
LATEST: Learning-Assisted Selectivity Estimation
Over Spatio-Textual Streams

Mayur Patila,b
aDepartment of Computer Science and Engineering

bCenter for Geospatial Sciences
University of California, Riverside

Email: mpati005@ucr.edu

Amr Magdya,b
aDepartment of Computer Science and Engineering

bCenter for Geospatial Sciences
University of California, Riverside

Email: amr@cs.ucr.edu

Abstract—Selectivity and cardinality estimation are main driv-
ing factors for developing cheap query plans and ultimately faster
query processing. Traditionally, database systems use estimation
data structures, e.g., histograms, to maintain data summaries.
Machine learning models have recently been employed, acting
as black boxes, in several database tasks, including cardinality
estimation. In the dynamic streaming environments, both estima-
tion data structures and machine learning models struggle with
adaptation for dynamic changes in data and query workloads.
This paper proposes LATEST; a system module that uses machine
learning to enable dynamic adaptation of estimation data struc-
tures. For spatial-keyword queries in a streaming environment,
it shows on par or better performance than the state-of-the-art
estimators. LATEST builds an incremental supervised learning
model over a moving time window that helps the underlying
system to switch among several estimation structures to keep
estimation accuracy high at all times. As an incremental learner,
LATEST effectively adapts to dynamic changes of both data and
queries in streaming environments. Our extensive experiments
on three real datasets and various query workloads verify the
effectiveness of LATEST with higher accuracy and lower response
times over the state-of-the-art estimators.

I. INTRODUCTION

Spatial-keyword queries have received significant attention
over the past decade [2], [8], [11], [12] with many applications
with location-based services such as social media platforms
[69], online retail systems [38], supply chain systems [34],
points of interests (POIs) search [15], news search [61], route
planning [7], targeted advertising [20], visualization [31],
sensor-based networks [5], and safety-critical applications, e.g.,
COVID-19 outbreak [47], fire rescue [70], and evacuations
[64]. The importance of these spatial-keyword queries has
increased notably in contemporary times, and as a result, recent
systems provide system-level infrastructure to handle spatial-
keyword queries [43], [49]. As a system utility, a system-level
module should provide flexibility to work for various query
workloads. For example, a query on geo-textual data could
involve a spatial predicate, a keyword predicate, or both of
them. The system should provide appropriate infrastructure to
support flexible query workloads, including indexing, query
optimization, and query processing.

Recently, streaming versions of spatial-keyword queries
have received greater attention for both snapshot queries [8]
and continuous queries [11] on streaming data. The main

focus in existing streaming literature is on indexing and query
processing for these queries. However, there are no efforts that
explore query optimization modules for systems in this context.
Selectivity and cardinality estimation are among major query
optimization techniques that are understudied in this literature,
despite having various crucial applications that benefit from
these techniques in real time. For example, first responders
of a rescue team can issue an estimation query that estimates
the number of tweets with the keyword ‘fire’ that lie within
‘Downtown Thousand Oaks, California’ to estimate the number
of affected people seeking help, and in turn estimate resource
allocations for the fire incident1. Such real-time queries become
more frequent for disasters that span extended spatial and
temporal ranges. Streaming user-generated data has already
shown great help in real-time disaster management situations,
such as Hurricane Harvey [64] and Hurricane Irma [70].
Another example is targeted advertisement applications that
gauge the popularity of product-related keywords in real time
in different areas to place advertisements effectively. The lack
of system-supported modules to serve such queries efficiently
hinders the full potential of streaming user-generated data.

This paper proposes LATEST; a system-level module that
provides efficient learning-assisted selectivity estimation for
streaming spatial-keyword queries. Selectivity estimation has
been the topic of study in the database community for a long
time [19], [51], [58], [63], [67] to produce fast and accurate
estimates as a crucial part of achieving a cheap query plan.
A few of these efforts consider spatial-keyword queries, and
only some focus on streaming versions of these queries [67].
Although high dynamism in query workloads is a quantified
phenomenon in streaming user-generated data [40] on which
spatial-keyword queries are prominent, existing techniques do
not provide selectivity estimation models for streaming spatial-
keyword objects to adapt with changing query workloads in
real-time.

To fill the existing gap, LATEST employs a supervised
machine learning model to provide efficient selectivity estima-
tion for spatial-keyword queries on streaming data in terms
of estimation accuracy and latency measures. Traditionally,
machine learning models replace the underlying data structures,

1https://www.fire.ca.gov/incidents/2021/1/14/erbes-fire/

such as estimators [30], or indexes [37]. Various techniques
utilize query parameters and results to train models, eliminating
the need for data structures [36], [37], [55]. In turn, models
act as indexes or estimators and are used for query answering
as black boxes. However, in a spatial streaming environment,
the models cannot cope with the rapidly changing stream
distribution and query workload flow. Our proposed solution
intends to incrementally learn a model that adapts to the
changes in the stream. Besides, we use the model not to replace
the underlying data structures but to recommend the most
efficient data structure that boosts the estimation performance
during this part of the stream lifetime. Therefore, the learned
model does not answer the estimation query directly but decides
which data structure to use for query answering based on the
most recent window of streaming activities.

LATEST uses six estimators as famous widely-used examples
from the existing literature that are derived from existing
samplers, histograms, and spatial quadtrees. At any time point
along the stream lifetime, only one of these estimators is
used to answer estimation queries. The stream lifetime is
divided into two main phases, a pre-training phase and an
incremental learning phase. In the beginning, a pre-training
phase is triggered to obtain training data for the learning model
from all six estimators. At this phase, each query is fed to all
estimators, then query latency and accuracy are evaluated based
on the system logs of actual query selectivity. The machine
learning model is then trained based on this data to be used in
the following incremental learning phase.

After the pre-training phase is concluded, the incremental
learning phase starts and consists of back-to-back disjoint
periods that span the rest of the stream lifetime. The first period
begins with employing the default estimator for answering
selectivity estimation queries. The incoming query results
are then used to get additional training data fed to the
learning model to improve its recommendations. Meanwhile,
the estimation accuracy is monitored based on system logs of
actual query selectivity. Once estimation accuracy falls below a
certain threshold based on recent queries, the machine learning
model is consulted to switch to another estimator. The new
estimator is pre-filled and used for a new period that repeats
the same mechanism as the previous period.

A distinguishing feature of LATEST is the dynamic adapta-
tion with the changing query workloads, e.g., spatial-dominated,
keyword-dominated, or hybrid workloads of various ratios,
through incremental learning over the stream lifetime. LATEST
is experimentally evaluated based on three real datasets of
spatio-textual objects and spatial-keyword queries that form
different workloads. Our experiments have shown the effec-
tiveness of LATEST to switch the system selection to the most
accurate and the fastest estimators based on changes in query
workloads in real-time. Our contributions in this paper can be
summarized as follows:

• We identify and demonstrate the need for spatial-keyword
streaming estimators to accommodate fast-paced changes
in data and workloads.

• We identify the important features to train machine
learning models for adaptivity in selectivity estimation.

• We develop a learning-assisted module LATEST that uses
both workload information and actual system logs to adapt
the best performing estimator along the stream lifetime
dynamically.

• We provide an extensive experimental evaluation that
shows the effectiveness of our techniques on three real
datasets.

The rest of this paper is organized as follows. Section II
covers the related work. Section III provides a formal problem
definition, and Section IV discusses the preliminary data
structures in use for selectivity estimation. Our proposed
system-level module, LATEST, is described in Section V. The
experimental evaluation and results are discussed in Section VI
followed by conclusions in Section VII.

II. RELATED WORK

Our related work lies in three main areas: selectivity
estimation on spatial streams, and learning for selectivity
estimation and learning in database management systems, each
outlined below.

