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Abstract

Sensors have been widely applied in modern manufacturing systems to monitor the processes and machine health conditions in order to control
product quality. Processing a large amount of sensor data becomes a new challenge on the efficiency of diagnosis. In this paper, a novel physics-
constrained dictionary learning approach is proposed to simultaneously improve the efficiency of data collection with compressed sensing (CS)
and perform diagnosis with the classification of sensor data. Two-stage optimization is performed. At the first stage, measurement matrix is
optimized to determine the time stamps of collected data points with a fixed basis matrix. This is solved based on a constrained FrameSense
algorithm. At the second stage, the basis and classification matrices are optimized with the fixed measurement matrix based on the K-SVD
algorithm. The above two optimization steps are repeated until the optimal measurement, classification, and basis matrices converge without
further improvement. The recovered signals can be classified more accurately based on the learned classification matrix for specific data. The
proposed approach for machine fault diagnosis is demonstrated with acoustic emission signals collected in the fused filament fabrication process.
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1. Introduction capacity. Thus the storage efficiency [6] and energy efficiency
[7] need to be improved. Bandwidth efficiency which is
proportional to the amount of data in transmission also needs
to be improved without sacrificing the performance and energy
efficiency [8]. Therefore, more efficient schemes for data
collection and usage are needed to improve the efficiency of
machine health monitoring.

To improve the efficiency of data collection, compressed
sensing (CS) and dictionary learning approaches have been
developed in the recent decade. CS [9,10] allows us to reduce
the amount of data collection by taking advantage of the
sparsity of coefficient vector in the reciprocal space. If the
original signal has a sparse representation with respect to a
basis or transformation matrix, the sparse coefficient vector can
be recovered with a few collected samples and the original
signal is obtained as the linear combination of the basis matrix
and the coefficient vector. When the original signal is
represented in a discrete form as vector s € RY. It can be
represented in the reciprocal space via transformations as s =

Sensors have been widely applied in modern manufacturing
systems to monitor the processes and machine health
conditions in order to control product quality. For monitoring
and diagnostics, data are collected by sensors and transmitted
to processing stations, where necessary signal processing is
done. Important features in time and/or frequency domains are
then extracted from the data and form the feature vector.
Statistical machine learning tools are built and trained with
feature vectors as the input to predict the system states. Given
the large amount of sensor data collection with the latest
sensing systems, processing them for real-time diagnostics
becomes challenging [1,2]. Despite significant computational
effort is spent on data collection, transmission, and storage, the
diagnosis is only based on features that are extracted from raw
data [3, 4]. The large amount of collected data often contain
excessively redundant information which reduces the sensing
efficiency [5]. Another challenge is the reliability of storage
systems as the volume of data is growing faster than the storage

2351-9789 © 2021 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-ne-nd/4.0/)
Peer-review under responsibility of the Scientific Committee of the NAMRI/SME

10.1016/j.promfg.2021.06.071


http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2021.06.071&domain=pdf

Yanglong Lu et al. / Procedia Manufacturing 53 (2021) 726-734 727

Yy, where W € RV*V is the transformation or basis matrix and
y € RY is the vector of coefficients. When the signal is
projected into the AM-dimensional measurement subspace
(M<N) with measurement matrix ® € RM*N as y = ®s, the
original signal s can be recovered from the measured data y by
solving the inverse problem based on the linear equations y =
®s = PWy. The basis matrix ¥ is usually predefined from
some known transformation such as discrete cosine
transformation, wavelet transformation, or some random
matrices that satisfy the restricted isometry property.
Dictionary learning methods have been developed to further
improve the sparsity of coefficient vectors and the compression
ratio of CS by customizing the basis matrix according to
specific signal type. The learning process is formulated as an
optimization problem where the entries of measurement and
basis matrices are optimized to minimize the CS recovery error.

Recently, a physics-constrained dictionary learning method
was proposed to compress roller bearing vibration signals [11].
The measurement and basis matrices were optimized
simultaneously. There is only one non-zero entry in each row
of the measurement matrix and the index of the non-zero entry
indicates the time stamp to store the data point. The physical
constraint to indicate the maximum sampling rate was also
incorporated to minimize the redundant information collection.
With a few stored data points, the original vibration signals can
be reconstructed.

