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Abstract

Sensors have been widely applied in modern manufacturing systems to monitor the processes and machine health conditions in order to control
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1. Introduction

Sensors have been widely applied in modern manufacturing 
systems to monitor the processes and machine health 
conditions in order to control product quality. For monitoring 
and diagnostics, data are collected by sensors and transmitted 
to processing stations, where necessary signal processing is 
done. Important features in time and/or frequency domains are 
then extracted from the data and form the feature vector. 
Statistical machine learning tools are built and trained with 
feature vectors as the input to predict the system states. Given 
the large amount of sensor data collection with the latest 
sensing systems, processing them for real-time diagnostics 
becomes challenging [1,2]. Despite significant computational 
effort is spent on data collection, transmission, and storage, the 
diagnosis is only based on features that are extracted from raw 
data [3, 4]. The large amount of collected data often contain 
excessively redundant information which reduces the sensing 
efficiency [5]. Another challenge is the reliability of storage 
systems as the volume of data is growing faster than the storage 

capacity. Thus the storage efficiency [6] and energy efficiency
[ 7 ] need to be improved. Bandwidth efficiency which is
proportional to the amount of data in transmission also needs 
to be improved without sacrificing the performance and energy 
efficiency [ 8 ]. Therefore, more efficient schemes for data
collection and usage are needed to improve the efficiency of
machine health monitoring.

To improve the efficiency of data collection, compressed
sensing (CS) and dictionary learning approaches have been
developed in the recent decade. CS [9,10] allows us to reduce
the amount of data collection by taking advantage of the
sparsity of coefficient vector in the reciprocal space. If the
original signal has a sparse representation with respect to a
basis or transformation matrix, the sparse coefficient vector can
be recovered with a few collected samples and the original 
signal is obtained as the linear combination of the basis matrix
and the coefficient vector. When the original signal is
represented in a discrete form as vector 𝒔𝒔 ∈ ℝ𝑁𝑁 . It can be
represented in the reciprocal space via transformations as 𝒔𝒔 =
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capacity. Thus the storage efficiency [6] and energy efficiency
[ 7 ] need to be improved. Bandwidth efficiency which is
proportional to the amount of data in transmission also needs 
to be improved without sacrificing the performance and energy 
efficiency [ 8 ]. Therefore, more efficient schemes for data
collection and usage are needed to improve the efficiency of
machine health monitoring.

To improve the efficiency of data collection, compressed
sensing (CS) and dictionary learning approaches have been
developed in the recent decade. CS [9,10] allows us to reduce
the amount of data collection by taking advantage of the
sparsity of coefficient vector in the reciprocal space. If the
original signal has a sparse representation with respect to a
basis or transformation matrix, the sparse coefficient vector can
be recovered with a few collected samples and the original 
signal is obtained as the linear combination of the basis matrix
and the coefficient vector. When the original signal is
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represented in the reciprocal space via transformations as 𝒔𝒔 =
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𝚿𝚿𝜸𝜸, where 𝚿𝚿 ∈ ℝ𝑁𝑁×𝑁𝑁 is the transformation or basis matrix and 
𝜸𝜸 ∈ ℝ𝑁𝑁  is the vector of coefficients. When the signal is 
projected into the M-dimensional measurement subspace 
(M<N) with measurement matrix 𝚽𝚽 ∈ ℝ𝑀𝑀×𝑁𝑁  as 𝒚𝒚 = 𝚽𝚽𝒔𝒔, the 
original signal 𝒔𝒔 can be recovered from the measured data 𝒚𝒚 by 
solving the inverse problem based on the linear equations 𝒚𝒚 =
𝚽𝚽𝒔𝒔 = 𝚽𝚽𝚽𝚽𝜸𝜸. The basis matrix 𝚿𝚿 is usually predefined from 
some known transformation such as discrete cosine 
transformation, wavelet transformation, or some random 
matrices that satisfy the restricted isometry property. 
Dictionary learning methods have been developed to further 
improve the sparsity of coefficient vectors and the compression 
ratio of CS by customizing the basis matrix according to 
specific signal type. The learning process is formulated as an 
optimization problem where the entries of measurement and 
basis matrices are optimized to minimize the CS recovery error.  

Recently, a physics-constrained dictionary learning method 
was proposed to compress roller bearing vibration signals [11]. 
The measurement and basis matrices were optimized 
simultaneously. There is only one non-zero entry in each row 
of the measurement matrix and the index of the non-zero entry 
indicates the time stamp to store the data point. The physical 
constraint to indicate the maximum sampling rate was also 
incorporated to minimize the redundant information collection. 
With a few stored data points, the original vibration signals can 
be reconstructed.  

In this paper, the physics-constrained dictionary learning 
method is extended with a new formulation to solve 
classification problems. The measurement, basis and 
classification matrices are optimized simultaneously. 
Therefore, with a few collected data points, the proposed 
physics-constrained dictionary learning method can be applied 
to classify the signal based on only a few samples. The sensing 
efficiency and classification accuracy are significantly 
improved with the proposed method. The amount of data 
collection can be further reduced with the additional physical 
constraint to indicate the maximum sampling rate. We 
demonstrate this new approach in the fused filament fabrication 
(FFF) process monitoring, where acoustic emission (AE) 
signals are collected to identify machine states.  

