim(Y) = m. A simplicial
map f: Y — X is said to be n-monotone for n > 0 if the preimage of any open
m-simplex in X consists of at most n open m-simplices in Y. The following lemma
gives a relation between the minimal volume entropy of X and Y using a n-monotone
map f: Y — X. This lemma appears in a paper by Brunnbauer [8, Lemma 4.1]. The
proof is attributed to Babenko [2] and appears in a paper by Sabourau [29, Lemma 3.5].

Lemma22 Let f: Y — X be an n-monotone map between m-dimensional finite
simplicial complexes. If f.: m(Y) — m1(X) is injective, then

"M w(X) > w(Y).

There are two useful consequences of this bound.

Proposition 2.3 Let G be a group of finite type and let X and Y be G-complexes with
dim(X) = dim(Y). Then w(X) = 0 if and only if o(Y) = 0.

Proof Let f: X — Y be a homotopy equivalence and let f': ¥ — X be the homo-
topy inverse to f. By the simplicial approximation theorem, we may assume that both
of these maps are simplicial. Let m denote the common dimension of X and Y. By
finiteness, each m-simplex of Y has at most n preimages for some n > 0 under f.
Similarly, there exists n’ > 0 such that each m-simplex of X has at most n’ preim-
ages under f’. The proposition now follows from Lemma 2.2, since n and n’ are both
positive. O

We record the following corollary of Proposition 2.3.

Corollary 2.4 Let G be a group of finite type and suppose that w(X) = 0 for some
G-complex with dim(X) = gd(G). Then w(X) = 0 for every G-complex X with
dim(X) = gd(G).

The other useful consequence is with regards to finite index subgroups.

Proposition 2.5 Suppose that G is a group of finite type. If H is a subgroup of G and
|G : H] =n, then

n'/89 . (G) = w(H).
Proof Let G and H be as in the statement. As G has finite type, so does H and
moreover gd(G) = gd(H).
Suppose that X is a G-complex withdim(X) = gd(G).Let f: Y — X bethe cover
corresponding to the subgroup H. Then f is n-monotone and f,: 71 (¥Y) — m1(X)
is injective. Hence by Lemma 2.2 we have that

n'/8d@ (X)) > w(Y).
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As X is an arbitrary G-complex with dim(X) = gd(G) and w(Y) > w(H) for any
H-complex Y with dim(Y) = gd(H), the result follows. m]

In particular, if w(H) > 0 for some finite index of a group G of finite type, then
w(G) > 0 as well.

3 Fiber m1-growth assumptions

In this section we recall the fiber 7r1-growth collapsing and non-collapsing assump-
tions, introduced by Babenko—Sabourau [1]. The collapsing assumption provides a
sufficient condition for the minimal volume entropy to vanish, while the non-collapsing
assumption guarantees the minimal volume entropy is nonzero, and also provides a
lower bound.

3.1 Fiber 1,-growth collapsing assumption

First we discuss the collapsing assumption. Let X be a simplicial complex. A closed
subset F' € X has subexponential growth if for every connected component Fy C F,
the inclusion induced image of 7 (Fp) in 7r1(X) has subexponential growth.

Definition 3.1 (Babenko—Sabourau [1]) A simplicial complex X of dimension m sat-
isfies the fiber m1-growth collapsing assumption (FCA) if there exists a simplicial
map f: X — P to afinite simplicial complex P of dimension k such that for every
p € P, the fiber f~!(p) has subexponential growth with subexponential growth rate
less than mT_k

Babenko—Sabourau prove that the FCA is sufficient to ensure that the minimal vol-
ume entropy vanishes. We will provide a proof of a weaker version that is sufficient for
our needs. Namely, we will show that satisfying the FCA with the stronger assump-
tion that the subexponential growth rate of the fibers is less than 1/ dim(X) implies
that the minimal volume entropy vanishes. Our proof is based on their outline but the
assumption about the subexponential growth rate of the fibers simplifies the argument.

To do this, we need some facts about subexponential functions. Let ¢: [0, co) —
[0, o) be a non-decreasing, subexponential function. By definition, for every 0 <
A < 1, there exists T; € [0, oo) such that for all t > Tj,

¢ (1) < exp(rt).
We may assume 7 is the largest # such that ¢ (r) = exp(Xrt). The next lemma describes
the dependence of 7, on A.

Lemma 3.2 Suppose that ¢: [0, 00) — [0, 00) is a non-decreasing, subexponential
function and that ¢ (ty) > 1 for some ty € (0, 00). The following statements hold.

1. The function A +> T, is strictly decreasing on (0,Ag] where Ay =
min{1, 2 log ¢ (7)}.
2. limy_ g+ T) = oo.
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3. Suppose (t,) C [ty, 00) and (A,) C (0, o] are sequences such that t, — 0o and
T, = tn. Then for any € > 0 we have

li by
msup ——— <
n—00 t,‘;+6_1

for where v is the subexponential growth rate of ¢ (t).

Proof For0 < A < p < Ao, asexp(rt) < exp(ut)fort > 0, we find that exp(AT),) <
exp(uTy,) = ¢(T,). Thus T > T,,. This shows that T}, is strictly decreasing on (0, Ag],
equivalently, strictly increasing as A — 0. This completes the proof of (1).

Suppose T), — Ty < oo as A — 0T, Since Ty, is strictly decreasing on (0, Ag],
we have that Ty > Ty, > fo. Therefore for all A > 0, we have ¢(Tp) < exp(ATp)
and hence ¢ (Tp) < lim,_, o+ exp(ATp) = 1. However, ¢ (Tp) is strictly greater than
1, since t9 < Tp and ¢ is increasing, a contradiction. Therefore we conclude that
lim, _, o+ T = oo. This shows (2).

Finally, suppose that 0 < v < 1 is the subexponential growth rate of ¢ (¢). Thus
for any € > 0 we have that ¢ (r) < exp(¢""¢) for large ¢. Hence for large enough n,
we have exp(nty) = ¢ (t,) < exp(t'+€). This gives A, < t’7¢~! for large enough n
and thus lim sup,,_, o, t‘,i% < 1. This shows (3). O

Given a simplicial map f: X — P, we will call an edge e of X long if f(e) is an
edge of P, and short otherwise, in which case f (e) is a vertex of P.

Theorem 3.3 (Babenko—Sabourau [1, Theorem 2.6]) Let X be a finite, connected,
simplicial complex. If X satisfies the FCA, then o (X) = 0.