Selectivity Estimation on Spatial Streams. Selectivity
estimation in databases has been studied for decades [16]. For
spatial data, existing literature mainly use multi-dimensional
histograms [6], [24], [51], [63], sampling [25], [58], or hybrid
approaches [9], [50] that combine the strengths of both
histograms and sampling. However, few other applications that
use different techniques, such as kernel density models [28],
and techniques based on using spatial indexes [1]. Some of
these techniques are adapted for the streaming environment
utilizing a four-ary tree with min heap for estimation [29]
or hierarchical reservoir sampling [14] for range counting
estimation. With several techniques proposed, there is no clear
winner that can be used throughout the stream lifetime for
all use cases. In contrast to these works, LATEST does not
invent a new estimation technique. Instead, LATEST innovates a
learning model that adaptively selects the appropriate technique
among the existing techniques to provide the best performance
for the current portion of the stream.

In another work, streaming spatio-keyword estimation is
studied using the augmented adaptive space partitioning tree
with local correlations [67]. However, this work tightly couples
spatial and keyword predicates, and so it limits its flexibility
to be used at a system level and provide very low accuracy for
queries with only spatial or keyword predicates. In contrast,
LATEST is a system-level module that targets flexibility in
supporting query workloads that involve both spatial and
keyword predicates with different ratios, which is not currently
supported in any approach.

Learning for Selectivity Estimation There are several
works associated with the use of learning for estimating selec-
tivity. However, none of them target streaming environments
for spatial keyword queries. Particularly, existing learning-
based techniques for selectivity estimation include using deep
learning for point and range queries [26], neural networks for

approximate bounded-range selectivity functions [41], curve-
fitting [10], wavelet-based histograms [46], multi-set convo-
lutional network upon sampling [35], probabilistic graphical
models [22], and a study revealing the space and time trade-offs
across several architectures for deep learned estimation [54].
In contrast to all these techniques, LATEST targets adaptive
streaming environments for spatial-keyword workloads that
change over time.

This literature can also be categorized into workload-driven
models and data-driven models. Workload-driven models use
query information and results to train a model that directly
answers future estimation queries, while data-driven models
use the raw data for training. Existing workload-driven models
use neural networks [39], historical statistics [33], deep
learning [27], or a hybrid neural network with tree ensemble
model [19]. Existing data-driven models use the joint data
distribution [71], statistical relational learning [21], a mixture
model [19], deep learning [30] and local bayesian networks [67].
LATEST can be categorized as a workload-driven approach.
However, unlike existing approaches, it builds a workload-
driven model that is not used as a replacement for an estimation
data structure, but it incrementally learns the best data structure
to use through the time-changing workload information.

Learning in Database Management Systems. Machine
learning models are used in different parts of database systems
as surveyed in [32], highlighting new trends in learned
data systems and their applications. Apart from selectivity
estimation, learning is being explored to replace index structures
[37], [52], to automatically select indexes [42], [65], in con-
junctive querying processing [53], to generate query execution
plans [45], to integrate ML agents in database systems [55], or
even build a complete learned database system [36]. LATEST
is inspired by the idea of automatic switching of the data
structure in use, based on the changing query workload in
our case. Compared to all these techniques, LATEST focuses
on multi-dimensional streaming environments, which is more
complex for learning models to perform accurately. Hence, we
adopt a hybrid approach that uses an adaptive learning model
with underlying data structures.

III. PROBLEM DEFINITION

We address the problem of building an efficient selectivity
estimation module, LATEST, that is flexible to work at the
system level for spatial-keyword queries on streaming data.
The targeted spatial-keyword queries are snapshot queries that
are posted on a streaming dataset S that consists of geo-textual
objects. Each object o ∈ S is represented with the four main
attributes (oid, loc, kw, timestamp), where oid is the object
identifier, loc is the object location in a two-dimensional space
represented with latitude/longitude coordinates, kw is a set of
associated keywords, and timestamp is the time when the
object is posted. ST is a time window of the dataset S that
represents the past T time units, so every object o ∈ ST has
o.timestamp ≥ (NOW − T), where NOW represents the
current time. LATEST receives snapshot estimation queries at a
time window T to adapt with stream dynamism and returns the

count estimate based on ST . In particular, LATEST answers
RC-DVQ estimation query that is defined as follows:

Range-Counting Distinct-Value Query (RC-DVQ): given
a query q = (spatial range R, set of keywords W), and ST that
is a time window of the dataset S of size T , RC-DVQ returns
number of estimated objects oi ∈ ST so that: (1) oi.loc lies
inside q.R, and (2) oi.kw ∩ q.W 6= φ.

RC-DVQ estimates the number of objects that lie within the
given spatial range R and contains at least one of the query
keywords W over the time window of the past T time units.
This query combines two of the most prominent estimation
queries in the existing literature: a range counting query [14]
that uses only spatial predicates and a distinct value query [4]
that uses only keyword predicates. RC-DVQ definition has R
and W as optional parameters, which allows the absence of
either of them. This enables the user to convert the query into
either a range counting query [14] or a distinct value query [4],
both works on a time window to handle the data’s streaming
nature. In specific, a query q = (R) represents a range counting
query, and a query q = (W) represents a distinct value query.
As shown in a recent survey [13], these queries are the major
estimation queries that cover a significant portion and play
an indispensable role in modern management systems and
numerous applications ranging from social media platforms,
emergency services, route management, targeted advertising.
Such flexibility is needed at the system level as previously
motivated. By employing a time window, LATEST ensures the
summary generated for the stream of data is always up-to-date.

IV. PRELIMINARIES

This section introduces the preliminary estimators and
estimation data structures solicited from the existing literature
and used as precursors in our proposed technique. Selecting
these estimators are based on their wide popularity in the
existing literature. However, system administrators can select a
different set of estimators that fit their needs and applications.
In fact, our work is orthogonal from which estimators to use.
Instead, our technique enables the power of using multiple
estimators simultaneously and switching among them automati-
cally to optimize the system performance. This enables systems
to support real-world applications even if they constantly
encounter changes in query types.

We mainly use the two most popular estimation approaches:
sampling and histogram. Additionally, we use two other
approaches: augmented adaptive spatial trees and hybrid
approaches that combine both histograms and sampling. These
approaches support both spatial and keyword predicate esti-
mation, as imposed by our query definition in Section III. As
we will briefly discuss in this section, and evidently show
in our experimental evaluation (Section VI), each estimator
has different performance pros and cons on different types of
query workloads. This has motivated our work’s main idea to
employ all of them collaboratively to adapt to the changing
query workloads along the stream lifetime.

• Two-dimensional histogram. As shown in Figure 1(a),
a two-dimensional (2D) histogram divides the whole 2D

.

 3 4

5

o1 .o2

.o3

.o4

.o6

.o5

.o7

.o8

.o10

.o9

.o12

.o11

(a)

1 2 3 n

(b)

.

.

. .

.

.
.

. . ..

.a b

c d

e f

g h.

...
i j

k l

a(1) b(1) c(1) d(2)

e(1) g(1) h(0)f(1) i(1) j(1) k(1) l(1)

root

(c)

Fig. 1. Preliminary data structures: (a) A two-dimensional histogram. (b) A hybrid structure that is a reservoir sampling list indexed by a two-dimensional
histogram. (c) An adaptive space partition tree with count summaries.

spatial space into a set of disjoint cells of equal size.
Its structure is a regular spatial grid, where each cell
stores only the count of points that lie within the cell’s
spatial boundaries rather than the actual points. This
is a 2D generalization for the regular one-dimensional
histogram with uniform binning [9] that is used for
single-dimensional data. Two-dimensional histograms are
appropriate for range counting queries that employ pure
spatial predicates.

• Reservoir sampling is a sampling approach that has
shown good performance in representing a stream of
data [56]. We use the algorithm R [66] version of reservoir
sampling. It employs a list of a fixed size N . The first
N elements in the stream are inserted into the list. Then,
a random replacement policy is used to process new
elements. In specific, the algorithm generates a random
number every time a new element arrives in the stream.
If the random number generated is smaller than N , the
corresponding item in the list is replaced. Otherwise, the
new element is discarded. The reservoir list structure
allows estimation for both spatial and spatial-keyword
queries as it contains actual data points with all attributes.

