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Abstract 

Compressed sensing (CS) as a new data acquisition technique has been applied to monitor manufacturing processes. 
With a few measurements, sparse coefficient vectors can be recovered by solving an inverse problem and original 
signals can be reconstructed. Dictionary learning methods have been developed and applied in combination with CS 
to improve the sparsity level of the recovered coefficient vectors. In this work, a physics-constrained dictionary 
learning approach is proposed to solve both of reconstruction and classification problems by optimizing measurement, 
basis, and classification matrices simultaneously with the considerations of the application-specific restrictions. It is 
applied in image acquisitions in selective laser melting (SLM). The proposed approach includes the optimization in 
two steps. In the first stage, with the basis matrix fixed, the measurement matrix is optimized by determining the pixel 
locations for sampling in each image. The optimized measurement matrix only includes one non-zero entry in each 
row. The optimization of pixel locations is solved based on a constrained FrameSense algorithm. In the second stage, 
with the measurement matrix fixed, the basis and classification matrices are optimized based on the K-SVD algorithm. 
With the optimized basis matrix, the coefficient vector can be recovered with CS. The original signal can be 
reconstructed by the linear combination of the basis matrix and the recovered coefficient vector. The original signal 
can also be classified to identify different machine states by the linear combination of the classification matrix and the 
coefficient vector.  
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1. Introduction
Sensors play an important role in modern manufacturing process monitoring to ensure product qualities. However, in-
situ monitoring of complex manufacturing systems can be costly. Because of the bandwidth limitation of 
communication for the volume of transmitted data, there is a practical need to develop a scheme to reduce the amount 
of data collection without sacrificing the information exchanged. In the most recent decade, compressed sensing (CS) 
and dictionary learning approaches have been developed to improve the efficiency of data collection. CS [1, 2] allows 
us to reduce the amount of data collection by taking advantage of the sparsity of coefficient vector in reciprocal space. 
When the original signal is represented in a discrete form as vector 𝒔 ∈ ℝ . It can be represented in the reciprocal 
space via transformations as 𝒔 𝚿𝜸, where 𝚿 ∈ ℝ  is the transformation or basis matrix and 𝜸 ∈ ℝ  is the vector 
of coefficients. When the signal is projected into the M-dimensional measurement subspace (M<N) with measurement 
matrix 𝚽 ∈ ℝ  as 𝒚 𝚽𝒔, the original signal 𝒔 can be recovered from the measured data 𝒚 by solving the inverse 
problem based on the linear equations 𝒚 𝚽𝒔 𝚽𝚿𝜸. The basis matrix 𝚿 is usually predefined from some known 
transformation such as discrete cosine transformation, wavelet transformation, or some random matrices that satisfy 
the restricted isometry property. The combination of measurement and basis matrices 𝚽𝚿 is also referred to as 
dictionary. Dictionary learning methods have been developed to further improve the sparsity of coefficient vectors 
and the compression ratio of CS by customizing the basis matrix according to specific signal types. The learning 
process is formulated as an optimization problem where the entries of measurement and basis matrices are optimized 
to minimize the CS recovery error.  

To further improve the efficiency of data collection in physical applications, a physics-constrained dictionary learning 
method was recently proposed and it has been demonstrated to compress roller bearing vibration signals [3]. The 
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measurement and basis matrices were optimized simultaneously. There is only one non-zero entry in each row of the 
measurement matrix and the index of the non-zero entry indicates the time stamp of the stored data point. The physical 
constraint to indicate the maximum sampling rate was also incorporated to minimize the redundant information 
collection. With a few stored data points, the original vibration signals can be reconstructed. In this paper, the physics-
constrained dictionary learning method is extended to solve the classification problems of machine health diagnostics. 
The measurement, basis and classification matrices are optimized simultaneously. With a few collected data points, 
the sparse coefficient vector is recovered with CS. The coefficient vector is then used to reconstruct the complete 
original signal by multiplying the basis matrix and obtain the class label by multiplying the classification matrix 
respectively. This new process monitoring and diagnostics method is demonstrated with selective laser melting (SLM) 
process, where low-resolution optical images of melt pool are collected to reconstruct high-resolution images and 
identify different machine states. 