Proof when subexponential growth rate of fibers is less than 1/dim(X) Let m denote the
dimension of X. Suppose f: X — P is a simplicial map where dim P < m and for
every p € P, the fiber f~!(p) has subexponential growth with subexponential growth
rate v where v < 1/m. Without loss of generality, we may assume that f: X — P
is surjective and has connected fibers (see, for example, Proposition 2.1 of [1]). Fix
piecewise Riemannian metrics gy, gp on X and P respectively, where the metrics on
each simplex agree with that of a Euclidean simplex whose edges all have length 1.
We can pull back the metric f*(gp) to X, where it is everywhere degenerate because
the dimension of P is strictly smaller than m. Consider a new metric gs for s > 0
defined pointwise by

g = f*(gp) +5%gx.

Since f*(gp) is everywhere degenerate, we clearly have lim,_, o+ vol(X, g5) = O.
However, it is not the case in general that ent(X, g;) stays bounded as s —
0" and so we need to analyze these quantities further. We will prove the theo-
rem by finding a sequence of positive real numbers (s,) such that w(X, g;,) =
ent(X, gs,) vol(X, gSn)l/’” goes to 0 as n — oo.

We start with the following inequality.
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Claim 3.4 There is a constant V such that vol(X, gs) < sV.

Proof of Claim Let o be a simplex of dimension m in X. We will show that the volume
of o with respect to the restriction of g; is bounded by a constant times s. As there are
only finitely many simplicies in X, the claim follows.

At each point of o, we can express the metric gx as a matrix [xq]| ... |x,] where
each x; € R™. Likewise, we can express f*(gp) as a matrix [y;]...|y,] where each
yi € R™. Let ¥, denote the collection of subsets of {1, ..., m}. We then compute

det(gs) = det([y1 + SZX1| coilym + szxm])
= Y s"ldet(zs 1l .. . lzs.m))

SeX,

where z5; = x; ifi € Sand zg; = y; ifi ¢ S. As f*(gp) is everywhere degenerate,
we have det([y1]...|ym]) = 0. Hence every term in the above summation expressing
det(gs) contains s2" forsomen > 1. As o is compact, each term det([zs 1] ... |zs.m])
is bounded on o. From this it follows that det(g;) is bounded by a constant times 52
on o and thus the volume of o is bounded by a constant times s, as desired. O

To calculate the volume entropy we will estimate the number of homotopy classes
in X of gs-length at most ¢, as t becomes large.

Let us first estimate the number of homotopy classes in fibers. Since g, reduces to
s2gx along fibers, we can choose s sufficiently small so that each fiber has diameter
at most % Suppose F, = f~!(v) is a fiber over some vertex v € P. Fix a basepoint
x € Fy,andfort > 0let N (F,, x; t) denote the number of homotopy classes of loops
in F), based at x whose g;-length is at most . Then since g, scales the gx (= g1)-length
of edges in F, by s, we have

Ni(Fy, x51) = Nj (Fv,x; £>.
S

As each fiber is subexponentially growing by assumption and since there are only
finitely many vertices in P, for every 0 < A < 1, there exists 7 such that for all
t > T, and vertex v € P, we have

Ny (Fy, x;t) < exp(AT).

Define N'(t) = max,cp N7 (Fy, x; t). We define C; = N (T3), so that for all vertices
v e Pandforallt >0,

N1 (Fy, x; t) < C; exp(At).

For fixed s, we can let A depend on s. Suppose that A/(zp) > 1 for some fy > 0
so that N (¢) satisfies the hypotheses of Lemma 3.2. Let Ao = min{1, % log N'(tp)} as
1
Ty
(0, Ao] and lim, _, o+ T;, = oo, there is decreasing sequence of positive real numbers

defined in Lemma 3.2. Define sq to be equal to =—. Since T}, is strictly decreasing on
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(sp) starting with so such that s, — 0 as n — oo and for which there exist positive
real numbers (1,) such that Tj, = % If N(¢) < 1 for all ¢, we take s, = 1/n and
Ay = 0.

An arbitrary loop y in X can be represented as an edge path in the 1-skeleton.
Decompose such a path y as

Y = €101 ... &0k,

where the ¢; are long edges, and the o; are edge paths consisting of edges in some
fiber Fy,.

Connect the endpoints of each o; to the basepoint x; € F,; to form a loop o; at
the expense of adjoining to paths of length at most diam(Fy,, gs,) < % Hence if o;
has g, -length #; then the length of &; is at most #; 4+ 2 diam(F,, g,,) <t + 1. Up to
homotopy, the number of possible o; of length at most #; is then bounded above by

. i +1 fi+1
N (Fy,, x5 t; + 2diam(Fy,, g5,)) <N (Fv,v,xiQ ’ ) < G, exp <An : >

Sn Sn

Let N, be the total number of edges in X. On the one hand, each long edge ¢; has
gs,-length at least 1, hence k is at most the length of y. On the other hand, we also
have Zle t; is less than the length of y. Thus, we can bound the total number of
possible paths of g, -length at most some integer ¢ by

d ti+1 P Ant
Mo (350 ) = et o (23 o ()
n i=1 n

i=1 "
Ant Ant
< NICi exp <i> exp <i> .
n Sn Sn

Taking the logarithm, dividing by ¢ and letting t — oo we obtain:

An

ent(X, gs,) < log(N,) + log(C;,,) +

Sn

Recall now that C;,, = N(T3,) =N($).Lete = %(l/m—v) sothatv+2e = 1/m.

By Lemma 3.2(3) we have &, < s,],f(we) for sufficiently large n. Thus, for such n,
we have

1 2
ent(X, gs,,) < log(N,) + 10gj\/’ <_) 4 —.
Sn Sn

By Claim 3.4, there is a constant V such that vol(X, g;,) < s,V. Therefore, the
normalized volume of gy, is bounded by s,% /mym Multiplying the above by this we

get
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1
ent(X, g;,) vol(X. g5,)7 < sy VY™ log(Ne) + 53" V1™ log A <—) + 255V,
S

n

Recall that s, — 0 as n — oo. Thus, the first and third terms on the right hand side
clearly go to 0 as n — oo. Likewise, the middle term goes to 0 as n — oo because
N is a subexponential function with subexponential growth rate less than 1/m. Thus,
the left hand side must go to 0 as n — 00, so the sequence of metrics (X, g5,) shows
that w (X) equals O. O

Remark 3.5 The Gap Conjecture of Grigorchuk states that if a finitely generated group
G satisfies v(G) < 1/2 then G has polynomial growth [17]. If this conjecture is true,
then the proof of Theorem 3.3 only applies to the case when the fibers have polynomial
growth.

As a consequence of Theorem 3.3, we get the following strengthening of Corol-
lary 2.4.

Proposition 3.6 Let G be a group of finite type. Then the following are equivalent:

1. w(X) = 0 for some G-complex X with dim(X) = gd(G).
2. w(X) = 0 for every G-complex X.