• Augmented adaptive space partition tree. The Aug-
mented adaptive space partition (AASP) tree [67] consists
of a KMV synopses of distinct elements of the stream
and a set of adaptive space partition (ASP) trees. KMV
synopses [3] estimates the number of distinct keywords in
a data stream. It maps the keywords onto the range [0, 1]
using distinct hash functions. The synopses maintain the
k smallest hash values of the elements in the set. An ASP
tree [29] is a four-ary compressed quadtree [60] as de-
picted in Figure 1(c). Each tree node has a corresponding
spatial cell and a counter, where each data point is counted
by exactly one node. The tree uses a split threshold to

adapt the spatial distribution changes in streaming data
by dynamically splitting cells based on density.

• Hybrid structures. Hybrid structures [50], [72] combine
multiple estimators, e.g., both 2D histograms and samplers,
to make use of their joint pros. There are several variations
of hybrid structures, such as 2D histograms with each cell
holding a list of objects, modified quadtrees, and others.
There are also different strategies to build two-dimensional
counting cells, such as modified quadtrees, modified R-tree
and its variations, and non-uniform binning. Sampling lists
have variations as well that include changes to replacement
policies, windowed lists, etc. In our work, we use a
reservoir sampling list indexed by a 2D histogram. It
is a hybrid structure that reduces iteration overhead over
reservoir sampling lists to answer queries efficiently. As
shown in Figure 1(b), every element in the list is mapped
to a grid cell in the histogram to use the histogram in
retrieving efficiently. It is beyond the scope of this paper
to include all hybrid structures. It is an open area of
investigation to evaluate different structures on various
query workloads.

V. LEARNING-ASSISTED ESTIMATION

This section presents the selectivity estimation module,
LATEST, that selects estimators adaptively to cope with
the evolving nature of streaming data and query workloads.
LATEST utilizes the collection of data structures presented in
Section IV with the help of a learning model to switch between
these structures adaptively over time to continuously improve
the performance in terms of query accuracy and latency. The
learning model is particularly built based on understanding the
issues pertaining to other learning models’ efficiency. The rest
of this section gives the overview of LATEST in Section V-A,

Selectivity Estimation Module

Time
t=n

Histogram

Sampling

Hybird

Switching Technique

Pre-training Phase

Default

Estimator

t=a

Q1.........Qa. Qb..........................Qc

Switch to

Sampling

Qd.................................Qe

Switch to

Histogram

Qf..Qn

Incremental Learning Phase

AASP

Learning Model

Estimator

 Adaptor

t=c t=e

Threshold

reached

at Time c

Threshold

reached

at Time e

Data

Stream S

t=0 t=T

Fig. 2. Overview of LATEST

then Sections V-B to V-D detail the learning model and different
phases of LATEST real-time operations.

A. LATEST Overview

Figure 2 depicts an overview for LATEST along the stream
lifetime from time t = 0 to t = n. Along the stream lifetime,
both data objects and queries are being received. As depicted
in the figure, the stream lifetime is divided into three phases:
(1) The warm-up phase of size T time units, from t = 0 to
t = T . This phase is an idle phase that waits for enough data
to arrive so that the time window can be applied to incoming
queries. (2) The pre-training phase, from t = T to t = a,
when all incoming queries, Q1 to Qa, are executed on all
underlying data structures that are introduced in Section IV to
collect training data for the learning model. (3) The incremental
learning phase that continuously answers incoming estimation
queries using the currently employed estimator. This period
starts with employing a default estimator; then LATEST keeps
switching the estimation techniques through an Estimator
Adaptor. The estimator adaptor is triggered based on changes
in the query accuracy thresholds over time and chooses among
different estimators based on the trained learning model. In the
figure, two switching events happen at t = c and t = e. The
following sections detail the learning model choice and design
(Section V-B), the pre-training phase (Section V-C), and the
incremental learning phase (Section V-D).

B. The Learning Model

Design considerations. A recent study [23] has explored
data stream learning models that update their models based
on a continuous data flow. Existing learning models that
are used in selectivity estimations are feed-forward neural
networks [62], regular decision trees [59], and sum-product
networks (SPNs) [57]. The first two models are used as
workload-driven models that use training data from query

parameters and results rather than raw data. In contrast, the
third model is a data-driven model that uses raw data for
training. However, applying these three techniques to our spatial
streaming environment has shown severe limitations that make
them impractical to be employed in real systems. In particular,
we have applied a feed-forward neural network with multiple
variations of hidden layers to a stream of 75 million geotagged
tweets and 900 thousand queries that compose different types
of query workloads, pure spatial, pure keywords, and hybrid
queries. For different workloads, different architectures of the
network have high variations of error rates, which clearly
shows the model cannot adapt to changing query workloads
over the stream lifetime to maintain a satisfying performance.
Similar results are produced for the regular decision tree
prediction. Without the constant model updates, which is the
core requirement for streaming data, the decision tree fails
to produce reasonably accurate results. An extended random
forest also has similar issues, which is the reason we do not
endorse the use of regular decision trees or random forest
classifiers for the streaming environment. The third model is
the sum-product network (SPN) that uses raw data with a
sliding window for model training and updates. However, this
model has a very high computational intensity to update the
model with high-velocity data constantly.

In a streaming environment, the data arrives at high speeds,
and its dynamic nature makes it difficult to depend on a pre-
trained learning model as it will not provide high estimation
accuracy for the whole stream lifetime. In fact, due to constant
updates to the window of objects, the estimation accuracy
of a model can even continuously decrease. A possible way
to handle such dynamic nature is retraining the model often,
which is not practical due to the high cost of both computing
resources and system operation interruptions in real-time. Even
with the use of query workloads and results for training, the

wide variety of query workloads makes it nearly impossible to
train for all query type combinations.

LATEST model. To overcome problems in existing solutions,
we use a recent variation of Hoeffding tree [18] that is
introduced in [44], a very fast decision tree (VFDT) algorithm
that works efficiently as an incremental learning model for
streaming data. In a streaming environment, all the historical
data cannot be stored or used for learning. Hoeffding tree
eliminates the need to reuse all instances from the beginning
of the stream to determine the best split of features. Instead, it
uses a sample of training records that are read incrementally to
build a tree that converges similar to a batch learner tree with
sufficiently large data. This sample’s size is determined using
the Hoeffding bound that quantifies the number of observations
needed to estimate statistics with high precision.

With the use of Hoeffding bound, VFDT tree is created
in constant time per training record, and therefore, it is
much suited for learning in data streams. The strength of
the Hoeffding tree is that it requires each example to be read at
most once as it is incrementally built, and it is independent of
the probability distribution generating the observations. Also, its
learning accuracy significantly improves over time as training
data is continuously updated based on incoming queries and
their results, as shown in our experiments.

C. Pre-training Phase

In the pre-training phase, a set of queries are evaluated
on all the underlying estimation data structures. In addition,
after queries are executed on actual data, the system logs are
used to obtain accuracy information for different estimation
structures. So, query workload information is collected and
used as features to train the Hoeffding tree. The collected
features are: (1) data structure that we use for estimation,
(2) query type, (3) query accuracy based on evaluation against
actual data, (4) query latency, and (5) error rate. The estimator
performance is mainly captured by two features: query accuracy
and query latency. Both features are scaled through min-max
normalization within the range [0, 1]. Then, both features
are additionally scaled to represent their relative importance
through a parameter α, where 0 ≤ α ≤ 1.