In this paper, the physics-constrained dictionary learning
method is extended with a new formulation to solve
classification problems. The measurement, basis and
classification matrices are optimized simultaneously.
Therefore, with a few collected data points, the proposed
physics-constrained dictionary learning method can be applied
to classify the signal based on only a few samples. The sensing
efficiency and classification accuracy are significantly
improved with the proposed method. The amount of data
collection can be further reduced with the additional physical
constraint to indicate the maximum sampling rate. We
demonstrate this new approach in the fused filament fabrication
(FFF) process monitoring, where acoustic emission (AE)
signals are collected to identify machine states.

In the remainder of the paper, the background of AE
technique applied in additive manufacturing process
monitoring and dictionary learning methods are introduced in
Section 2. The proposed physics-constrained dictionary
learning method for classification is described in Section 3. The
demonstration of its application to classify AE signals base on
different machine conditions, and experimental results are
given in Section 4.

2. Background

In this section, the applications of acoustic emission
technique in additive manufacturing process monitoring are
reviewed. The relate work of dictionary learning methods is
introduced.

2.1. Acoustic emission applications in additive manufacturing
process monitoring

AE is a non-destructive technique to evaluate mechanical
performance of materials [12, 13] and monitor structural and
machine health [14, 15] by detecting ultrasonic stress waves

originated from some localized sources. Detection and analysis
of AE signals can provide valuable information to characterise
source mechanisms such as crack, friction, and deformation.
There has been research to monitor additive manufacturing
(AM) processes with AE techniques [ 16]. Different AM
processes are available. FFF or material extrusion process is
commonly used for polymers such as acrylonitrile butadiene
styrene, polylactide, and nylon. Metal AM processes including
selective laser melting (SLM), electron beam melting, and
direct energy deposition are used for metallic materials such as
titanium alloys, stainless steel, and aluminium alloys. Shevchik
et al. [17, 18] collected AE signals in the SLM process and
applied convolution neural networks and spectral convolution
neural networks to classify AE features from processes with
different build qualities. Wu et al. employed the AE technique
to identify normal and abnormal states of machine conditions
in the FFF process based on support vector machine (SVM)
[19, 20], semi-hidden Markov model [21], and self-organizing
map [22]. Liu et al. [23] proposed a fault diagnosis approach
based on linear discriminant analysis (LDA) and the clustering
by fast search and find of density peaks (CFSFDP) approach to
classify machine faults based on a high dimensional feature
space. The classification performances from different
unsupervised and supervised approaches were also compared.

2.2. Dictionary learning

The recovery accuracy of CS is affected by the sparsity
level of the coefficient vector. In conventional CS, the basis
matrix is usually predefined as some known transformation
matrices such as Fourier transformation, discrete cosine
transformation, wavelet transformation, or some random
matrices that have the restricted isometry property. The sparsity
level of the original signal is usually low with respect to the
predefined basis matrix because it is not directly related to the
observed signals. With dictionary learning methods, the basis
matrix can be trained based on the collected data. The sparsity
level of the coefficient vector is significantly improved because
the basis matrix is customized according to the specific data
type. The recovery accuracy of CS can also be improved with
the trained basis matrix.

Various dictionary learning methods [ 24 ] have been
developed to search for the sparsest representation of signals.
The purpose is to find the optimal dictionary so that the sparsity
is maximized for a specific type of signals. As a result, the
original signals can be represented in a form of linear
combinations of the learned dictionary and the sparse vector of
coefficients. Some commonly used dictionary learning
algorithms include the method of optimal directions (MOD)
[25], K-SVD [26], the online dictionary learning [27] and
others. The training process was also based on the maximum
likelihood [28], least-square error [29, 30], and hidden Markov
model [31].