Proof Suppose that w(X) = 0 where dim(X) = gd(G) and let Y be a G-complex.
If dim(Y) = dim(X), then w(Y) = 0 by Corollary 2.4. Else we have that dim(Y) >
dim(X). Let f: Y — X be a homotopy equivalence. As in Proposition 2.3, we may
assume that f is simplicial. As f is a homotopy equivalence, every fiber f~!(p)
has subexponential growth with subexponential growth rate 0. Indeed, the inclusion
induced image of 7 (f —1(p)) in 71 (Y) is trivial. Therefore Y satisifes the FCA and
o (Y) = 0 by Theorem 3.3. This shows that (1) implies (2).

The other implication is obvious. O

3.2 Fiber 1;-growth non-collapsing assumption

Next, we discuss the non-collapsing assumption.

Definition 3.7 (Babenko—Sabourau [1]) A simplicial complex X of dimension m sat-
isfies the fiber w1 -growth non-collapsing assumption (FNCA) if there exists a constant
8 = 8(X) > 0 such that for every simplicial map f: X — P to a finite simplicial
complex P of dimension at most m — 1, there exists p € P and a connected component
FhCf -1 p) such that the inclusion induced image of 1 (Fp) in 71 (X) has uniform
exponential growth at least §.

Babenko—Sabourau prove that the FNCA is sufficient to ensure non-vanishing of
the minimal volume entropy and moreover provide a positive lower bound in this case.

Theorem 3.8 (Babenko—Sabourau [1, Theorem 3.6])If X is a connected, finite simpli-
cial complex with dimension m satisfying the FNCA, then w(X) > 0. More precisely,
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we have

8

X) >
*X=77C,

where § = §(X) and C,, > 0 is a constant depending only on the dimension m.

Remark 3.9 As we are primarily concerned with 2-dimensional simplicial complexes,
we note that according to Papasoglu one may take C; = 10° [27].

3.3 FCA and FNCA are complementary for groups with Property U

As pointed out by Babenko—Sabourau, the definitions of FCA and FNCA are not
complementary. The subtlety lies in the subexponential growth rate in the definition
of the FCA and the uniformity of the constant § in the definition of the FNCA. If we
assume that the fundamental group of the complex has Property U, then this issue
disappears.

Lemma 3.10 Let G be a group of finite type and suppose that G has Property U. Then
any G-complex either satisfies the FCA or the FCNA.

Proof Let G be as in the statement and let X be a G-complex.

Suppose that X does not satisfy the FCA. Hence, given any simplicialmap f: X —
P where P is a simplicial complex with dim(P) < dim(X), there is some point p € P
and a component Fy C f -1 p) such that the inclusion induced image of 71 (Fp) in
71 (X) has exponential growth. As G = m1(X), we must have that the uniform growth
rate of the inclusion induced image of w1 (Fp) is at least §(G). Thus we see that X
satisfies the FNCA for §(X) = §(G). O

Combining Lemma 3.10 with Theorem 3.3, Proposition 3.6 and Theorem 3.8 we
obtain the following dichotomy for any group of finite type with Property U.

Proposition 3.11 Let G be a group of finite type with m = gd(G) and suppose that G
has Property U. Then either

1 w(X) = 0 for every G-complex, or
w(G) > @

Proof If some G-complex X with dim(X) = gd(G) satisfies the FCA, then w(X) = 0
by Theorem 3.3. Thus by Proposition 3.6, we get that w (X) = 0 for every G-complex
X and thus (1) holds.

Else, by Lemma 3.10, every G-complex X with dim(X) = gd(G) satisfies the
FNCA with §(X) = §(G). Thus o(X) > 3% by Theorem 3.8. As X is an arbitrary
G-complex with dim(X) = gd(G), we see that (2) holds. O

4 Vanishing criterion when gd(G) = 2

In this section we prove the first main result of this paper. Theorem 1.3 provides a
characterization of when w (X) = 0 for every G-complex X, provided that gd(G) = 2,
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§(G) > 0, and the subexponentially growing subgroups of G belong to the collection
{1}, z, 72, BS(1, —1)}. (In particular, such a G has Property U.) Specifically, the
minimal volume entropy vanishes for each G-complex precisely when G is the fun-
damental group of a graph of groups where the edge groups belong to the collection
{{1}, Z} and the vertex groups belong to the collection {Z, 7%, BS(1, —1)}. Before we
prove this theorem in Sect. 4.3, we recall the definition of a graph of groups and set
some notation in Sect. 4.1. Then in Sect. 4.2, we show that if a G-complex of min-
imal dimension satisfies the FCA and gd(G) = 2, then G is the fundamental group
of a graph of groups where the vertex groups and edge groups are subexponentially
growing. We complete the proof of Theorem 1.3 in Sect. 4.3.

4.1 Graphs of groups

General references for the material in this section are the works of Bass [3], Scott—Wall
[30], and Serre [31].
A graph of groups consists of the following data.

1. A finite connected graph Y with vertex set V'Y and edge set EY. By o(e) and t(e)
we denote the originating and terminal vertices of an edge e respectively, and e
denotes the edge with opposite orientation. We have ¢ =eand o(e) = t(e).

2. For each vertex v € VY, there is an associated group G,.

3. For each edge e € EY, there is an associated group G.. We have G; = G,.

4. For each edge e € EY, there is an injective homomorphism /.: G, — G(e).

We will denote a graph of groups by G = (Y, {G,}, {G.}, {he)).

Associated to a graph of groups G = (Y, {G,}, {G.}, {he}) is the fundamental
group of the graph of groups, denoted 71 (G). Briefly, it is constructed by repeatedly
taking amalgamated free products and HNN-extensions using the data in G. In more
detail, as a generating set of 771 (G) we take the set

(U Gv>u{xe|eeEY}

veVyY

where each x, is an abstract letter.

All of the relations in the vertex groups hold plus some more that use the data in
G. To write down these additional relations for 71 (G), we need to fix a maximal tree
T C Y. Using the tree T, the additional relations for 771 (G) are as follows:

xohe(a) = hz(a)xz, foreachedge e € EY and elementa € G, = G;
Xexz = 1, foreachedgee € EY
xe =1, foreachedgee € ET
The isomorphism type of 771 (G) does not depend on the choice of maximaltree 7 C Y.
Consider two graphs of groups G = (Y, {Gy}, {G,}, {h.}) and G = (Y, {G)},
{G.}, {h,}) where
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1. Y'is asubgraph of Y,

2. G|, = G, for each vertex v € VY’,
3. G, = G, foreachedge e € EY’, and
4. hl, = h, foreachedge e € EY’.

Then 71 (G’) is isomorphic to a subgroup of 71(G).