To allow different estimation data structures to evaluate
queries in the pre-training phase, all these data structures
are pre-filled during the warm-up phase that is introduced
in Section V-A. In the warm-up phase, LATEST receives data,
but not queries, for T time units. During this period, the
incoming data is used to fill the estimation data structures. For
example, the data objects are inserted in the sampling lists,
the histogram counters are updated accordingly, and AASP
trees are structured based on this data. Therefore, once the
pre-training phase starts to receive estimation queries, these
structures can be used to obtain the training data. This pre-
filling does not guarantee that the estimator is filled up to
its capacity, which could get unreal accuracy for some of the
pre-training phase results. For example, if a reservoir sampler
has a sampling list of one million objects capacity, there is
no guarantee that T time units of the warm-up phase has one

million objects to fill the list completely. To overcome this
problem, the system administrator either stretches the warm-
up phase or adjusts the length of the pre-training phase so
estimators are completely filled, and hence the training data
records reflect the real performance of different estimators.

After the pre-training phase is concluded, all estimation
structures are wiped out to reduce the system overhead, except
the one that will be used at the beginning of the next phase.
Having this means only a single estimation structure is actively
maintained at a time. The following phase shows the way
LATEST switches from one active estimator to another while
still maintaining low system overhead.

D. Incremental Learning Phase

In modern database systems, log files are used for maintain-
ing essential debugging information [48] as well as statistics
about index selectivity, estimation accuracy, etc. We exploit
system logs to continuously improve the prediction abilities of
our learning model throughout the stream lifetime. After the
pre-training phase is concluded, the incremental learning phase
starts with employing a default estimator to answer incoming
queries. After answering each query, its results are kept for
later accuracy evaluation. When the query plan goes from
the query optimizer to the query processor, and the query is
executed on actual data, system logs will include actual query
selectivity information. This information will be used along
with estimation results to calculate the estimation accuracy of
this query. This accuracy is used in two ways. First, it is fed to
the Hoeffding tree as an additional training record to improve
its prediction capabilities. Second, combined with the accuracy
of queries that arrived in the past time window, we compute
an average accuracy score that represents the current LATEST
performance. Once this average accuracy falls under a user-
defined threshold τ , LATEST decides to switch to a different
estimation technique, which is recommended by consulting the
Hoeffding tree.

A problem that arises in the switching process is that the
system maintains a single active estimator at any given time.
Once LATEST decides to switch to a different estimator, this
estimator is an empty data structure, e.g., sampling list or
histogram counters. To overcome this, the actual decision is
anticipated earlier when the average estimation accuracy falls
below a pre-filling threshold β∗τ , where 0 ≤ β ≤ 1. When this
threshold is reached, the pre-filling phase starts. The following
query in the queue is fed into the learning model to have a
recommended estimator. Then, the recommended estimator
begins to be filled with incoming data objects so that when
the accuracy falls under τ , the new estimator is ready to be
used. If the average accuracy starts to increase again, the pre-
filled estimator is discarded, and the process repeats to keep
monitoring the accuracy over time. The value of β represents
a trade-off between system overhead and estimation accuracy.
However, it does not significantly affect the system overhead
due to the lightweight estimation data structures.

Over time, the Hoeffding tree model accuracy increases with
incoming training records. Our empirical evaluation shows

that the model achieves a stable level of accuracy after 100K
queries are used in both pre-training and incremental learning
phases. Exploring systematic ways to tune the learning model
parameters, e.g., splitting criteria or leaf prediction strategy,
may expedite achieving stability. However, this remains an
open area of research and exploring it in detail requires a
significant effort that we consider beyond the scope of this
paper. One of the major learning model issues in a streaming
environment is how long the model remains viable before it
has to be retrained to account for changes in the query types
on the stream, or in essence, how often do we have to retrain
the model. In LATEST, retraining of the model occurs for two
reasons. First, the Hoeffding tree retrains itself for achieving
the best splits when there are a minimum number of objects
it has not seen previously. Second, the more important aspect
of triggering the retraining process manually is the increase in
latency times or overall error rate, which is calculated as the
total relative error for all queries since the last training.

VI. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of LATEST.
Section VI-A presents the experimental setup. Section VI-B
shows LATEST performance along stream lifetime with various
query workloads, while Section VI-C shows the impact
of trading estimation accuracy and latency. Sections VI-D
and VI-E evaluate the impact of both spatial and keyword
predicates, respectively. Finally, Section VI-F studies the impact
of the estimation memory budget.

A. Experimental Setup

We evaluate the effectiveness and performance of LATEST
using a real implementation for the technique based on WEKA
library2 implementation of Hoeffding tree along with six
estimators listed below. For WEKA Hoeffding tree options,
our leaf prediction strategy is Majority Class, splitting criteria
is Info Gain, and other options are set to the library default
values. Our performance measures include estimation accuracy
and estimation query latency. All experiments are based on
Java 8 implementation and using an AMD Ryzen 7 2700X
server with 8-core CPUs and 4.125GHz clock speed, 64GB
RAM, NVIDIA GeForce RTX 2070 GPU with 8GB frame
buffer and 1620 MHz boost clock and running Windows 10.

Selectivity estimators. Our evaluation uses six major es-
timators from the literature (introduced in Section IV): two-
dimensional histogram with 4096 cells (denoted as H4096),
reservoir sampling list (denoted as RSL) with 1 million objects,
a modified version of augmented adaptive space partition tree
(denoted as AASP) with split value of 0.5, and the hybrid
reservoir sampling hashmap (denoted as RSH) with 1 million
objects and grid size of 4096 cells. In addition, we use workload
driven feed-forward neural network (denoted as FFN) [62]
based on WEKA library with hyperparameters of a learning rate
of 0.3, momentum of 0.2, unipolar sigmoid activation function,
and is trained until the generalization gap stops shrinking at

2https://www.cs.waikato.ac.nz/ml/weka/

483 epochs, and data-driven sum-product network (denoted as
SPN) [57] based on LibSPN library3 through single op nodes.
The reservoir sampling hashmap (RSH) [72] estimator works
similar to the reservoir sampling list, except the data objects
are stored in a two-dimensional grid instead of a list. The
default employed estimator is RSH. The currently employed
estimator is marked with a dotted line along the experiments.

Evaluation datasets. We use three evaluation datasets.
1) Twitter dataset: We simulate a data stream that runs

for 10 hours with a total of 75 million geotagged
tweets, collected from Twitter streaming APIs. All
tweets are geotagged with either exact latitude/longitude
coordinates or common places, e.g., cities, approximated
with centroid points. Hashtags from tweet text act as
keywords, otherwise, random words are used.

2) eBird dataset: We use 41+ million records to simulate
a data stream that runs for 6 hours from the eBird
dataset [17] from UCR Star4 collected from Cornell
Lab of Ornithology 5. The records are used to simulate a
data stream. Each record contains exact latitude/longitude
coordinates and protocol type, breeding category, trip
comments, and species comments that act as keywords.

3) CheckIn dataset: We simulate a data stream of 973,358
Foursquare check-ins [73] with exact latitude/longitude
coordinates and tags that act as keywords. The data is
obtained from UCR Star4 originated from ITEE at the
University of Queensland6.

Query workloads. We use three sets of query workloads.
1) Workloads for Twitter dataset: All queries we use in

these workloads contain a point location taken from
real queries of ‘Bing’ mobile search engine, and optional
keywords that are randomly selected from evaluation data.
We compose nine query workloads similar to previous
literature [11], [13], [68] each of 100K queries, with
various percentages of pure spatial, pure keyword, or
mixed queries. For example,

• TwQW1: One-third of pure spatial, pure keyword,
and spatial-keyword queries each.

• TwQW2: 100% of pure spatial queries.
• TwQW3: 50% pure spatial and 50% spatial-keyword

queries.
• TwQW4: 100% single keyword queries.
• TwQW5: 100% multi-keyword queries.
• TwQW6: One-third of pure spatial, pure keyword,

and spatial-keyword queries, each with query types
frequently changing in a different order compared
to TwQW1.