In the remainder of the paper, the background of AE 
technique applied in additive manufacturing process 
monitoring and dictionary learning methods are introduced in 
Section 2. The proposed physics-constrained dictionary 
learning method for classification is described in Section 3. The 
demonstration of its application to classify AE signals base on 
different machine conditions, and experimental results are 
given in Section 4.  

2. Background 

In this section, the applications of acoustic emission 
technique in additive manufacturing process monitoring are 
reviewed. The relate work of dictionary learning methods is 
introduced. 

2.1. Acoustic emission applications in additive manufacturing 
process monitoring  

AE is a non-destructive technique to evaluate mechanical 
performance of materials [12, 13] and monitor structural and 
machine health [14, 15] by detecting ultrasonic stress waves 

originated from some localized sources. Detection and analysis 
of AE signals can provide valuable information to characterise 
source mechanisms such as crack, friction, and deformation. 

There has been research to monitor additive manufacturing 
(AM) processes with AE techniques [ 16 ]. Different AM 
processes are available. FFF or material extrusion process is 
commonly used for polymers such as acrylonitrile butadiene 
styrene, polylactide, and nylon. Metal AM processes including 
selective laser melting (SLM), electron beam melting, and 
direct energy deposition are used for metallic materials such as 
titanium alloys, stainless steel, and aluminium alloys. Shevchik 
et al. [17, 18] collected AE signals in the SLM process and 
applied convolution neural networks and spectral convolution 
neural networks to classify AE features from processes with 
different build qualities. Wu et al. employed the AE technique 
to identify normal and abnormal states of machine conditions 
in the FFF process based on support vector machine (SVM) 
[19, 20], semi-hidden Markov model [21], and self-organizing 
map [22]. Liu et al. [23] proposed a fault diagnosis approach 
based on linear discriminant analysis (LDA) and the clustering 
by fast search and find of density peaks (CFSFDP) approach to 
classify machine faults based on a high dimensional feature 
space. The classification performances from different 
unsupervised and supervised approaches were also compared.  

2.2. Dictionary learning 

The recovery accuracy of CS is affected by the sparsity 
level of the coefficient vector. In conventional CS, the basis 
matrix is usually predefined as some known transformation 
matrices such as Fourier transformation, discrete cosine 
transformation, wavelet transformation, or some random 
matrices that have the restricted isometry property. The sparsity 
level of the original signal is usually low with respect to the 
predefined basis matrix because it is not directly related to the 
observed signals. With dictionary learning methods, the basis 
matrix can be trained based on the collected data. The sparsity 
level of the coefficient vector is significantly improved because 
the basis matrix is customized according to the specific data 
type. The recovery accuracy of CS can also be improved with 
the trained basis matrix.  

Various dictionary learning methods [ 24 ] have been 
developed to search for the sparsest representation of signals. 
The purpose is to find the optimal dictionary so that the sparsity 
is maximized for a specific type of signals. As a result, the 
original signals can be represented in a form of linear 
combinations of the learned dictionary and the sparse vector of 
coefficients. Some commonly used dictionary learning 
algorithms include the method of optimal directions (MOD) 
[25], K-SVD [26], the online dictionary learning [27] and 
others. The training process was also based on the maximum 
likelihood [28], least-square error [29, 30], and hidden Markov 
model [31].  

Particularly, K-SVD is an efficient algorithm for dictionary 
learning. The algorithm starts with an initial guess of dictionary 
𝐃𝐃 . Then the coefficient matrix 𝚼𝚼  is calculated with the 
orthogonal matching pursuit (OMP) [32] algorithm. With the 
coefficient matrix 𝚼𝚼  fixed, the basis matrix is updated one 
column at a time. The update is to minimize the discrepancy 
between the subspace of this particular column for the training 
data and the subspace for the recovered data based on the 
current dictionary, given that all other columns are fixed. The 
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eigenvectors of the subspace subject to the sparsity constraint 
are obtained by applying the singular value decomposition 
(SVD). The first left-singular vector is taken as the updated 
column of dictionary 𝐃𝐃, whereas the first right-singular vector 
multiplied by the first singular value is taken as the 
corresponding row of coefficient matrix 𝚼𝚼. Each column of 
dictionary 𝐃𝐃  is updated sequentially. With the most recent 
dictionary, the coefficient matrix 𝚼𝚼 needs to be updated again 
with the OMP algorithm. The above iterations of updates 
continue until the convergence of the dictionary is reached.   

Dictionary learning methods have been applied in 
combination with CS. Chen et al. [28] applied the dictionary 
learning method to improve the performance of CS in 
extracting impulse components from noisy vibration signals. 
Lorintiu et al. [33] reconstructed ultrasound data with CS and 
dictionary learning by K-SVD. It was shown that 
reconstruction errors are lower than conventional dictionaries 
based on Fourier or discrete cosine transformations. CS with 
learned dictionary was also applied for the reconstruction of 
magnetic resonance images (MRIs) [34, 35, 36, 37], videos 
[38] and electrocardiogram (ECG) signals [39], and image 
denoising [40, 41, 42]. 

Instead of learning the dictionary, which is the combination 
of the measurement matrix and the basis matrix, approaches to 
design the measurement matrix and the basis matrix 
individually were also developed. Duarte-Carvajalino and 
Sapiro [43] simultaneously optimized the measurement matrix 
and basis matrix with a new scheme called coupled-KSVD. 
The incoherence between the measurement matrix and basis 
matrix is improved which results in the better reconstruction 
performance.  Bai et al. [44] further improved the framework 
with analytical solutions to update the measurement and basis 
matrices. It was shown that the convergence and accuracy of 
the solutions are improved for reconstructing natural images. 

