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Abstract— Complex networked systems can be modeled
and represented as graphs, with nodes representing the
agents and the links describing the dynamic coupling be-
tween them. The fundamental objective of network identifi-
cation for dynamic systems is to identify causal influence
pathways. However, dynamically related data-streams that
originate from different sources are prone to corruption
caused by asynchronous time-stamps, packet drops, and
noise. In this article, we show that identifying causal struc-
ture using corrupt measurements results in the inference
of spurious links. A necessary and sufficient condition that
delineates the effects of corruption on a set of nodes is
obtained. Our theory applies to nonlinear systems, and
systems with feedback loops. Our results are obtained by
the analysis of conditional directed information in dynamic
Bayesian networks. We provide consistency results for the
conditional directed information estimator that we use by
showing almost-sure convergence.

I. INTRODUCTION

Models of systems as networks of interacting systems

are central to many domains such as climate science [1],

geoscience [2], biological systems [3] [4], quantitative finance

[5], social sciences [6], and in many engineered systems like

the Internet of Things [7] and wireless sensor networks [8].

In many scenarios such as the power grid [9] and metabolic

pathways in cells [10] it is impractical or impermissible to

externally influence the system by applying control inputs.

Here, causal structure identification via passive means is

to be accomplished. With advancements in data processing

technology, and sensors and measurement devices becoming

inexpensive, passive identification of causal graphs of dynam-

ically related agents is becoming more tenable.

Often, the data-streams in such large systems are plagued

by the effects of noise [11], asynchronous sensor clocks [12]

and packet drops [13]. While considering the problem of iden-

tifying causal influences of a large network, it is fundamental

to rigorously study such uncertainties and address detrimental

effects of data corruption on network identification.

A. Related Work

Network identification for linear systems is extensively

studied. Methods for identifying transfer functions that dy-

namically link nodes from time-series data are provided in
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[14], [15], and [16]. However, these works assume that the

time-series are perfect.

Authors in [17] leveraged multivariate Wiener filters to

reconstruct the undirected graph of the generative network

model. Moreover, assuming that the interaction dynamics are

strictly causal and using multivariate estimation based on

a Granger filter, it was shown that the directed interaction

structure can be accurately recovered. However, results assume

data to be uncorrupted with the interaction between agents

governed via linear time-invariant (LTI) dynamics.

For a network of interacting agents with nonlinear dynamic

dependencies and strictly causal interactions, the authors in

[18] proposed the use of directed information to determine

the directed structure of the network. Sufficient conditions

to recover the directed structure are provided. Recently, [19],

[20], [21] defined and used information transfer to determine

underlying causal interactions in dynamical systems. However,

it is assumed that the data-streams are ideal with no distortions.

[22] and [23] identify causal dependencies in network of LTI

systems driven by unknown intrinsic noise inputs. However, in

this article we consider nonlinear dependencies and study the

problem of network reconstruction from corrupt data-streams.

The authors in [24], [25] use dynamical structure functions

(DSF) for network recosntruction [26] and consider mea-

surement noise and non-linearities in the network dynamics.

The proposed method first finds optimal DSF for all possible

Boolean structures and then adopt a model selection proce-

dure to determine the best estimate. The authors concluded

that the performance of their algorithms degrades as noise,

network size and non-linearities increase. However, a precise

characterization of drawing spurious inferences in structure

is not provided. In this article, we provide exact location

of spurious links that arise during directed information-based

network reconstruction from corrupt data-streams.

Despite its significance, little is known on the effects of

measurement uncertainties on network identification. Assum-

ing that the network structure is known, errors-in-variables

framework for system identification with additive sensor noise

is studied in [27], [28]. However, in this work we do not

assume that the interaction structure is known. Recently in

[29], the issues of observation noise and undersampling on

causal discovery from time-series data has been addressed. Al-

though authors concluded that spurious links can be inferred,

a rigorous characterization of such links was not proven nor

a generalization of corruption models was provided. In [30]

focusing on networks with LTI interactions, authors provided

characterization of the extent of spurious links that can appear

due to data-corruption. However, the analysis is restricted to
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LTI systems and determine the undirected structure of the

networked system, and not to deduce the directions.

B. Our Contribution

In this article, we focus on identifying the Boolean structure

of the network using non-invasive or passive means from

corrupt data-streams. We consider networks with nonlinear

and strictly causal dynamical interactions. Moreover, the en-

dogenous noise exciting the system are not measured and

hence, we assume a blind approach [31]. General analysis of

network structure employing passive and and blind means with

nonlinearities is challenging. We make an assumption that the

endogenous noise affecting one node is independent of another

and thus we deal with target specified network reconstruction.

We provide necessary and sufficient conditions that delin-

eates the effects of data corruption on the directed network

structure inferred using directed information. We present a

tight characterization for the spurious links that arise due

to corruption of data-streams by determining their location

and orientation. Often, the knowledge of influence structure is

required a priori to perform system identification in networked

systems [15], [28], [32]. Thus, our results serve as a necessary

first step in understanding what part of network reconstruction

can be trusted to facilitate accurate system identification.

In [33], preliminary results that characterized the spurious

links, in the framework of this article are provided. However,

the analysis was limited to dynamical interactions such that

every node was dependent dynamically on the entire history

(strict) of its parent nodes. In this article, we consider a general

class of non-linear systems by relaxing the above assumption

on dynamics. Moreover, we provide detailed and rigorous

proofs to generalize the results obtained in [33] wherein

only a proof sketch was provided. In addition, we establish

convergence results for the estimator that we use to determine

conditional directed information.

C. Paper Organization

We review needed graph theory notions and describe the

framework for generative models in Section II. In Section III,

we provide models to characterize corruption of data-streams

that captures time uncertainty, packet loss and measurement

noise. The methods to infer directed network structure are

described in Section IV. Our directed information estimator

and simulation results are described in Section V. Finally, a

conclusion is provided in Section VI.

II. PRELIMINARIES

A. Notations

Upper case letter Y denotes a random variable (r.v) while

lower case letter y denotes a realization of r.v Y .

Caligraphic letter Y denotes the alphabet of r.v Y .

y[·] denotes a sequence and y(t) denotes the sequence

y[0], y[1], . . . y[t].
PX represents the probability mass function (PMF) of a

discrete random variable X or denotes the probability density

function (PDF) of a continuous random variable X .

1 2 3 4

(a) Trail connecting 1 and 4 is active given Z = {}.

1 2 3 4

(b) Trail connecting 1 and 4 is active given Z = {2}.

Fig. 1: This figure shows when the trail connecting nodes 1 and 4
is active given Z.

E[·] denotes the expectation operator.

A directed graph G is denoted by a pair (V,A) where V is

a set of vertices or nodes and A is a set of edges given by

ordered pairs (i, j) where i, j ∈ V .

i→ j indicates an edge or link from node i to node j in G.

i− j denotes one of i→ j or j → i.

B. Graph Theory Definitions

This subsection gives a list of standard terminology from

graphical models. It can be used as a reference for following

sections. For further details, see [34].

Definition 1 (Children and Parents). Given a directed graph

G = (V,A) and a node j ∈ V , the children of j are defined

as C(j) := {i|j → i ∈ A} and the parents of j as P(j) :=
{i|i→ j ∈ A}.

Definition 2 (Trail/Path). Nodes v1, v2, . . . , vk ∈ V forms

a trail or a path in a directed graph, G, if for every i =
1, 2, . . . , k − 1 we have vi − vi+1.

Definition 3 (Chain). In a directed graph G, a chain from

node vi to node vj comprises of a sequence of k nodes such

that vi →W1 → · · · →Wk−2 → vj holds in G.

Definition 4 (Descendants and Ancestors). Suppose there

exists a chain from a node vj to vk in a directed graph, G.

Then, vk is called a descendant of node vj and vj is called

an ancestor of vk.

Definition 5 (Collider). A node vk is a collider in a directed

graph, G, if there are two other nodes vi, vj such that vi →
vk ← vj holds.

Definition 6 (Active Trail). In a directed graph G, a trail

v1 − v2 − · · · − vn is active given a set of nodes Z if one of

the following statements holds for m ∈ {2, . . . , n − 1} and

every triple vm−1 − vm − vm+1 along the trail:

a) If vm is not a collider, then vm /∈ Z.

b) If vm is a collider, then vm or one of its descendants is in

Z.

See Figure 1 for an illustration.

Definition 7 (d-separation). Let X,Y and Z be a set of nodes

in a directed graph, G. In G, X and Y are d-separated by Z
if and only if there is no active trail between any x ∈ X and

any y ∈ Y given Z. It is denoted as d-sep (X,Y | Z).

Definition 8 (Directed Cycle). A directed cycle from a node

vi to vi in a directed graph, G, has the form vi → W1 →
· · · →Wk → vi for some set of nodes {Wn}

k
n=1 in G.
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Definition 9 (Directed Acyclic Graph). A directed graph with

no directed cycles is called a directed acyclic graph (DAG).