Given a graph of groups G = (Y, {G,}, {G.}, {h.}), there is an associated graph
of spaces X = (Y, {Xy}, { X}, {fe}), which is well-defined up to homotopy. For each
vertexv € VY,weset X, = K(G,, 1).Likewise, foreachedge we set X, = K (G, 1)
and further we fix a map f,: X, — X, so that (f,). = h,. There is an associated
space | X'|, called the realization of the graph of spaces, obtained by gluing the spaces
together using the graph Y. Specifically, we define

|X| = ( U Xy U U Xe x [0, 1]> (x,0) € Xe x [0, 1] ~ fe(x) € Xo() and
veVy ecEY (x,1) € X x[0,1]~ (x,1) € Xz x [0, 1]

We have that 71 (|X]) = 71(G).

Let G = (Y, {Gy}, {G.}, {h.}) be a graph of groups. Suppose that ¢q is an edge
in Y so that o(eg) # t(ep), i.e., eg is not a loop. If the inclusion map h.,: G —
Go(ep) 18 an isomorphism, then we say that the edge eg is collapsible. In this case,
we may collapse ep and obtain a new graph of groups G’ = (Y', {G/}, {G,}, {h.}).
The underlying graph Y’ is obtained by removing the edge ¢p from Y and identifying
the vertices o(eg) and 7 (eg); we denote this image of these vertices by v’ and define
G, = Gr(. All other vertices and edges of ¥’ correspond to a vertex or edge
of Y and we define the vertex group G, or edge group G, accordingly. As the map
hey: Gey = Go(ep) 1s anisomorphism, we can consider G () as a subgroup of G ()
via héohe_ol- Thus for an edge e in Y where o(e) = o(ep), the injective homomorphism
he: G — G naturally defines an injective homomorphism #),: G, — G:)(e). For
all other edges, we have that i, = h,. We say that G’ is obtained from G by collapsing
the edge e. This does not change the fundamental group, i.e., 71(G) = m1(G’). This
follows because of the isomorphism A x¢c C = A.

If no edge of Y is collapsible, we say that G is reduced. If G is not reduced, we may
repeatedly collapse edges to obtain a reduced graph of groups decomposition whose
fundamental group is 771 (G).

There is a correspondence between decompositions of G as a graphs of groups,
i.e., isomorphisms G = m1(G), and actions of G on simplicial trees Y. In this cor-
respondence, the vertex groups and edge groups of G correspond to the conjugacy
classes of the vertex stabilizers and edge stabilizers respectively for the action of G.
The underlying graph of G is G\Y.

4.2 FCA induces a graph of groups decomposition

We will now show how the FCA induces a graph of groups decomposition when
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Proposition 4.1 Suppose that G is a group with gd(G) = 2. If X is a G-complex with
dim(X) = 2 and X satisfies the FCA, then G is isomorphic to the fundamental group
of a graph of groups where the vertex groups and the edge groups are subexponentially
growing.

Proof Let G be as in the statement and let X be a G-complex that satisfies the FCA.
Hence, there is a graph I' and a simplicial map f: X — I with connected fibers such
that for each x € T, the image of 7 (Fy) in 71 (X) has subexponential growth where
Fe=f~').

The function f: X — I induces a graph of groups decomposition of G as in the
statement of the proposition as we now recall. For further details, we refer the reader
to the work of Dunwoody [16]. For each edge e of T', fix a point x, in the interior of
the edge. Let X be the universal cover of X and let p: X — X be the covering map.
We consider the lift of the fibers Fy, to X and define the two subsets of X

&= U{p_l(er) | eisanedgeof '} and V = X €.

For each component ¢ € mo(€), there are exactly two components of ) whose closures
in X contain ¢. Therefore, in the obvious way, we get a graph T with vertices mo())
and edges 7o(&). The graph T is clearly connected and as each ¢ € 7mo(E) separates
X, we see that T is a tree.

The stabilizer of a component of £ is a conjugate of the image of 71 (Fy,) in 1 (X)
for some edge e of I'. Given a component ¢ € mp()), the subset p(c) deformation
retracts onto F, for some vertex v of I'. Hence the stabilizer of a component of V is a
conjugate of the image of 71 (F,) in 71 (X) for some vertex v of T.

Therefore G acts on a tree where the stabilizer of any point is subexponentially
growing. As stated in Sect. 4.1, by Bass—Serre theory this implies that G is isomorphic
to the fundamental group of a graph of groups where the vertex groups and edge groups
are subexponentially growing. O

4.3 Proof of Theorem 1.3

Before can prove Theorem 1.3, we need a lemma that shows that certain subgroups
are prohibited in groups with gd(G) = 2.

Lemma 4.2 Suppose that H), Hy and K belong to the collection {Zz, BS(1, —1)}.
The geometric dimension of an amalgamated free product Hy xx H» is equal to 3 if
both inclusions are proper. The geometric dimension of an HNN-extension Hi*g is
equal to 3.

Proof Let Hy, H, and K be as in the statement. For each of H; xx H, and H*g,
the respective graphs of spaces using S' x S! for each Z? and the Klein bottle for
each BS(1, —1) have dimension equal to 3. Since § 1'% S! and the Klein bottle are
aspherical, the respective graphs of spaces are also aspherical [30, Proposition 3.6(ii)].
Thus gd(Hy *xx Hz) < 3 and gd(H*g) < 3.

The cohomological dimension of Hj g H» is equal to 3 if both inclusions are
proper. Likewise, the cohomological dimension Hy*g is equal to 3. See the work of
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Bieri [6, Corollaries 6.5 and 6.7] for complete details. As the geometric dimension is
bounded from below by the cohomological dimension, the result follows. O

Proof of Theorem 1.3 Suppose that G is a group with gd(G) = 2, §(G) >
0, and that every subexponentially growing subgroup belongs to the collection
({1}, Z, 7%, BS(1, —1)}.

First, we assume that w(X) = 0 for every G-complex X. As §(G) > 0, by Theo-
rem 3.8 and Lemma 3.10 there is some G-complex X that satisfies the FCA. Therefore
by Proposition 4.1 we have that G is isomorphic to the fundamental group of a graph of
groups G = (Y, {G,}, {G.}, {h.}) with subexponentially growing vertex groups and
edge groups. By collapsing any collapsible edges, we may assume that G is reduced.

If G, is trivial for some vertex v € VY, then every edge incident on v is a loop
as G is reduced. This implies that G = 71(G) is a free group. This is contrary to the
assumption that gd(G) = 2. Hence the vertex groups of G belong to the collection
(2,72, BS(1, —1)}.

By Lemma 4.2, the groups Z> and BS(1, —1) cannot appear as edge groups since
G is reduced and gd(G) = 2. Thus, the edge groups of G belong to the collection
{1}, Z}.