Dictionary learning methods have also been applied for 
classification and clustering [ 45 , 46 ]. Zhang and Li [ 47 ] 
developed a discriminative K-SVD (D-KSVD) method for face 
recognition. The D-KSVD method is implemented by adding a 
discriminative term into the objective function of the original 
K-SVD algorithm. The D-KSVD method outperforms other 
existing methods such as the SRC algorithm [48]. Ptucha and 
Savakis [49] proposed a linear extension of graph embedding 
K-means-based singular value decomposition (LGE-KSVD) 
method to solve facial and activity recognition problems. LGE-
KSVD utilized variants of the LGE to optimize the K-SVD 
problem. Other dictionary learning methods for classification 
include label consistent K-SVD [50], discriminative Bayesian 
dictionary learning [51], and task-driven dictionary learning 
[52]. 

The proposed framework in this paper is developed to solve 
classification problems by optimizing the measurement, basis, 
and classification matrices simultaneously. Therefore, instead 
of collecting the complete signal, only a few data points at the 
time stamps determined from the measurement matrix are 
needed to recover the sparse coefficient vectors with the 
optimal basis matrix and CS. The signal can be classified by 
multiplying the classification matrix with the recovered 
coefficient vectors. The measurement matrix is designed to 
determine the time stamps of stored data points in one-
dimensional signals in physical experiments, which typically 
requires that there is only one non-zero entry in each row of the 
measurement matrix. The considerations of physical constra- 

 
 

Fig. 1. Physics-constrained dictionary learning scheme 
 
ints and interpretations in measurement conditions are 
important in engineering applications. 

3. Methodology 

The physics-constrained dictionary learning scheme in [11] 
has been developed to optimize the measurement and basis 
matrices simultaneously to reconstruct the original signal with 
a few data points. For machine fault diagnosis, the physics-
constrained dictionary learning scheme is modified, so that the 
classification errors can also be minimized. It is to solve 

 

 minΦ,Ψ,W,𝚼𝚼 (
𝛼𝛼‖𝐒𝐒 − 𝚿𝚿𝚿𝚿‖𝐹𝐹

2 + ‖𝚽𝚽𝚽𝚽 − 𝚽𝚽𝚽𝚽𝚽𝚽‖𝐹𝐹
2

+𝛽𝛽‖𝐋𝐋 − 𝐂𝐂𝐂𝐂‖𝐹𝐹
2 )

  (1) 
 subject to 𝚽𝚽 = 𝑓𝑓(𝚿𝚿)   (2) 
 ‖𝜸𝜸𝑖𝑖‖𝟎𝟎 ≤  𝑇𝑇0,   ∀𝑖𝑖   (3) 
 𝐼𝐼𝑖𝑖𝑖𝑖(𝚽𝚽) ≥  𝑟𝑟,   ∀𝑖𝑖, 𝑗𝑗 (4) 
 
where F denotes the Frobenius norm, 𝐒𝐒 = [𝒔𝒔1, 𝒔𝒔2 … 𝒔𝒔𝑃𝑃] ∈
ℝ𝑁𝑁×𝑃𝑃 contains 𝑃𝑃 sets of training data and each data set 𝒔𝒔𝑗𝑗 has 
the length of 𝑁𝑁. 𝚿𝚿 ∈ ℝ𝑁𝑁×𝑊𝑊  is the basis matrix with 𝑁𝑁 < 𝑊𝑊 
and 𝑊𝑊 ≪ 𝑃𝑃 . 𝚼𝚼 = [𝜸𝜸1, 𝜸𝜸2 … 𝜸𝜸𝑃𝑃] ∈ ℝ𝑊𝑊×𝑃𝑃  contains the sparse 
coefficients that represent the training data in 𝐒𝐒 with respect to 
the basis matrix. 𝐂𝐂 ∈ ℝ𝑁𝑁×𝑊𝑊  is the classification matrix and 
𝐋𝐋 = [𝒍𝒍1, 𝒍𝒍2 … 𝒍𝒍𝑃𝑃] ∈ ℝ𝑁𝑁×𝑃𝑃  is the class label of the training 
signals. 𝒍𝒍𝑖𝑖 = [0, 1, 0…  0]  where the index of the non-zero 
value in 𝒍𝒍𝑖𝑖  indicates the class. Different classes indicate 
different machine states. Lagrange multipliers 𝛼𝛼  and 𝛽𝛽  are 
applied to control the relative contribution of each term in 
Eq.(1). The constraint in Eq.(2) indicates the training sequence. 
That is, in the iterative optimization procedure, the basis matrix 
𝚿𝚿 is fixed first, measurement matrix 𝚽𝚽 can be optimized based 
on the fixed 𝚿𝚿. Then the basis and classification matrices are 
optimized next. The constraint in Eq.(3) is the upper limit of 
the sparsity level, where 𝜸𝜸𝑖𝑖 is the i-th column of the coefficient 
matrix, and 𝑇𝑇0 is the target number of non-zero values in the 
sparse vectors of coefficients. The constraint in Eq.(4) shows 
the physical limitation of collected and stored data points, such 
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as the time interval between collected and stored data points in 
1D signals need to be larger than a threshold value 𝑟𝑟. Other 
physical constraints can be added similarly.  