Particularly, K-SVD is an efficient algorithm for dictionary
learning. The algorithm starts with an initial guess of dictionary
D . Then the coefficient matrix Y is calculated with the
orthogonal matching pursuit (OMP) [32] algorithm. With the
coefficient matrix Y fixed, the basis matrix is updated one
column at a time. The update is to minimize the discrepancy
between the subspace of this particular column for the training
data and the subspace for the recovered data based on the
current dictionary, given that all other columns are fixed. The
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eigenvectors of the subspace subject to the sparsity constraint
are obtained by applying the singular value decomposition
(SVD). The first left-singular vector is taken as the updated
column of dictionary D, whereas the first right-singular vector
multiplied by the first singular value is taken as the
corresponding row of coefficient matrix Y. Each column of
dictionary D is updated sequentially. With the most recent
dictionary, the coefficient matrix Y needs to be updated again
with the OMP algorithm. The above iterations of updates
continue until the convergence of the dictionary is reached.

Dictionary learning methods have been applied in
combination with CS. Chen et al. [28] applied the dictionary
learning method to improve the performance of CS in
extracting impulse components from noisy vibration signals.
Lorintiu et al. [33] reconstructed ultrasound data with CS and
dictionary learning by K-SVD. It was shown that
reconstruction errors are lower than conventional dictionaries
based on Fourier or discrete cosine transformations. CS with
learned dictionary was also applied for the reconstruction of
magnetic resonance images (MRIs) [34, 35, 36, 37], videos
[38] and electrocardiogram (ECG) signals [39], and image
denoising [40, 41, 42].

Instead of learning the dictionary, which is the combination
of the measurement matrix and the basis matrix, approaches to
design the measurement matrix and the basis matrix
individually were also developed. Duarte-Carvajalino and
Sapiro [43] simultaneously optimized the measurement matrix
and basis matrix with a new scheme called coupled-KSVD.
The incoherence between the measurement matrix and basis
matrix is improved which results in the better reconstruction
performance. Bai et al. [44] further improved the framework
with analytical solutions to update the measurement and basis
matrices. It was shown that the convergence and accuracy of
the solutions are improved for reconstructing natural images.

Dictionary learning methods have also been applied for
classification and clustering [45, 46]. Zhang and Li [47]
developed a discriminative K-SVD (D-KSVD) method for face
recognition. The D-KSVD method is implemented by adding a
discriminative term into the objective function of the original
K-SVD algorithm. The D-KSVD method outperforms other
existing methods such as the SRC algorithm [48]. Ptucha and
Savakis [49] proposed a linear extension of graph embedding
K-means-based singular value decomposition (LGE-KSVD)
method to solve facial and activity recognition problems. LGE-
KSVD utilized variants of the LGE to optimize the K-SVD
problem. Other dictionary learning methods for classification
include label consistent K-SVD [50], discriminative Bayesian
dictionary learning [51], and task-driven dictionary learning
[52].

The proposed framework in this paper is developed to solve
classification problems by optimizing the measurement, basis,
and classification matrices simultaneously. Therefore, instead
of collecting the complete signal, only a few data points at the
time stamps determined from the measurement matrix are
needed to recover the sparse coefficient vectors with the
optimal basis matrix and CS. The signal can be classified by
multiplying the classification matrix with the recovered
coefficient vectors. The measurement matrix is designed to
determine the time stamps of stored data points in one-
dimensional signals in physical experiments, which typically
requires that there is only one non-zero entry in each row of the
measurement matrix. The considerations of physical constra-

[ Create initial basis matrix ]
y

Update measurement matrix
with physical constraints

L 2

Scheme 1: Update basis and
classification matrices with K-SVD

Scheme 2: Update basis matrix and
coefficient vectors with K-SVD,
and then update classification
matrix with ridge regression

Output measurement,
classification and basis
matrices

Fig. 1. Physics-constrained dictionary learning scheme

ints and interpretations in measurement conditions are
important in engineering applications.