Next, we assume that G is isomorphic to the fundamental group of a graph
of groups G = (Y,{G,},{G.}, {h.}) where vertex groups belong to the collec-
tion {Z, Z?, BS(1, —1)} and the edge groups belong to the collection {{1}, Z}. Let
X = (Y, {Xy}, {Xe}, { fe}) be the corresponding graph of spaces built using a point,
St st x S! and the Klein bottle respectively for each {1}, Z, 72 and BS(1, —1)
respectively. Then |X| is a G-complex with dim(|X|) = 2 = gd(G) and there is a
map p: |X| — Y where each of the fibers either a point, St st x Stor BS(1,—1).
This shows that |X| satisfies the FCA and hence w(]X|) = 0 by Theorem 3.3. By
Proposition 3.6, we conclude that w(X) = 0 for every G-complex X. O

5 Free-by-cyclic groups

In this section we examine the minimal volume entropy of free-by-cyclic groups and
prove Theorem 1.1. To prove this theorem we must show that the following three
statements are equivalent for a free-by-cyclic group G.

1. w(X) = 0 for every G4-complex X.
2. Gy is virtually tubular.
3. Some power of ¢ is geometrically linear unipotent power.

First we prove that (1) implies (3) in Proposition 5.7. This takes place in Sect. 5.2 after
we formally define a geometrically linear unipotent outer automorphism. Following
this, in Sect. 5.3 we complete the proof of Theorem 1.1 by showing that (3) implies
(2) and observing that (2) implies (1) by Theorem 1.3 and Proposition 2.5.

Before we begin the proof of Theorem 1.1, in Sect. 5.1 we classify subexponentially
growing subgroups of free-by-cyclic groups and show that free-by-cyclic groups have
uniform uniform exponential growth (with a uniform constant).
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5.1 Growth of subgroups of free-by-cyclic groups

Let ¢ be an outer automorphism of a finitely generated free group F, and let G4 be
the corresponding free-by-cyclic group.

Lemma 5.1 Any nontrivial finitely generated subgroup of Gy with subexponential
growth is isomorphic to 7, 72 or BS(1, —1).

Proof Write Gy = F,, x¢ Z where ® € Aut(F,) represents the outer automorphism
¢ and let w be the projection onto the cyclic factor. Let H be a nontrivial finitely
generated subgroup of G that has subexponential growth. As H is nontrivial and has
subexponential growth, H N F,, is either trivial or isomorphic to Z.

If H N F), is trivial, then = maps H injectively to Z hence H = Z.

Otherwise, we have that H N F,, = (a) for some nontrivial a € F,. If 7(H) is
trivial then H = (a) = Z. Else, let h be an element of H that generates 7 (H) = Z.
Then hah™', h~'ah € H N F, = (a) and so hah~" = a* and h~'ah = a* for some
nonzero integers k, £. Since a = h~'(hah~")h = a** we have that k equals either 1

or —1 and hence hah ™' = aorhah™' =a~'. Ash generates 7 (H ), this implies that
H = 72 in the case hah~! = a and that H = BS(1, —1) in the case hah~! = a~ L.
O

Lemma 5.2 Suppose H is a finitely generated subgroup of G that is exponentially
growing. Then §(H) > %log 3. In particular, 5(Gy) > élog 3.

Proof Write Gy = F,, X Z where ® € Aut(F,) represents the outer automorphism
@.

Suppose H is a finitely generated subgroup of G4 with exponential growth and let
S be a finite generating set for H. The commutator subgroup [H, H] is contained in
F, and is normally generated by C = {[s;, s;] | s;, s; € S}. As H has exponential
growth we must have that [H, H] is nontrivial.

Suppose that [H, H] = (c) is infinite cyclic, generated by some element ¢ € Fj,.
If so, there is a short exact sequence

l—>{(c)—>H—>A—>1

where A is a finitely generated abelian group. In particular, an index two subgroup
of H is nilpotent. This implies that H has subexponential growth, contrary to our
hypothesis.

Therefore, [H, H] is not cyclic and hence free and nonabelian. If elements
[si,sj], [sk,s¢] € C do not commute, then they generate a group isomorphic to
F>. Else, C is a subset of an infinite cyclic subgroup (c¢) C F,. We must have that
Sklsi, sj]sk_1 ¢ (c) for some [s;, s;] € C and sx € S. Indeed, otherwise every conju-
gate of an element in C by an element in H lies in (c) and since C normally generates
[H, H] this would imply that [H, H]is abelian, which is a contradiction. Thus [s;, 5]
and sg[si, sjls; ! generate a group isomorphic to F>. To summarize, there are two ele-
ments of [H, H] of length at most 6 that generate a group isomorphic to F>. Therefore
8(H,S) > ¢log3.

As S was an arbitrary generating set for H, we have §(H) > % log 3. O
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Lemmas 5.1 and 5.2 show that free-by-cyclic groups have Property U.

5.2 Geometrically linear unipotent outer automorphisms

In this section we will define a geometrically linear unipotent outer automorphism of
a free group and prove that if w (X) = 0 for every Gy-complex X, then some power
of ¢ is geometrically linear unipotent.

Definition 5.3 A primitive free splitting of F), is a graph of groups decomposition of
F,, where each vertex group is Z and each edge group is trivial.

Given a primitive free splitting of F,,, F = (Y, {Fy}, {F.}, {i.}), a model for
the corresponding graph of spaces is obtained by attaching a loop edge «, to each
vertex v € VY’. We will denote this graph by K (F). By choosing a maximal tree
T C Y’ (equivalently a maximal tree in K (F), and fixing generators a, € F), a subset
E. (Y —T) C EY' — ET that contains one edge from each pair {e, e} C EY' — ET
and a vertex vy € VY’, the set

{ay lve VYV U{x. |ec EL(Y —T)}

is a basis for F;, via the isomorphism F;, = 71 (K (F), vg).

Definition 5.4 An outer automorphism ¢ € Out(F,) is geometrically linear unipotent
(GLU) if there is a representative ® € Aut(F,), a primitive free splitting of F,,
F = (Y, {Fy}, {F.}, {i.}) of F,,, amaximal tree T C Y’ and vertex vy € VY’ such
that the following holds.

1. For every e € ET where o(e) lies between vy and 7 (e), there is an integer p,.
2. For each v € VY’, ®(a,) = wvaku_1 where (eq, ea, ..., e,) is the minimal
length edge path in T from vy to v and
Pey Pey Pem

Wo = ogen@oter) Yotem)”

3. Foreache € EL (Y —T), ®(x.) = wo(e)agfe)xea;ie)w;(t) for some ¢,, r. € Z.

Example 5.5 Consider the primitive free splitting of F3 = (a, b, ¢), where the
underlying graph has two vertices vi, v, and two (geometric) edges e, e where
o(e1) = t(ez2) = vy and t(e1) = o(e2) = v7, and where the vertex groups are
Fy, = (a) and F,,, = (b). Let T be the single edge ¢. See Fig. 1 below.

Fix integers p, g, and r. The automorphism

®a)=a; Ob)=a’ba"P; O(c)=a’blca”
represents a GLU outer automorphism.