Definition 10 (Bayesian Network). Suppose G = (V,A) is a

DAG whose N nodes represent random variables a1, . . . , aN .

G is called a Bayesian Network (BN) if for any three subsets

X, Y and Z of V , d-sep(X,Y | Z) implies X is independent

of Y given Z.

Definition 11 (Faithful Bayesian network). Suppose G =
(V,A) is a DAG whose N nodes represent random variables

a1, . . . , aN . G is called a Faithful Bayesian network if for any

three subsets X, Y and Z of V , it holds that X and Y are

independent given Z, if and only if d-sep(X,Y | Z) is true.

C. Generative Model

In this subsection, the generative model that is assumed to

generate the measured data is described. Consider N agents

that interact over a network. For each agent i, we associate a

discrete time sequence Yi[·] and a sequence Ei[·]. We consider

Ei such that PEi
exists if Ei[t] belongs to a continuous

alphabet. The process Ei is considered to be target-specific,

that is, Ei is innate to agent i and thus Ei is independent of Ej

if i 6= j. Moreover, Ei is considered to be uncorrelated across

time. Let Y denote the set of all random process {Y1, . . . , YN}
with a parent set P ′(i) defined for i = 1, . . . , N. We consider

strictly causal nonlinear dynamical relations. The generative

model takes the form:

Yi[t] = fi



Y
(t−1)
i ,

⋃

j∈P′(i)

Y
(t−1)
j , Ei[t]



 , (1)

where fi’s can be any nonlinear function such that PYi
is well

defined if Yi[t] takes values in a continuous alphabet. fi is a

multivariate function that maps the past measurements of par-

ent nodes of i, {Y
(t−1)
j : j ∈ P ′(i)}, previous measurements

of the node i in Y
(t−1)
i , and the present realization of process

noise, Ei[t], to the present measurement of agent i, Yi[t].
For an illustration, consider the dynamics of a generative

model described by:

Y1[t] = Y1[t− 1]Y1[t− 2] + E1[t],

Y2[t] = Y1[t− 1] · Y2[t− 1] + E2[t],

Y3[t] = (Y1[t− 1] + Y3[t− 1]) · E3[t],

Y4[t] = Y2[t− 1]2 + Y3[t− 2] + Y4[t− 1] + E4[t],

Y5[t] = Y5[t− 1] · Y4[t− 1] + E5[t].

(2)

We remark that for any time instant t, the parent set P ′(i) is

thus not dependent on time.

D. Graphical Representation

Here we describe how networks of dynamical systems are

represented by graphs.

Generative Graph: The structural description of (1) induces

a generative graph G = (V,A) formed by identifying each

vertex vi in V with random process Yi and the set of directed

links, A, obtained by introducing a directed link from every

element in the parent set P ′(i) of agent i to i. Note that we

1

2 3

4

5

(a) Generative Graph G

Y1[0]

Y2[0]

Y3[0]

Y4[0]

Y5[0]

Y1[1]

Y2[1]

Y3[1]

Y4[1]

Y5[1]

Y1[2]

Y2[2]

Y3[2]

Y4[2]

Y5[2]

(b) DBN G
′ for 3 time slices

Fig. 2: This figure shows (a) generative graph, (b) its associated
DBN for 3 time slices.

do not show i → i in the generative graph and neither do

we show the processes Ei. The generative graph describes the

relationships between the stochastic processes in Y .

The generative graph associated with the example described

in (2) is given by Fig. 2(a). When the time variable is

unraveled we obtain the Dynamic Bayesian Network.

Dynamic Bayesian Network (DBN): Let G = (V,A) be

a generative graph. Let Yi be as defined in (1) for all

i ∈ V . Suppose all discrete time sequences have a finite

horizon assumed to be T . Let Sij [t] = {t′ : Yj [t
′] ∈

Y
(t−1)
j as an argument of fi in expression of Yi[t] in (1)}

for all j ∈ P ′(i) ∪ {i} and for all t. Consider the graph

G′ = (V ′, A′) where V ′ =







⋃

i∈V

t∈{0,1,...T}

Yi[t]






and

A′ =
⋃

i∈V

t∈{0,1,...T}

(

⋃

j∈P′(i)∪{i}

(

⋃

k∈Sij [t]

Yj [k]→ Yi[t]

))

The joint distribution of Y (T ) is given by:

PY (T ) = PY1[0] . . . PYN [0]

T
∏

t=1

N
∏

i=1

PYi[t]|P(Yi[t]), (3)

where the parents of Yi[t] are obtained from G′. It can

be shown that G′ is the Bayesian network for the random

variables {Yi[t] : t = 0, 1, 2, . . . , T, i = 1, 2, . . . , N} and

is considered the Dynamic Bayesian Network for {Yi : i =
1, 2, . . . , N}(see [34]). Figure 2(b) represents the DBN for

the system in (2) for three time steps.

III. UNCERTAINTY DESCRIPTION

In this section we provide a description for how uncertainty

affects the time-series Yi. We interchangeably use corruption

or perturbation to denote uncertainties in data-streams.

A. General Perturbation Models

Consider ith node in a generative graph and it’s associated

unperturbed time-series Yi. The corrupt data-stream Ui asso-

ciated with i follows:

Ui[t] = gi(Y
(t)
i , U

(t−1)
i , ζi[t]), (4)
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where gi can be any multivariate function that maps the

present and past values of uncorrupted data-streams in Y
(t)
i ,

the present value of an independent random process ζi[t], and

past corrupt measurements in U
(t−1)
i to the current corrupt

measurement, Ui[t], such that PUi
exists if Ui[t] takes values

in a continuous alphabet. ζi[t] is such that Pζi exists if ζi[t]
belongs to a continuous alphabet, and is independent of Ei, Yi

for all i ∈ 1, · · · , N , and ζj [t] for i 6= j. We highlight a few

important perturbation models that are practically relevant.

Temporal Uncertainty: Consider a node i in a generative

graph. Suppose t is the true clock index but the node i
measures a noisy clock index which is given by a random

process, ζi[t]. One such probabilistic model is given by the

following IID Bernoulli process:

ζi[t] =

{

d1, with probability pi,

d2, with probability (1− pi),

where d1 and d2 are any non-positive integers such that at

least one of d1 and d2 are not equal to 0. Randomized delays

in information transmission can be modeled as:

Ui[t] = Yi[t+ ζi[t]]. (5)

Noisy Filtering: Given a node i in a generative graph,

the data-stream Yi is causally filtered and corrupted with

independent measurement noise ζi[·]. This perturbation model

is described by:

Ui[t] = (Li ∗ Yi)[t] + ζi[t], (6)

where Li is a stable causal linear time invariant filter.

Packet Drops: Consider an IID Bernoulli process ζi[t]
described by success probability, pi. The measurement Ui[t]
corresponding to an ideal data-point Yi[t] packet reception at

time t can be stochastically modeled as:

Ui[t] = ζi[t]Yi[t] + (1− ζi[t])Ui[t− 1]. (7)

B. Perturbed Dynamic Bayesian Network

Here, we provide a discussion on how the DBN associated

with the measured data-streams gets altered when the data-

streams are subject to corruption. Note that the measured

data-streams only includes the corrupted time-series for the

nodes that are corrupted and the data-streams for those nodes

that are not corrupted. The uncorrupted time-series for the

corrupted nodes are not measured and are hence, not observed.

When the time variable is unraveled we obtain the perturbed

DBN (PDBN) that depicts the causal dependencies between

the true data-streams for the network, and in addition shows

the dependencies between the uncorrupted measurements and

the corrupted values for the corrupted nodes, and between the

corrupted measurements for each corrupted node. Thus, the

perturbed DBN is the union of DBN when there is no data

corruption and the causal dependencies for the time-series

associated with the corrupted node. Figure 3(a) shows an

example of a PDBN corresponding to the generative graph in

Fig. 2(a) for three time slices. Here, node 1 data-streams are

corrupt following a noisy filtering model described in (6).

Y1[0]

U1[0] U1[1] U1[2]

Y2[0]

Y3[0]

Y4[0]

Y5[0]

Y1[1]

Y2[1]

Y3[1]

Y4[1]

Y5[1]

Y1[2]

Y2[2]

Y3[2]

Y4[2]

Y5[2]

(a) PDBN for 3 time slices

U1[0]

Y2[0]

Y3[0]

Y4[0]

Y5[0]

U1[1]

Y2[1]

Y3[1]

Y4[1]

Y5[1]

U1[2]

Y2[2]

Y3[2]

Y4[2]

Y5[2]

(b) Measured Data-Stream

Fig. 3: Figure (a) shows Perturbed DBN G
′
Z for 3 time slices when

node 1 is corrupt. Node 1 ideal stream, Y1, is shaded because it is
not measured. Figure (b) only shows the causal relations between the
measured data-streams without hidden Y1. There are no direct causal
connections between time-series U1 and other time series nodes as
there are no direct dynamic influences between them, and therefore,
are not shown

Consider a generative graph G = (V,A). Let Yi be

as defined in (1) for all i ∈ V . Suppose all discrete

time sequences have a finite horizon assumed to be T .