3. Methodology

The physics-constrained dictionary learning scheme in [11]
has been developed to optimize the measurement and basis
matrices simultaneously to reconstruct the original signal with
a few data points. For machine fault diagnosis, the physics-
constrained dictionary learning scheme is modified, so that the
classification errors can also be minimized. It is to solve

i allS — PY||7 + || ®S — PY||Z
MmiNgyw,y

+BIIL - CY||Z
(D
subject to @ = f(¥P) 2)
lvillo < Ty, Vi 3)
Iijj(®) = 7, Vi,j %

where F denotes the Frobenius norm, S = [sy,S,..5p] €
RN*P contains P sets of training data and each data set s; has
the length of N. W € R¥*W is the basis matrix with N < W
and W K P. Y = [y1,¥2 - ¥p] € R¥*P contains the sparse
coefficients that represent the training data in S with respect to
the basis matrix. C € RVW is the classification matrix and
L=1[l,l,.. lp] € RV*F is the class label of the training
signals. I; =[0,1,0... 0] where the index of the non-zero
value in I; indicates the class. Different classes indicate
different machine states. Lagrange multipliers ¢ and f are
applied to control the relative contribution of each term in
Eq.(1). The constraint in Eq.(2) indicates the training sequence.
That is, in the iterative optimization procedure, the basis matrix
W is fixed first, measurement matrix @ can be optimized based
on the fixed ¥. Then the basis and classification matrices are
optimized next. The constraint in Eq.(3) is the upper limit of
the sparsity level, where y; is the i-th column of the coefficient
matrix, and Ty is the target number of non-zero values in the
sparse vectors of coefficients. The constraint in Eq.(4) shows
the physical limitation of collected and stored data points, such
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as the time interval between collected and stored data points in
1D signals need to be larger than a threshold value r. Other
physical constraints can be added similarly.

Here, two different physics-constrained dictionary learning
schemes are used to classify different machine faults based on
a few collected data points as shown in Fig. 1. In the first
scheme, the measurement, basis and classification matrices are
optimized simultaneously. The learning procedure starts with
an initial guess of the basis matrix. Two stages are performed
in each iteration. At stage one, the measurement matrix is
optimized to determine the time stamps of collected data points
with the fixed basis matrix. This can be solved based on the
constrained FrameSense algorithm [11]. At stage two, the basis
and classification matrices can be optimized with the fixed
measurement matrix based on the K-SVD algorithm. The
above two optimization steps are repeated until both the
optimal measurement, classification and basis matrices
converge without further improvement. In the second scheme,
only the basis matrix is optimized with the K-SVD algorithm.
The classification matrix is computed separately with the
coefficient vectors for the training dataset based on the ridge
regression. Classification results from the two different
schemes are compared.

3.1. Stage one optimization

At stage one, with the basis matrix ¥ fixed, the
measurement matrix @ is optimized to determine the time
stamps of collected data points. Determining the optimal time
stamps from all available ones is often NP-hard if the amount
of data collection is large. Therefore, a greedy algorithm called
constrained FrameSense [11] is used to determine the near-
optimal time stamps of collected data points as shown in Table
1. Given all available time stamps N ={1,..,N}, an
unsuitable set of time stamps J° can be iteratively identified as
the index of the row in the basis matrix ¥ by solving [53]

max F(7) = H(T) — H(¥\r) ®)

where H(W) is the frame potential and represented as
H(P) = ZiLi 42 (6)

where A; is the i-th largest eigenvalue of W*W and W is the
conjugate transpose of W. Wy,\s is a sub-matrix of W) with
rows corresponding to indices with the unsuitable ones
excluded. After determining the unsuitable time stamps T, the
new available time stamps are updated as N'\T".

If M measurements are desirable, the time stamps of M
measurements are optimized by excluding (N — M) unsuitable
time stamps iteratively. Eventually the time stamps of the
desirable measurements can be identified in the optimized M X
N measurement matrix in a form of

10
0 0
01 (7

0 0 O

where the column index of the value of 1 in each row indicates

the time stamp of each collected data point.

The physical constraint in Eq.(4) is also incorporated in the
constrained FrameSense algorithm. If the time interval between
any of two collected data points is less than the threshold value
r, one of the measurements in the pair is eliminated. For one-
dimensional signals, r indicates the minimum time interval
between two adjacent data points that is determined by the
resolution of sensors.