Here, two different physics-constrained dictionary learning 
schemes are used to classify different machine faults based on 
a few collected data points as shown in Fig. 1. In the first 
scheme, the measurement, basis and classification matrices are 
optimized simultaneously. The learning procedure starts with 
an initial guess of the basis matrix. Two stages are performed 
in each iteration. At stage one, the measurement matrix is 
optimized to determine the time stamps of collected data points 
with the fixed basis matrix. This can be solved based on the 
constrained FrameSense algorithm [11]. At stage two, the basis 
and classification matrices can be optimized with the fixed 
measurement matrix based on the K-SVD algorithm. The 
above two optimization steps are repeated until both the 
optimal measurement, classification and basis matrices 
converge without further improvement. In the second scheme, 
only the basis matrix is optimized with the K-SVD algorithm. 
The classification matrix is computed separately with the 
coefficient vectors for the training dataset based on the ridge 
regression. Classification results from the two different 
schemes are compared. 

3.1. Stage one optimization  

At stage one, with the basis matrix 𝚿𝚿  fixed, the 
measurement matrix 𝚽𝚽  is optimized to determine the time 
stamps of collected data points. Determining the optimal time 
stamps from all available ones is often NP-hard if the amount 
of data collection is large. Therefore, a greedy algorithm called 
constrained FrameSense [11] is used to determine the near-
optimal time stamps of collected data points as shown in Table 
1. Given all available time stamps 𝒩𝒩 = {1,… ,𝑁𝑁} , an 
unsuitable set of time stamps 𝒯𝒯 can be iteratively identified as 
the index of the row in the basis matrix 𝚿𝚿 by solving [53] 

 
               max

𝒯𝒯
F(𝒯𝒯) = H(𝒯𝒯) − H(𝚿𝚿𝒩𝒩\𝒯𝒯) (5) 

 
where H(𝚿𝚿) is the frame potential and represented as 

 
 H(𝚿𝚿) = ∑ |𝜆𝜆𝑖𝑖|2𝑁𝑁

𝑖𝑖=1  (6) 
 
where 𝜆𝜆𝑖𝑖  is the i-th largest eigenvalue of 𝚿𝚿∗𝚿𝚿 and 𝚿𝚿∗ is the 
conjugate transpose of 𝚿𝚿. 𝚿𝚿𝒩𝒩\𝒯𝒯  is a sub-matrix of 𝚿𝚿𝒩𝒩  with 
rows corresponding to indices with the unsuitable ones 
excluded. After determining the unsuitable time stamps 𝒯𝒯, the 
new available time stamps are updated as 𝒩𝒩\𝒯𝒯.  

If 𝑀𝑀  measurements are desirable, the time stamps of 𝑀𝑀 
measurements are optimized by excluding (𝑁𝑁 − 𝑀𝑀) unsuitable 
time stamps iteratively. Eventually the time stamps of the 
desirable measurements can be identified in the optimized 𝑀𝑀 ×
𝑁𝑁 measurement matrix in a form of  

 

 𝚽𝚽 =

[
 
 
 
 𝟎𝟎 𝟏𝟏 𝟎𝟎
𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟏𝟏

⋯
𝟎𝟎
𝟎𝟎
𝟎𝟎

⋮ ⋱ ⋮
𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋯ 𝟎𝟎]

 
 
 
 
 (7) 

 
where the column index of the value of 1 in each row indicates 

the time stamp of each collected data point.  
The physical constraint in Eq.(4) is also incorporated in the 

constrained FrameSense algorithm. If the time interval between 
any of two collected data points is less than the threshold value 
𝑟𝑟, one of the measurements in the pair is eliminated. For one-
dimensional signals, 𝑟𝑟  indicates the minimum time interval 
between two adjacent data points that is determined by the 
resolution of sensors.  
 

Table 1. The constrained FrameSense algorithm 
 

1. Initialize time stamps of collected data points ℒ, all available time 
stamps 𝒩𝒩, and desired number of collected data points 𝑚𝑚𝑡𝑡 

2. Determine the first two removed rows in 𝚿𝚿 by solving 𝒯𝒯 =
argmax𝑖𝑖,𝑖𝑖∈𝒩𝒩|< 𝜑𝜑𝑖𝑖, 𝜑𝜑𝑖𝑖 >|2 and update remaining time stamps ℒ =
𝒩𝒩\𝒯𝒯 by excluding 𝒯𝒯 

3. WHILE the length of ℒ < 𝑚𝑚𝑡𝑡 DO 
Find the 𝑖𝑖∗ -th row in 𝚿𝚿  to eliminate by solving 𝑖𝑖∗ =
argmax𝑖𝑖∈ℒF(𝒯𝒯 ∪ {𝑖𝑖}) , where F(𝒯𝒯 ∪ {𝑖𝑖})  is the function in 
Eq.(5) 
Update unsuitable time stamps of collected data points as 𝒯𝒯 =
𝒯𝒯 ∪ {𝑖𝑖∗} 
Update available time stamps of collected data point as ℒ =
ℒ\{𝑖𝑖∗} 

END WHILE 
4. FOR i = 1 to the length of ℒ 

FOR j = 1 to length of ℒ 
If 𝐼𝐼𝒊𝒊𝒊𝒊(𝚽𝚽) = |𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖 | ≤ 𝑟𝑟, where 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑖𝑖 are time stamps for 
𝑖𝑖-th and 𝑗𝑗-th data, ℒ = ℒ\{𝑗𝑗}. 