In the remainder of the paper, the background of dictionary learning methods and their applications is given in Section 
2. The proposed physics-constrained dictionary learning algorithm is described in Section 3. The demonstration for 
the SLM process monitoring is given in Section 4.   

2. Background 
Various dictionary learning methods [4] have been developed to search for the sparsest representation of signals. The 
purpose is to find the optimal dictionary so that the sparsity is maximized for a specific type of signals. As a result, 
the original signals can be represented in a form of linear combinations of the learned dictionary and the sparse vector 
of coefficients. Some commonly used dictionary learning algorithms include the method of optimal directions (MOD) 
[5], K-SVD [6], the online dictionary learning [7] and others. Approaches to design the measurement matrix and the 
basis matrix individually were also developed. Duarte-Carvajalino and Sapiro [8] simultaneously optimized the 
measurement matrix and basis matrix with a new scheme called coupled-KSVD. The incoherence between the 
measurement matrix and basis matrix is improved which results in the better reconstruction performance.  Bai et al. 
[9] further improved the framework with analytical solutions to update the measurement and basis matrices. It was 
shown that the convergence and accuracy of the solutions are improved for reconstructing natural images. 

Dictionary learning methods have also been applied for classification and clustering. Zhang and Li [10] developed a 
discriminative K-SVD (D-KSVD) method for face recognition. The D-KSVD method is implemented by adding a 
discriminative term into the objective function of the original K-SVD algorithm. The D-KSVD method outperforms 
other existing methods such as the SRC algorithm [11]. Ptucha and Savakis [12] proposed a linear extension of graph 
embedding K-means-based singular value decomposition (LGE-KSVD) method to solve facial and activity 
recognition problems. LGE-KSVD utilized variants of the LGE to optimize the K-SVD problem. Other dictionary 
learning methods for classification include label consistent K-SVD [13], discriminative Bayesian dictionary learning 
[14], and task-driven dictionary learning [15]. 

These existing dictionary learning methods were developed for either reconstruction or classification. The proposed 
framework in this paper is for simultaneous reconstruction and classification by optimizing the measurement, basis 
and classification matrices. Therefore, instead of collecting the complete signal, only a few data points are needed to 
recover the sparse coefficient vectors. The recovered coefficient vectors can be used to reconstruct and classify the 
original signal by multiplying the basis matrix and the classification matrix respectively. The measurement matrix is 
designed to determine the measurement locations in physical experiments, which typically requires that there is only 
one non-zero entry in each row of the measurement matrix. The consideration of physical constraints and 
interpretations in measurement conditions is also important in engineering applications.  

3. Methodology 
The physics-constrained dictionary learning scheme developed in [3] is modified and extended to solve the 
reconstruction and classification problems simultaneously. The new formulation of the problems is  