Let G′ = (V ′, A′) be the associated dynamic Bayesian

network. Suppose Z ⊂ V is the set of perturbed nodes with

perturbation model described in (4). For i ∈ Z, the measured

(corrupt) data-stream corresponding to agent i, Ui, is related

to Yi via (4). Let UZ = {Ui}i∈Z and YZ̄ = {Yj}j∈Z̄

where Z̄ = V \ Z. Due to corruption only UZ and YZ̄ are

measured and observed. Denote the measured data-streams

by W = UZ ∪ YZ̄ . For all j ∈ Z, let SUj [t] = {t
′ : Uj [t

′] ∈

U
(t−1)
j is an argument of gi in the expression of Uj [t] in (4)}

and let SYj [t] = {t′ : Yj [t
′] ∈

Y
(t)
j is an argument of gi in the expression of Uj [t] in (4)}

for all t. Consider the graph G′
Z = (V ′

Z , A
′
Z)

where V ′
Z = V ′ ∪







⋃

k∈Z

t∈{0,1,...T}

Uk[t]






and A′

Z =

A′∪







⋃

k∈Z

i∈SYk[t]

Yk[i]→ Uk[t]






∪







⋃

k∈Z

i∈SUk[t]

Uk[i]→ Uk[t]






for

all t ∈ {0, 1, 2, . . . , T}. Note that the vertex set V ′
Z consists

of all measurements given by the set W , and the uncorrupted

versions Yk of the corrupted versions Uk for k ∈ Z.
Consider the set of random variables, R = {Yi[t] : i ∈
{1, 2, . . . , N} and t ∈ {0, 1, 2, 3, . . . , T}} ∪ {Ui[t] : i ∈
{1, 2, . . . , N} and t ∈ {0, 1, 2, 3, . . . , T}}. The joint distribu-

tion PR is given by:

PR =

(

∏

i∈V

PUi[0]

)

·





∏

j∈Z

PYj [0]



·

(

T
∏

t=1

N
∏

i=1

PUi[t]|P(Ui[t])

)

·





T
∏

t=1

N
∏

j=1

PYj [t]|P(Yj [t])



 , (8)
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where the parents of Ui[t], Yj [t] are obtained from G′
Z . G

′
Z

is the Bayesian Network for the random variables R and is

considered as the perturbed DBN associated with UZ ∪ Y .

Remark 1. Above, the discrete time sequences were consid-

ered to have finite horizon only to illustrate DBN and PDBN.

The main results in this article characterizing the structure

inference from corrupt data-streams holds for any horizon.

IV. STRUCTURE IDENTIFICATION

A. Structure Inference from Ideal Data-Streams

First, we recall how the structure of a generative graph

can be inferred using directed information in the case of

ideal data-streams. Consider a generative graph G with N
nodes and let Y denote the collection of N data-streams

that are measured. The authors in [18] defined and applied

causally conditioned directed information (DI) in a network

of dynamically interacting agents to determine if a process

causally influences another. A slightly modified definition of

DI as defined in [18] is:

Definition 12 (Causally Conditioned Directed Information).

The causally conditioned directed information (DI) from data-

stream Yj to Yi is given by:

I(Yj → Yi ‖ Yīj̄) = E

[

log
PYi‖Yj ,Yīj̄

PYi‖Yīj̄

]

, (9)

where PYi‖Yj ,Yīj̄
=

T
∏

t=1
P
Yi[t]|Y

(t−1)
i

,Y
(t−1)
j

,Y
(t−1)

īj̄

, PYi‖Yīj̄
=

T
∏

t=1
P
Yi[t]|Y

(t−1)
i

,Y
(t−1)

īj̄

and Yīj̄ = Y \ {Yi, Yj}.

For the rest of the article, we drop the word ‘causally’ for

convenience. Note that the conditional DI from Yj to Yi is

positive if and only if the history of Yj gives information

about Yi[t] that could not have been obtained from Yi’s own

history and the other signals from the network. So, if there is

no directed edge from j → i in G, then we have I(Yj → Yi ‖
Yīj̄) = 0.

The following theorem was proved in [18] that specifies a

necessary and sufficient condition to detect a presence of link

in the generative graph.

Theorem 1. A directed edge from j to i exists in the directed

graph G if and only if I(Yj → Yi ‖ Yīj̄) > 0.

Remark 2. In [18], the authors assume positive distribution

for the random processes in Y . The distribution is positive if

PY > 0 for all joint sequences Y . This assumption avoids

pathologies that arise in deterministic systems. For example,

if Y1[t] are IID random variables, and Y2[t] = Y1[t − 1]
and Y3[t] = Y2[t − 1], then I(Y2 → Y3 ‖ Y1) = 0, even

though Y3 depends on Y2 The positivity assumption ensures

that the computed expectations are non-negative and hence

avoids false negatives for true edges in the generative graph

and are therefore detected.

B. Main Result: Inferring Directed Graphs from Corrupt

Data-streams

In this section we characterize the spurious edges that arise

when using conditional DI to estimate network structure. In

particular, we will show that under appropriate hypotheses, the

estimated edges precisely correspond to edges in the perturbed

graph, defined next.

Definition 13 (Perturbed Graph). Let G = (V,A) be a

generative graph. Suppose Z ⊂ V is the set of perturbed

nodes with each perturbation model admitting a description

provided by (4). The perturbed graph, GZ = (V,AZ), is a

directed graph where there is an edge i→ j ∈ AZ if and only

if there is a trail, trlG : i = v1 − v2 − · · · − vk−1 − vk = j in

G such that the following conditions hold:

P1) If j /∈ Z, then vk−1 → j ∈ A.

P2) For m ∈ {2, 3, . . . , k − 1}, if vm−1 → vm ← vm+1, and

vm /∈ Z, then vm+1 ∈ Z.

P3) If vm is a node such that vm−1−vm−vm+1 is a sub-path

of the path v1 − . . . − vk and vm is not a collider, then

vm ∈ Z.

Remark 3. Note that the existence of a trail that does not

meet the ‘if’ conditions in P1), P2) and P3) guarantees that

i → j ∈ AZ . For example, if i → j ∈ A then i → j ∈ AZ .

Indeed, if j /∈ Z then i→ j ∈ AZ by condition P1).Conditions

P2) and P3) are not applicable. On the other hand, if j ∈ Z,

then none of the conditions P1), P2) or P3) are applicable to

the trail i→ j. So, i→ j ∈ AZ .

Definition 14 (Spurious Links). Let G = (V,A) be a

generative graph, Z ⊂ V be the set of perturbed nodes and

GZ = (V,AZ) be the perturbed graph. Spurious links are

those links i→ j ∈ AZ that do not belong to A.

The conditions in P1-P3 specifies a path characterization

based on the location of corrupt nodes. This defines the paths

through which spurious probabilistic relations are introduced

due to data corruption. These probabilistic relations are cap-

tured by trails in PDBN that become active due to data-

corruption. The following theorem precisely gives a relation-

ship between the active trails in PDBN and the directed edges

in the perturbed graph. The proof is given in appendix I.

Theorem 2. Consider a generative graph, G = (V,A),
consisting of N nodes. Let Z = {v1, . . . , vn} ⊂ V be the set

of n perturbed nodes where each perturbation is described

by (4). Denote the data-streams as follows: UZ := {Ui}i∈Z

and YZ̄ := {Yj}j∈Z̄ where Z̄ = V \ Z. Let the measured

data-streams be W = UZ ∪ YZ̄ = {W1,W2, . . . ,WN}. Let

the perturbed graph be GZ = (V,AZ) and its associated

PDBN be G′
Z = (V ′

Z , A
′
Z). If i → j /∈ AZ , then d-

sep(Wj [t],W
(t−1)
i | {W

(t−1)
i ,W

(t−1)

j̄ī
}) holds in G′

Z for all

t > 0.

We will now show that if conditional directed information,

I(Wi → Wj ‖ Wj̄ī), are computed using corrupted data-

streams, and were applied for causal structure inference, then

we infer the perturbed graph that contains spurious links.
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1 2 3

(a) True Graph, G.

1 2 3

(b) Perturbed Graph, GZ .

Fig. 4: This figure illustrates the intuition behind spurious links in
Example 1. Figure 4(b) shows the perturbed graph inferred. Spurious
links are shown in red and the true edges are depicted in black.