Table 1. The constrained FrameSense algorithm

. Initialize time stamps of collected data points L, all available time
stamps V', and desired number of collected data points m,

2. Determine the first two removed rows in ¥ by solving " =
argmaxi,jeN|< 0P >|2 and update remaining time stamps £ =
N\T by excluding T

. WHILE the length of £ < m; DO

Find the i* -th row in ¥ to eliminate by solving i* =
argmax;e F(T U {i}), where F(T U {i}) is the function in
Eq.(5)
Update unsuitable time stamps of collected data points as T =
T U {i*}
Update available time stamps of collected data point as £ =
L\{i"}
END WHILE
4. FOR i =1 to the length of £
FOR =1 to length of £
If I;(®) = |ti -t | <, where ¢; and t; are time stamps for
i-th and j-th data, £ = L\{j}.
END FOR
END FOR
. Generate measurement matrix @ in the form of Eq.(7) with
optimized time stamps L

w

wn

3.2. Stage two optimization

The objective function in Eq.(1) can be converted to the

form of
asS a¥
(CPS) — <<I>‘P) Y
BL BC
asS

a¥

With X = (@S), Z= (d"l’) is optimized by solving Egs. (8)
BL pC

and (3) with the K-SVD algorithm [5]. The sub-matrix Z; =

a? . . . . .
( d)lP) is used to obtain the basis matrix ¥ by solving

2

®)

mincplly'y

F

Y =(a’1+®T®) a1 @T]Z, )
With the optimized sub-matrix Z, = SC, the classification
matrix can be obtained as C = Z, /.
The basis matrix is then normalized as

P1 P2 w
llpallz " lgpzllz” " llowllz”

W' = [0}, @b, 0l ] = | o

and the corresponding classification matrix is

C = [c},chy Gl ] = [ 2=, 2 w_ ]

lpallz” lgzllz” ™ llowllz’
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where ¢; and cjare each column in the original basis matrix ¥
and classification matrix C. The normalized basis matrix ¥’
and the corresponding classification matrix C’ are used for the
classification of testing signals.

The proposed physics-constrained dictionary learning
algorithm for classification is shown in Table 2.

Table 2. Physics-constrained dictionary learning for classification

Initialize the basis matrix ¥ and m=0;
WHILE m < total number of iterations DO
1. Compute & based on the constrained FrameSense algorithm

aS a¥
2. With X = ((DS), Z= <<I>‘P) and Y are updated by solving Eq.(8) and
BL BC
E1.(3) with K-SVD method.
3. Update W with Eq.(9) and C = Z, /8
4. Normalize ¥ as W' and obtain the corresponding C’
Sm=m+1
END WHILE

3.3. Optimization of classification matrix with ridge
regression

In Section 3.2, the basis and classification matrices are
optimized simultaneously with the fixed measurement matrix
based on the K-SVD algorithm. The classification matrix can
be obtained from the sub-matrix Z,. An alternate way to
optimize the classification matrix is based on the ridge
regression. The basis matrix and coefficient vectors can be
optimized simultaneously by solving

minsux [|(59) - (o) ¥, 02

_(a¥ - .
Z, = ( d)lP) and Y can be optimized with the K-SVD

algorithm, and W is computed based on Eq.(9). The
classification matrix is then solved by the ridge regression
model as

C=YTY + B D 1YLT (13)

where 8’ > 0 is a ridge parameter. This approach can reduce
the computational cost of K-SVD because the matrix with
lower dimension is optimized. However, the classification
accuracy can also be affected because the classification matrix
is not optimized simultaneously with the basis matrix.

4. Experiments

The proposed physics-constrained dictionary learning
scheme was applied to diagnose machine failures in the FFF
process based on AE signal. The data acquired by Wu et al.
[20] are used in this experiment, where AE signals from AE
sensor are processed and AE hits are counted. To reduce the
memory usage, time-domain features are stored in output files
and used for analysis. The time-domain features of AE hits
include amplitude, signal strength, counts, duration, average
signal level (ASL), root mean square (RMS) and absolute
energy, which can be used to identify machine faults. Among
all features, ASL, RMS, and signal strength are selected for the
machine fault diagnosis, because these features contain more

information than other features such as amplitude, counts, and
duration.