 min , ,𝐂,𝚼 𝛼‖𝐒 𝚿𝚼‖ ‖𝚽𝐒 𝚽𝚿𝚼‖ 𝛽‖𝐋 𝐂𝚼‖  1  

 subject to     𝚽 𝑓 𝚿  2  

 ‖𝜸 ‖𝟎  𝑇 ,   ∀𝑖 3  
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where F denotes the Frobenius norm, 𝐒 𝒔 , 𝒔 … 𝒔 ∈ ℝ  contains 𝑃 sets of training data and each data set 𝒔  
has the length of 𝑁. 𝚿 ∈ ℝ  is the basis matrix with 𝑁 𝑊 and 𝑊 ≪ 𝑃. 𝚼 𝜸 ,𝜸 … 𝜸 ∈ ℝ  contains the 
sparse coefficients that represent the training data in 𝐒 with respect to the basis matrix. 𝐂 ∈ ℝ  is the classification 
matrix and 𝐋 𝒍 , 𝒍 … 𝒍 ∈ ℝ  are the class labels of the training signals. The index of the non-zero value  in 𝒍 , 
such as 𝒍 0, 1, 0 …  0 , indicates the class. For diagnostics, different classes correspond to different machine states. 
Lagrange multipliers 𝛼 and 𝛽 are applied to control the relative contribution of each term in Equation (1). The 
constraint in Equation (2) indicates the training sequence. That is, in the iterative optimization procedure, the basis 
matrix 𝚿 is fixed first, measurement matrix 𝚽 is optimized based on the fixed 𝚿. Then the basis and classification 
matrices are optimized next. The constraint in Equation (3) is the upper limit of the sparsity level, where 𝜸  is the i-th 
column of the coefficient matrix, and 𝑇  is the target number of non-zero values in the sparse vectors of coefficients. 
In addition to constraints in Equations (2) and (3), more physical constraints can be added similarly. In this paper, 
low-resolution images are collected by a low-resolution camera and can be used to reconstruct the high-resolution 
ones, and machine states can be identified more clearly with the reconstructed high-resolution images. Because the 
pixels in the low-resolution images correspond a grid, the physical constraint that the optimal locations of the collected 
pixels need to be close to the grid is considered. Pixel values between grid points which cannot be directly measured 
are estimated by linearly interpolating the measured pixel values. Other physical constraints can be added similarly.  

The learning procedure starts with an initial guess of the basis matrix. Two stages are performed in each iteration. At 
stage one, the measurement matrix is optimized to determine the locations of measurements with the fixed basis 
matrix. This can be solved based on the constrained FrameSense algorithm [3]. At stage two, the basis and 
classification matrices can be optimized with the fixed measurement matrix based on the K-SVD algorithm. The above 
two optimization steps are repeated until the optimal measurement, classification and basis matrices converge 
respectively without further improvement.  

3.1. Stage One Optimization 
At stage one, with the basis matrix 𝚿 fixed, the measurement matrix 𝚽 is optimized to determine the locations of 
collected pixels. Determining the optimal pixel locations from all available ones is often NP-hard if the amount of 
data collection is large. Therefore, a greedy algorithm called constrained FrameSense [3] is used to determine the 
near-optimal pixel locations. Given all available pixel locations 𝒩 1, … ,𝑁 , an unsuitable set of pixel locations 𝒯 
can be iteratively identified as the index of the row in the basis matrix 𝚿 by solving [16] 

 max
𝒯

F 𝒯 H 𝒯 H 𝚿𝒩\𝒯  4  

where H 𝚿  is the frame potential and represented as H 𝚿 ∑ |𝜆 | . 𝜆  is the i-th largest eigenvalue of 𝚿∗𝚿 and 
𝚿∗ is the conjugate transpose of 𝚿. 𝚿𝒩\𝒯 is a sub-matrix of 𝚿𝒩 with rows corresponding to the indices with the 
unsuitable ones excluded. After determining the unsuitable pixel location 𝒯, the new available pixel locations are 
updated as 𝒩\𝒯. If 𝑀 pixel values need to be collected, the locations of 𝑀 pixels are optimized by excluding (𝑁
𝑀  unsuitable pixel locations iteratively. The desirable pixel locations can be identified in the optimized 𝑀 𝑁 
measurement matrix. There is only one non-zero entry which has the value of 1 in each row of the measurement matrix 
and the column index of the row indicates the location where the pixel value is collected. The physical constraint that 
the optimal locations of the collected pixels need to be close to the grid is also incorporated in the constrained 
FrameSense algorithm. Therefore, in each iteration, if the unsuitable location belongs to the pixel locations in the low-
resolution images, this location is remained in the set of the optimized locations. For any pixel value between grid 
points, it is estimated by linearly interpolating all pixel values at the grid points. 