Corollary 1. Consider a generative graph, G = (V,A),
consisting of N nodes. Let Z = {v1, . . . , vn} ⊂ V be the set

of n perturbed nodes where each perturbation is described by

(4). Denote the data-streams as follows: UZ := {Ui}i∈Z and

YZ̄ := {Yj}j∈Z̄ where Z̄ = V \ Z. Let the measured data-

streams be W = UZ ∪ YZ̄ = {W1,W2, . . . ,WN}. Let the

perturbed graph be GZ = (V,AZ). If I(Wi →Wj ‖ Wj̄ī) >
0, then i→ j ∈ AZ .

Proof. We will show that if i→ j /∈ AZ , then I(Wi →Wj ‖
Wj̄ī) = 0. Suppose, i→ j /∈ AZ . Let G′

Z = (V ′, A′
Z) be the

perturbed dynamic Bayesian network (DBN) associated with

the perturbed graph, GZ . Then, using Theorem 2, for all

t > 0, d-sep(Wj [t],W
(t−1)
i | W

(t−1)
i ,W

(t−1)

j̄ī
) holds in G′

Z .

In other words, this implies P
Wj [t]|W

(t−1)
j

,W
(t−1)
i

,W
(t−1)

j̄ī

=

P
Wj [t]|W

(t−1)
j

,W
(t−1)

j̄ī

will hold true for all t and thus, I(Wi →

Wj ‖ Wj̄ī) = 0.

The following example illustrates the intuition for the pres-

ence of spurious links in the perturbed graph.

Example 1. Consider a generative graph as shown in Figure

4 (a). Suppose node 3 is subject to packet drop corruption

model in (7) and let U3 be its measured data-stream. Denote

the measured data-streams at nodes 1 and 2 as Y1 and Y2. U3

is related to its ideal counterpart Y3 via (7). The measured

data-streams are {W1 = Y1,W2 = Y2,W3 = U3}. Since

measurements of node 3 are corrupted, measurements of Y1

and Y2 can give useful information for predicting states at

node 3 that would not be available in the noisily measured

history of U3. Thus, I(W1 → W3 ‖ W2) > 0 and I(W2 →
W3 ‖W1) > 0. The perturbed graph is shown in figure 4 (b).

The results in Theorem 2 and Corollary 1 respectively

shows that existence of active trails is the PDBN and non-

zero conditional directed information is sufficient to infer the

presence of a directed link in the perturbed graph. However,

under a mild assumption on the generative and the perturbation

model, it can be shown that the respective conditions are also

necessary to detect a directed link in the perturbed graph.

Assumption 1. Let the following conditions on the generative

and the perturbation model hold:

C1) In the generative model (1), for all agents i ∈
{1, 2, . . . , N}, and all j ∈ P ′(i), there is a number

kij ≥ 1 such that Yj [t− kij ] is an argument of fi.

C2) For all perturbed nodes i ∈ Z, in the perturbation model

(4), there is a number ki ≥ 1 such that gi always takes

Yi[t− ki] as it’s argument.

In addition, let at least one of the following conditions on

corruption model hold:

B1) If a node i ∈ Z, then there is a number k′i ≥ 1 such that

Yi[t− k′i] is an argument of fi in (1).

B2) If a node i ∈ Z, then Yi[t] is an argument of gi in (4).

Remark 4. The above assumption states that the dynamics in

generative model (1), Yi[t] depends on at least one previous

measurement value of its parent nodes. Similarly, for the per-

turbation model (4), the corrupt value Ui[t] depends causally

on uncorrupted measurement value. We consider strictly causal

interactions in the generative model and causal interactions

in the corruption model and are therefore realistic in many

practical physical systems.

The following theorem asserts that if i → j ∈ AZ then

there exists a corresponding active trail in perturbed DBN.

The proof is given in appendix II.

Theorem 3. Consider a generative graph, G = (V,A),
consisting of N nodes. Let Z = {v1, . . . , vn} ⊂ V be the set

of n perturbed nodes where each perturbation is described by

(4). Denote the data-streams as follows: UZ := {Ui}i∈Z and

YZ̄ := {Yj}j∈Z̄ where Z̄ = V \ Z. Let the measured data-

streams be W = UZ ∪ YZ̄ = {W1,W2, . . . ,WN}. Suppose,

the generative model and the perturbation model satisfies the

conditions for dynamics that is mentioned in Assumption 1.

If there is a directed edge from i to j in perturbed graph,

GZ = (V,AZ), then there exists a trail between a node in

W
(t−1)
i and Wj [t] that is active given {W

(t−1)
j ,W

(t−1)

j̄ī
} in

G′
Z , for some t > 0.

Under the following assumption we can in fact show that

I(Wi → Wj ‖ Wj̄ī) > 0 is also a necessary condition for

i→ j ∈ AZ as shown in Corollary 2.

Assumption 2. We assume that the generative model in (1)

and the perturbation model in (4) are such that the corre-

sponding DBN and PDBN are faithful Bayesian networks.

Moreover, we consider positive joint distributions for the

random processes Y and U .

Corollary 2. Under Assumption 2 and dynamics following

Assumption 1, if i→ j ∈ AZ , then I(Wi →Wj ‖Wj̄ī) > 0.

Proof. By theorem 3, if i → j ∈ AZ , then there exists an

trail in PDBN between W
(t−1)
i and Wj [t] that is active given

{W
(t−1)
j ,W

(t−1)

j̄ī
} in G′

Z , for some t > 0. Under faithful-

ness assumption, this implies P
Wj [t]|W

(t−1)
j

,W
(t−1)
i

,W
(t−1)

j̄ī

6=

P
Wj [t]|W

(t−1)
j

,W
(t−1)

j̄ī

. Thus, I(Wi →Wj ‖ Wj̄ī) > 0.

Remark 5. The faithfulness assumption is justified as the

unfaithful probability distributions are restricted to a set of

Lebesgue measure zero [34]. Here, system parameters for

which the algebraic conditions for the conditional indepen-

dence hold true with true dynamical dependencies must belong

to the set of measure zero.

V. ESTIMATION OF DIRECTED INFORMATION

Given the time-seriesW , the reconstruction of the perturbed

graph is accomplished by (i) computing the conditional di-
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rected information, I(Wi → Wj ‖ Wj̄ī) (ii) placing a link

from node i to j if I(Wi → Wj ‖ Wj̄ī) > 0. Thus, the

algorithm requires computation of I(Wi → Wj ‖ Wj̄ī) for

all pairs of nodes (Wi,Wj) in W . Toward computing the

conditional directed information we refer to methods based

on Context-Tree-Weighting (CTW) in [35], which provide

estimates on conditional probability mass function (PMF) of

a time-series admitting values in a finite alphabet. For the

reminder of this section, we consider fi in (1) and gi in (4)

to be such that Yi[t] and Ui[t] belong to finite alphabet. Here,

from time sequence x(n) (recall the notation of x(n)), the PMF

Q(x[i] | x(i−1)) for all i = 1, . . . , n is computed where n
is the length of the sequence. Q is also called as sequential

probability assignment for a sequence x(n). Furthermore it is

shown in [36] that Q computed is a Universal Probability

Assignment as discussed next.

A. Universal Probability Assignment

The following definition characterizes the probability mass

function Q in relation to the true mass function P in terms

of the length of the time-series. It establishes that as the hori-

zon of the time-series is extended, the sequential probability

assignment estimate, Q, approaches the true PMF P.

Definition 15 (Universal Probability Assignment). Let P be

the true joint PMF of x(n). Then, a probability assignment Q
is called as universal if the following holds:

lim
n→∞

1

n
E

[

log
P (x(n))

Q(x(n))

]

= 0, (10)

where estimated joint PMF for x(n) is given by Q(x(n)) =
Q(x[0])Q(x[1] | x[0])Q(x[2] | x(1)]) · · ·Q(x[n] | x(n−1)).
Similarly, P (x(n)) can be factorized.

For the rest of the article Q is estimated by CTW algorithm

which is a universal probability assignment as discussed in

[36] for each time series. The only assumptions made are that

the sequences belong to a finite alphabet and are stationary and

ergodic Markov sequences of a bounded order D. That is, for

a Markov sequence X , P (x[t]|x(t−1)) = P (x[t]|xt−1
t−l ) where

l ≤ D. The CTW algorithm uses a weighted distribution to

take into account of all possible D-bounded Markov sources

and estimates the sequential probability, Q(x[t]|x(t−1)) for ev-

ery symbol x[t] given the past observations. The computational

complexity of CTW algorithm is linear in horizon length n,

of the sequences considered.

B. Pairwise Estimation of Directed Information

Here, a pairwise estimator of directed information between

a pair of random process proposed by [36] is described. Let

X and Y be jointly stationary and ergodic processes. The

directed information from X to Y can be expressed in terms

of the entropy as follows:

I(X → Y ) = H(Y )−H(Y ‖ X) (11)

where H(Y ) = E[− logP (Y )] and H(Y ‖ X) =
E[− logP (Y ‖ X)] denotes the entropy of Y and the causally

conditioned entropy [37] respectively.