RMS, which is used to describe the strength of AE signal in
the time domain, is defined as

t
AERMS = ftlz u(t)zdt (14)

L=ty

where u(t) is the output voltage of AE sensor. ASL is defined
as the average of the AE signal amplitude in a logarithmic scale
and expressed as

1t )
AEpg, = \/E J,;}201l0g (“—) dt (15)

Uref

where .. is the reference voltage. Signal strength is defined
as

t

AEge = [*u(o)ldt (16)

A Hyrel3D printer was used in this experiment, and the AE
sensor was attached on the side surface of the extruder to
collect signals with different machine conditions such as
normal operating condition, material loading, blocked material
and running out of material. The AE sensor made by
Mistragroup has the operating frequency response within the
range of 100-900 kHz and the temperature range between -65
and 177°C. The original AE signal is conditioned and amplified
by a PAC 2/4/6 preamplifier, and received by a PAC PCI-2 fast
data acquisition (DAQ) system. The experimental setup can be
found in Fig. 2. The sampling rate was 5 M samples per second.
RMS, ASL and signal strength in the normal operation
condition and extruder blockage condition are shown in Fig. 3.
These AE features under other machine conditions such as
material loading and running out of material are also generated
similarly. The classification of machine conditions with the
proposed physics-constrained dictionary learning method is
based on the features of RMS, ASL, and signal strength.

The collected values for different features under different
machine conditions are divided into two regions, as shown in
Fig. 3. The left region which consists of 75% of data points is
used as the training dataset, and the remaining data points are
used as the testing dataset. For instance, for RMS, the training
dataset contains 1500 segments for each machine condition and
each segment contains 200 successive RMS values. For each
segment, the first RMS value is randomly selected from the c-

Maierial lilament

Extruder

i
1
AE /
Sensor
| | Hotbed | Embeded PC and
L

tonch screen
A

Preamplifier
Printiing Area

Data Acquisition
System

Fig. 2. Experimental setup [20]
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Training dataset

Testing dataset
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time (s) time (s)
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Fig. 3. RMS collected in time domain at (a) normal and (b) extruder blockage
conditions; ASL collected at (c) normal and (d) extruder blockage conditions;
Signal strength collected at (e) normal and (f) extruder blockage conditions.

omplete time period and the remaining 199 successive RMS
values are selected accordingly. The testing dataset consisting
of 300 segments for each machine condition is generated
similarly. The collected RMS values at normal, blocked
material, material loading and running out of material
conditions are labelled as different classes. The training and
testing datasets for ASL and signal strength are generated
similarly.

4.1. Classification results without considering the physical
constraint

With the training dataset corresponding to each class, the
physics-constrained dictionary learning method in Table 2 is
used to optimize the measurement, basis and classification
matrices. The constraint in Eq.(4) that indicates the minimum
sampling interval of collected samples is not considered.
Therefore, the step 4 in Table 1 is eliminated. The size of the
basis matrix W is 200 X 600. The initial basis matrix is created
by randomly selecting 600 columns in the training dataset.
With the optimized measurement matrix @ and basis matrix ¥,
the sparse coefficient vectors Y; for the testing dataset can be
recovered with CS based on OMP [32]. The time stamps of the
reduced amount of data collection are indicated in the
measurement matrix. With the optimized classification matrix
C, the class label L; for the testing dataset is obtained by CY,.
Therefore, with the proposed physics-constrained dictionary
learning, the class label of the original signal can be determined
with the reduced amount of data collection. The class label is
then used to identify the machine condition. In Section 4.1.1,
three machine conditions are identified based on different
features of AE signal such as RMS, ASL and signal strength.
In Section 4.1.2, four machine conditions are identified based
on RMS values.