END FOR 
END FOR 

5. Generate measurement matrix 𝚽𝚽 in the form of Eq.(7) with 
optimized time stamps ℒ 

 

3.2. Stage two optimization  

The objective function in Eq.(1) can be converted to the 
form of  

 

   minΦ,Ψ,𝚼𝚼 ‖(
𝛼𝛼𝐒𝐒
𝚽𝚽𝚽𝚽
𝛽𝛽𝐋𝐋

) − (
𝛼𝛼𝚿𝚿
𝚽𝚽𝚽𝚽
𝛽𝛽𝐂𝐂

)𝚼𝚼‖
𝐹𝐹

2

 (8) 

 

With 𝐗𝐗 = (
𝛼𝛼𝐒𝐒
𝚽𝚽𝚽𝚽
𝛽𝛽𝐋𝐋

), 𝐙𝐙 = (
𝛼𝛼𝚿𝚿
𝚽𝚽𝚽𝚽
𝛽𝛽𝐂𝐂

) is optimized by solving Eqs. (8) 

and (3) with the K-SVD algorithm [5]. The sub-matrix 𝐙𝐙𝟏𝟏 =
(𝛼𝛼𝚿𝚿
𝚽𝚽𝚽𝚽) is used to obtain the basis matrix 𝚿𝚿 by solving  

 
                        𝚿𝚿 = (𝛼𝛼2𝐈𝐈 + 𝚽𝚽𝐓𝐓𝚽𝚽)−𝟏𝟏[ 𝛼𝛼𝐈𝐈 𝚽𝚽𝐓𝐓]𝐙𝐙𝟏𝟏    (9) 
 

With the optimized sub-matrix 𝐙𝐙𝟐𝟐 = 𝛽𝛽𝐂𝐂, the classification 
matrix can be obtained as 𝐂𝐂 = 𝐙𝐙𝟐𝟐/𝛽𝛽.  

The basis matrix is then normalized as 
 

      𝚿𝚿′ = [𝜑𝜑1
′ , 𝜑𝜑2

′ , … , 𝜑𝜑𝑊𝑊
′ , ] = [ 𝜑𝜑1

‖𝜑𝜑1‖2
, 𝜑𝜑2
‖𝜑𝜑2‖2

, … , 𝜑𝜑𝑊𝑊
‖𝜑𝜑𝑊𝑊‖2

, ]    (10) 
 
and the corresponding classification matrix is  

 
       𝐂𝐂′ = [𝑐𝑐1

′ , 𝑐𝑐2
′ , … , 𝑐𝑐𝑊𝑊

′ , ] = [ 𝑐𝑐1
‖𝜑𝜑1‖2

, 𝑐𝑐2
‖𝜑𝜑2‖2

, … , 𝑐𝑐𝑊𝑊
‖𝜑𝜑𝑊𝑊‖2

, ]   (11) 
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where 𝜑𝜑i and 𝑐𝑐iare each column in the original basis matrix 𝚿𝚿 
and classification matrix 𝐂𝐂. The normalized basis matrix 𝚿𝚿′ 
and the corresponding classification matrix 𝐂𝐂′ are used for the 
classification of testing signals.  

The proposed physics-constrained dictionary learning 
algorithm for classification is shown in Table 2.  

  
Table 2. Physics-constrained dictionary learning for classification 
 

Initialize the basis matrix 𝚿𝚿 and m=0; 
WHILE 𝑚𝑚 < total number of iterations DO 
1. Compute 𝚽𝚽  based on the constrained FrameSense algorithm  

2. With 𝐗𝐗 = (
𝛼𝛼𝐒𝐒
𝚽𝚽𝐒𝐒
𝛽𝛽𝐋𝐋

), 𝐙𝐙 = (
𝛼𝛼𝚿𝚿
𝚽𝚽𝚽𝚽
𝛽𝛽𝐂𝐂

) and 𝚼𝚼 are updated by solving Eq.(8) and 

E1.(3) with K-SVD method.  
3. Update 𝚿𝚿 with Eq.(9) and 𝐂𝐂 = 𝐙𝐙𝟐𝟐/𝛽𝛽 
4. Normalize 𝚿𝚿 as 𝚿𝚿′ and obtain the corresponding 𝐂𝐂′ 
5. 𝑚𝑚 = 𝑚𝑚 + 1  
END WHILE 

 

3.3. Optimization of classification matrix with ridge 
regression 

In Section 3.2, the basis and classification matrices are 
optimized simultaneously with the fixed measurement matrix 
based on the K-SVD algorithm. The classification matrix can 
be obtained from the sub-matrix 𝐙𝐙𝟐𝟐.  An alternate way to 
optimize the classification matrix is based on the ridge 
regression. The basis matrix and coefficient vectors can be 
optimized simultaneously by solving  

 

                           minΦ,Ψ,𝚼𝚼 ‖(𝛼𝛼𝐒𝐒
𝚽𝚽𝚽𝚽) − (𝛼𝛼𝚿𝚿

𝚽𝚽𝚽𝚽)𝚼𝚼‖
𝐹𝐹

2
 (12) 

 
𝐙𝐙𝟏𝟏 = (𝛼𝛼𝚿𝚿

𝚽𝚽𝚽𝚽)   and 𝚼𝚼  can be optimized with the K-SVD 
algorithm, and 𝚿𝚿  is computed based on Eq.(9). The 
classification matrix is then solved by the ridge regression 
model as 

 
                             𝐂𝐂 = (𝚼𝚼𝑇𝑇𝚼𝚼 + 𝛽𝛽′𝐈𝐈)−𝟏𝟏𝚼𝚼𝐋𝐋𝑇𝑇 (13) 
 
where 𝛽𝛽′ > 0 is a ridge parameter. This approach can reduce 
the computational cost of K-SVD because the matrix with 
lower dimension is optimized. However, the classification 
accuracy can also be affected because the classification matrix 
is not optimized simultaneously with the basis matrix. 