The directed information rate (DIR) from X to Y is defined

as:

Ir(X → Y ) = lim
n→∞

1

n
I(x(n) → y(n)). (12)

The directed information rate in (12) characterizes the directed

information from X to Y in the limiting sense of the horizon

being infinite. Let Hr(Y ) := limn→∞
1
n
H(y(n)) and let

Hr(Y ‖ X) := limn→∞
1
n
H(y(n) ‖ x(n)). Thus, if Hr(Y )

and Hr(Y ‖ X) converge, then Ir is convergent. That is,

Ir = Hr(Y )−Hr(Y ‖ X). (13)

In [36], the following DIR estimator is defined:

Î(x(n) → y(n)) =
1

n

{

n
∑

i=1

∑

y[i]∈Y

Q(y[i] | x(i−1), y(i−1))·

log
1

Q(y[i] | y(i−1))

}

−
1

n

{

n
∑

i=1

∑

y[i]∈Y

Q(y[i] | x(i−1), y(i−1))·

log
1

Q(y[i] | x(i−1), y(i−1))

}

(14)

In [36], consistency results for estimating directed infor-

mation (DI) between a pair of random processes from data

was proposed. In this article we provide consistency results

of the conditional directed information estimator by showing

convergence in almost sure sense (denoted as P-a.s).

C. Estimation of Conditional Directed Information

Let X,Y, Z be jointly stationary and ergodic processes. The

conditional directed information from X to Y conditioned on

Z can be expressed in terms of the entropy as follows:

I(X → Y ‖ Z) = H(Y ‖ Z)−H(Y ‖ X,Z). (15)

The causally conditioned directed information rate (DIR)

from X to Y now is defined as:

Ir(X → Y ‖ Z) = lim
n→∞

1

n
I(x(n) → y(n) ‖ z(n)). (16)

Let Hr(Y ‖ X,Z) := limn→∞
1
n
H(y(n) ‖ x(n), z(n)).

Thus, if Hr(Y ‖ Z) and Hr(Y ‖ X,Z) converge, then Ir
is convergent. That is,

Ir = Hr(Y ‖ Z)−Hr(Y ‖ X,Z). (17)

The conditional directed information estimator Î(x(n) →
y(n) ‖ z(n)) is defined as under:

Î(x(n) → y(n) ‖ z(n)) =

1

n

n
∑

i=1

∑

y[i]∈Y

Q(y[i] | x(i−1), y(i−1), z(i−1))·

log
1

Q(y[i] | y(i−1), z(i−1))

−
1

n

n
∑

i=1

∑

y[i]∈Y

Q(y[i] | x(i−1), y(i−1), z(i−1))·

log
1

Q(y[i] | x(i−1), y(i−1), z(i−1))
(18)
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1 2 3

(a) True Graph

1 2 3

(b) Perturbed Graph.

(c) Comparison of directed information estimates
between perfect measurements and corrupted data-
streams. DIR I is shown along X-axis and the sample
length n is along Y-axis.

Fig. 5: This figure shows how unreliable measurements at node 3
results in spuriously inferring a causal influence from 1 → 3 and
2 → 3. 5(b) shows the perturbed graph inferred. Spurious edges are
shown in red while true edges are in black.

The following theorem establishes the consistency result in

estimating conditional DIR as defined in (18). The proof is

given in appendix III.

Theorem 4. Let Q be the probability assignment in the CTW

algorithm. Suppose, X,Y, Z are jointly stationary irreducible

aperiodic finite-alphabet Markov processes whose order is

bounded by the prescribed tree depth of the CTW algorithm.

Then,

lim
n→∞

Î(x(n) → y(n) ‖ Z(n)) = Ir(X → Y ‖ Z) P-a.s,

(19)

For computing (18), first Q(x[i], y[i], z[i] |
x(i−1), y(i−1), z(i−1)) and Q(y[i], z[i] | y(i−1), z(i−1))
are estimated using CTW for all realizations of

tuples (x[i], y[i], z[i]) and (y[i], z[i]). The estimated

probabilities are tabulated and the required marginalized

conditional probabilities Q(y[i] | x(i−1), y(i−1), z(i−1)) and

Q(y[i] | y(i−1), z(i−1)) in (18) are computed from this table

for entropy estimation.

D. Simulation Results

To verify the predictions of Theorem 2, we first performed

a simulation on a network consisting of 3 nodes with a single

node being perturbed and on a network consisting of 6 nodes,

of which 2 are corrupt. We estimate the directed information

rates (DIR), which are DI estimates that are averaged along

the sequence length until the horizon. We used the estimator

described in (18) to compute DIR. For both the networks, the

horizon length are in the order 104.

1 4

2 5

3 6

(a) True generative graph.

1 4

2 5

3 6

(b) Perturbed Graph

(c) Comparison of directed information rate (DIR) estimates
for links from nodes 1 and 2, between ideal data-streams Y

and uncertain measurements U . DIR I is shown along X-axis
and the sample length n is along Y-axis.

Fig. 6: 6(a) shows true generative graph. 6(c) depicts DIR
estimates to detect links from nodes 1 and 2 using ideal measurements
Y and when there is corruption at nodes 2 and 5. 6(b) shows the
perturbed graph inferred. The spurious links are shown in red and
the true edges are shown in black. With cascaded perturbations, more
spurious links are inferred.

1) Single node Perturbation: Consider a network consisting

of 2 nodes with a common child as shown in Fig. 5(a). The

true generative model is described as follows:

Y1[t] = E1[t],

Y2[t] = (|Y1[t− 1]− Y1[t− 2]| · Y3[t− 1]2 · E2[t]) mod 3,

Y3[t] = E3[t]

where E1[t] ∼ Categorical(3, [0.15, 0.35, 0.5]),
E2[t] ∼ Categorical(3, [0.35, 0.35, 0.3]) and E3[t] ∼
Categorical(3, [0.4, 0.2, 0.4]). Each of Y1[t], Y2[t] and Y3[t]
has a finite alphabet {0, 1, 2}.

The perturbation considered here is the packet-drops uncer-

tainty at node 3. The corruption model takes the form:

U3[t] =

{

(Y3[t] + U3[t− 1]) mod 3, with probability 0.55

(Y3[t− 1] + U3[t− 1]) mod 3, with prob. 0.45.

The perturbed graph predicted by Theorem 2 is shown in

Fig. 5(b). The DIR estimates from ideal (Y ) and unreliable

measurements (U ) are shown in Fig. 5(c). We observe non-

zero DIR estimates and add edges to GZ respectively. In

particular, note the substantial rise in I(U1 → U3 ‖ U2) and

in I(U2 → U3 ‖ U1). This indicates the presence of spurious

links 1→ 3 and 2→ 3 in the inferred perturbed graph.

2) Multiple Perturbation: Consider a network of 6 nodes as

shown in Fig. 6(a). The dynamic interactions in the true
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(a) A comparison of DIR estimates to detect links from nodes
3 and 4 using ideal measurements and when there is corruption
at nodes 2 and 5 is shown. DIR I is shown along X-axis and
the sample length n is along Y-axis.

(b) A comparison of DIR estimates to detect links from nodes
5 and 6 using ideal measurements and when there is corruption
at nodes 2 and 5 is shown. DIR I is shown along X-axis and
the sample length n is along Y-axis.

Fig. 7: DI estimates to detect links from nodes 3,4,5 and 6. Notice
the large number of non-zero DIR estimates computed from corrupt
measurements corresponding to links from nodes 3 and 6 which had
no children in the true generative graph that now has lot of children
nodes in GZ .

generative model are as follows:

Y1[t] = E1[t],

Y2[t] = Y1[t− 1]||E2[t],

Y3[t] = Y2[t− 1]||E3[t],

Y4[t] = E4[t],

Y5[t] = (Y2[t− 1]||Y4[t− 1])&E5[t],

Y6[t] = Y5[t− 1]||E6[t]

where E1[t] ∼ Bernouilli(0.55), E2[t] ∼ Bernouilli(0.5),

E3[t] ∼ Bernouilli(0.2), E4[t] ∼ Bernouilli(0.4), E5[t] ∼ and

E6[t] ∼ Bernouilli(0.3)and ‘||’ is logical ‘OR’ operation while

‘&’ is logical ‘AND’ operation. Each of Y1[t], Y2[t], . . . , Y6[t]
has a finite alphabet {0, 1}. The perturbations considered here

are time-origin uncertainties at nodes 2 and 5. The corruption

models takes the form:

U2[t] =

{

Y2[t− 2], with probability 0.5,

Y2[t], with probability 0.5,

U5[t] =

{

Y5[t− 2], with probability 0.5,

Y5[t], with probability 0.5.

The perturbed graph predicted by Theorem 2 is shown in

figure 6(b). The DIR estimates from ideal (Y ) and unreli-

able measurements (U ) are shown in figures 6(c) and 7.