4.1.1. Classification of three machine conditions

RMS, ASL, and signal strength of AE signal are used to
identify machine conditions such as normal operation
condition, extruder blockage, and running out of material. The
classification errors for each feature and machine condition are
shown in Table 3. The classification error is computed as

e = x—t x 100% (17)

where N; is the number of incorrect labels and N, is the number
of total labels. For RMS and ASL, the number of non-zero
values in the coefficient vectors, Ty, is set to be 1 and 80 data
points in each segment are collected. The compression ratio is
200/80=2.5. For signal strength, the similarity level of collected
data points is high for different machine conditions. Therefore,
more non-zero values in the coefficient vectors are required to
identify different machine conditions and Ty, is set to be 15. As
the sparsity level is low, more data points need to be collected
for classification and 140 data points are collected in each
segment for the signal strength dataset. The compression ratio
is 200/140=1.4.

The results show that the proposed physic-constrained
dictionary learning can be used to diagnose machine faults with
different datasets. However, the classification performance
varies among the three different features. The classification
based on RMS has the smallest error and the amount of data
collection is significantly reduced. The optimized indices for
collected and stored 80 RMS values are shown in Fig. 4.
Among 200 RMS values in each segment, only ones marked as
stars are collected and unselected ones are marked as circles.

Sensitivity analysis is performed with different sparsity
levels of each coefficient vector Y = [y4,¥, ... ¥p] - The
results are shown in Table 4. Among the 200 collected RMS
values in each segment, the number of collected RMS values is
set to be 80. It is found that as the maximum number of non-
zeros values in each coefficient vector increases, the
classification errors are increased because redundant
information can be generated when more non-zero values in the
coefficient vector are used. The important features of the
original signal which are critical for the classification accuracy
are represented by only a few non-zero values in the coefficient
vector.

Table 3. Classification errors for different machine conditions based on
different features.

normal extruder running out of
condition blockage material
RMS 4.3% 2% 1%
ASL 8% 3.3% 6%
Signal strength 9% 5% 0%

Table 4. Classification errors with different values of Ty.

To normal extruder blockage  running out of
condition material
1 4.3% 2% 1%
3 4.3% 4.6% 9%
5 5.6% 6.6% 11.6%
8 5.6% 7% 13.6%
11 6.3% 7.3% 15%
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20 40 60 80 100 120
index of RMS value in each segment

5 10 15 20 25 30 35 40

Fig. 4. Optimized indices of stored RMS values without considering
the physical constraint

Another sensitivity analysis is performed with different
numbers of collected and stored RMS values. The results are
shown in Table 5. The maximum number of non-zero values in
the coefficient vector is set to be 1. It is found that as more RMS
values are collected, the classification errors are reduced,
because more information can be used to recover the
coefficient vector. However, the efficiency of data collection
and storage is reduced.

Table 5. Classification errors with different numbers of stored RMS values.

number of normal extruder blockage running out
stored values condition of material
10 25.3% 19.3% 11%
40 2% 1.3% 5%
80 4.3% 2% 1%
120 3% 2.3% 2%
160 3% 2.3% 1.3%

Instead of optimizing measurement, basis and classification
matrices simultaneously, the approach in Section 3.3 is also
used to optimize the classification matrix separately. In each
iteration, with the training dataset, the basis matrix and
coefficient vectors are optimized based on the K-SVD
algorithm. With the optimized coefficient vectors and the class
label for the training dataset, the classification matrix C is
computed based on ridge regression in Eq.(7). The coefficient
vectors for the testing dataset can be recovered with OMP and
the class label for the testing dataset is then obtained by L; =
CY, . With 80 RMS values collected and T, =1, the
classification errors for normal operation condition, extruder
blockage, and running out of material conditions are 3.3%,
3.3%, and 7.6% respectively. Compared to the results in Table
3 with RMS, the classification error is increased when the
classification matrix is optimized separately.

