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Abstract— Complex networked systems can be modeled
and represented as graphs, with nodes representing the
agents and the links describing the dynamic coupling be-
tween them. The fundamental objective of network identifi-
cation for dynamic systems is to identify causal influence
pathways. However, dynamically related data-streams that
originate from different sources are prone to corruption
caused by asynchronous time-stamps, packet drops, and
noise. In this article, we show that identifying causal struc-
ture using corrupt measurements results in the inference
of spurious links. A necessary and sufficient condition that
delineates the effects of corruption on a set of nodes is
obtained. Our theory applies to nonlinear systems, and
systems with feedback loops. Our results are obtained by
the analysis of conditional directed information in dynamic
Bayesian networks. We provide consistency results for the
conditional directed information estimator that we use by
showing almost-sure convergence.

[. INTRODUCTION

Models of systems as networks of interacting systems
are central to many domains such as climate science [1],
geoscience [2], biological systems [3] [4], quantitative finance
[5], social sciences [6], and in many engineered systems like
the Internet of Things [7] and wireless sensor networks [8].
In many scenarios such as the power grid [9] and metabolic
pathways in cells [10] it is impractical or impermissible to
externally influence the system by applying control inputs.
Here, causal structure identification via passive means is
to be accomplished. With advancements in data processing
technology, and sensors and measurement devices becoming
inexpensive, passive identification of causal graphs of dynam-
ically related agents is becoming more tenable.

Often, the data-streams in such large systems are plagued
by the effects of noise [11], asynchronous sensor clocks [12]
and packet drops [13]. While considering the problem of iden-
tifying causal influences of a large network, it is fundamental
to rigorously study such uncertainties and address detrimental
effects of data corruption on network identification.

A. Related Work

Network identification for linear systems is extensively
studied. Methods for identifying transfer functions that dy-
namically link nodes from time-series data are provided in
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[14], [15], and [16]. However, these works assume that the
time-series are perfect.

Authors in [17] leveraged multivariate Wiener filters to
reconstruct the undirected graph of the generative network
model. Moreover, assuming that the interaction dynamics are
strictly causal and using multivariate estimation based on
a Granger filter, it was shown that the directed interaction
structure can be accurately recovered. However, results assume
data to be uncorrupted with the interaction between agents
governed via linear time-invariant (LTI) dynamics.

For a network of interacting agents with nonlinear dynamic
dependencies and strictly causal interactions, the authors in
[18] proposed the use of directed information to determine
the directed structure of the network. Sufficient conditions
to recover the directed structure are provided. Recently, [19],
[20], [21] defined and used information transfer to determine
underlying causal interactions in dynamical systems. However,
it is assumed that the data-streams are ideal with no distortions.
[22] and [23] identify causal dependencies in network of LTI
systems driven by unknown intrinsic noise inputs. However, in
this article we consider nonlinear dependencies and study the
problem of network reconstruction from corrupt data-streams.

The authors in [24], [25] use dynamical structure functions
(DSF) for network recosntruction [26] and consider mea-
surement noise and non-linearities in the network dynamics.
The proposed method first finds optimal DSF for all possible
Boolean structures and then adopt a model selection proce-
dure to determine the best estimate. The authors concluded
that the performance of their algorithms degrades as noise,
network size and non-linearities increase. However, a precise
characterization of drawing spurious inferences in structure
is not provided. In this article, we provide exact location
of spurious links that arise during directed information-based
network reconstruction from corrupt data-streams.

Despite its significance, little is known on the effects of
measurement uncertainties on network identification. Assum-
ing that the network structure is known, errors-in-variables
framework for system identification with additive sensor noise
is studied in [27], [28]. However, in this work we do not
assume that the interaction structure is known. Recently in
[29], the issues of observation noise and undersampling on
causal discovery from time-series data has been addressed. Al-
though authors concluded that spurious links can be inferred,
a rigorous characterization of such links was not proven nor
a generalization of corruption models was provided. In [30]
focusing on networks with LTT interactions, authors provided
characterization of the extent of spurious links that can appear
due to data-corruption. However, the analysis is restricted to
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LTI systems and determine the undirected structure of the
networked system, and not to deduce the directions.

B. Our Contribution

In this article, we focus on identifying the Boolean structure
of the network using non-invasive or passive means from
corrupt data-streams. We consider networks with nonlinear
and strictly causal dynamical interactions. Moreover, the en-
dogenous noise exciting the system are not measured and
hence, we assume a blind approach [31]. General analysis of
network structure employing passive and and blind means with
nonlinearities is challenging. We make an assumption that the
endogenous noise affecting one node is independent of another
and thus we deal with target specified network reconstruction.

We provide necessary and sufficient conditions that delin-
eates the effects of data corruption on the directed network
structure inferred using directed information. We present a
tight characterization for the spurious links that arise due
to corruption of data-streams by determining their location
and orientation. Often, the knowledge of influence structure is
required a priori to perform system identification in networked
systems [15], [28], [32]. Thus, our results serve as a necessary
first step in understanding what part of network reconstruction
can be trusted to facilitate accurate system identification.

In [33], preliminary results that characterized the spurious
links, in the framework of this article are provided. However,
the analysis was limited to dynamical interactions such that
every node was dependent dynamically on the entire history
(strict) of its parent nodes. In this article, we consider a general
class of non-linear systems by relaxing the above assumption
on dynamics. Moreover, we provide detailed and rigorous
proofs to generalize the results obtained in [33] wherein
only a proof sketch was provided. In addition, we establish
convergence results for the estimator that we use to determine
conditional directed information.