We observe non-zero DIR estimates and add edges to GZ

respectively. For clarity of visualization, only non-zero DIR

estimates predicted by Theorem 2 are shown.

VI. CONCLUSION

We studied the problem of inferring directed graphs for a

large class of networks that admit nonlinear and strictly causal

interactions between several agents. We provided necessary

and sufficient conditions that delineated the effects of data

corruption on the directed network structure inferred using

directed information. We presented a tight characterization

for the spurious links that arise due to corruption of data-

streams by determining their location and orientation. Finally,

we provided convergence results for the estimation of con-

ditional directed information that was used to determine the

directed structure. Simulation results were provided to verify

the theoretical predictions.

Future Work

Currently, the emphasis was on characterizing the effects

of data corruption on network inference and determining how

spurious probabilistic relations are introduced. Future work

will focus on quantifying the amount of data that is needed to

detect network inter-relationships using directed information.

Another interesting direction would be to consider network

reconstruction for non-target specific nonlinear dynamical

systems. Non-target specific network reconstruction for linear

systems studied in [38] and [39] may yield useful insights in

this direction. Moreover, it would be interesting to characterize

effects of data corruption in other network reconstruction

methods. Verifying identifiability conditions [14], [15] and

quantifying error in the identified transfer function due to data

corruption can be an interesting line of work.

APPENDIX I

PROOF FOR THEOREM 2

We will show that if i → j /∈ AZ , then there is

no trail between W
(t−1)
i and Wj [t] that is active given

{W
(t−1)
j ,W

(t−1)

j̄ī
} in the PDBN G′

Z , for all t > 0. However,

trail in G′
Z between W

(t−1)
i and Wj [t] can contain future state

node αbm [tm] such that tm ≥ t and bm ∈ V . Note that such

nodes are not observed in {W
(t−1)
j ,W

(t−1)

j̄ī
} and can therefore

make the trail in PDBN active. However, the following lemma

proves that such nodes actually makes the trail inactive given

{W
(t−1)
j ,W

(t−1)

j̄ī
}.

Lemma 1. Consider a generative graph, G = (V,A), con-

sisting of N nodes. Let Z = {v1, . . . , vn} ⊂ V be the set

of n perturbed nodes where each perturbation is described

by (4). Denote the data-streams as follows: UZ := {Ui}i∈Z

and YZ̄ := {Yj}j∈Z̄ where Z̄ = V \ Z. Let the measured
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data-streams be W = UZ ∪ YZ̄ = {W1,W2, . . . ,WN}. Let

G′ = (V ′, A′) be the dynamic Bayesian network (DBN)

associated with G and G′
Z = (V ′

Z , A
′
Z) be the perturbed DBN.

If i→ j /∈ A and if a trail in G′
Z between W

(t−1)
i and Wj [t]

contains a node αbm [tm] such that tm ≥ t and bm ∈ V , then

for all t > 0, the trail is not active given {W
(t−1)
j ,W

(t−1)

j̄ī
}.

Proof. Consider any trail from a node in W
(t−1)
i to Wj [t] in

G′
Z . Denote this by trlG′

Z := Wi[t1] = αb1 [t1] − αb2 [t2] −
· · ·−αbr−1 [tr−1]−αbr [tr] = Wj [t] where 0 ≤ t1 < t. Here, bk
denotes the corresponding vertex in V for k = {1, 2, . . . , r}.
Also, αbk [tk] = Ubk [tk] if bk ∈ Z or αbk [tk] = Ybk [tk]

otherwise. For compact notation, set θ := {W
(t−1)
j ,W

(t−1)

j̄ī
}.

The trail has length at least 3. As i → j /∈ A and if

j /∈ Z, then Yj [t] does not dynamically depend on process

Yi and clearly not on Ui. If j ∈ Z, then by (4), Uj [t] does not

dynamically depend on Yi nor Ui. Thus, there is no direct link

of the form αi[t
′]→ αj [t”] in G′

Z , for any t′, t”. In particular,

Wi[t1]→Wj [t] /∈ G′
Z . Thus, there are at least 3 nodes in the

trail, trlG′
Z .

Unobserved collider in trail. Without loss of generality,

choose tm = max{t1, . . . , tr−1} ≥ t. Consider the sub-trail

subtrl′ := αbm−1 [tm−1]− αbm [tm]− αbm+1 [tm+1] of trlG′
Z .

By maximality of tm, tm ≥ tm−1 and tm ≥ tm+1. We will

show that one of αbm−1
[tm−1], αbm [tm], and αbm+1

[tm+1] is

a collider not in θ and therefore the trail trlG′
Z cannot be

active given θ.

Suppose tm > tm−1 and tm > tm+1. Then, subtrl′ is of

the form, αbm−1
[tm−1] → αbm [tm] ← αbm+1

[tm+1]. Note

that, as tm ≥ t, it follows that neither αbm [tm] nor any of its

descendants can be in θ and hence not observed.

Now, consider tm > tm−1 and tm = tm+1. (The case of

tm > tm+1 and tm = tm−1 can be proven similarly). By

the generative model in (1), by strict causality, for any node

p ∈ V , Yp[tp] does not dynamically depend on any Yq[tp]
for q ∈ {p,P ′(p)}. By the perturbation model described by

(4), for any q ∈ Z, Uq[tq] dynamically depends only on

{U
(tq−1)
q , Y

(tq)
q }. As tm = tm+1, we therefore have bm =

bm+1 such that bm ∈ Z and, one of αbm [tm] and αbm+1
[tm+1]

is actually a perturbed measurement Ubm [tm] while the other

being Ybm [tm].
Suppose αbm [tm] = Ubm [tm]. Then, αbm+1 [tm+1] =

Ybm [tm]. As tm > tm−1, subtrl′ is in fact αbm−1
[tm−1] →

αbm [tm] = Ubm [tm] ← αbm+1
[tm+1] = Ybm [tm]. Therefore,

αbm [tm] is a collider and as tm ≥ t, it is not observed in θ.

Suppose instead that αbm [tm] = Ybm [tm]. Then,

αbm+1 [tm+1] = Ubm [tm]. As bm ∈ Z and maximality of

tm implies αbm+2
[tm+2] ∈ {U

(tm−1)
bm

, Y
(tm−1)
bm

}. Thus, we

have αbm−1
[tm−1] − αbm [tm] = Ybm [tm] → αbm+1

[tm+1] =
Ubm [tm] ← αbm+2

[tm+2] in trlG′
Z . Therefore, αbm+1

[tm+1]
is a collider not observed in θ.

Proof of Theorem 2

For rest of the proof, denote θ := {W
(t−1)
j ,W

(t−1)

j̄ī
}.

Note that if i → j /∈ AZ , then there is no directed edge

from i to j in G, and every trail from i to j in G violates

at least one of the conditions of Definition 13. We will

consider these cases separately and show that no active trail

exists in G′
Z in each case. Denote any trail connecting a

node in W
(t−1)
i and Wj [t] in G′

Z , by trlG′
Z := Wi[t1] =

αb1 [t1]−αb2 [t2]− · · · −αbr−1
[tr−1]−αbr [tr] = Wj [t] where

0 ≤ t1 < t and bk denotes the corresponding vertex in

V for k = {1, 2, . . . , r}. Here, αv[tv] = Uv[tv] if v ∈ Z
or αv[tv] = Yv[tv] otherwise. Using Lemma 1, if any t′ in

{t2, . . . , tr−1} is such that t′ ≥ t, then trlG′
Z is not active.

Now, consider 0 ≤ t1, t2, t3, . . . , tr−1 < t. We will first show

that any such trail in G′
Z , trlG′

Z , can be mapped to a trail in

G, trlG := i = v1 − v2 − v3 . . . vk−1 − vk = j as follows:

Initialize: k = 1 and v1 = b1.

for l = 1 : r − 1 do

if bl+1 6= bl in αbl [tl]− αbl+1
[tl+1] along trlG′

Z then

Set vk+1 = bl+1.

Add edge vk − vk+1 with the same direction as

αbl [tl]− αbl+1
[tl+1].

Set sk = tl and τk+1 = tl+1

Set k = k + 1
end if

end for

Additionally, note that vk − vk+1 corresponds to an edge

αvk
[sk]− αvk+1

[τk+1] in G′
Z .

Now, let us reason out why such a construction is always

feasible. To this, we claim that for any successive pair αbl [tl]−
αbl+1

[tl+1], either bl = bl+1 or, bl 6= bl+1 and bl − bl+1 ∈ A
with the same direction as in αbl [tl] − αbl+1

[tl+1]. Assume

αbl [tl] → αbl+1
[tl+1]. (The case of αbl [tl] ← αbl+1

[tl+1] is

similar). Then, either tl = tl+1 or tl < tl+1. Consider, tl =
tl+1. Then, the link must have the form Ybl [tl] → Ubl [tl], as

this is the only instantaneous influence defined in (1) or (4).

Thus, bl = bl+1 in this case.