3.2. Stage Two Optimization 
The objective function in Equation (1) can be converted to  

 min , ,𝚼 
𝛼𝐒
𝚽𝐒
𝛽𝐋

𝛼𝚿
𝚽𝚿
𝛽𝐂

𝚼  5  

With 𝐗 𝛼𝐒 𝚽𝐒 𝛽𝐋 𝐓, 𝐙 𝛼𝚿 𝚽𝚿 𝛽𝐂 𝐓 is optimized by solving Equations (5) and (3) with the K-SVD 
algorithm [6]. The sub-matrix 𝐙 𝛼𝚿 𝚽𝚿 𝐓 is used to obtain the basis matrix 𝚿 by solving  
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 𝚿 𝛼 𝐈 𝚽𝐓𝚽 𝟏  𝛼𝐈 𝚽𝐓 𝐙     6  

With the optimized sub-matrix 𝐙 𝛽𝐂, the classification matrix can be obtained as 𝐂 𝐙 /𝛽. The basis matrix is 

then normalized as 𝚿
‖ ‖

,
‖ ‖

, … ,
‖ ‖

,  and the corresponding classification matrix is 𝐂

‖ ‖
,
‖ ‖

, … ,
‖ ‖

,  where 𝜑 ’s and 𝑐 ’s are columns in the original basis matrix 𝚿 and classification matrix 𝐂 

respectively. The normalized basis matrix 𝚿  and the corresponding classification matrix 𝐂  are used for the 
reconstruction and classification of testing signals. The proposed physics-constrained dictionary learning algorithm to 
optimize the measurement, basis, and classification matrices is shown in Table 1.  

Table 1: Physics-constrained dictionary learning for classification 

Initialize the basis matrix 𝚿 and m=0; 
WHILE 𝑚 total number of iterations DO 
1. Compute 𝚽  based on the constrained FrameSense algorithm  
2. With 𝐗 𝛼𝐒 𝚽𝐒 𝛽𝐋 𝐓, 𝐙 𝛼𝚿 𝚽𝚿 𝛽𝐂 𝐓 and 𝚼 are updated by 

solving Equations (5) and (3) with K-SVD method.  
3. Update 𝚿 with Equation (6) and 𝐂 𝐙 /𝛽 
4. Normalize 𝚿 as 𝚿′ and obtain the corresponding 𝐂  
5. 𝑚 𝑚 1  
END WHILE 

 
4. Experiments 
In the SLM process, shape and size of melt pool need to be monitored and controlled. They are indicators of the 
temperature gradients and cooling rates, which affect the formation of grain structures and defects during the rapid 
solidification. The size of the laser beam spot is an important factor that affects the geometry of the melt pool. Powder 
spatter during the manufacturing process is another major cause of defect formation. Spatters also cause contamination 
in the powder bed. Therefore, monitoring the laser beam spot and powder spatter in the SLM process is critical to 
control the quality of the solid build.  

 
Figure 1: The high-resolution optical images collected when (a) the laser is off at the turning point, (b) the laser is on 
and there is a small amount of powder spatter, and (c) the laser is on and there is a large amount of powder spatter 

A high-speed optical camera was used to monitor the laser beam spot and powder spatter. A total of 1700 images were 
collected. To demonstrate the proposed physics-constrained dictionary learning method, the original images with the 
size of 200×200 pixels are rescaled to low-resolution ones with the size of 25×25 pixels.  1400 images are used for 
the training process and the remaining 300 images are used for testing. The collected images are classified into three 
categories, and one example in each category is shown in Figure 1. The first category includes images collected when 
the laser is turned off at turning points as shown in Figure 1 (a). The second category includes images collected in the 
normal manufacturing process, where the laser is on and there is a small amount of powder spatter as shown in Figure 
1 (b). The third category includes images collected in the defective manufacturing process, where the laser is on and 
there is a large amount of powder spatter as shown in Figure 1 (c). Our goal is to identify the system’s state based on 
low-resolution images. 