2) Workloads for the eBird dataset: We use a real workload
from the ‘Da Vinci’ server of UCR Star. This workload
contains 40K real requests for dataset search with spatial
range. We use it combined with keywords selected

3https://www.libspn.org/
4https://star.cs.ucr.edu/
5https://www.birds.cornell.edu/
6https://sites.google.com/site/dbhongzhi/

20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

200

(S1)

(S2)

(S3)

(S4)

Time of stream (%)

Q
u
er
y
L
at
en
cy

(m
il
li
-s
ec
on

d
)

RSL RSH
H4096 AASP
FFN SPN

(a) Query latency

20 40 60 80 100
0

20

40

60

80

100

Time of stream (%)

A
cc
u
ra
cy

(%
)

RSL RSH
H4096 AASP
FFN SPN

(b) Estimation accuracy
Fig. 3. Estimator switches for query workload with changing order in TwQW1

randomly from the dataset to generate a total of six
workloads of different query type distributions. We use
workload EbRQW1 that contains 100% of spatial queries.

3) Workloads for the CheckIn dataset: Similar to the Twitter
dataset workloads, we use Bing search locations to
generate three workloads of different distributions of
query types. We use CiQW1 workload that has 100K of
single keyword queries.

For brevity, we have only described the workloads above
that are used in further evaluation sections.

B. Real-time Estimator Switching

This section presents an experiment to observe the effective-
ness of our switching technique on a stream starting from time
t0 to time t100 that represent the start and end times of the
incremental learning phase, respectively. So, t0 is the time point
directly after concluding the pre-training phase, and t100 is the
last time point of running the stream during the experiment.
Intermediate times are symbolized with interpolated subscript
between 0 and 100, so, for example, t50 is the middle timestamp
for the incremental learning phase, and so on. Figures 3, 4,
and 5 show LATEST switching for different query workloads
encountering one or more switches over its lifetime. The
horizontal axis represents a timeline for the stream, and the
vertical axes represent estimation query latency and accuracy.
In the beginning, the default estimator is RSH. Along the
timeline, the currently employed estimator is marked with a
dotted line.

Query workload TwQW1 clearly shows the effectiveness of
LATEST switching among different estimators more than all
other workloads. This workload has one-third of each of pure
spatial, pure keyword, and spatial-keyword queries, so the types
of queries are heavily changing over time. On this workload,
as depicted in Figure 3, the stream starts with RSH estimator,
then LATEST makes four switches at t18, t31, t53, and t75, to
H4096, RSH, RSL, and RSH estimators, respectively, switches
are marked as S1, S2, S3, and S4 in Figure 3(a). In each of
these switches, LATEST compromises estimation accuracy with
latency. At all times, the H4096 estimator provides the best
latency, but it does not consistently provide the best accuracy as
it works better for pure spatial queries while poorly estimates
queries with keyword predicates. From t18 to t31, when pure
spatial queries are dominating the workload, LATEST switches
to H4096 estimator to provide the best of both latency and

20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

200

(S1)

(S2)

Time of stream (%)

Q
u
er
y
L
at
en
cy

(m
il
li
-s
ec
on

d
)

RSL RSH
H4096 AASP
FFN SPN

(a) Query latency

20 40 60 80 100
0

20

40

60

80

100

Time of stream (%)

A
cc
u
ra
cy

(%
)

RSL RSH
H4096 AASP
FFN SPN

(b) Estimation accuracy
Fig. 4. Estimator switches for query workload TwQW6

20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

200

(S1)

Time of stream (%)

Q
u
er
y
L
at
en
cy

(m
il
li
-s
ec
on

d
)

RSL RSH
H4096 AASP
FFN SPN

(a) Query latency

20 40 60 80 100
0

20

40

60

80

100

Time of stream (%)

A
cc
u
ra
cy

%

RSL RSH
H4096 AASP
FFN SPN

(b) Estimation accuracy
Fig. 5. Estimator switches for query workload EbRQW1

accuracy. At other times, LATEST switches back and forth
between RSH and RSL that provide the best accuracy in their
corresponding times (as shown in Figure 3(b)) even with higher
latency. This experiment shows the importance of parameter α
that weighs the importance of accuracy and latency during the
learning process, so the model suggests an estimator with a
favorable performance measure in case of contradiction between
different measures. We evaluate the different values of α later
in Section VI-C. For all switches, LATEST chooses the model
with the best estimation accuracy (Figure 3(b)), which shows
its effectiveness in handling changing query workloads in real
time on spatial streaming data.

For query workload TwQW6, LATEST performs two
switches at t18 and t39 as shown in Figure 4. The first switch
(S1) discards RSH estimator and employs H4096 estimator,
while the second switch S2 discards H4096 estimator and
switches back to RSH till t100. As shown in Figures 4(a)
and 4(b), H4096 has the lowest latency, but it has lower
accuracy on this workload that includes a significant ratio,
two thirds, of keyword queries. Between t18 and t39, when
the one-third of pure spatial queries are dominating, H4096
estimator provides better accuracy in addition to its better
latency, so it is chosen by LATEST. After that, when keyword
predicates resume flowing in the stream, H4096 estimation
accuracy falls again, and hence LATEST switches back to
RSH estimator, which provides the best accuracy among all
estimators. This experiment clearly shows again that LATEST
is able to switch back and forth among estimators based on
their performance on changing query workloads in real time.
This confirms our experiment on query workload 9.

For the real query workload EbRQW1, LATEST makes one
switch at t34 as shown in Figure 5. This switch discards the
default RSH estimator and employs H4096 estimator. As shown

TABLE I
INDEX OVERHEAD COMPARISON

Dataset & Index Latency Estimator
Average Latency Average Accuracy

eBird, Grid (322ms) H4096 (20ms) 76%
eBird, Grid (322ms) RSL (53ms) 68%
eBird, Grid (322ms) RSH (34ms) 71%

eBird, QuadTree (291ms) AASP (111ms) 48%
CheckIn, Grid (460ms) RSL (48ms) 70%
CheckIn, Grid (460ms) RSH (41ms) 66%

CheckIn, QuadTree (402ms) AASP (118ms) 64%
Twitter, Grid (340ms) H4096 (19ms) 75%
Twitter, Grid (340ms) RSL (71ms) 71%
Twitter, Grid (340ms) RSH (74ms) 72%

Twitter, QuadTree (265ms) AASP (96ms) 44%

TABLE II
IMPACT OF α ON QUERY WORKLOAD TWQW3

α
LATEST choice

t=20 t=60 t=100
0 RSL RSL RSL

0.3 RSL RSL RSL
0.5 RSL RSL RSL
0.7 H4096 H4096 H4096
1 H4096 H4096 FFN

in Figures 5(a) and 5(b), H4096 has the lowest latency and
highest accuracy among the estimators. RSH also has similar
accuracy but due to sustained higher latency than H4096, the
switch is performed. This confirms LATEST ability to adjust
estimators for real query workloads.

It is worth emphasizing that other query workloads that
are excessively dominated by either pure spatial predicates or
pure keyword predicates do not encounter switches in LATEST
decisions over time, yet, it still provides the best accuracy at all
time points. This highlights two important points. First, LATEST
decision is truly dependant on the underlying workload, and
it clearly distinguishes workloads that need several switches
from those that need no switches at all. Second, LATEST is
more effective with dynamically changing workloads where
types of queries are heavily changing over the stream lifetime.
So, it effectively adapts to those workloads, which is the main
goal behind designing LATEST. This emphasizes its appeal
for system designers as a flexible system-level module that
supports various types of query workloads.

To further emphasize the strength of LATEST, Table I
shows the querying overhead of spatial grid and quadtree
index structures in comparison to different estimators. For the
eBird dataset on query workload EbRQW1, estimator latency
values change between 20ms to 111ms while indexes take
1450%-1600% more time than the estimator chosen by LATEST
(H4096). This index performance is similar to our previous
extensive study on spatial keyword indexes [2]. Similar results
are also seen with CheckIn’s CiQW1 workload and Twitter’s
TwQW4 workload. This clearly shows the merit of LATEST
for our motivating applications.

