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Network Structure Identification from Corrupt Data Streams

Venkat Ram Subramanian, Andrew Lamperski, and Murti V. Salapaka

Abstract—Complex networked systems can be modeled as
graphs with nodes representing the agents and links describing
the dynamic coupling between them. Previous work on network
identification has shown that the network structure of linear time-
invariant (LTI) systems can be reconstructed from the joint power
spectrum of the data streams. These results assumed that data is
perfectly measured. However, real-world data is subject to many
corruptions, such as inaccurate time-stamps, noise, and data loss.
We show that identifying the structure of linear time-invariant
systems using corrupt measurements results in the inference of
erroneous links. We provide an exact characterization and prove
that such erroneous links are restricted to the neighborhood of
the perturbed node. We extend the analysis of LTI systems to
the case of Markov random fields with corrupt measurements.
We show that data corruption in Markov random fields results
in spurious probabilistic relationships in precisely the locations
where spurious links arise in LTI systems.

I. INTRODUCTION

Identification of network interaction structures is important

for several domains such as climate science [1], epidemiol-

ogy [2], neuroscience [3], metabolic pathways [4], quantita-

tive finance [5] [6], the internet-of-things [7] [8] and video

streaming [9]. In scenarios such as the power grid [10] and

financial markets it is impractical, impossible or impermissible

to externally influence the system. Here network structure

identification must be achieved via passive means. The passive

identification of a network of dynamically related agents

is becoming more viable with sensors and measurements

becoming inexpensive coupled with the ease and capability

of communicating information.

Often, the measurements in such large systems are subjected

to effects of noise [11], asynchronous sensor clocks [12] and

packet drops [13]. When dealing with problems of identifying

structural and functional connectivity of a large network,

there is a pressing need to rigorously study such uncertainties

and address detrimental effects of corrupt data-streams on

network reconstruction. Such analysis can delineate the effects

of corrupted nodes on the quality of the network reconstruction

and suggest placement of high-fidelity sensors at critical nodes.

A. Related Work

Network identification for linear systems has been exten-

sively studied. Below, we will give an overview of several

research themes in linear system network identification. How-

ever, the majority of works assume that the measurements are

perfect.
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Identifiability conditions for determining the transfer func-

tions are provided in [14]. It is shown that a network is

identifiable if every node signal is excited by either an external

input or a noise signal that is uncorrelated with the input/noise

signals on the other nodes. The effects of data corruption are

not studied in this work.

For partially observed states, authors in [15] provide neces-

sary and sufficient conditions for generic identifiability of all

or a subset of the transfer functions in the network. Similarly,

the notion of global identifiability has been studied in [16].

However, in both the articles, the topology of the network is

assumed to be known a priori. Moreover, data measurements

are assumed to be perfect.

The problem of learning polytree structures has been studied

in [17] and [18]. The authors provide guarantees of a consistent

reconstruction. However, the class of network structures was

restricted to trees and the data measurements are assumed to

be ideal. In this article, we make no such assumptions on

network structures and we study the problem when time-series

data measurements are imperfect.

Authors in [19] leveraged multivariate Wiener filters to

reconstruct the undirected topology of the generative network

model. With assumptions of perfect measurements, and linear

time invariant interactions, it is established that the multivariate

Wiener filter can recover the moral graph. In other words, for

each node, its parents, co-parents and children are detected.

For a network of interacting agents with nonlinear dynamics

and strictly causal interactions, the authors in [20] proposed

the use of directed information to determine the directed

structure of the network. Here too, it is assumed that the data-

streams are ideal with no distortions.

The authors in [21], [22] use dynamical structure functions

(DSF) for network reconstruction [23] and consider mea-

surement noise and non-linearities in the network dynamics.

The proposed method first finds optimal DSF for all possible

Boolean structures and then adopt a model selection procedure

to determine the best estimate. The authors concluded that

the presence of noise and non-linearities can even lead to

spuriously inferring fully connected network structures. Also,

the authors concluded that the performance of their algorithms

degrades as noise, network size and non-linearities increase.

However, a precise characterization of such spurious infer-

ences in structure was not provided.

B. Our Contribution

In this article, our problem of interest is to determine the

Boolean structure of a network, using passive means from

corrupt data-streams and characterize the spurious links that

can appear due to data-corruption.

In order to rigorously model data corruption, we present a

general class of signal disturbance models based on random-
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ized state-space systems. This class of disturbances subsumes

many uncertainties that are prevalent in applications. We

provide a detailed description on how the corruption model

affects the second order statistics of the data-streams.

Next, we present the results for inferring the network topol-

ogy for LTI systems from corrupt data-streams. Specifically,

we identify a set of edges in the network in which spurious

links could potentially appear. The results can be utilized to

understand what part of the reconstruction can be trusted and

to allocate sensor resources in order to minimize the effects

of data corruption.

Finally, we extend our analysis and provide connections

with more general graphical models. We prove that there

can be spurious edges inferred during structure identification

of undirected Markov random fields from corrupt data. The

results characterizing the location of the spurious links are

found to be identical to those obtained in LTI systems.

This paper is an extension of our earlier work [24] wherein

preliminary results characterizing the spurious links were

presented. However, a rigorous description on the perturbation

models was not provided, and the work did not cover Markov

random fields.

C. Paper Organization

We start by reviewing earlier work on LTI network iden-

tification using power spectra in Section II. In Section III,

we describe our data corruption models. In Section IV, we

characterize the spurious links due to data corruption for LTI

systems. Section V discusses the effects of data-corruption

in inferring the undirected structure of a Markov random

field. Simulation results are provided in Section VI. Finally, a

conclusion is provided in Section VII.

D. Notation

Y denotes a vector with yi being ith element of Y.
zi[·] denotes a sequence and zi,t denotes zi[t].
‖ · ‖ denotes standard Eucledian norm for vectors.

PX represents the probability density function of a random

variable X .

X ⊥⊥ Y denotes that the random variables X and Y are

independent.

i → j indicates an arc or edge from node i to node j in a

directed graph.

i − j denotes an undirected edge between nodes i, j in an

undirected graph.

If M(z) is a transfer function matrix, then M(z)∗ = M(z−1)T

is the conjugate transpose.

E[·] denotes expectation operator.

RXY (k) := E[X[n+ k]Y [n]] is the cross-correlation function

of jointly wide-sense stationary(WSS) processes X and Y . If

Y = X then RXX(k) is called the auto-correlation.

ΦXY (z) := Z(RXY (k)) represents the cross-power spectral

density while ΦXX(z) := Z(RXX(k)) denotes the power

spectral density(PSD) where Z(·) is the Z-transform operator.

bi represents the ith element of the canonical basis of Rn.
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Fig. 1: 1a Directed Graph and 1b its moral Graph.

II. BACKGROUND ON LTI NETWORK IDENTIFICATION

This section reviews earlier results on network identification

from ideal data streams. See [19]. Required graph theoretic

notions are described in Subsection II-A. The formal model

of networked LTI systems is presented in Subsection II-B.

Then, a result on network identification via power spectra is

given in Subsection II-C. In later sections, we will analyze

these results in the case that data has been corrupted.

A. Graph Theoretic Preliminaries

We will review some terminology from graph theory needed

to describe the background results on LTI identification. For

reference, see [25].