Suppose, tl < tl+1. Either, bl+1 ∈ Z or bl+1 /∈ Z.

Consider bl+1 ∈ Z. By the perturbation model described by

(4), αbl [tl] ∈ {Y
(tl+1−1)
bl+1

, U
(tl+1−1)
bl+1

}. Therefore, bl = bl+1.

Suppose, bl+1 /∈ Z. Then, αbl+1
[tl+1] = Ybl+1

[tl+1]. By the

generative model in (1), we either have dynamic dependence

on self-history or history of other nodes. That is, αbl [tl] ∈

{Y
(tl+1−1)
bl

, ∪
q∈P′(bl+1)

Y
(tl+1−1)
q }. Then, bl = bl+1 when there

is dependence on self-history. Otherwise, bl ∈ P
′(bl+1). Thus,

bl → bl+1 ∈ A. Let us consider an example- from a trail of the

form U1[t1] ← Y1[t2] ← Y2[t3] → Y3[t4] → Y3[t5] → U3[t]
in G′

Z , a trail trlG in G can be constructed as 1← 2→ 3.

Additionally, we may assume that for m = 2, · · · , r−1 we

have that αbm [tm] 6= Wi[tm] in trlG′
Z . If αbm [tm] = Wi[tm]

for some m > 1, then the sub-trail of trlG′
Z , Wi[tm] =

αbm [tm]−αbm+1
[tm+1]− · · · −αr[tr] = Wj [t] is a trail from

Wi[tm] ∈ W
(t−1)
i to Wj [t]. This trail is of strictly shorter

length than trlG′
Z . Thus, if the shorter trail cannot be active

then the longer trail, trlG′
Z , cannot be active either. Also,

by following the construction procedure described above, this

condition implies that vl 6= i for l = 2, 3, · · · , k in trlG.

Call this condition loopi. To summarize, let trlG := i =
v1− v2− v3 . . . vk−1− vk = j be any trail connecting i and j
in G constructed by following the above procedure from the
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trail trlG′
Z : Wi[t1] = αb1 [t1]− αb2 [t2]− · · · − αbr−1

[tr−1]−
αbr [tr] = Wj [t]. Since, i → j /∈ AZ , this trail must violate

any of the conditions P1), P2) and P3). We will now consider

these cases separately and prove that there is no corresponding

active trail in G′
Z .

If condition P1) is violated, then trlG must have that j /∈ Z
and vk−1 ← j. In this case, Wj = Yj . Then, either br−1 = j
or br−1 6= j. By construction of trlG, if br−1 6= j, then

br−1 = vk−1. As vk−1 ← j, we must then have αbr−1
[tr−1]←

αbr [tr]. However, this implies tr = t < tr−1 which violates

the condition that 0 ≤ t1, t2, t3, . . . , tr−1 < t. Thus, br−1 = j.

That is, αbr−1 [tr−1] = Yj [tr−1]. As tr−1 < t and j /∈ Z we

have αbr−1
[tr−1] = Yj [tr−1] → αbr [t] = Yj [t] as a sub-trail

of trlG′
Z . Clearly, yj [tr−1] is not a collider. As tr−1 < t, we

have yj [tr−1] ∈ θ. Thus the trail cannot be active.

Recall the definitions of sk and τk+1 during construction of

the trail in G. If condition P2) is violated, then a sub-path of

trlG, vm−1 → vm ← vm+1, must have a collider, vm, such

that vm /∈ Z and vm+1 /∈ Z where m = {2, 3 · · · , k − 1}.
If vm+1 = j and τm+1 = t, P1) also fails, and the argument

above shows that the trail in G′
Z is not active. If vm+1 = j and

τm+1 < t then we have that αvm+1
[τm+1] = Yvm+1

[τm+1] ∈
θ which is an observed node along the trail and is not a

collider. Thus, the trail trlG′
Z cannot be active. So, assume

that vm+1 6= j. By condition loopi, m + 1 6= i. As vm ←
vm+1 ∈ trlG, by construction we must have Yvm [sm] =
αvm

[sm] ← αvm+1
[τm+1] = Yvm+1

[τm+1] along trlG′
Z with

τm+1 < sm < t. Note that since vm+1 /∈ Z and τm+1 < t,
αvm+1

[τm+1] = Yvm+1
[τm+1] is an observed non-collider in

θ. Thus, the trail cannot be active.

Finally consider the case that P3) is violated. Then along

the trail, trlG, in G, there must be a sub-trail vm−1 − vm −
vm+1 such that the intermediate node, vm, is not a collider

and vm /∈ Z. As vm is not a collider, there is one outgoing

directed edge from vm in the trail trlG to either vm−1 or

vm+1. By construction, there must be a corresponding node

αvm
[tf ] in the trail trlG′

Z such that it has an outgoing edge

to either αvm−1
[tp] or αvm+1

[tq] for some tp > tm or tq > tm
respectively. Clearly, there is one αvm

[tm] in trlG′
Z which is a

non-collider. Then, as vm /∈ Z, we must have that αvm
[tm] =

Wvm
[tm] = Yvm

[tm]. Note that vm 6= i by condition loopi.
As tm < t, αvm [tm] is an intermediate non-collider node in θ
and is thus observed. Hence, trlG′

Z cannot be active.

APPENDIX II

PROOF FOR THEOREM 3

Suppose i → j is in AZ . Then there is a trail, trlG,

described by i = v1 − v2 − · · · − vk = j in G satisfying

conditions in Definition 13. We will first construct a trail in

the perturbed DBN, G′
Z , from a node in W

(t−1)
i to Wj [t] for

some t > 0. We can construct a trail in G′
Z as follows: for

all l ∈ {1, 2, . . . , k − 1}, set tl = tl+1 − kvl+1vl if vl → vl+1

holds in trlG. Otherwise, set tl = tl+1 + kvlvl+1
if vl ← vl+1

holds in trlG. Such a construction is feasible because by

condition C 1), numbers kvl+1vl and kvlvl+1
exists for all

l ∈ {1, 2, . . . , k − 1} and at all times. Thus, we have a trail

Yi[t1]− Yv2 [t2]− Yv3
[t3]− . . .− Yvk−1

[tk−1]− Yj [tk]. For all

m ∈ {1, 2, . . . , k} if vm ∈ Z, there exists a number km > 0
following conditions C 2). If B 2) also holds, then km ≥ 0.

Let t > max{t1, . . . , tk−1}, and for all m ∈ {1, 2, . . . , k} if

vm ∈ Z, let t > tm + km also hold. Depending on whether i
or j is a perturbed node, we have four cases on either end of

the above trail.

A) Consider the case i, j ∈ Z. As i ∈ Z, using condition C 2)

Ui[t1+ki]← Yi[t1] holds true. Choose t sufficiently large

so that t > t1+ki also holds. As j ∈ Z, using C 2), t can

be sufficiently large so that we have Yj [tk]→ Uj [t] where

t = tk+kj and kj ≥ 1. If B 1) holds, then we can choose

t sufficiently large such that at the end of the trail we take

s steps from Yj [tk] to Uj [t] such that the tail is of the form

Yj [tk]→ Yj [tk + k′j ]→ · · · → Yj [tk + sk′j ]→ Uj [t] with

t = tk+sk′j+kj . Thus, the constructed trail in G′
Z is either

Wi[t1+ki] = Ui[t1+ki]← Yi[t1]−Yv2
[t2]−Yv3 [t3]−· · ·−

Yvk−1
[tk−1] − Yj [tk] → Uj [t] = Wj [t], or Wi[t1 + ki] =

Ui[t1+ki]← Yi[t1]−Yv2
[t2]−Yv3 [t3]−· · ·−Yvk−1

[tk−1]−
Yj [tk] → Yj [tk + k′j ] → · · · → Yj [tk + sk′j ] → Uj [t] =
Wj [t] with t > max{t1+ki, t1, . . . , tk, . . . , tk+sk′j}, and

for all m ∈ {1, 2, . . . , k} if vm ∈ Z, t > tm + km.

B) Consider the case i ∈ Z but j 6∈ Z. Choose t as tk. As

i ∈ Z, using condition C 2) Ui[t1+ki]← Yi[t1] holds true.

Choose t sufficiently large so that t > t1 + ki also holds.

Thus, we have constructed a trail in G′
Z which is of the

form: Wi[t1 + ki] = Ui[t1 + ki] ← Yi[t1] − Yv2
[t2] −

Yv3 [t3] − · · · − Yvk−1
[tk−1] − Yj [t] = Wj [t] with t >

max{t1 + ki, t1, . . . , tk−1}, and for all m ∈ {1, 2, . . . , k}
if vm ∈ Z, t > tm + km.