The pixel locations optimized with the physics-constrained dictionary learning method for desired 𝑀 121 pixel 
values are shown in Figure 2 (a), which include 81 that are directly measurable in the regular grid and 40 that are not 
directly measurable. The pixel values at the locations marked with the square symbol which cannot be measured 
directly are estimated by linearly interpolating all pixel values marked with the circle symbol, which are obtained 

(a) (b) (c) 
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directly from the low-resolution images. With the optimized basis matrix and the pixel values at the locations in Figure 
2 (a), the coefficient vector can be recovered with the OMP algorithm [17]. Then high-resolution images can be 
obtained as the linear combinations of the basis matrix and the recovered coefficient vectors. The original images and 
reconstructed images by CS and physics-constrained dictionary learning are in Figure 2 (b) and (c) respectively. In 
order to show the advantage of the proposed method for the image reconstruction compared to the traditional 
techniques such as the simple linear interpolation, the images that are reconstructed by simple linear interpolation of 
the measured pixel values in the low-resolution images are also shown in Figure 2 (d). Compared to the results from 
the simple linear interpolation, the reconstructed high-resolution images with CS and the physics-constrained 
dictionary learning method can be used to identify the laser beam spot and powder spatter more clearly. The class 
labels of the testing images can be obtained by the linear combinations of the optimized classification matrix and the 
recovered coefficient vectors, which are used to identify different machine states in Figure 1.  The classification error 
for all testing images is 16%, which is computed as 𝑒 𝑁 /𝑁 100% where 𝑁  is the number of incorrect class 
labels and 𝑁  is the number of total class labels. 

 
Figure 2: (a) Optimized pixel locations, (b) original images, (c) reconstructed images by CS and physics-constrained 
dictionary learning, and (d) reconstructed images by interpolation.  

 
Figure 3: Reconstructed images by CS and physics-constrained dictionary learning when (a) 𝑀 81, (b) 𝑀 121, 
(c) 𝑀 150, and (d) 𝑀 180.  

Sensitivity analysis is performed with different values of 𝑀 as shown in Figure 3. It is found that as fewer pixel values 
are collected, the reconstructed images contain more noises. However, when more pixel values are collected, the 
reconstructed images can also be more blurred, because more interpolation errors are included in the reconstruction 
results when more pixel values between grid points are estimated and used. Therefore, the trade-off between noise 
and interpolation errors needs to be considered when the desired number of collected pixel values is determined. The 
classification errors are similar with different values of 𝑀 because the features in the image such as the laser spot and 
power spatter can still be identified from the reconstructed images of lower quality in Figure 3.  

5. Conclusion 
In this paper, a new physics-constrained dictionary learning method is proposed to solve reconstruction and 
classification problems by optimizing measurement, basis, and classification matrices simultaneously. The proposed 
method is demonstrated to monitor the SLM process with optical images. With low-resolution images, high-resolution 
ones can be reconstructed to identify different machine states. Therefore, the required memory usage for data 

(b) 

(c) 

(d) (a) 

(b) 

(c) 

(d) 

(a) 
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collection can be significantly reduced in process monitoring.  

The major challenge of the proposed physics-constrained dictionary learning comes from the training algorithm that 
is based on the K-SVD. The K-SVD can only find the local optima. The performance of reconstruction depends on 
the choices of the initial basis matrix and the reconstruction algorithm. In this work, the initial basis matrix is generated 
by randomly selecting a few columns of the training dataset. However, selected columns may not represent the 
characteristics of all categories since the training dataset consists of signals from different classes. Therefore, an 
initialization method needs to be developed to further improve the classification accuracy. Here, the physics-
constrained dictionary learning method is used to capture the spatial correlations in the optical images. The physical 
constraint that the distribution of measured pixels needs to be close to the grid is applied. In future work, the method 
will be used for higher dimensional data such as videos. The temporal correlations between the successive images will 
also be considered and used as additional physical constraints. In large-scale sensor networks, the physical constraints 
can be designed based on the limitations of communication between sensors and the coverage of areas.  
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