Remark 5.6 From the definition, we see that GLU outer automorphisms are linearly
growing. Moreover, there exists a topological representative f: K(F) — K(F) for
¢ defined by the following.
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e e e

Fig. 1 The primitive free splitting of Example 5.5 is shown on the left, and its associated geometric
realization on the right. The tree T is colored in red

1. Foreveryv € VY', f(ay) = ay.
2. For every e € ET where o(e) lies between vg and 7 (e), f(e) = ozf("e)e.

3. Forevery e € E+(Y' —=T), f(e) = aj, ears,.

o

Conversely, any outer automorphism that has such a geometric representative is GLU.

Thus, each GLU automorphism has a geometric representative of a highly restrictive
form. In the action of a GLU automorphism on the abelianization of F;, it will be
represented by a linearly growing unipotent matrix. Of course, not every automorphism
with this property will be GLU. The terminology geometrically linear unipotent is
meant to indicate that even on the level of homotopy the automorphism resembles a
linear unipotent automorphism.

Proposition 5.7 If w(X) = 0 for every Gy-complex X, then some power of ¢ is
geometrically linear unipotent.

Proof Write Gy = F, x¢ Z = (Fy,t | tat™! = ®(a), Ya € F,) where ® €
Aut(F,) represents the outer automorphism ¢. Suppose that w(X) = 0 for every
G 4-complex X. We will show that the automorphism obtained by replacing ® with
a power and composing the result by an inner automorphism satisfies the conditions
in Definition 5.4. On the level of the presentation, this is accomplished by replacing ¢
with at* for some k € Z and a € F,.

As gd(Gy) = 2, Lemmas 5.1 and 5.2 show that we may apply Theorem 1.3
to G4. Since Gy is 1-ended, Theorem 1.3 yields a graph of groups decomposition
G = (Y, {Gy}, {Ge}, {he)) of Gy where all vertex groups belong to the collection
(Z, 72, BS(1, —1)} and every edge group is equal to Z. We may assume that G is
reduced. O

Let Y be the tree corresponding to the decomposition Gy = 71(G), so that G¢\17 =
Y. The normal subgroup F,, C G4 acts on Y and the quotient Y’ = Fn\? yields a
graph of groups decomposition F = (Y’, {F,}, {F.}, {ic}) of F,.Letw: Y — Y be
the quotient map induced the action of (). Following an observation of Brinkmann
[7], we claim:

Claim 5.8 The graphY' is finite, each vertex group F, belongs to the collection {{1}, Z}
and each edge group F, is trivial.

Indeed, the quotient map 7 induces an injection on edge and vertex groups. In
particular, as F is a decomposition of F, and all vertex groups in G are either Z, Z>
or BS(1, —1), we must have that each vertex group of F is either Z or trivial.

For any edge e of Y, the map p,: Y — Y, that collapses the components of the
complement of e induces a graph of groups decomposition G, for Gy with a single
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edge where the edge group is Z, i.e., a splitting over Z. That is, there is a tree Y,
and Gg-equivariant mapje: Y — Y, with connected fibers inducing the map p,
on quotients where G4\Y, consists of a single edge. In particular, the edge group
of e is the same in either graph of groups. Brinkmann showed that for any splitting
of a free-by-cyclic group over Z, the induced graph of groups decomposition on Fj,,
Fe = (Y, {F)},{F,},{i,}) has Y, a finite graph and F, = {1} for each edge [7,
Section 1]. Therefore for each e we have a pullback square

Yy vy

1]

Y — Y,
e

The map p,: Y’ — Y/ collapses the components of the complement of 7 ~!(e). As
above, the edge groups for F, are the same as the corresponding edge groups in F.
Hence the edge group for an edge in 7! () is trivial. As e was arbitrary, this shows
that the edges groups in F are all trivial. Further, as Y, is a finite graph, we see that
771 (e) consists of finitely many edge for any edge e of Y. This shows that Y’ is a
finite graph. This proves the claim. O

Since Y is finite, the stable letter 7 acts on Y’ by a finite order automorphism. Thus
some power of 7, X, acts as the identity on ¥’ and also on each vertex group F, since
each such group has at most two automorphisms. We replace G with the finite index
subgroup G . For the action of Gy on Y we now have that G4 \Y = Y = F,\Y.We
continue to denote the graph of group decomposition of G4 by G.

The graph of groups decomposition 7 may not be reduced. As ¢ acts trivially on
Y’, if an edge e is collapsible for F, it is also collapsible for G. This follows as the
G 4-stabilizer of an edge in Y is generated by at for some a € F), since ¢ acts as
the identity on Y’ and such an element does not have a proper root. Therefore, we
may collapse edges in Y’ so that F is reduced. We will continue to denote by Y’ the
underlying graph.

If Y’ has a single vertex v and F), is trivial, then we collapse one of the incident
loops and change the vertex group to Z. Hence F, = Z forallv € Y’ and F, = {1}
for all e € EY’. In other words, F is a primitive free splitting.

Let T C Y’ be a maximal tree. Choose a basepoint vy € T and fix a subset
E.(Y'—T) C EY'— ET that contains one edge from each pair {e, e}. A lift T CYof
T, determines foreach v € T anelement ay that generates F,,. Foreache € EL(Y'—T)
we obtain a hyperbolic element x, € F), that identifies an edge €;—which is a lift of
e—at the lift of o(e) in T', with an edge e,—which is also a lift of e—at the lift of 7 (e)
in 7. See Fig. 2.

Since ¢ acts trivially on Y’, for every point x € Y, there exists g € F, such that
(gt).x = x. In particular, for each vertex v € f, we can find g, € F, such that
(gvt).v = v. By the choice of ¢, this implies that (gvt)ay(gut)~" = a, for all v, or
in other words, that all vertex stabilizers are Z>. Moreover, replacing ¢ with 8ul, We
may assume the stabilizer of vy is {(ag, t).
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Fig.2 The lifts ¢; and e of

e € E4(Y' — T) are identified
by the hyperbolic translation x,.
The axis for the action of x. is
the dotted line in blue, while a
portion of T is the thickened
tripod in red

Let y, = (ey,...,ey) be the minimal length edge path in 7 from vy to v. We
claim that there exists integers p, such that for the word w, = a:fell)a:sz) .. .af(ee'”m)
we have 1.0 = w,,.v. Note, the integers p, only depend on the edges and not the vertex
v. We prove this by induction on m + 1 > 0, where w,, is understood to be trivial.
In the base case, we have already chosen ¢ so that .09 = vg. Suppose now that the
claim holds for some m > 0, and that y, has length m + 1. Then removing the last
edge of y, is the path from v to v,,, so there exist integers p, such that for the word

Pey  Pey Pey,

Wo, = ooy oy - - ao(em_ll) we have 7.0,, = wy,, .Un. Let € be the lift of e,,, which

is the final edge of y,, to T. Since w, ¢ fixes ¥, there is some power a,,”* such that

n

av_mpe(wv”lt).é = &. Thus, 1.6 = (wy, al’).¢ and hence

i
~ Pem ~ o Pey Pey—y Pem it
rv= (wvm“o<em)) U= ("o(e.) “oten—)otem) ) "V

as desired. It follows that for each v, (w;lt)av(t_lwv) = a,. Hence, ta,t~' =
Wyy W, I This proves that the #-action on the basis elements a,, has the form indicated
in Definition 5.4.