C) Consider the case i 6∈ Z but j ∈ Z. Following arguments

presented in case (A) we conclude that the constructed

trail of form Wi[t1] = Yi[t1] − Yv2
[t2] − Yv3

[t3] − · · · −
Yvk−1

[tk−1] − Yj [tk] → Uj [t] = Wj [t], or of form

Wi[t1] = Yi[t1]− Yv2 [t2]− Yv3
[t3]− · · · − Yvk−1

[tk−1]−
Yj [tk] → Yj [tk + k′j ] → · · · → Yj [tk + sk′j ] →
Uj [t] = Wj [t] exists in the perturbed DBN G′

Z with

t > max{t1, . . . , tk, . . . , tk + sk′j}, and for all m ∈
{1, 2, . . . , k} if vm ∈ Z, t > tm + km.

D) Consider the case i 6∈ Z and j 6∈ Z. Following argu-

ments presented in Case (B) we conclude that the trail

Wi[t1] = Yi[t1]− Yv2 [t2]− Yv3 [t3]− · · · − Yvk−1
[tk−1]−

Yj [t] = Wj [t] exists in the perturbed DBN G′
Z with

t > max{t1, . . . , tk−1}, and for all m ∈ {1, 2, . . . , k}
if vm ∈ Z, t > tm + km.

We will now argue that in each of the cases above, the

constructed trail is active given θ := {W
(t−1)
j ,W

(t−1)

j̄ī
}.

Sub-trails with colliders: For all the trails in G′
Z constructed

under various cases above consider a sub-trail of the form

Yvm−1
[tm−1]→ Yvm

[tm]← Yvm+1
[tm+1]. Clearly, vm cannot

be either i or j. If vm 6∈ Z then as tm < t, we have

Yvm [tm] ∈W
(t−1)

j̄ī
and thus the sub-trail is active. If vm ∈ Z

then the corrupted version of Yvm
[tm] is Uvm [tm + kvm

] =
Wvm

[tm + kvm
] and as tm + kvm

< t, we have Wvm [tm +

km] ∈ W
(t−1)

j̄ī
. Thus the collider Yvm

[tm] has a descendant

Wvm
[tm + kvm ] ∈ θ. Thus the sub-trail remains active. Thus

no collider can deactivate the trails in G′
Z .

Sub-trails with with no colliders: Now consider any node
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Yvm
[tm] which is not a collider. Note that in the trails for

the cases (A), (B), (C), and (D), Yj and Yi can only appear

as an intermediate node only if they are corrupted. In such

cases, neither Yi[t1] nor Yj [tk] belong to θ. Thus, if Yj or

Yi are intermediate nodes, they cannot deactivate the trails

given θ. Consider an intermediate node vm 6∈ {i, j}. From

Definition 13P 3), vm is corrupted. Thus Yvm [tm] 6= Wvm [tm]
and Yvm [tm] cannot deactivate the trail as Yvm

[tm] 6∈ θ.

APPENDIX III

PROOF FOR THEOREM 4

To prove the theorem, we require two results from [36]. The

following lemma shows that with sufficiently large data, the

conditional probability assignment by CTW converges to the

true probability assignment for a Markov process.

Lemma 2. Let Q be the probability assignment described

by CTW. Let X be a stationary and finite alphabet Markov

process with finite Markov order which is bounded by the

prescribed tree depth of CTW algorithm. Let P be the true

probability for X . Then,

lim
n→∞

Q(x[n] | x(n−1))− P (x[n] | x(n−1)) = 0 P-as. (20)

Next, we will later use the following proposition which is

a rephrased result from [36].

Proposition 1. Let Q be the probability assignment in the

CTW algorithm. Suppose, X,Y are jointly stationary ir-

reducible aperiodic finite-alphabet Markov processes whose

order is bounded by the prescribed tree depth of the CTW

algorithm. Let Ĥ(y(n) ‖ x(n)) = 1
n

∑n

i=1

∑

y[i]∈Y Q(y[i] |

x(i−1), y(i−1)) · log 1
Q(y[i]|x(i−1),y(i−1))

. Then,

lim
n→∞

Ĥ(y(n) ‖ x(n))−Hr(Y ‖ X) = 0 P-a.s, (21)

Recall the expression for conditional DI estimator from (18):

Î(x(n) → y(n) ‖ z(n)) =

1

n

n
∑

i=1

∑

y[i]∈Y

Q(y[i] | x(i−1), y(i−1), z(i−1))·

log
1

Q(y[i] | y(i−1), z(i−1))

−
1

n

n
∑

i=1

∑

y[i]∈Y

Q(y[i] | x(i−1), y(i−1), z(i−1))·

log
1

Q(y[i] | x(i−1), y(i−1), z(i−1))
(22)

We will show that the first term (call it T1) in equation (22)

converges to Hr(Y ‖ Z) and the second term (call it T2) in

(22) converges to Hr(Y ‖ X,Z).

Convergence of T2: Let V = {X,Z}. Thus, T2 can

be written as Ĥ(y(n) ‖ v(n)) = 1
n

∑n

i=1

∑

y[i]∈Y Q(y[i] |

v(i−1), y(i−1)) · log 1
Q(y[i]|v(i−1),y(i−1))

. Using, proposition 1,

we thus have that limn→∞ Ĥ(y(n) ‖ v(n)) → Hr(Y ‖ V )
almost surely.

Convergence of T1: Subtract Hr(Y ‖ Z) from T1 and

express T1−Hr(Y ‖ Z) = Fn + Sn where,

Fn =
1

n

n
∑

i=1

∑

y[i]∈Y

P (y[i] | x(i−1), y(i−1), z(i−1))·

logP (y[i] | y(i−1), z(i−1))

−
1

n

n
∑

i=1

∑

y[i]∈Y

Q(y[i] | x(i−1), y(i−1), z(i−1))·

logQ(y[i] | y(i−1), z(i−1)), (23)

Sn = −
1

n

n
∑

i=1

∑

y[i]∈Y

P (y[i] | x(i−1), y(i−1), z(i−1))·

logP (y[i] | y(i−1), z(i−1))−Hr(Y ‖ Z) (24)

By ergodicity, Sn converges to zero almost surely. We need to

show that Fn converges to zero almost surely. Rewrite Fn =
1
n

∑n

i=1 βi where,

βi =
∑

y[i]∈Y

P (y[i] | x(i−1), y(i−1), z(i−1))·

logP (y[i] | y(i−1), z(i−1))

−
∑

y[i]∈Y

Q(y[i] | x(i−1), y(i−1), z(i−1))·

logQ(y[i] | y(i−1), z(i−1)) (25)

By Lemma 2, the CTW probabilities Q(y[i] |
x(i−1), y(i−1), z(i−1)) converges to true probabilities

P (y[i] | x(i−1), y(i−1), z(i−1)) almost surely. Therefore,

lim
i→∞

βi = 0 P-a.s. (26)

Hence, by Cesaro mean [40] we have:

lim
n→∞

Fn = lim
n→∞

1

n
βi = 0 P-a.s. (27)

REFERENCES

[1] M. Kretschmer, D. Coumou, J. F. Donges, and J. Runge, “Using causal
effect networks to analyze different arctic drivers of midlatitude winter
circulation,” Journal of Climate, vol. 29, no. 11, pp. 4069–4081, 2016.

[2] A. Sendrowski, K. Sadid, E. Meselhe, W. Wagner, D. Mohrig, and
P. Passalacqua, “Transfer entropy as a tool for hydrodynamic model
validation,” Entropy, vol. 20, no. 1, p. 58, 2018.

[3] N. Omranian, J. M. Eloundou-Mbebi, B. Mueller-Roeber, and
Z. Nikoloski, “Gene regulatory network inference using fused lasso on
multiple data sets,” Scientific reports, vol. 6, p. 20533, 2016.

[4] D. S. Bassett and O. Sporns, “Network neuroscience,” Nature neuro-

science, vol. 20, no. 3, p. 353, 2017.
[5] P. Fiedor, “Networks in financial markets based on the mutual informa-

tion rate,” Phys. Rev. E, vol. 89, p. 052801, May 2014.
[6] S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca, “Network analysis

in the social sciences,” science, vol. 323, no. 5916, pp. 892–895, 2009.
[7] C. Zhu, V. C. Leung, L. Shu, and E. C.-H. Ngai, “Green internet of

things for smart world,” IEEE Access, vol. 3, pp. 2151–2162, 2015.
[8] S. Yang, U. Adeel, Y. Tahir, and J. A. McCann, “Practical opportunistic

data collection in wireless sensor networks with mobile sinks,” IEEE

Transactions on Mobile Computing, vol. 16, no. 5, pp. 1420–1433, 2016.
[9] D. Deka, S. Backhaus, and M. Chertkov, “Structure learning in power

distribution networks,” IEEE Transactions on Control of Network Sys-

tems, vol. 5, no. 3, pp. 1061–1074, Sept 2018.

Authorized licensed use limited to: University of Minnesota. Downloaded on July 31,2021 at 21:59:35 UTC from IEEE Xplore.  Restrictions apply. 