Definition 1 (Directed and Undirected Graphs). A directed

graph G is a pair (V,A) where V is a set of vertices or nodes

and A is a set of edges given by ordered pairs (i, j) where

i, j ∈ V . If (i, j) ∈ A, then we say that there is an edge from

i to j. (V,A) forms an undirected graph if V is a set of nodes

or vertices and A is a set of the un-ordered pairs {i, j}.

We also denote an undirected edge as i− j.

Definition 2 (Children and Parents). Given a directed graph

G = (V,A) and a node j ∈ V , the children of j are defined

as C(j) := {i|j → i ∈ A} and the parents of j as P(j) :=
{i|i → j ∈ A}.

Definition 3 (Kins). Given a directed graph G = (V,A)
and a node j ∈ V , kins of j are defined as Kj :=
{i|i 6= j and i ∈ C(j) ∪ P(j) ∪ P(C(j))}. Kins are formed by

parents, children and spouses. A spouse of a node is another

node where both nodes have at-least one common child.

Definition 4 (Moral-Graph). Given a directed graph G =
(V,A), its moral-graph is the undirected graph GM =
(V,AM ) where AM := {{i, j}|j ∈ V, i ∈ Kj} .

Fig. 1 provides an example of a directed graph and its moral

graph.

B. Dynamic Influence Model for LTI systems

Here the generative model that is assumed to generate the

measured data is described. Consider N agents that interact

over a network. For each agent i, we associate an observable

discrete time sequence yi[·] and a hidden noise sequence ei[·].
The process ei[·] is considered innate to agent i and thus ei is

independent of ej if i 6= j. We assume ei and yi to be jointly

wide-sense stationary stochastic processes. In particular, we
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assume they are bounded in a mean-square sense: E[‖ yi[t] ‖
2

] < ∞ and E[‖ ei[t] ‖
2] < ∞.

Let Y denote the set of all random process {y1, . . . , yN}
with a parent set P ′(i) defined for i = 1, . . . , N. The parent set

P ′(i) associated with agent i does not include i. The process

yi depends dynamically on the processes of its parents, yj
with j ∈ P ′(i) through an LTI filter whose impulse response

is given by Gij . Therefore, dynamics of node i takes the form:

yi[t] =
N∑

j∈P′(i)

(Gij ∗ yj)[t] + ei[t] for i = 1, . . . , N. (1)

where ∗ denotes convolution operation. Performing a Z-

transform on both sides gives

yi(z) =
N∑

j∈P′(i)

Gij(z)yj(z) + ei(z) for i = 1, . . . , N. (2)

For compact notation, we will often drop the z arguments.

Let y = (y1, y2, . . . , yN )T and e = (e1, e2, . . . , eN )T . Then

(2) is equivalent to

y = G(z)y + e. (3)

The diagonal entries Gii(z) are considered to be zero. We

refer to (3) as the Dynamic Influence Model (DIM). Here, G
is termed as the DIM generative connectivity matrix. The DIM

will be denoted by (G, e).

Remark 1. The process noise in (1) can be correlated across

time. In that case, ei is assumed to be represented as the

convolution of white noise with a stable LTI filter.

Remark 2. The diagonal entries, Gii(z) are considered to

be zero only for simplification purposes to remove self-

dependence in the dynamics. As will be seen later in sub-

section II-C, this enables us to consider Wiener filter projec-

tion of signal yi on all signals except yi. Moreover, we can

model the self-dependence and include it in the DIM through

the process noise sequence by convolving a zero mean white

noise with Gii(z).

We illustrate the notation by an example. Consider a net-

work of five agents whose node dynamics are given by,

y1 = e1

y2 = G21(z)y1 + e2

y3 = G31(z)y1 + e3

y4 = G42(z)y2 + G43(z)y3 + e4

y5 = G54(z)y4 + e5

(4)

with G =









0 0 0 0 0
G21 0 0 0 0
G31 0 0 0 0
0 G42 G43 0 0
0 0 0 G54 0









.

Definition 5 (Generative Graph). The structural description

of (3) induces a generative graph G = (V,A) formed by

identifying each vertex vi in V with random process yi and

the set of directed links, A, obtained by introducing a directed

link from every element in the parent set P ′(i) of agent i to i.

Note that we do not show i → i in the generative graph

and neither do we show the processes ei. The generative graph

associated with the examples described in (4) is given by Fig.

1 (a).

C. Identification from Ideal Measurements

The following results are obtained from [19] where the au-

thors have leveraged Wiener filters for determining generative

graphs of a DIM.

Theorem 1. Consider a DIM (G, e) consisting of N nodes with

generative graph G. Let the output of the DIM be given by

y = (y1, . . . , yN )T . Suppose that Sj is the span of all random

variables yk[t], t = . . .−2,−1, 0, 1, 2 . . . excluding yj . Define

the estimate ŷj of the time-series yj via the optimization

problem of

min
ŷj∈Sj

E

[

(yj − ŷj)
T
(yj − ŷj)

]

.

Then a unique optimal solution to the above exists and is given

by

ŷj =
∑

i 6=j

Wji(z)yi (5)

where Wji(z) 6= 0 implies yi ∈ Kyj
(equivalently yj ∈ Kyi

);

that is i is a kin of j.

The solution in (5) is the Wiener Filter solution which

is given by Φyjyj̄
Φ−1

yj̄yj̄
where yj̄ denotes the vector of all

processes excluding yj and Φ denotes the power spectral

density. Thus, Theorem 1 implies that we can reconstruct the

moral graph of a DIM by analyzing the joint power spectral

density of the measurements. The following corollary gives

a useful characterization of the inferred kin relationships in

terms of the sparsity pattern of Φ−1
yy .

Corollary 1. Under the assumptions of Theorem 1, let Φyy

be the power spectral density matrix of the vector process y.

Then the (j, i) entry of Φ−1
yy is non zero implies that i is a kin

of j.

Remark 3. Φ−1
yy (i, j) is described by (i, j) entry of (I −

G(z))∗Φ−1
e (I − G(z)). Specifically, Φ−1

yy (i, j) = −Gijφ
−1
ei

−
G∗
jiφ

−1
ej

+
∑

k G
∗
kiGkjφ

−1
ek

where k ∈ C(i) ∩ C(j). For i and

j being kins but Φ−1
yy (i, j) to be zero, the transfer functions

in G must be belong to a set of measure zero on space

of system parameters. For example, system dynamics with

transfer functions being zero or a static system with all

noise sequences being identical. Therefore, except for these

restrictive cases, the results in Theorem 1 and Corollary 1

are both necessary and sufficient. See [19] for more details.

III. UNCERTAINTY DESCRIPTION

Subsection II-C describes a methodology from [19] for

guaranteed kinship reconstruction based on Wiener filtering.

However, the results assume that the signals, yi, are measured

perfectly. This paper aims to explain what would happen if
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we attempted to apply the reconstruction method to data that

has been corrupted. We will see that extra links appear in

the reconstruction, and characterize the pattern of spurious

links. While the analysis of the next two sections focuses

on LTI identification, the results on Markov random fields in

Section V indicate that the emergence and pattern of spurious

links are general properties of network reconstruction from

corrupted data.