20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

200

Time of stream (%)

Q
u
er
y
L
at
en
cy

(m
il
li
-s
ec
on

d
)

RSL RSH
H4096 AASP
FFN SPN

(a) Query latency

20 40 60 80 100
0

20

40

60

80

100

Time of stream (%)

A
cc
u
ra
cy

(%
)

RSL RSH
H4096 AASP
FFN SPN

(b) Estimation accuracy
Fig. 6. Estimator switches for query workload TwQW3 for α = 0

20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

200

(S1)

Time of stream (%)

Q
u
er
y
L
at
en
cy

(m
il
li
-s
ec
on

d
)

RSL RSH
H4096 AASP
FFN SPN

(a) Query latency

20 40 60 80 100
0

20

40

60

80

100

Time of stream (%)

A
cc
u
ra
cy

(%
)

RSL RSH
H4096 AASP
FFN SPN

(b) Estimation accuracy
Fig. 7. Estimator switches for query workload TwQW3 for α = 1

C. Relative Importance of Learning Model Features

This section evaluates the performance of LATEST for
various settings of parameter α that weighs the relative
importance of estimation query accuracy and query latency
as training features for the model. If α = 0, then estimation
accuracy is the only weighted factor, and latency is totally
ignored, while α = 1 gives the whole weight to query latency
and ignores accuracy. Other values of α between 0 and 1 give
partial importance for each factor as detailed in Section V-C.
All previous experiments are presented with default α = 0.5,
while this section closely investigates the effect of changing α
value on the model decisions along the data stream lifetime.

Figures 6 and 7 show estimator switches over stream lifetime
for query workload TwQW3, for both extreme values of α, α =
0 in Figure 6 and α = 1 in Figure 7. As shown in Figure 6(b),
LATEST always chooses the best accuracy while the estimator
latency is sub-optimal (Figure 6(a)) as it is not considered in the
training features. The opposite behavior can be seen in Figure 7,
where LATEST always chooses the best latency (Figure 7(a))
regardless of the sub-optimal accuracy (Figure 7(b)). This
confirms the impact of α on LATEST decisions during the
system operations. So, in its default state, LATEST model tends
to favor estimation accuracy over estimator latency. This is a
favorite performance for several systems as estimation accuracy
drives inducing cheap query plans and saves significant time
in actual query processing. Overall, the significant changes
in model decisions clearly show the impact of α on driving
LATEST decisions, which provides system administrators with
a solid tuning knot for system performance based on the desired
output characteristics. When accuracy is favored over other
factors, the system administrator is able to boost the system
performance to provide the best estimation accuracy and the
same for latency.

20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

200

(S1)

Time of stream (%)

Q
u
er
y
L
at
en
cy

(m
il
li
-s
ec
on

d
)

RSL RSH
H4096 AASP
FFN SPN

(a) Query latency

20 40 60 80 100
0

20

40

60

80

100

Time of stream (%)

A
cc
u
ra
cy

%

RSL RSH
H4096 AASP
FFN SPN

(b) Estimation accuracy
Fig. 8. Estimator switches for query workload EbRQW1 for α = 1

10 100 400 2000 4000
0

20
40
60
80

100
120
140
160
180
200

Range in Km

Q
u
e
ry

L
a
te
n
c
y
(m

il
li
-s
e
c
o
n
d
)

RSL RSH
H4096 AASP
FFN SPN

Range (Km)

(a) Query latency

10 100 400 1000 4000
0

20

40

60

80

100

Range in Km

A
c
c
u
ra

c
y
%

RSL RSH
H4096 AASP
FFN SPN

Range (Km)

(b) Estimation accuracy
Fig. 9. Varying spatial ranges on query workload TwQW1

Figures 8(a) and 8(b) show the adaptability and effectiveness
of LATEST on the eBird dataset. This experiment is similar to
the previous experiment shown in Figures 5(a) and 5(b) with
the key difference of emphasis on latency as the performance
measure (α = 1), which highlights similar behavior for different
datasets as LATEST successfully switches to the estimator with
the lowest latency.

Table II shows the impact of various α values on query
workload TwQW3. The table shows LATEST choices at three
time points, t = 20, t = 60, and t = 100 for each value
of α. The corresponding values of estimation query latency
and accuracy are depicted in Figures 3, and 4 respectively.
The values of accuracy and latency do not depend on the
value of α, as they are provided by the estimator based only
on the incoming data and queries, regardless of whether a
certain estimator is selected by LATEST or not. However, the
value of α solely affects the estimator selection based on
the relative importance of accuracy and latency. In Table II,
changing the value of α greatly affects the estimator selection
decision, so at 0 ≤ α ≤ 0.5, RSL estimator is chosen as it
provides the best accuracy. For 0.5 < α ≤ 1, latency is given
a priority, and hence H4096 and FFN estimators dominate
the selection regardless of their low accuracy. This impact
changes depending on the query workload. Thus, while the
streaming workload characteristics change dynamically over
time, LATEST dynamically adapts to select the best estimator
based on the pre-set α value. So, the effect of the tuning
parameter α on different query workloads adapt with changing
both workload characteristics and estimator’s performance. In
all cases, it provides system administrators with a powerful
and flexible tool to tune the system performance effectively.

10 100 400 2000 4000
0

20

40

60

80

100

120

140

160

180

200

Range in Km

Q
u
e
ry

L
a
te
n
c
y
(m

il
li
-s
e
c
o
n
d
)

RSL RSH
AASP FFN
SPN

Range (Km)

(a) Query latency

10 100 400 1000 4000
0

20

40

60

80

100

Range in Km

A
c
c
u
ra

c
y
%

RSL RSH
AASP FFN
SPN

Range (Km)

(b) Estimation accuracy
Fig. 10. Varying spatial ranges on query workload TwQW4

D. Spatial Impact

This section shows the impact of different spatial ranges on
estimation latency and accuracy of different estimators, high-
lighting LATEST choices in each case. Figures 9 and 10 show
the spatial impact on different query workloads. Each figure
reports estimation latency and accuracy, on the vertical axes,
for queries of different spatial ranges, on the horizontal axis,
for the corresponding workload. The general observation in all
these figures is that in most cases, increasing the spatial range
has an insignificant effect for a certain estimator, with a few
exceptions, yet, different estimators significantly vary from each
other. Specifically, Figure 9 shows the superiority of the H4096
histogram estimator selected by LATEST for different spatial
ranges, while the hierarchical structure, AASP encounters the
highest latency with mean accuracy. All estimators outperform
AASP, and H4096 estimator shows the highest difference that
clearly shows the insufficiency of the tightly coupled approach
in [67] to work with dynamic workloads with mixed spatial
and keyword predicates. However, all estimators encounter
almost stable or slight differences for different spatial ranges.

For both presented query workloads, LATEST always selects
the estimator with the highest estimation accuracy for different
spatial ranges. This confirms the effectiveness and adaptivity
of LATEST model to deal with various query workloads in
streaming environments.