Consider now an edge ¢ € E (Y’ — T) and let 9 and ¥ be the lifts to T of the
vertices v = o(e) and vy = 7(e) respectively. There are lifts ¢ and e, of ¢ where
o(e1) = vy and t(e2) = 1y and such that x..e; = e;. Since wv_llt fixes 71, there exists
a power a,, % such that (a,,*w;,'r).¢; = ;. Similarly, there exists a power a5 such
that (ay wv’zlt).éz = &,. Then we obtain

—1 . . —1 ~ ~
<(t Wy, @) xe (A w,,) t)) 81 = Xe.02

Since edge stabilizers for the F),-action are trivial we have that x, is the unique element
of F, taking e to e». Hence, recalling that v; = o(e) and vy = t(e), we conclude that
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-1 —1
txet = wo(e)aa(e)xear(e) (o)

As explained in the beginning of the proof, this shows that some power of ¢ is
geometrically linear unipotent. O

5.3 Proof of Theorem 1.1

There are two items left to show for Theorem 1.1. We must show that if some power
of an outer automorphism is geometrically linear unipotent (3), then G is virtually
tubular (2) and that if Gy is virtually tubular (2), then w(X) = 0 for every G-
complex X (1). Additionally, we must show that if none of these conditions holds
that w (G ) is bounded away from zero. This last statement follows immediately from
Proposition 3.11 and Lemma 5.2.

Proof of Theorem 1.1 First we show that (3) implies (2). Replacing ¢ with a power
replaces G4 with a finite-index subgroup. We will therefore assume ¢ is itself GLU,
and prove that in this case Gy is tubular. Let 7, T C Y, vg € T and ® be as in
Definition 5.4. These data give us a basis {a,, x.}, where v € VY’ runs over the vertex
setof Y/, and e € EL (Y’ — T) runs over the edges in the complement of the maximal
tree T'.

First we show that the subgroup Go = (t,ay | v € VY’) is tubular. For each a, we

have ra,t— = ®(ay) = wyayw Rearranglng we obtain
(w; ')ay, (1~ ‘w,,)a,j (w1, a,] =1,
or in other words (a,, w;’ ) 72 Let Yy = €1, ..., ey be the minimal length edge

path fromvptovin 7. The condition that ¢ is GLU states that

Pey p‘-”m Pem
oten) "+ Yoten) = W'y s

wy =a
for some collection of integers p, depending only on the edge e, and where v = o(e,).
In particular, w; 't € (a,, w;lt). We then build a graph of groups decomposition
with graph T, vertex groups (a,, w, 't) and edge groups Z: the edge between v and
v’ identifies (w 1t) in each. Thus Gy is tubular.

To finish the proof, we show that adding the elements x, foreache € E, (Y’ —T)
exhibits G as an iterated HNN-extension of G over Z edge groups. Each extension
is independent of the others, so that the result is tubular. For each element x,, we have
txot~ = d(x,) = wo(e)ao(e)xea;”(e)w;é), or written differently:

Te —1 -1 _ =1 —qe
Xe (ar(e)wr(e)t) X, = wo(e)ao(e)t

Clearly, a;"(e)wr_(i)t € (ar(e), wr_(le) ) while wo(e) O(E) € (do(e), wo_(é)t). We see that
the addition of each edge ¢ € EL (Y’ — T) adds a generator conjugating an infinite
cyclic subgroups of the 7(e) vertex group to one of the o(e) vertex group. Hence G
is tubular.
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Next, we observe that (2) implies (1). If G is virtually tubular, then by Lemma 2.2,
after passing to a tubular finite index subgroup, we have that w (X) = 0 for every G-
complex by Theorem 1.3 as §(G4) > 0 (Lemma 5.2).

Finally, by Proposition 3.11 and Lemma 5.2, if @ (X) # 0 for some G 4-complex
X then

5(Gy)  log3
Gy) > - .
@(G9) Z 57906 = 12 100

6 2-Dimensional right-angled Artin groups

In this section we consider 2-dimensional right-angled Artin groups and prove Theo-
rem 1.2. This theorem asserts the equivalence of the following three conditions for a
2-dimensional right-angled Artin group Ar.

1. w(X) = 0 for every Ar-complex X.
2. Ar is a free product of tubular groups and a free group.
3. T is a forest.

The equivalence of (1) and (2) will follow from Theorem 1.3. Indeed, that (1) is
a consequence of (2) follows immediately from Theorem 1.3 once we show that
§(H) > log 3 for a nonabelian subgroup of a right-angled Artin group (Lemma 6.2).
For the converse, we will show how to modify the graph of groups decomposition
ensured by Theorem 1.3 when @ (X) = 0 for every Ar-complex X in Lemma 6.3
to get the requirements on the vertex groups. In Lemmas 6.4 and 6.5 we establish
the equivalence of (2) and (3). Before we prove these lemmas, we recall a theorem of
Baudisch regarding subgroups of aright-angled Artin group generated by two elements
which is important for our analysis.

6.1 Baudisch’s theorem and consequences

Baudisch proved that the subgroup generated by two elements in a right-angled Artin
group is either free or abelian [4]. We record two consequences of this fact.

Lemma 6.1 Groups in the following classes are not isomorphic to a subgroup of a
right-angled Artin group:

1. Baumslag—Solitar groups BS(p, q) = (a,t | ta’t~' = a?) if p,q # 1,

2. torus knot groups Z.x7 7, = (x,y | x? =y9)if p Z 1 orq # 1, and

3. amalgamated free products 7. %7, 7> = (x,y,z | x? = w(y, 2), yz = zy) where
w(y, z) is a nontrivial element of the subgroup (v, z) = 7> if p # 1.

Proof The first two classes are immediate since they are generated by two elements and
are neither free nor abelian. For the third class of groups, notice that either w(y, z) # y
or w(y, z) # z. Hence one of the subgroups (x, y) or (x, z) is neither free nor abelian

ifp #1. o
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Another consequence of Baudisch’s theorem is that right-angled Artin groups have
uniform uniform exponential growth (with a uniform constant).

Lemma 6.2 Let Ar be a right-angled Artin group. Suppose H is a finitely generated
nonabelian subgroup of Ar. Then §(H) > log3. In particular, if Ar is nonabelian,
then §(Ar) > log3.