Subsection III-A presents the general class of data corrup-

tion models studied for LTI systems. The modeling framework

is sufficiently general to capture a variety of practically rele-

vant perturbations, such as delays and packet loss. However,

we will see that all of the corruption models have similar

effects on the observed power spectra. Specific examples of

perturbation models are described in Subsection III-B.

A. Random State Space Models

This subsection presents the general class of perturbation

models. Consider ith node in a network and let it’s associated

unperturbed time-series be yi. The corrupt data-stream ui

associated with i is considered to follow the stochastic linear

system described below:

xi[t+ 1] = Ai[t]xi[t] +Bi[t]yi[t] + wi[t] (6a)

ui[t] = Ci[t]xi[t] +Di[t]yi[t] + vi[t], (6b)

where xi denotes hidden states in the stochastic linear system

that describes the corruption. Here, the matrices, Mi[t] =[
Ai[t] Bi[t]
Ci[t] Di[t]

]

are independent, identically distributed (IID)

and independent of yi[t]. The terms wi[t] and vi[t] are zero-

mean IID noise terms which are independent of Mi[·] and yi[·]
and have covariance:

E

[[
wi[t]
vi[t]

] [
wi[t]
vi[t]

]⊤
]

=

[
W S
S⊤ V

]

. (7)

For distinct perturbed nodes, i 6= j, we assume that Mi[], wi[],
and vi[] are independent of Mj [], wj [], and vj [].

Denote the means of the state space matrices by Āi =
E[Ai[t]], B̄i = E[Bi[t]], C̄i = E[Ci[t]], and D̄i = E[Di[t]].

Let hi be the impulse response of the system defined by

Āi, B̄i, C̄i, D̄i:

hi(k) =

[
Āi B̄i

C̄i D̄i

]

(k) (8)

Note that ūi[t] = E[ui[t]|yi] = (hi ⋆ yi)[t].

Theorem 2. Assume that Mi[t] has bounded second moments

and for all positive definite matrices Q, the following general-

ized Lyapunov equation has a unique positive definite solution,

P :

P = E[Ai[t]PAi[t]
⊤] +Q. (9)

Define ∆ui[t] := ui[t]− ūi[t]. Then, the signals ui will be

wide sense-stationary with cross-spectra and power spectra of

the form:

Φuiui
(z) = Hi(z)Φyiyi

(z)Hi(z
−1) + θi(z) (10a)

Φuiyi
(z) = Hi(z)Φyiyi

(z) (10b)

where, Hi(z) = Z(hi) and θi(z) = Z (R∆ui∆ui
[k]).

The proof is given in Appendix A.

B. Data Corruption Examples

We will highlight a few corruptions that are practically

relevant to exemplify the above model description. More

complex perturbations can be obtained by composing these

models.

1) Random Delays: Randomized delays can be modeled by

ui[t] = yi[t− d[t]] (11)

where d[t] is a random variable. For example, if d[t] ∈
{1, 2, 3}, then randomized delay model can be represented in

state-space form with no additive noise terms and state space

matrices given by:

[
Ai[t] Bi[t]
Ci[t] Di[t]

]

=











0 0 0
1 0 0
0 1 0









1
0
0





b⊤
d[t] 0






,

where b1, b2, and b3 are the standard basis vectors of R3.

Say that d[t] = j with probability pj , for j = 1, 2, 3. Then

Hi(z) = p1z
−1 + p2z

−2 + p3z
−3. (12)

Let p =
[
p1 p2 p3

]
. The formal description to compute the

expression for θi(z) is discussed in Lemma 3 contained in the

Appendix section. Using Lemma 3 we have that R∆ui∆ui
[t] =

0 for t 6= 0 and R∆ui∆ui
[0] is given by

Ryiyi
[0]− p⊤





Ryiyi
[0] Ryiyi

[1] Ryiyi
[2]

Ryiyi
[−1] Ryiyi

[0] Ryiyi
[1]

Ryiyi
[−2] Ryiyi

[−1] Ryiyi
[0]



 p. (13)

2) Measurement Noise: White measurement noise can be

represented in the form of (6) by setting Ci[t] = 0, Di[t] = 1:

ui[t] = yi[t] + vi[t]. (14)

Colored measurement noise with rational spectrum arises

when Bi[t] = 0, Di[t] = 1, and the matrices Ai[t] and Ci[t]
are constant. More generally, the result of causally filtering

the signal and then adding noise can be modeled by taking all

of the matrices in (6) to be constant.

For the corruption model described in (14), the perturbation

transfer functions are given by:

Hi(z) = 1

θi(z) = Φvivi
(z).

3) Adversarial Disinformation: This is an example of data-

corruption that is pertinent to cyber-security. Here, the true

data stream yi is completely concealed and a new false data

stream vi is introduced. This is an extreme case of (6) in which

Ci[t] and Di[t] are zero:

ui[t] = vi[t] (15)
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4) Packet Drops: Here the data stream suffers from ran-

domly dropping measurement packets. The corrupted data

stream ui is obtained from yi as follows:

ui[t] =

{

yi[t], with probability pi

ui[t− 1], with probability (1− pi)
(16)

Packet drops can be modeled in the form of (6) with no noise

and matrices given by:

[
Ai[t] Bi[t]
Ci[t] Di[t]

]

=







[

0 1

0 1

]

with probability pi

[

1 0

1 0

]

with probability 1− pi.

(17)

The generalized Lyapunov equation becomes:

P = piP · 0 + (1− pi)P · 1 +Q (18)

which has the solution P = Q/pi. Thus, the conditions for

Theorem 2 hold, and so ui is wide-sense stationary. In this

case [
Āi B̄i

C̄i D̄i

]

=

[
1− pi pi
1− pi pi

]

(19)

so that Hi(z) =
pi(1−pi)
z−(1−pi)

+ pi =
pi

1−z−1(1−pi)
.

The formal description to compute the expression for θi(z)
is discussed in Lemma 3 contained in the Appendix section.

The application of methods described in the Appendix to

derive an expression for θi(z) is cumbersome. However, θi(z)
can be calculated directly. Indeed, direct calculation shows that

(hi ⋆Ryy ⋆h
∗
i )[t] =

|t|
∑

j=−∞

∞∑

k=j

p2i (1−pi)
|t|+k−2jRyy[k] (20)

while inductive application of (16) shows that

Ruu[t] = (1−pi)
|t|Ryy[0]+

|t|
∑

j=1

∞∑

k=j

p2i (1−pi)
|t|+k−2jRyy[k].

(21)

Here, the sum is interpreted as 0 when |t| = 0.

Subtracting (20) from (21) and taking Z-transforms gives

θi(z) =
(1− pi)

2

(1− z−1(1− pi))(1− z(1− pi))
·



Ryy[0] +
0∑

j=−∞

∞∑

k=j

p2i (1− pi)
k−2jRyy[k]



 . (22)

IV. SPURIOUS LINKS FOR PERTURBED LTI SYSTEMS

The results reviewed from [19] imply that kin relationships

could be inferred from the power spectra of ideal measure-

ments. However, the result of Theorem 2 implies that common

types of data corruption cause perturbations to the power

spectrum of the observations. In this section, we will show

how use of the method from [19] on corrupted data streams

leads to the inference of spurious links. In Subsection IV-A we

show how spurious links arise in a simple example. Then in

1 2 3 4

(a) Perfect Measurements

1 2 3 4

(b) Unreliable Measurements

Fig. 2: When node 2 has corrupt measurements an external

observer might wrongly infer that the third node is directly

influenced by node 1.