E. Keyword Impact

This section studies the effect of varying the number of
keywords in a query on the performance of the estimators and
LATEST selection decisions. We use query workload TwQW5
where we change the number of keywords in the input. As
all queries are pure keyword queries, H4096 estimator is not
included in the comparison as it uses purely spatial statistics.
Figure 11 shows the performance of different estimators when
the number of keywords changes from 1 to 5. The reported
latency and accuracy are corresponding to the end of the
incremental learning phase. The figure shows that LATEST
consistently chooses RSH estimator (marked with dotted line),
which always achieves the highest estimation accuracy for the
different number of keywords. In addition, the figure shows
stable latency for all estimators with a varying number of
keywords. The estimation accuracy is high and stable for RSH,
AASP, and RSL estimators, while it is lower for FFN and SPN
and slightly decrease with increasing keywords. In addition to

1 2 3 4 5
0

20

40

60

80

100

120

140

160

180

200

Keyword set size

Q
u
e
ry

L
a
te
n
c
y
(m

il
li
-s
e
c
o
n
d
)

RSL RSH
AASP FFN
SPN

(a) Query latency

1 2 3 4 5
0

20

40

60

80

100

Keyword set size

A
c
c
u
ra

c
y
%

RSL RSH AASP
FFN SPN

(b) Estimation accuracy
Fig. 11. Varying keyword set size for query workload TwQW5

20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

200

(S1)

Time of stream (%)

Q
u
e
ry

L
a
te
n
c
y
(m

il
li
-s
e
c
o
n
d
)

RSL RSH
AASP FFN
SPN

(a) Query latency

20 40 60 80 100
0

20

40

60

80

100

Time of stream (%)

A
c
c
u
ra

c
y
%

RSL RSH AASP
FFN SPN

(b) Estimation accuracy
Fig. 12. Estimator switches for query workload CiQW1

showing the effectiveness of LATEST choices, this experiment
gives insights on the effectiveness of different sampling and
adaptive tree streaming estimators on pure keyword queries
that include multiple keywords. Figures 12(a) and 12(b) shows
LATEST’s ability to sustain its effective performance for the
CheckIn dataset on CiQW1 query workload. For this workload,
we see that improving the accuracy of the RSL estimator drives
the switch at t63 (marked as S1).

F. Memory Budget Impact

This section studies the effects of varying the allocated
memory budgets for different estimators. Although estimator
memory consumption is modest compared to the available
memory in existing systems, it affects the estimation accuracy
and latency. So, we are more interested in studying its effect,
even if it is relatively small. Figure 13 shows the performance
of different estimators with varying memory budgets. LATEST
choice still provides the best accuracy at all values. In addition,
the figure shows high variability among estimators in the rate of
increased latency as shown in Figure 13(a). As this figure shows,
AASP and SPN estimators have a linear increase in latency with
increasing memory budget, while the rest of the estimators have
a sub-linear increase. However, all estimators have a similar
uptrend in estimation accuracy (Figure 13(b)), where RSH
estimator always performs the best, so it is chosen by LATEST
for all values. These results give system administrators insights
on the trade-off of improving accuracy while scarifying query
latency and which estimators are able to maintain low latency
while providing high accuracy.

VII. CONCLUSION

This paper studies the selectivity estimation problem for
spatial-keyword queries in spatial streaming environments.
We have shown the shortcomings of existing techniques to

0 20 40 60 80 100
0

20

40

60

80

100

Memory budget (MB)

Q
u
e
ry

L
a
te
n
c
y
(m

il
li
-s
e
c
o
n
d
)

RSL RSH
H4096 AASP
FFN SPN

(a) Query latency

0 20 40 60 80 100
0

20

40

60

80

100

Memory budget (MB)

A
c
c
u
ra

c
y
%

RSL RSH
H4096 AASP
FFN SPN

(b) Estimation accuracy
Fig. 13. Varying memory budget for queries on the Twitter dataset

dynamically adapt to changing query workloads in spatial
streaming environments. To overcome these shortcomings, we
have built a system-level module LATEST that dynamically
selects an appropriate estimator for currently flowing queries
on the data stream. LATEST incorporates an incremental
supervised learning model that switches among different
estimators to appropriately employ the best estimator for each
time period of the stream lifetime based on a time window
streaming model. We used six example widely-used estimators
for empirical evaluation. Our extensive experimental evaluation
on real data shows the effectiveness of LATEST for various
query workloads of mixed spatial and keyword predicates.
LATEST is clearly able to distinguish workloads that need
several switches in estimators over time from those that need
no switches at all. Also, for dynamically changing workloads
where types of queries heavily change over time, LATEST
shows effective adaptation to provide the best combinations of
estimation accuracy and latency along the stream lifetime.

ACKNOWLEDGEMENT

This work is partially supported by the National Science
Foundation, USA, under grants IIS-1849971, SES-1831615,
and CNS-2031418 and the US DoE GAANN Fellowship.

REFERENCES

[1] S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity Estimation in
Spatial Databases. In SIGMOD, 1999.

[2] A. Almaslukh and A. Magdy. Evaluating Spatial-Keyword Queries on
Streaming Data. In SIGSPATIAL, 2018.

[3] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan.
Counting Distinct Elements in a Data Stream. In J. D. P. Rolim and
S. Vadhan, editors, Randomization and Approximation Techniques in
Computer Science, 2002.

[4] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla. On
Synopses for Distinct-Value Estimation under Multiset Operations. In
SIGMOD, 2007.

[5] M. Brown. The Utility Network: Introduction to the Next Generation
of Network Management. https://proceedings.esri.com/library/userconf/
seuc19/papers/SEUC 38.pdf, 2019.

[6] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A Multidimensional
Workload-Aware Histogram. In SIGMOD, 2001.

[7] X. Cao, L. Chen, G. Cong, and X. Xiao. Keyword-Aware Optimal Route
Search. VLDB, 2012.

[8] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective Spatial
Keyword Querying. In SIGMOD, 2011.

[9] H. Chasparis and A. Eldawy. Experimental Evaluation of Selectivity
Estimation on Big Spatial Data. In GeoRich, 2017.

[10] C. M. Chen and N. Roussopoulos. Adaptive Selectivity Estimation Using
Query Feedback. In SIGMOD, 1994.

[11] L. Chen, G. Cong, and X. Cao. An efficient query indexing mechanism
for filtering geo-textual data. In SIGMOD, 2013.

[12] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial Keyword Query
Processing: An Experimental Evaluation. VLDB, 2013.

[13] L. Chen, S. Shang, C. Yang, and J. Li. Spatial keyword search: a survey.
Geoinformatica, 2020.

[14] E. Cohen, G. Cormode, and N. Duffield. Structure-Aware Sampling on
Data Streams. In SIGMETRICS, 2011.

[15] G. Cong, C. S. Jensen, and D. Wu. Efficient Retrieval of the Top-k Most
Relevant Spatial Web Objects. VLDB, 2009.

[16] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for
Massive Data: Samples, Histograms, Wavelets, Sketches. TRDB, 2012.

[17] N. Y. Cornell Lab of Ornithology, Ithaca. ebird basic dataset. version:
Ebd reljun-2020. Retrieved from UCR-STAR https://star.cs.ucr.edu/
?eBird.

[18] P. Domingos and G. Hulten. Mining High-Speed Data Streams. In
SIGKDD, 2000.

[19] A. Dutt, C. Wang, A. Nazi, S. Kandula, V. Narasayya, and S. Chaudhuri.
Selectivity Estimation for Range Predicates Using Lightweight Models.
VLDB, 2019.

[20] M. Eftekhar and N. Koudas. Some Research Opportunities on Twitter
Advertising. IEEE Data Engineering Bulletin, 2013.

[21] L. Getoor and L. Mihalkova. Learning Statistical Models from Relational
Data. In SIGMOD, 2011.

[22] L. Getoor, B. Taskar, and D. Koller. Selectivity Estimation Using
Probabilistic Models. In SIGMOD, 2001.

[23] H. M. Gomes, J. Read, A. Bifet, J. P. Barddal, and J. a. Gama.
Machine Learning for Streaming Data: State of the Art, Challenges,
and Opportunities. SIGKDD Explorations, 2019.

[24] D. Gunopulos, G. Kollios, J. Tsotras, and C. Domeniconi. Selectivity
Estimators for Multidimensional Range Queries over Real Attributes.
VLDB Journal, 2005.

[25] P. J. Haas, J. F. Naughton, and A. N. Swami. On the Relative Cost of
Sampling for Join Selectivity Estimation. In PODS, 1994.