Proof Suppose Ar is a right-angled Artin group and that H is a finitely generated
nonabelian subgroup of Ar. Let S be a finite generating set for H. As H is nonabelian,
there are two element x, y € S that do not commute. Hence as x and y do not commute,
they must generate a nonabelian free group by Baudisch’s theorem and therefore
8(H,S) > log3. O

In particular, any subexponentially growing subgroup of a right-angled Artin group
is abelian and hence right-angled Artin groups have Property U.

6.2 Proof of Theorem 1.2

We can now prove the lemmas showing the equivalences of the three items in Theo-
rem 1.2.

Lemma 6.3 Suppose that Ar is a right-angled Artin group with gd(Ar) = 2. If
w(X) = 0 for every Ar—complex X, then Ar is a free product of tubular groups
and a free group.

Proof Let Ar be aright-angled Artin group where gd(Ar) = 2 and let X be an Ap—
complex where w (X) = 0. By Theorem 1.3 we have that Ar is the fundamental group
of a graph of groups G = (Y, {G,}, {G.}, {h.}) where the edge groups belong to the
collection {{1}, Z} and the vertex groups belong to the collection {Z, Z2,BS(1, —1)}.
As BS(1, —1) is not isomorphic to a subgroup of Ar (Lemma 6.1), we can in fact
conclude that the vertex groups belong to the collection {Z, Z?}.

As in the proof of Theorem 1.3, we may assume that G is reduced. We will show
that by altering G that we can arrange that all of the vertex groups are Z>. This will
complete the proof of the lemma.

To this end, suppose that there is a vertex v in Y with G, = Z. Further suppose that
there is an e with o(e) = 7(e) = v and G, = Z. Then vertex v and edge e correspond
to an HNN-extension Zxz = BS(p, q). By Lemma 6.1, we must have p = g = 1.
Hence, we can remove the edge e and replace the vertex group G, with Z2.

Next suppose that for every edge e with o(e) = v we have G, = {1}. In this case,
we can add a new edge ¢’ that is a loop based at v with group G, = {1} and replace
the vertex group G, with {1}. The resulting graph of groups is not reduced. Indeed, if
it were then every edge incident on v is loop which implies that Ar is free. Thus, there
is some edge incident to v that is collapsible. When we collapse this edge we obtain a
reduced graph of groups decomposition for Ar which has fewer vertices with vertex
group Z and has not created a vertex with vertex group {1}.

Finally, we deal with the case that there are no loops at v with edge group equal
to Z and that there is an edge e with o(e) = v such that G, = Z. Then the subgroup
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Go(e) *G, Gr(e) 1s either a torus knot group Z *z Z or an amalgamated free product
Z %7 7*. By Lemma 6.1, we must have that i,: G, — Ge) ot hz: G, — Gy
is surjective, contradicting the assumption that the graph of groups decomposition is
reduced. O

Lemma 6.4 Suppose that Ar is a right-angled Artin group with gd(Ar) = 2. If Ar is
a free product of tubular groups and a free group, then I' is a forest.

Proof Let Ar be a 2-dimensional right-angled Artin group and suppose that Ap =
G1 *...% G x I, where G, - - - , Gy are tubular groups and F;, is a free group. As
tubular groups are one-ended, this decomposition must be the Grushko decomposition
and thus we must have that G; = Ar, fori = 1,...,k where I'y, ..., Iy are the
connected components of I' that have at least two vertices. Therefore, it suffices to
show that if I" is connected and Ar is tubular, then I is a tree.

To this end, suppose that we have a graph of groups decomposition of Ar where
each edge group is Z and each vertex group is Z>. We will use the calculation of the the
JSJ-decomposition of a one-ended right-angled Artin group over cyclic subgroups by
the second author [11, Section 3]. The vertex groups of the JSJ-decomposition of Ar
correspond to the biconnected components of I'. Specifially, vertex groups are of the
form Ar, where I'g C T  is a biconnected component. The most important property of
this decomposition is that the vertex groups are subgroups of conjugates of the vertex
groups for any graph of groups decomposition of Ar in which the edge groups are
each equal to Z [11, Lemma 3.3]. Hence Ar, = 7?2 for each biconnected component
I'p € T" and thus every biconnected component is a single edge. Therefore every edge
of I' is separating and hence I' is a tree. O

Lemma 6.5 Suppose that Ar is a right-angled Artin group with gd(Ar) = 2. If T is
a forest, then Ar is the free product of tubular groups and a free group.

Proof As in the proof of Lemma 6.4, it suffices to show that if I" is a nontrivial tree,
then Ar is tubular. We do so by showing that Ar is the fundamental group of a graph
of groups G = (Y, {G,}, {G.}, {he}) where all of edges groups are equal to Z and all
of the vertex groups are equal to 72

Let Y by the graph obtained by subdivision of I'. We will first construct a graph of
groups G with underlying graph Y so that m(g) Ar. As Y is the subdivision of T,
we can consider VT as a subset of VY. For each vertex v € VT we set G, = Z and
for each vertex v € VY — VI we set G, = 7Z*. In the latter case, there are exactly
two edges e, ¢’ € EY with o(e) = o(e') = v. Decompose G, into the direct sum of
two copies of Z denoted Z, and Z,’ respectively so that G, = Z, & Z,'. For each edge
e € EY weset G, = Z. Theinclusionmaps i, : G, — G, are defined as follows. If
o(e) liesin VI, then G,y = Z and wedefine h.: G, — Gy to be an isomorphism.
Else we have that G o) = 7?> =7, ® Zy and we define hg: G, — Gy to have
Z as image. We set G to be the graph of groups (Y {Guv}, {Ge}, {h b.

AsTisa tree, the presentation for 77 (Q) shows that 7| (Q)

Notice that g isnotreduced. Indeed, for every vertexin VI, there isanincidentedge
that is not a loop and for which the inclusion map is an isomorphism. For each vertex
in VI, we fix one such edge and perform the collapse. Let G = (Y, {G,}, {G.}, {h.})
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be the resulting graph of groups. We then observe that the vertex set V'Y corresponds
to the set VY — VI and hence G, = 77 foreach vertex v € VY. The edge groups do
not change and hence G, = Z for each edge ¢ € EY. As 711(G) = m1(G) = Ar, we
have shown that Ar is tubular. O

Proof of Theorem 1.2 Let Ar be a right-angled Artin group where gd(Ar) = 2.

The equivalences of items (1) and (2) follow from Theorem 1.3 and Lemmas 6.2
and 6.3. The equivalences of items (2) and (3) follow immediately from Lemmas 6.4
and 6.5.

Finally, by Proposition 3.11 and Lemma 6.2, if w(X) # 0 for some Ar-complex
X then

S(Ar)  log3
2.106  2-106°

w(Ar) >

O
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