Subsection IV-B, we characterize the pattern of spurious links

that could arise due to data corruption. While these results

in this section are specific to the power spectrum inference

method from [19], the work in Section V shows that the

pattern of spurious links arises more generally in network

identification problems.

A. Example: Spurious Links due to Data Corruption

Before presenting the general results, an example will be

described. Consider the generative graph of a directed chain

in Figure 2a. Suppose the measured data-streams are denoted

by ui for node i where ui = yi for i = 1, 3, 4 (thus no data

uncertainty at nodes 1, 3 and 4) and u2 is related to y2 via

the randomized delay model described in (11). In this case,

the processes ui are jointly WSS and the PSD of the vector

process u = (u1, · · · , u4)
⊤

is related to the PSD of the vector

process y via:

Φuu(z) =







1 0 0 0
0 h2(z) 0 0
0 0 1 0
0 0 0 1







︸ ︷︷ ︸

H(z)

Φyy(z)







1 0 0 0
0 h2(z

−1) 0 0
0 0 1 0
0 0 0 1







︸ ︷︷ ︸

H∗(z)

+







0 0 0 0
0 θ2(z) 0 0
0 0 0 0
0 0 0 0







︸ ︷︷ ︸

D

,

where h2 and θ2 were described in Subsection III.

Note that D = b2θ2b
T
2 , where b2 =

(
0 1 0 0

)T
. Set

Ψ(z) = H(z)Φyy(z)H
∗(z). It follows from the Woodbury

matrix identity [26] that

Φ−1
uu (z) = Ψ−1(z)−Ψ−1(z)b2b

T
2 Ψ

−1(z)∆−1, (23)

where ∆ = θ−1
2 + bT2 Ψ

−1(z)b2 is a scalar.

Corollary 1 implies that the sparsity pattern of Φ−1
yy (z) is

given by:

Φ−1
yy (z) =







∗ ∗ 0 0
∗ ∗ ∗ 0
0 ∗ ∗ ∗
0 0 ∗ ∗







(24)

where ∗ indicates a potential non-zero entry.
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Since H(z) is diagonal, it follows that Ψ−1(z) and Φ−1
yy (z)

have the same sparsity pattern. Thus, the sparsity pattern of

Ψ−1(z)b2 and Ψ−1(z)b2b
T
2 Ψ

−1(z) are given by:

Ψ−1(z)b2 =







∗
∗
∗
0






, Ψ−1(z)b2b

T
2 Ψ

−1(z) =







∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 0







(25)

Combining (23)-(25), it follows that the Φ−1
uu (z) has sparsity

pattern given by:

Φ−1
uu (z) =







∗ ∗ * 0
∗ ∗ ∗ 0

* ∗ ∗ ∗
0 0 ∗ ∗






.

The extra filled spot in the inverse power spectral density

corresponds to a spurious link. See Fig. 2.

B. Determining Generative Topology from Corrupted Data

Streams

In this subsection, we will generalize the insights from

the preceding subsection to arbitrary DIMs. The following

definitions are needed for the development to follow.

Definition 6 (Path and Intermediate nodes). Nodes

v1, v2, . . . , vk ∈ V forms a path from v1 to vk in an

undirected graph G = (V,A) if for every i = 1, 2, . . . , k − 1
we have vi − vi+1. The nodes v2, v3, . . . , vk−1 are called the

intermediate nodes in the path.

Definition 7 (Neighbors N ). Let G = (V,A) be an undirected

graph. The neighbor set of node i is given by N = {j : i−j ∈
A} ∪ {i}.

Definition 8 (Erroneous Links). Let G = (V,A) be an

undirected graph. An edge or arc i− j is called an erroneous

link when it does not belong to A where i, j ∈ V .

Definition 9 (Perturbed Graph). Let G = (V,A) be an

undirected graph. Suppose Z ⊂ V is the set of perturbed

nodes. Then the perturbed graph of G with respect to set Z
is the graph GZ = (V,AZ) such that i − j ∈ AZ if either

i − j ∈ A or there is a path from i to j in G such that all

intermediate nodes are in Z.

Note that if Z ⊂ Ẑ, then AZ ⊂ A
Ẑ

.

The following theorem is the main result for LTI identifi-

cation.

Theorem 3. Consider a DIM (G, e) consisting of N
nodes with the moral graph GM = (V,AM ). Let Z =
{v1, v2, . . . , vn} be the set of n perturbed nodes where each

perturbation satisfies (10). Then (Φ−1
uu (z))pq 6= 0 implies that

p and q are neighbors in the perturbed graph GM
Z .

Proof. First, we will describe the structure of Φuu(z). For

compact notation, we will often drop the z arguments.

For p = 1, . . . , N , if p is not a perturbed node, set Hp(z) =
1 and θp(z) = 0. With this notation, (10) implies that the

entries of Φuu are given by:

(Φuu)pq =

{

Hp(Φyy)pqH
∗
q if p 6= q

Hp(Φyy)ppH
∗
p + θp if p = q

When p 6= q, there is no θ term because the perturbations were

assumed to be independent.

In matrix notation, we have that:

Φuu = HΦyyH
∗ +

n∑

k=1

Dvk

where H is the diagonal matrix with entries Hp on the diag-

onal and Dvk(z) = bvk
θvk

(z)bTvk
where bvk

is the canonical

unit vector with 1 at entry vk.

Set Ψ0 = HΦyyH
∗. For k = 0, . . . , n − 1, we can

inductively define the matrices:

Ψk+1 = Ψk + bvk+1
θvk+1

bTvk+1
(26)

For k = 1, . . . , n let Zk = {v1, . . . , vk} and let GM
Zk

be

the perturbed graph constructed by adding edges i− j to the

original moral graph if there is a path from i to j whose

intermediate nodes are all in Zk.

We will inductively prove the following claim: For k =
1, . . . , n, if (Ψ−1

k )pq 6= 0, then p and q are neighbors in GM
Zk

.

Proving this claim is sufficient to prove the theorem, since

Ψn = Φuu and Zn = Z.

First we focus on the k = 1 case. Using the Woodbury

Matrix identity we have, Ψ−1
1 = Ψ−1

0 − Γ1, where Γ1 :=
(Ψ−1

0 bv1
bTv1

Ψ−1
0 )∆−1

v1
and ∆v1

= θ−1
v1

+ bTv1Ψ
−1
0 (z)bv1

is a

scalar. Therefore, (Ψ−1
1 )pq = (Ψ−1

0 )pq − (Γ1)pq .

If (Ψ−1
1 )pq 6= 0 then at least one of the conditions (i)

(Ψ−1
0 )pq 6= 0 or (ii) (Γ1)pq 6= 0 must hold.