4. Experiments 

The proposed physics-constrained dictionary learning 
scheme was applied to diagnose machine failures in the FFF 
process based on AE signal. The data acquired by Wu et al. 
[20] are used in this experiment, where AE signals from AE 
sensor are processed and AE hits are counted.  To reduce the 
memory usage, time-domain features are stored in output files 
and used for analysis. The time-domain features of AE hits 
include amplitude, signal strength, counts, duration, average 
signal level (ASL), root mean square (RMS) and absolute 
energy, which can be used to identify machine faults.  Among 
all features, ASL, RMS, and signal strength are selected for the 
machine fault diagnosis, because these features contain more 

information than other features such as amplitude, counts, and 
duration. 

RMS, which is used to describe the strength of AE signal in 
the time domain, is defined as 

 

                        𝐴𝐴𝐸𝐸RMS = √ 1
𝑡𝑡2−𝑡𝑡1

∫ 𝑢𝑢(𝑡𝑡)2𝑑𝑑𝑑𝑑𝑡𝑡2
𝑡𝑡1

   (14) 

 
where 𝑢𝑢(𝑡𝑡) is the output voltage of AE sensor. ASL is defined 
as the average of the AE signal amplitude in a logarithmic scale 
and expressed as 

 

                        𝐴𝐴𝐸𝐸ASL = √ 1
𝑡𝑡2−𝑡𝑡1

∫ 20 log (𝑢𝑢(𝑡𝑡)
𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟

) 𝑑𝑑𝑑𝑑𝑡𝑡2
𝑡𝑡1

   (15) 

 
where 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟 is the reference voltage. Signal strength is defined 
as 

 
                        𝐴𝐴𝐸𝐸str = ∫ |𝑢𝑢(𝑡𝑡)|𝑑𝑑𝑑𝑑𝑡𝑡2

𝑡𝑡1
   (16) 

 
A Hyrel3D printer was used in this experiment, and the AE 

sensor was attached on the side surface of the extruder to 
collect signals with different machine conditions such as 
normal operating condition, material loading, blocked material 
and running out of material. The AE sensor made by 
Mistragroup has the operating frequency response within the 
range of 100-900 kHz and the temperature range between -65 
and 177°C. The original AE signal is conditioned and amplified 
by a PAC 2/4/6 preamplifier, and received by a PAC PCI-2 fast 
data acquisition (DAQ) system. The experimental setup can be 
found in Fig. 2. The sampling rate was 5 M samples per second. 
RMS, ASL and signal strength in the normal operation 
condition and extruder blockage condition are shown in Fig. 3. 
These AE features under other machine conditions such as 
material loading and running out of material are also generated 
similarly. The classification of machine conditions with the 
proposed physics-constrained dictionary learning method is 
based on the features of RMS, ASL, and signal strength.  

The collected values for different features under different 
machine conditions are divided into two regions, as shown in 
Fig. 3. The left region which consists of 75% of data points is 
used as the training dataset, and the remaining data points are 
used as the testing dataset. For instance, for RMS, the training 
dataset contains 1500 segments for each machine condition and 
each segment contains 200 successive RMS values. For each 
segment, the first RMS value is randomly selected from the c- 

 

 
Fig. 2. Experimental setup [20] 
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Fig. 3. RMS collected in time domain at (a) normal and (b) extruder blockage 
conditions; ASL collected at (c) normal and (d) extruder blockage conditions; 
Signal strength collected at (e) normal and (f) extruder blockage conditions. 
 
omplete time period and the remaining 199 successive RMS 
values are selected accordingly. The testing dataset consisting 
of 300 segments for each machine condition is generated 
similarly. The collected RMS values at normal, blocked 
material, material loading and running out of material 
conditions are labelled as different classes. The training and 
testing datasets for ASL and signal strength are generated 
similarly.  

4.1. Classification results without considering the physical 
constraint 

With the training dataset corresponding to each class, the 
physics-constrained dictionary learning method in Table 2 is 
used to optimize the measurement, basis and classification 
matrices. The constraint in Eq.(4) that indicates the minimum 
sampling interval of collected samples is not considered. 
Therefore, the step 4 in Table 1 is eliminated. The size of the 
basis matrix 𝚿𝚿 is 200 × 600. The initial basis matrix is created 
by randomly selecting 600 columns in the training dataset. 
With the optimized measurement matrix 𝚽𝚽 and basis matrix 𝚿𝚿, 
the sparse coefficient vectors 𝚼𝚼𝐭𝐭 for the testing dataset can be 
recovered with CS based on OMP [32]. The time stamps of the 
reduced amount of data collection are indicated in the 
measurement matrix. With the optimized classification matrix 
𝐂𝐂, the class label 𝐋𝐋𝐭𝐭 for the testing dataset is obtained by 𝐂𝐂𝚼𝚼𝐭𝐭. 
Therefore, with the proposed physics-constrained dictionary 
learning, the class label of the original signal can be determined 
with the reduced amount of data collection. The class label is 
then used to identify the machine condition. In Section 4.1.1, 
three machine conditions are identified based on different 
features of AE signal such as RMS, ASL and signal strength. 
In Section 4.1.2, four machine conditions are identified based 
on RMS values.  