4.1.2. Classification of four machine conditions

The proposed physics-constrained dictionary learning
approach is also used to identify four machine conditions. Here,
the feature of RMS is used. With 130 RMS values used in each
segment and the compression ratio of 200/130=1.5, the
classification errors for machine conditions of normal
operating condition, material loading, extruder blockage, and
running out of material are 4.6%, 0%, 0% and 2.3%
respectively. Previously Liu et al. [23] proposed a fault
diagnosis approach based on LDA and the CFSFDP approach
to identify machine conditions. It outperforms other commonly

used classification methods such as hidden Markov model,
SVM, genetic algorithm-based back propagation neural
network model and probabilistic neural network. The
classification errors for four machine conditions in Ref. [23]
based the same AE signal used here are 0%, 6%, 0% and 3%
respectively. In comparison, the proposed physics-constrained
dictionary learning method gives more accurate classifications
of material loading, extruder blockage, and running out of
material. Furthermore, the amount of data collection is also
reduced with the proposed method.

4.2. Classification results with the physical constraint

In this scenario, the physical constraint in Eq.(4) to indicate
the minimum time interval between collected RMS values is
considered. Instead of determining the minimum time interval,
the minimum difference between indices of collected RMS
values is used because the time period for the computation of
each RMS value can be different. The minimum difference is
set to be 2 so that one of the two adjacent RMS values is
eliminated and the redundant information can be minimized.
With the original number of stored RMS values set to be 150,
the physics-constrained dictionary learning method in Table 2
is used to optimize the measurement, basis, and classification
matrices. The maximum number of non-zero values in the
coefficient vector is set to be 1. The optimized indices for
collected RMS values are shown in Fig. 5. Among 200 RMS
values in each segment, only 85 values marked as stars are
collected and unselected ones are marked as circles. Previously
in Fig. 4, the collected information can be redundant as
collected RMS values are too close to each other. Therefore, to
minimize the redundant information, the close-by RMS values
are eliminated with the additional physical constraints in Fig.
5. The classification errors for three machine conditions
including normal operation condition, extruder blockage, and
running out of material are 4%, 1%, and 1% respectively.
Compared to the results in Table 3 with RMS, the classification
error is reduced with the similar number of collected values by
considering the physical constraint. When the minimum
difference between indices of stored RMS values is set to be 3,
the number of stored RMS values is further reduced to 62. The
classification errors for three machine conditions are 5.2%, 2%,
and 1.3% respectively. The classification errors are increased
as the minimum difference between indices of collected RMS
values increases as fewer data points are collected.

1 >
e — ) —— 80 80 100 120 140 160 180 200
index of RMS value in each segment
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Fig. 5. Optimized indices of stored RMS values with the physical
constraint
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The proposed physics-constrained dictionary learning can
be applied to identify different numbers of machine states with
various features of AE signal. However, the classification
performance also depends on the similarity of data points for
different machine states. The input parameters such as the
sparsity level of the coefficient vectors, the size of the basis
matrix, and the number of collected data points can affect the
classification performance. There is a trade-off between the
accuracy and efficiency when the appropriate input parameters
are selected. With the physical constraint to minimize the time
interval between data points, the classification accuracy and
sensing efficiency are improved. With more application-
specific physical constraints included, the classification
performance can be further improved.

5. Conclusion

In this paper, a new physics-constrained dictionary learning
method for classification is proposed to diagnose machine
faults. The physics-constrained dictionary learning method is
implemented in two schemes. In the first scheme, a two-stage
optimization is performed. At stage one, the measurement
matrix is optimized with the fixed basis matrix based on the
constrained FrameSense algorithm. At stage two, the basis and
classification matrices are optimized simultaneously with the
fixed measurement matrix based on the K-SVD algorithm. In
the second scheme, the classification matrix is computed
separately based on the ridge regression. Sensitivity analyses
with different maximum numbers of non-zeros values in the
coefficient vectors and different amounts of data collection are
also performed. In addition to RMS, other features such as ASL
and signal strength are also used to identify machine faults.

The proposed physics-constrained dictionary learning
method can be used to classify machine states with only a few
data points. Therefore, the required memory usage for data
storage can be significantly reduced in monitoring machine
conditions. It is shown that as few as 40% of the original data
are required to successfully identify machine faults. With the
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