Suppose that (Ψ−1
0 )pq 6= 0. Then

(H−∗(z)Φ−1
yy H

−1(z))pq 6= 0. As H is diagonal it follows

that (Φ−1
yy )pq 6= 0. From Corollary 1, it follows that p and q

are neighbors in GM . Thus p and q are neighbors in GM
B1

.

Suppose that (Γ1)pq 6= 0. Then it follows that

(Ψ−1
0 bv1b

T
v1
Ψ−1

0 )
pq
∆−1

v1
6= 0. Thus (Ψ−1

0 bv1
)p 6= 0 and

(bTv1
Ψ−1

0 )
q
6= 0. Noting that Ψ0 = HΦyyH

∗, it follows that ,

(Φ−1
yy )pv1 6= 0 and (Φ−1

yy )v1q 6= 0. From Corollary 1 it follows

that v1−p and v1−q are edges in the moral graph GM . Thus,

there is a path from p to q whose only intermediate node is

v1 ∈ Z1. Thus, p, q are neighbors in GM
Z1

and the claim is

verified for k = 1.

Now assume that the claim holds for some k > 1. Combin-

ing the Woodbury matrix identity with (26) implies that

Ψ−1
k+1 = Ψ−1

k − Γk+1

where Γk+1 = Ψ−1
k bvk+1

bTvk+1
Ψ−1

k ∆−1
vk+1

and ∆vk+1
=

θ−1
vk+1

+ bTvk+1
Ψ−1

k (z)bvk+1
is a scalar.

As before, if (Ψ−1
k+1)pq 6= 0, then either (Ψ−1

k )pq 6= 0 or

(Γk+1)pq 6= 0.

If (Ψ−1
k )pq 6= 0, then the induction hypothesis implies that

p and q are neighbors in GM
Zk

. Since Zk ⊂ Zk+1, it follows

that p and q are neighbors in GM
Zk+1

.
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If (Γk+1)pq 6= 0, then as in the k = 1 case, we must have

that (Ψ−1
k )pvk+1

6= 0 and (Ψ−1
k )vk+1q 6= 0. This implies that

p−vk+1 ∈ AM
Zk

and vk+1−q ∈ AM
Zk

. Thus, either p and vk+1

are kins in the original moral graph, or there is a path from

p to vk+1 whose intermediate nodes are in Zk. Similarly, for

q and vk+1. It follows that there is a path from p to q whose

nodes are in Zk+1, and thus p and q are neighbors in GM
Zk+1

.

The claim, and thus the theorem, are now proved.

Remark 4. Similar to Remark 3, cases where i and j are

kins in the original moral graph, GM , but Φ−1
uu (i, j) is zero are

pathological. Φ−1
uu (i, j) is expressed by terms in Φ−1

yy , Hl(z)
and θl(z) where l is a perturbed node. As remarked earlier,

the entries in G(z) and the corruption model described in

(6) must belong to a set of measure zero on space of system

parameters such that Φ−1
uu (i, j) is zero. Therefore, except for

these restrictive cases, the result in Theorem 3 implies that

we can identify the perturbed kin graph.

V. SPURIOUS CORRELATIONS OF PERTURBED MARKOV

RANDOM FIELDS

So far, we have shown how perturbing time-series data can

give rise to spurious inferences. The analysis was restricted to

network identification via Wiener filtering. In this section, we

will show that spurious links arising from data corruption is

a more general phenomenon. Specifically, we will show that

the exact same patterns of spurious links from Theorem 3

will arise in a general class of probabilistic graphical models

known as Markov random fields.

Markov random fields can model a variety of distributions,

including continuous and discrete variables. However, our pre-

sentation here is restricted to finite-dimensional random vari-

ables with well defined probability mass or density functions.

Thus, while the class is broad, it does not subsume the analysis

from Section IV, which deals with infinite-dimensional time-

series data. However, as we will see Markov random fields

can model time-series analysis problems with finite amounts

of data.

A. Background on Markov Random Fields

Our presentation of Markov random fields will be closely

related to graph cliques:

Definition 10 (Clique). Given an undirected graph G =
(V,A), a clique is a complete sub-graph formed by a set of

vertices b ⊂ V such that for all distinct i, j ∈ b there exists

i− j ∈ A.

As an example of a Markov random field, consider a finite-

dimensional version of the model from (4):

y1 = e1

y2 = M21y1 + e2

y3 = M31y1 + e3

y4 = M42y2 +M43y3 + e4

y5 = M54y4 + e5

(27)

1 2 3 4 5

2p 3p

Fig. 3: Markov random field GJ with perturbed nodes.

with

M =









0 0 0 0 0
M21 0 0 0 0
M31 0 0 0 0
0 M42 M43 0 0
0 0 0 M54 0









.

Here, we take ei to be independent Gaussian vectors with

mean 0 and covariance Ei. When only a finite amount of

time series data has been collected for the system in (4), the

relationship between the data points can be modeled as in (27).

Now we will see how the structure of the probabilistic

relationships between the variables, yi are encoded in the cor-

responding moral graph from Fig. 1b. If y =
[
y1 · · · y5

]⊤

and e =
[
e1 · · · e5

]⊤
, then y = (I − M)−1e. Use the

notation ‖x‖2
E

−1

i

= x⊤E−1
i x. Then direct calculation shows

that the density of y factorizes as

p(y) = c · exp

(

−
1

2
‖y1‖

2
E

−1

1

−
1

2
‖y2 −M21y1‖

2
E

−1

2

−
1

2
‖y3 −M31y1‖

2
E

−1

3

)

·

exp

(

−
1

2
‖y4 −M42y2 −M43y3‖

2
E

−1

4

)

·

· exp

(

(−
1

2
‖y5 −M54y4‖

2
E

−1

5

)

. (28)

Note that the exponential factors contain variables

{y1, y2, y3}, {y2, y3, y4}, and {y4, y5}. These variable group-

ings correspond precisely to the maximal cliques in the moral

graph from Fig. 1b.

As we will discuss below, having a distribution that factor-

izes with respect to a graph is a sufficient condition for being

a Markov random field. See also [27]. A generalization of the

construction of (27) shows that finite collections of time-series

data can always be viewed as Markov random fields.

To formally define Markov random fields, we need some

extra notation and terminology. Let Y be a collection of

variables, Y = {y1, . . . , y|V |} corresponding to nodes of a

graph, G = (V,A). If S ⊂ V , then we use the notation

YS = {yi|i ∈ S}.

Definition 11 (Separation). Suppose G = (V,A) is an

undirected graph. Suppose, a, b, c are disjoint subsets of V .

Then, a and b are separated given c if all paths from a to b
must pass through c.

When a and b are separated given c, we write sep(a, b | c).

Definition 12 (Markov random fields). Let Y be a collection

of random variables associated with the nodes of an undirected

graph, G = (V,A). The variables Y are called a Markov
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random field with respect to G if Ya and Yb are conditionally

independent given Yc whenever sep(a, b | c) holds.

A useful sufficient condition for Y to be a Markov random

field with respect to G is for the distribution to factorize into

terms corresponding to cliques in the graph. This condition

was used in the example above. See [27] for more details.