4.1.1. Classification of three machine conditions 
 

RMS, ASL, and signal strength of AE signal are used to 
identify machine conditions such as normal operation 
condition, extruder blockage, and running out of material. The 
classification errors for each feature and machine condition are 
shown in Table 3. The classification error is computed as 

 
                 𝑒𝑒𝑐𝑐  = 𝑁𝑁𝑖𝑖

𝑁𝑁𝑡𝑡
× 100% (17) 

 
where 𝑁𝑁𝑖𝑖 is the number of incorrect labels and 𝑁𝑁𝑡𝑡 is the number 
of total labels. For RMS and ASL, the number of non-zero 
values in the coefficient vectors, 𝑇𝑇0, is set to be 1 and 80 data 
points in each segment are collected. The compression ratio is 
200/80=2.5. For signal strength, the similarity level of collected 
data points is high for different machine conditions. Therefore, 
more non-zero values in the coefficient vectors are required to 
identify different machine conditions and 𝑇𝑇0 is set to be 15. As 
the sparsity level is low, more data points need to be collected 
for classification and 140 data points are collected in each 
segment for the signal strength dataset. The compression ratio 
is 200/140=1.4.  

The results show that the proposed physic-constrained 
dictionary learning can be used to diagnose machine faults with 
different datasets. However, the classification performance 
varies among the three different features. The classification 
based on RMS has the smallest error and the amount of data 
collection is significantly reduced. The optimized indices for 
collected and stored 80 RMS values are shown in Fig. 4. 
Among 200 RMS values in each segment, only ones marked as 
stars are collected and unselected ones are marked as circles. 

Sensitivity analysis is performed with different sparsity 
levels of each coefficient vector 𝚼𝚼 = [𝜸𝜸1, 𝜸𝜸2 … 𝜸𝜸𝑃𝑃] . The 
results are shown in Table 4. Among the 200 collected RMS 
values in each segment, the number of collected RMS values is 
set to be 80. It is found that as the maximum number of non-
zeros values in each coefficient vector increases, the 
classification errors are increased because redundant 
information can be generated when more non-zero values in the 
coefficient vector are used. The important features of the 
original signal which are critical for the classification accuracy 
are represented by only a few non-zero values in the coefficient 
vector.  

 
Table 3. Classification errors for different machine conditions based on 
different features. 

 
 normal 

condition 
extruder 
blockage 

running out of 
material 

RMS 4.3% 2% 1% 
ASL 8% 3.3% 6% 
Signal strength 9% 5% 0% 

 
 

Table 4. Classification errors with different values of 𝑇𝑇0. 
 

𝑇𝑇0 normal 
condition 

extruder blockage running out of 
material 

1 4.3% 2% 1% 
3 4.3% 4.6% 9% 
5 5.6% 6.6% 11.6% 
8 5.6% 7% 13.6% 
11 6.3% 7.3% 15% 

 

(a)  (b)  

(c)  

Training dataset  Testing dataset  

(d)  

(e)  (f)  
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Another sensitivity analysis is performed with different 

numbers of collected and stored RMS values. The results are 
shown in Table 5. The maximum number of non-zero values in 
the coefficient vector is set to be 1. It is found that as more RMS 
values are collected, the classification errors are reduced, 
because more information can be used to recover the 
coefficient vector.  However, the efficiency of data collection 
and storage is reduced.  
 
Table 5. Classification errors with different numbers of stored RMS values. 

 
number of      
stored values  

normal 
condition 

extruder blockage  running out 
of material 

10 25.3% 19.3% 11% 
40 2% 1.3% 5% 
80 4.3% 2% 1% 
120 3% 2.3% 2% 
160 3% 2.3% 1.3% 

 
Instead of optimizing measurement, basis and classification 

matrices simultaneously, the approach in Section 3.3 is also 
used to optimize the classification matrix separately. In each 
iteration, with the training dataset, the basis matrix and 
coefficient vectors are optimized based on the K-SVD 
algorithm. With the optimized coefficient vectors and the class 
label for the training dataset, the classification matrix 𝐂𝐂  is 
computed based on ridge regression in Eq.(7). The coefficient 
vectors for the testing dataset can be recovered with OMP and 
the class label for the testing dataset is then obtained by  𝐋𝐋𝐭𝐭 =
𝐂𝐂𝚼𝚼𝐭𝐭 . With 80 RMS values collected and 𝑇𝑇0 = 1 , the 
classification errors for normal operation condition, extruder 
blockage, and running out of material conditions are 3.3%, 
3.3%, and 7.6% respectively. Compared to the results in Table 
3 with RMS, the classification error is increased when the 
classification matrix is optimized separately.  