[26] S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das.
Multi-Attribute Selectivity Estimation Using Deep Learning. CoRR.
abs/1903.09999, 2019.

[27] R. Hayek and O. Shmueli. Improved Cardinality Estimation by Learning
Queries Containment Rates. eprint: 1908.07723, 2019.

[28] M. Heimel, M. Kiefer, and V. Markl. Self-Tuning, GPU-Accelerated
Kernel Density Models for Multidimensional Selectivity Estimation. In
SIGMOD, 2015.

[29] J. Hershberger, N. Shrivastava, S. Suri, and C. D. Toth. Adaptive Spatial
Partitioning for Multidimensional Data Streams. Algorithmica, 2006.

[30] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and
C. Binnig. DeepDB: Learn from Data, Not from Queries! VLDB, 2020.

[31] B. Huang, B. Jiang, and H. Li. An integration of GIS, virtual reality and
the Internet for visualization, analysis and exploration of spatial data.
International Journal of Geographical Information Science, 2001.

[32] S. Idreos and T. Kraska. From Auto-Tuning One Size Fits All to Self-
Designed and Learned Data-Intensive Systems. In SIGMOD, 2019.

[33] O. Ivanov and S. Bartunov. Adaptive Cardinality Estimation. CoRR.
abs/1711.08330, 2017.

[34] E. P. Karan and J. Irizarry. Developing a spatial data framework for
facility management supply chains. In Construction Research Congress
2014: Construction in a Global Network, 2014.

[35] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned
Cardinalities: Estimating Correlated Joins with Deep Learning. CoRR.
abs/1809.00677, 2018.

[36] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, J. Ding, A. Kristo,
G. Leclerc, S. Madden, H. Mao, and V. Nathan. SageDB: A Learned
Database System. CIDR, 2019.

[37] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The Case
for Learned Index Structures. In SIGMOD, 2018.

[38] M. Krause-Traudes, S. Scheider, S. Rüping, and H. Meßner. Spatial
data mining for retail sales forecasting. In International Conference on
Geographic Information Science, 2008.

[39] M. S. Lakshmi and S. Zhou. Selectivity Estimation in Extensible
Databases - A Neural Network Approach. In VLDB, 1998.

[40] J. J. Lin and G. Mishne. A Study of ”Churn” in Tweets and Real-Time
Search Queries. In ICWSM, 2012.

[41] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte. Cardinality
Estimation Using Neural Networks. In CASCON, 2015.

[42] L. Ma, D. Van Aken, A. Hefny, G. Mezerhane, A. Pavlo, and G. J.
Gordon. Query-Based Workload Forecasting for Self-Driving Database
Management Systems. In SIGMOD, 2018.

[43] A. R. Mahmood, A. M. Aly, T. Qadah, E. K. Rezig, A. Daghistani,
A. Madkour, A. S. Abdelhamid, M. S. Hassan, W. G. Aref, and
S. Basalamah. Tornado: A Distributed Spatio-Textual Stream Processing
System. VLDB, 2015.

[44] C. Manapragada, G. I. Webb, and M. Salehi. Extremely Fast Decision
Tree. In SIGKDD, 2018.

[45] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska,
O. Papaemmanouil, and N. Tatbul. Neo: A Learned Query Optimizer.
VLDB, 2019.

[46] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-Based Histograms for
Selectivity Estimation. In SIGMOD, 1998.

[47] B. Michael and C. Corey. Announcing CHIME, A tool for COVID-19
capacity planning. http://predictivehealthcare.pennmedicine.org/2020/03/
14/accouncing-chime.html, 2020.

[48] Microsoft. Logs in SQL Server. https://docs.microsoft.com/en-us/sql/
relational-databases/logs/, visited: 2020-01-30.

[49] M. F. Mokbel and A. Magdy. Microblogs Data Management Systems:
Querying, Analysis, and Visualization. In SIGMOD, 2016.

[50] M. Müller, G. Moerkotte, and O. Kolb. Improved Selectivity Estimation
by Combining Knowledge from Sampling and Synopses. VLDB, 2018.

[51] M. Muralikrishna and D. J. DeWitt. Equi-Depth Multidimensional
Histograms. SIGMOD Record., 1988.

[52] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska. Learning Multi-
dimensional Indexes. In SIGMOD, 2020.

[53] H. Oosterhuis, J. S. Culpepper, and M. de Rijke. The Potential of Learned
Index Structures for Index Compression. In ADCS, 2018.

[54] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi. An Empirical Anal-
ysis of Deep Learning for Cardinality Estimation. CoRR. abs/1905.06425,
2019.

[55] A. Pavlo, M. Butrovich, A. Joshi, L. Ma, P. Menon, D. V. Aken, L. J.
Lee, and R. Salakhutdinov. External vs. Internal: An Essay on Machine
Learning Agents for Autonomous Database Management Systems. IEEE
Data Engineering Bulletin, 2019.

[56] A. Pečar, M. Zidar, and M. Kukar. Reservoir Sampling Techniques in
Modern Data Analysis. In BCI, 2012.

[57] H. Poon and P. M. Domingos. Sum-Product Networks: A New Deep
Architecture. CoRR. abs/1202.3732, 2012.

[58] M. Riondato, M. Akdere, U. undefinedetintemel, S. B. Zdonik, and
E. Upfal. The VC-Dimension of SQL Queries and Selectivity Estimation
through Sampling. In ECML PKDD, 2011.

[59] L. Rokach and O. Maimon. Data Mining With Decision Trees: Theory
and Applications. World Scientific, 2014.

[60] H. Samet. The Quadtree and Related Hierarchical Data Structures. ACS,
1984.

[61] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and
J. Sperling. TwitterStand: News in Tweets. In SIGSPATIAL, 2009.

[62] J. Schmidhuber. Deep Learning in Neural Networks: An Overview.
CoRR. abs/1404.7828, 2014.

[63] M. Shekelyan, A. Dignös, and J. Gamper. DigitHist: A Histogram-Based
Data Summary with Tight Error Bounds. VLDB, 2017.

[64] Time. Hurricane Harvey Victims Turn to Twitter and Facebook. https:
//time.com/4921961/hurricane-harvey-twitter-facebook-social-media/,
2017.

[65] G. Valentin, M. Zuliani, D. C. Zilio, G. Lohman, and A. Skelley. DB2
advisor: an optimizer smart enough to recommend its own indexes. In
ICDE, 2000.

[66] J. S. Vitter. Random Sampling with a Reservoir. TOMS, 1985.
[67] X. Wang, Y. Zhang, W. Zhang, X. Lin, and W. Wang. Selectivity

Estimation on Streaming Spatio-Textual Data Using Local Correlations.
VLDB, 2014.

[68] X. Wang, Y. Zhang, W. Zhang, X. Lin, and W. Wang. Ap-tree: Efficiently
support continuous spatial-keyword queries over stream. In ICDE, 2015.

[69] WSJ. Health Department Use of Social Media to Identify Foodborne
Illness - Chicago, Illinois, 2013-2014. https://www.cdc.gov/mmwr/
preview/mmwrhtml/mm6332a1, 2014.

[70] WSJ. In Irma, Emergency Responders’ New Tools: Twit-
ter and Facebook. https://www.wsj.com/articles/for-hurricane-irma/
information-officialspost-on-social-media/1505149661, 2017.

[71] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M.
Hellerstein, S. Krishnan, and I. Stoica. Deep Unsupervised Cardinality
Estimation. VLDB, 2019.

[72] Yibei Ling, Wei Sun, N. D. Rishe, and Xianjing Xiang. A hybrid
estimator for selectivity estimation. TKDE, 1999.

[73] H. Yin. Poi or location-based recommendation dataset twitter-foursquare.
Retrieved from UCR-STAR https://star.cs.ucr.edu/?yin/foursquare.