Definition 13 (Clique Factorization). Suppose that Q is a

collection of subsets of V such that each q ∈ Q forms clique

in G. Let P (Y ) denote the joint probability distribution of the

random variables Y . Then, we say Y factorizes according to

G, if for every q ∈ Q, there exists non-negative functions Ψq

that are functions of random variables in q such that,

P (Y ) =
∏

q∈Q

Ψq(Yq) (29)

B. Inferring Erroneous Links

Now we will describe the effects of data-corruption on

inferring the undirected graph structure from measured data.

In our work on time-series models, we assumed that individual

data streams were perturbed independently. Here we will de-

fine a natural analog of independent perturbations for Markov

random fields. However, the perturbation models could be non-

linear.

Let Y be a Markov random field that factorizes with respect

to a graph G = (V,A). Let Z ⊂ V be the set of perturbed

nodes. For each perturbed node, i ∈ Z, we draw a new node

ip, draw an edge i−ip, and denote the corresponding perturbed

variable by ui. The probabilistic relationships between the

original variable, yi, and the perturbed variable, ui, is given by

Ψiip(yi, ui) ≥ 0. Let Zp = {ip : i ∈ Z} and let UZ denote the

set of perturbed variables. Then the joint distribution between

Y and UZ can be described as:

P (Y, UZ) =
∏

q∈Q

Ψq(Yq) ·
∏

i∈Z

Ψiip(yi, ui). (30)

Since the node pairs, {i, ip} are cliques, the construction above

shows that the joint variables (Y, UZ) form a Markov random

field with respect to GJ = (V ∪ Zp, A ∪ {i − ip : ∀i ∈ Z}).
See figure 3.

Due to data corruption, only the variables YZ̄ and UZ are

observed, where Z̄ = V \ Z. The next lemma shows that

(YZ̄ , UZ) is also a Markov random field, with graph described

by the perturbed graph.

Lemma 1. Let Y be a Markov random field with respect

to G = (V,A). Let Z ⊂ V be a set of perturbed nodes

and let Z̄ = V \ Z be the unperturbed nodes. Assume that

the joint distribution of Y and the perturbed variables UZ

factorizes as in (30). Then the collection of observed variables

(YZ̄ , UZ) factorizes with respect to the perturbed graph GZ

from Definition 9.

Proof. We will prove the lemma for discrete random variables.

The proof for continuous random variables is identical except

that marginalization would be represented by integrals instead

of sums.

Let Z = {v1, . . . , vn}, Z0 = ∅ and Zk = {v1, . . . , vk}. We

will prove inductively that (YZ̄k
, UZk

) factorizes with respect

to GZk
.

The base case with Z0 = ∅ is immediate since (YZ̄0
, UZ0

) =
Y and GZ0

= G. Now assume inductively that (YZ̄k−1
, UZk−1

)
factorizes with respect to GZk−1

for some k ≥ 1.

P (YZ̄k
, UZk

) (31)

=
∑

YZk

∏

q∈Q

Ψq(Yq)
k∏

i=1

Ψvi,(vi)p(yvi
, uvi) (32)

=
∑

yvk




∑

YZk−1

∏

q∈Q

Ψq(Yq)
k−1∏

i=1

Ψvi,(vi)p(yvi , uvi)



 ·

Ψvk,(vk)p(yvk
, uvk

) (33)

=
∑

yvk

P (YZ̄k−1
, UZk−1

)Ψvk,(vk)p(yvk , uvk
) (34)

The first line, (32) follows by marginalizing YZk
out of the

factorized distribution from (30). Then the terms are regrouped

and then (32) is employed for P (YZ̄k−1
, UZk−1

).
By induction, we have that P (YZ̄k−1

, UZk−1
) factorizes

according to a collection of cliques, C, in GZk
. Let Cvk

⊂ C
be the collection of cliques such that vk ∈ c for all c ∈ Cvk .

For compact notation, let X = (Y, UZ). Then the formula for

P (YZ̄k
, UZk

) can be expressed as

P (YZ̄k
, UZk

) =




∑

yvk

∏

c∈Cvk

Ψc(Xc)Φvk,(vk)p(yvk
, uvk

)



 ·

∏

c∈C\Cvk

Φc(Xc). (35)

The second term on the right is a collection of factors

corresponding to cliques in GZk−1
. Now, since AZk−1

⊂ AZk
,

they must also be cliques of GZk
. The lemma will be proved

if the variables first term on the right correspond to a clique

in GZk
.

Say i 6= vk and j 6= vk are nodes corresponding to variables

in the sum in (35). Then there must be paths from i to vk and

vk to j such that any intermediate node is in Zk−1. Now,

since vk ∈ Zk, there is a path from i to j such that all of

the intermediate nodes are in Zk. Thus, the nodes in the sum

form a clique in GZk
.

In our model, we have assumed that the variables corre-

sponding to corrupted nodes, yi for i ∈ Z, are hidden. Then

Lemma 1 shows that marginalizing out the variables yi intro-

duces new probabilistic relationships between the neighbors

of yi. The new links between variables are precisely described

by the perturbed graph construction of Theorem 3. Note that

any method that attempts to reconstruct the graphical structure

of the Markov random field based only on the observed data

that contains corrupt data will be likely to detect spurious

relationships.1

1In some special cases, it may be possible to exploit prior knowledge of
network structure to rule out some spurious links [28].
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(a) Broadcast Architecture
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(b) Corrupted leaf
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(c) Corrupted Hub

Fig. 4: This figure shows an extreme example of the effect of data corruption of even a single node. 4a shows the original

directed graph. 4b shows that even if the leaf is corrupted there are no erroneous links introduced. But if the hub is corrupted

as shown in 4c then all the nodes become spuriously correlated.

Below, we will show that if P (YZ̄ , UZ) is positive ev-

erywhere, then the perturbed graph exactly characterizes the

conditional independence of the observed nodes. To present

this strengthened version of Lemma 1, some definitions are

required.

Definition 14 (Pairwise Markov property). Suppose G =
(V,A) is an undirected graph whose N nodes represent

random variables y1, . . . , yN . Let Y = {y1, . . . , yN}. Pairwise

Markov property associated with G holds, if for any non-

adjacent vertices i, j, we have that sep(i, j|V \ {i, j}) implies

that yi and yj are conditionally independent given Y \{yi, yj}.

As in the discussion of LTI systems, it is convenient to

identify the observed but unperturbed variables YZ̄ with UZ̄

so that the collection of observed variables can be denoted by

U = (UZ̄ , UZ).

Theorem 4. Let Y be a set of random variables that factorize

according to graph G = (V,A). Suppose, Z ⊂ V , is a set

of perturbed nodes such that the joint distribution (Y, UZ)
factorizes as in (30). Let U denote the set of all observed

variables and assume that P (U) is positive everywhere. Define

Uīj̄ := U \ {ui, uj}. Then, i − j is an edge in the perturbed

graph, GZ , if and only if ui is not conditionally independent

of uj given Uīj̄ .

Proof. From lemma 1 we know that U factorizes according

to GZ . Thus, positivity of P (U) implies that the pairwise

Markov property is equivalent to U factorizing according to

GZ . See [27]. Therefore, sep(i, j|V \ {i, j}) (in GZ) if and

only if ui ⊥⊥ uj | Uīj̄ . Note that sep(i, j|V \ {i, j}) means

precisely that i− j /∈ AZ .