4.1.2. Classification of four machine conditions 
 

The proposed physics-constrained dictionary learning 
approach is also used to identify four machine conditions. Here, 
the feature of RMS is used. With 130 RMS values used in each 
segment and the compression ratio of 200/130=1.5, the 
classification errors for machine conditions of normal 
operating condition, material loading, extruder blockage, and 
running out of material are 4.6%, 0%, 0% and 2.3% 
respectively. Previously Liu et al. [23] proposed a fault 
diagnosis approach based on LDA and the CFSFDP approach 
to identify machine conditions. It outperforms other commonly 

used classification methods such as hidden Markov model, 
SVM, genetic algorithm-based back propagation neural 
network model and probabilistic neural network. The 
classification errors for four machine conditions in Ref. [23] 
based the same AE signal used here are 0%, 6%, 0% and 3% 
respectively. In comparison, the proposed physics-constrained 
dictionary learning method gives more accurate classifications 
of material loading, extruder blockage, and running out of 
material. Furthermore, the amount of data collection is also 
reduced with the proposed method. 

4.2. Classification results with the physical constraint 

In this scenario, the physical constraint in Eq.(4) to indicate 
the minimum time interval between collected RMS values is 
considered. Instead of determining the minimum time interval, 
the minimum difference between indices of collected RMS 
values is used because the time period for the computation of 
each RMS value can be different. The minimum difference is 
set to be 2 so that one of the two adjacent RMS values is 
eliminated and the redundant information can be minimized. 
With the original number of stored RMS values set to be 150, 
the physics-constrained dictionary learning method in Table 2 
is used to optimize the measurement, basis, and classification 
matrices. The maximum number of non-zero values in the 
coefficient vector is set to be 1. The optimized indices for 
collected RMS values are shown in Fig. 5. Among 200 RMS 
values in each segment, only 85 values marked as stars are 
collected and unselected ones are marked as circles. Previously 
in Fig. 4, the collected information can be redundant as 
collected RMS values are too close to each other. Therefore, to 
minimize the redundant information, the close-by RMS values 
are eliminated with the additional physical constraints in Fig. 
5. The classification errors for three machine conditions 
including normal operation condition, extruder blockage, and 
running out of material are 4%, 1%, and 1% respectively. 
Compared to the results in Table 3 with RMS, the classification 
error is reduced with the similar number of collected values by 
considering the physical constraint. When the minimum 
difference between indices of stored RMS values is set to be 3, 
the number of stored RMS values is further reduced to 62. The 
classification errors for three machine conditions are 5.2%, 2%, 
and 1.3% respectively. The classification errors are increased 
as the minimum difference between indices of collected RMS 
values increases as fewer data points are collected.  

 
 

 

Fig. 4. Optimized indices of stored RMS values without considering 
the physical constraint 

  

Fig. 5. Optimized indices of stored RMS values with the physical 
constraint 
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The proposed physics-constrained dictionary learning can 
be applied to identify different numbers of machine states with 
various features of AE signal. However, the classification 
performance also depends on the similarity of data points for 
different machine states.  The input parameters such as the 
sparsity level of the coefficient vectors, the size of the basis 
matrix, and the number of collected data points can affect the 
classification performance. There is a trade-off between the 
accuracy and efficiency when the appropriate input parameters 
are selected. With the physical constraint to minimize the time 
interval between data points, the classification accuracy and 
sensing efficiency are improved. With more application-
specific physical constraints included, the classification 
performance can be further improved.  

5. Conclusion 

In this paper, a new physics-constrained dictionary learning 
method for classification is proposed to diagnose machine 
faults. The physics-constrained dictionary learning method is 
implemented in two schemes. In the first scheme, a two-stage 
optimization is performed. At stage one, the measurement 
matrix is optimized with the fixed basis matrix based on the 
constrained FrameSense algorithm. At stage two, the basis and 
classification matrices are optimized simultaneously with the 
fixed measurement matrix based on the K-SVD algorithm. In 
the second scheme, the classification matrix is computed 
separately based on the ridge regression. Sensitivity analyses 
with different maximum numbers of non-zeros values in the 
coefficient vectors and different amounts of data collection are 
also performed. In addition to RMS, other features such as ASL 
and signal strength are also used to identify machine faults.  

The proposed physics-constrained dictionary learning 
method can be used to classify machine states with only a few 
data points. Therefore, the required memory usage for data 
storage can be significantly reduced in monitoring machine 
conditions. It is shown that as few as 40% of the original data 
are required to successfully identify machine faults. With the 

physical constraint to minimize the redundant information 
collection, the classification error and the amount of stored data 
points can be further reduced.  

The major challenge of the proposed physics-constrained 
dictionary learning comes from the training algorithm that is 
based on the K-SVD. The K-SVD can only find the local 
optima. The performance of CS recovery depends on the 
choices of the initial basis matrix and the recovery algorithm. 
In this work, the initial basis matrix is generated by randomly 
selecting a few columns of the training dataset. However, 
selected columns may not represent the characteristic of all 
categories since the training dataset consists of signals from 
different classes. Therefore, a better initialization method needs 
to be developed to improve the classification accuracy.   

Here, the proposed physics-constrained dictionary learning 
method is applied to identify machine states based only on one 
feature of AE signal. More information can be obtained if 
several features are fused for classification. Therefore, the 
proposed method can be extended to solve classification 
problems in the high-dimensional feature space. The proposed 
method in combination with dimensionality reduction 
techniques such as principal component analysis and LDA can 
also be developed. In future work, the physics-constrained 
dictionary learning will also be used to classify higher 
dimensional signals such as images and videos. Application-
specific physical constraints need to be considered in order to 
store and transmit signals more efficiently. For example, the 
constraints can be related to the similarity between frames of 
videos to minimize the redundant information stored. In large-
scale sensor networks, the physical constraints can be designed 
based on the limitations of communication between sensors 
and the coverage of the sensor network.  
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