VI. SIMULATION RESULTS

Power spectrum estimates were computed after 104 simu-

lation time steps. The estimated spectra were then averaged

over 100 trials. The red boxes indicate the erroneous links

introduced as a result of the network perturbation in addition

to the the links in the true moral graph as indicated by the

black boxes. For both the networks, the sequences ei are zero

mean white Gaussian noise.

A. Star Topology

The transfer function for each link is z−1.

1) Corrupted Leaf: The perturbation considered here is the

random delay model, (11), on node 2:

d2[t] =

{

3, with probability 0.65

1, with probability 0.35.

Φ−1
uu(z) =





















15.02 0.14 1.49 1.49 1.50 1.50 1.45

0.14 1.74 0.05 0.05 0.05 0.05 0.04
1.49 0.05 2.36 0.05 0.06 0.06 0.06
1.49 0.05 0.05 2.35 0.06 0.05 0.06
1.50 0.05 0.06 0.06 2.36 0.05 0.05
1.50 0.05 0.06 0.05 0.05 2.36 0.05
1.45 0.04 0.06 0.06 0.05 0.05 2.34





















As predicted by Theorem 3, perturbation of Node 2 for

this architecture does not introduce any erroneous links. See

Figure 4b.

2) Corrupted Hub: The perturbation considered here is a

random delay on the hub node:

d1[t] =

{

2, with probability 0.75

4, with probability 0.25.

Theorem 3 predicts that perturbing the central node could

introduce erroneous links between all of the nodes. See

Figure 4c.

Φ−1
uu(z) =





























5.08 0.40 0.40 0.40 0.39 0.39 0.38

0.40 2.07 0.27 0.27 0.27 0.26 0.27

0.40 0.27 2.08 0.27 0.27 0.28 0.27

0.40 0.27 0.27 2.07 0.27 0.27 0.27

0.39 0.27 0.27 0.27 2.07 0.27 0.27

0.39 0.26 0.28 0.27 0.27 2.08 0.27

0.38 0.27 0.27 0.27 0.27 0.27 2.08





























B. Chain Topology

The chain topology in Figure 5 is considered. The transfer

functions are: between nodes 1 and 2, 1.2 + 0.9z−1, be-

tween nodes 2 and 3, 1 + 0.2z−1, between nodes 3 and 4,

1− 0.9z−1 + 0.3z−2 and then for the last link z−1. Figure 5

In the simulations, nodes 2 and 3 are simultaneously corrupted

with the random delay models

d2[t] =

{

1, with probability 0.83

2, with probability 0.17.

d3[t] =

{

2, with probability 0.85

4, with probability 0.15.

Φ−1
uu(z) =

















4.23 0.54 0.12 0.25 0.05

0.54 1.20 0.16 0.13 0.02

0.12 0.16 1.06 0.12 0.02

0.25 0.13 0.12 2.22 0.90

0.05 0.02 0.02 0.90 1.42
















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1 2 3 4 5

(a) Node 2 Perturbed

1 2 3 4 5

(b) Node 3 Perturbed

1 2 3 4 5

(c) Nodes 2 and 3 Perturbed

Fig. 5: This figure shows how multiple perturbations can

lead to a cascade effect as predicted by Theorem 3. Here the

original moral graph is a chain. 5a and 5b show the erroneous

edges that can arise from perturbing a single node. If nodes 2
and 3 are both perturbed, then another erroneous link between

1 and 4 must be added.

Perturbation of 2 adds a false relationship between 1 and

3. In addition, perturbation of 3 introduces erroneous relations

between the nodes 1 and 4 as well as between 2 and 4. Thus

the erroneous relationships could arise between any nodes that

are kins of 3 including the already introduced false kins of 3.

Despite this cascaded effect the erroneous links remain local

in the sense that the dependency of 5 is unaffected.

VII. CONCLUSION

We studied the problem of inferring the network structure

of interacting agents from corrupt data-streams. We described

general model of data-corruption that introduces an additive

term in the power spectra and captures a wide class of

measurement uncertainties. We then studied inferring topology

of a network of LTI systems from corrupt data-streams. We

established that network topology reconstruction from corrupt

data streams can result in erroneous links between the nodes.

Particularly we provided exact characterization by proving

that the erroneous links are localized to the neighborhood

of the perturbed node. We then studied the influence of data

corruption on Markov random field models. Here we found

that our characterization of erroneous links for LTI systems

precisely characterized the spurious relationships that can arise

in Markov random fields.

Our results show that data corruption gives rise to the

appearance of cliques that are localized around the corrupt

nodes. Two natural future research directions emerge. The

first direction would be to prior structural knowledge to infer

the location of corrupt nodes. For example, in some power

network problems, cliques cannot be present, and so the

appearance of a clique would indicate that data must have

been corrupted. The other direction would be to use network

reconstruction results of to guide sensor placement algorithms.

For example, if the neighborhood of a node forms a clique,

then our results suggest that this clique may be due to data

corruption, and thus a better sensor could be used to rule out

this possibility.

APPENDIX A

PROOF OF THEOREM 2

Define the following deviations from the mean: ∆Ai[t] =
Ai[t] − Āi, ∆Bi[t] = Bi[t] − B̄i, ∆Ci[t] = Ci[t] − C̄i, and

∆Di[t] = Di[t]− D̄i

Note that the Lyapunov equation, (9), can be expressed as:

P = Ā⊤
i PĀi + E[∆Ai[t]

⊤P∆Ai[t]] +Q � Ā⊤
i PĀi +Q.

(36)

Here S � T denotes that T −S is positive semidefinite. Since

a solution must hold for all Q, it must hold, in particular for

positive definite Q. Thus, Āi must be a stable matrix.

Set ūi[t] = (hi ⋆ yi)[t] = E[ui[t]|yi], so that ∆ui[t] =
ui[t]− ūi[t].

With this notation, the cross spectrum, (10b), will be de-

rived:

Ruiyi
[t] = E[ui[t]yi[0]] (37)

= E[E[ui[t]yi[0]|yi]] (38)

= E[(hi ⋆ yi)[t]yi[0]] (39)

= (hi ⋆ Ryiyi
)[t]. (40)

Here, (38) is due to the tower property of conditional expec-

tation. Then (10b) follows by taking Z-transforms.

Since Āi is stable and yi[t] is wide-sense stationary, we

must have that ūi[t] is wide-sense stationary.

Note that by construction, Ruiui
[t] = Rūiūi

[t]+R∆ui∆ui
[t].

Furthermore, we must have that

Rūiūi
[t] = (hi ⋆ Ryy ⋆ h

∗
i )[t], (41)

where h∗
i is the time-reversed, transposed impulse response.

Thus, (10a) holds by taking Z-transforms.

The only part that remains to be proved is that ui is wide-

sense stationary. This will follow as long as ∆ui[t] has a finite

autocorrelation.

To show that R∆ui∆ui
[t] is bounded, we will explicitly

construct an expression for it. To derive this expression, we

need expressions for the autocorrelation of xi and the cross

correlation between xi and yi.

Let x̄i[t] =

([
Āi B̄i

I 0

]

⋆ yi

)

[t] and let ∆xi[t] = xi[t]−

x̄i[t]. Note that x̄i[t] = E[xi[t]|yi]. As with ūi, we have that

x̄i[t] is wide-sense stationary. Using a derivation identical to

that of Ruiyi
[t], we have that the cross correlation of xi and

yi is given by:

Rxiyi
[t] =

([
Āi B̄i

I 0

]

⋆ Ryiyi

)

[t] (42)

Thus, we see that Rxiyi
[t] = Rx̄iyi

[t].
Now we will work out the autocorrelation of xi. The

autocorrelation of x̄i[t] is given by:

Rx̄ix̄i
[t] =

([
Āi B̄i

I 0

]

⋆ Ryiyi
⋆

[
Āi B̄i

I 0

]∗)

[t]. (43)

By construction, we have that Rxixi
[t] = Rx̄ix̄i

[t] +
R∆xi∆xi

[t]. The following lemma characterizes the autocor-

relations of ∆xi[k].
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Lemma 2. Assume that a solution to the generalized Lyapunov

equation, (9), holds for all Q. Then R∆xi∆xi
[0] is uniquely

defined by:

R∆xi∆xi
[0] = E[Ai[0]R∆xi∆xi

[0]Ai[0]
⊤] +W

+E

[
[
∆Ai[0] ∆Bi[0]

]
[
Rx̄ix̄i

[0] Rx̄iyi
[0]

Ryix̄i
[0] Ryiyi

[0]

] [
∆Ai[0]

⊤

∆Bi[0]
⊤

]]

.

(44)

For k > 0,

R∆xi∆xi
[k] = Āk

iR∆xi∆xi
[0]

R∆xi∆xi
[−k] = R∆xi∆xi

[k]⊤.

Proof. For k > 0 we have

Rx̄ix̄i
[k] +R∆xi∆xi

[k]

= E[xi[k]xi[0]
⊤]

= E[(Ai[k − 1]xi[k − 1] +Bi[k − 1]yi[k − 1])xi[0]
⊤]

= ĀiRxixi
(k − 1) + B̄iRyixi

(k − 1)

= (ĀiRx̄ix̄i
(k − 1) + B̄iRyixi

(k − 1))

+ ĀiR∆xi∆xi
(k − 1)

= Rx̄ix̄i
[k] + ĀiR∆xi∆xi

[k − 1].

Thus, the formula for R∆xi∆xi
[k] holds for k 6= 0. (The

expression for k < 0 follows from transposing.)

Note that

∆xi[k + 1]

= (Āi +∆Ai[k])(x̄i[k] + ∆xi[k]) + (B̄i +∆Bi[k])yi[k]

+ wi[k]− Āix̄i[k]− B̄iyi[k]

= Ai[k]∆xi[k] + ∆Ai[k]x̄i[k] + ∆Bi[k]yi[k] + wi[k].

Furthermore, note that ∆xi[k] is independent of ∆Ai[k] and

∆Bi[k]. The expression for R∆xi∆xi
(0) follows by setting

E[∆xi[k + 1]∆xi[k + 1]⊤] = E[∆xi[k]∆xi[k]
⊤].

Note that R∆xi∆xi
(0) can be computed from (9) with

Q = W+

E

[
[
∆Ai[0] ∆Bi[0]

]
[
Rx̄ix̄i

(0) Rx̄iyi
(0)

Ryix̄i
(0) Ryiyi

(0)

] [
∆Ai[0]

⊤

∆Bi[0]
⊤

]]

(45)

As discussed above, the proof of the theorem will be

completed once the autocorrelation of ∆ui is characterized.

The following lemma gives the desired characterization.

Lemma 3. For k = 0, R∆ui∆ui
[0] is given by

R∆ui∆ui
[0] = C̄iR∆xi∆xi

[0]C̄⊤
i + V

+E

[
[
∆Ci[0] ∆Di[0]

]
[
Rxixi

[0] Rxiyi
[0]

Ryixi
[0] Ryiyi

[0]

] [
∆Ci[0]

⊤

∆Di[0]
⊤

]]

(46)

For k > 0, R∆ui∆ui
[k] is given by

R∆ui∆ui
[k] = C̄iR∆xi∆xi

[k]C̄⊤
i + C̄iĀ

k−1
i S

+ C̄iĀ
k−1
i E

[
[
∆Ai[0] ∆Bi[0]

]
[
Rxixi

[0] Rxiyi
[0]

Ryixi
[0] Ryiyi

[0]

]

·

[
∆Ci[0]

⊤

∆Di[0]
⊤

]]

(47)

For k < 0, R∆ui∆ui
[k] = R∆ui∆ui

[−k].

Proof. Note that ∆ui[k] can be decomposed as:

∆ui[k] (48)

= ui[k]− ūi[k] (49)

= (C̄i +∆Ci[k])(x̄i[k] + ∆xi[k]) + (D̄i +∆Di[k])yi[k]
(50)

+ vi[k]− C̄ix̄i[k]− D̄iyi[k] (51)

= C̄i∆xi[k] + ∆Ci[k]xi[k] + ∆Di[k]yi[k] + vi[k] (52)

As before, ∆xi[k] is independent of ∆Ci[k] and ∆Di[k].
Thus, the expression for R∆ui∆ui

[0] follows by computing

E[∆ui[k]
2].

For k > 0, note that ∆Ci[k] and ∆Di[k] are independent

of ∆Ci[0] and ∆Di[0]. However, ∆xi[k] may be correlated

with ∆Ci[0], ∆Di[0], and vi[0]. So, multiplying the expression

from (52) for k > 0 and k = 0 and dropping the ∆Ci[k] and

∆Di[k] terms gives

R∆ui∆ui
(k) = E

[
C̄i∆xi[k](C̄i∆xi[0]+)⊤

]

+ E

[

C̄i∆xi[k] (∆Ci[0]xi[0] + ∆Di[0]yi[0] + vi[0])
⊤
]

(53)

= C̄iR∆xi∆xi
(k)C̄⊤

i (54)

+ C̄iE[∆xi[k](∆Ci[0]xi[0] + ∆Di[0]yi[0] + vi[0])
⊤]
(55)

Let Ai[j : k] be the product defined by Ai[k : k] = I
and Ai[j : k] = Ai,j [k − 1]Ai[k − 2] · · ·Ai[j] for j < k. An

induction argument shows that

xi[k] = Ai[0 : k]xi[0] +
k−1∑

j=0

Ai[j + 1 : k](Bi[j]yi[j] + wi[j])

= Ai[1 : k]Ai[0]xi[0] +Bi[0]yi[0] + wi[0])+

+

k−1∑

j=1

Ai[j + 1 : k](Bi[j]yi[j] + wi[j]).

Let F be the σ-algebra generated by yi and all of the

random terms (Ai[j], Bi[j], Ci[j], Di[j], wi[j], vi[j]) for i ≤ 0.

Then the expression for xi[k] implies that

E[xi[k]|F ] =
k−1∑

j=1

Āk−1−jB̄yi[j]

+ Āk−1
(
(Ā+∆Ai[0])xi[0] + (B̄ +∆B0)yi[0] + wi[0]

)

= x̄i[k] + Āk−1Ā∆xi[0]+

+ Āk−1(∆Ai[0]xi[0] + ∆Bi[0]yi[0] + wi[0]).
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