C. Paper Organization

We review needed graph theory notions and describe the
framework for generative models in Section II. In Section III,
we provide models to characterize corruption of data-streams
that captures time uncertainty, packet loss and measurement
noise. The methods to infer directed network structure are
described in Section IV. Our directed information estimator
and simulation results are described in Section V. Finally, a
conclusion is provided in Section VI

Il. PRELIMINARIES
A. Notations

Upper case letter Y denotes a random variable (r.v) while
lower case letter y denotes a realization of r.v Y.
Caligraphic letter ) denotes the alphabet of r.v Y.

y[] denotes a sequence and y® denotes the sequence
y[0], y[1], ... y[t].

Px represents the probability mass function (PMF) of a
discrete random variable X or denotes the probability density
function (PDF) of a continuous random variable X.
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(a) Trail connecting 1 and 4 is active given Z = {}.

(b) Trail connecting 1 and 4 is active given Z = {2}.

Fig. 1: This figure shows when the trail connecting nodes 1 and 4
is active given Z.

E[-] denotes the expectation operator.

A directed graph G is denoted by a pair (V, A) where V is
a set of vertices or nodes and A is a set of edges given by
ordered pairs (¢,7) where i,j € V.

1 — 7 indicates an edge or link from node ¢ to node j in G.
i — j denotes one of ¢ — j or j — 1.

B. Graph Theory Definitions

This subsection gives a list of standard terminology from
graphical models. It can be used as a reference for following
sections. For further details, see [34].

Definition 1 (Children and Parents). Given a directed graph
G = (V,A) and a node j € V, the children of j are defined
as C(j) := {i|j — i € A} and the parents of j as P(j) :=
{ili — j € A}.

Definition 2 (Trail/Path). Nodes v1,vs,...,vx € V forms
a trail or a path in a directed graph, G, if for every i =
1,2,...,k—1 we have v; — v;41.

Definition 3 (Chain). In a directed graph G, a chain from
node v; to node v; comprises of a sequence of k nodes such
that v; > W1 — - > Wi_o — vj holds in G.

Definition 4 (Descendants and Ancestors). Suppose there
exists a chain from a node v; to vy, in a directed graph, G.
Then, vy, is called a descendant of node v; and v; is called
an ancestor of vy.

Definition 5 (Collider). A node vy is a collider in a directed
graph, G, if there are two other nodes v;,v; such that v; —
vk, 4— v; holds.

Definition 6 (Active Trail). In a directed graph G, a trail
v1 — Vg — - -+ — vy, 1S active given a set of nodes Z if one of
the following statements holds for m € {2,...,n — 1} and
every triple v,;,—1 — vy, — Up41 along the trail:

a) If vy, is not a collider, then v,, ¢ Z.

b) If v,, is a collider, then v,,, or one of its descendants is in
Z.

See Figure 1 for an illustration.

Definition 7 (d-separation). Let X,Y and Z be a set of nodes
in a directed graph, G. In G, X and Y are d-separated by Z
if and only if there is no active trail between any = € X and
any y € Y given Z. It is denoted as d-sep (X,Y | Z).

Definition 8 (Directed Cycle). A directed cycle from a node
v; to v; in a directed graph, G, has the form v; — W; —
--+ = W}, — v; for some set of nodes {W,,}*_, in G.
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Definition 9 (Directed Acyclic Graph). A directed graph with
no directed cycles is called a directed acyclic graph (DAG).

Definition 10 (Bayesian Network). Suppose G = (V, A) is a
DAG whose N nodes represent random variables a1, ...,an.
G is called a Bayesian Network (BN) if for any three subsets
X, Yand Z of V, d-sep(X,Y | Z) implies X is independent
of Y given Z.

Definition 11 (Faithful Bayesian network). Suppose G =
(V,A) is a DAG whose N nodes represent random variables
ai,...,an. G is called a Faithful Bayesian network if for any
three subsets X, Y and Z of V, it holds that X and Y are
independent given Z, if and only if d-sep(X,Y | Z) is true.

C. Generative Model

In this subsection, the generative model that is assumed to
generate the measured data is described. Consider /N agents
that interact over a network. For each agent i, we associate a
discrete time sequence Y;[-] and a sequence E;[-]. We consider
E; such that Pg, exists if E;[t] belongs to a continuous
alphabet. The process F; is considered to be target-specific,
that is, E; is innate to agent ¢ and thus F; is independent of E;
if ¢ # j. Moreover, F; is considered to be uncorrelated across
time. Let Y denote the set of all random process {Y1,...,Yn}
with a parent set P’(¢) defined for ¢ = 1,..., N. We consider
strictly causal nonlinear dynamical relations. The generative
model takes the form:

vill=£ (Y0, U v El], O

JEP! (@)
where f;’s can be any nonlinear function such that Py, is well
defined if Y;[t] takes values in a continuous alphabet. f; is a
multivariate function that maps the past measurements of par-
ent nodes of 1, {Yj(t_l) : j € P'(4)}, previous measurements

of the node ¢ in Yi(tfl), and the present realization of process
noise, F;[t], to the present measurement of agent 4, Y;[t].

For an illustration, consider the dynamics of a generative
model described by:

]
]
t] = [t — 1] + Ya[t — 1]) - Es]t], 2
]
]

We remark that for any time instant ¢, the parent set P’(4) is
thus not dependent on time.

D. Graphical Representation

Here we describe how networks of dynamical systems are
represented by graphs.

Generative Graph: The structural description of (1) induces
a generative graph G = (V, A) formed by identifying each
vertex v; in V' with random process Y; and the set of directed
links, A, obtained by introducing a directed link from every
element in the parent set P’(i) of agent  to i. Note that we

Y5[0]

515 (2]
(b) DBN G’ for 3 time slices

(a) Generative Graph G

Fig. 2: This figure shows (a) generative graph, (b) its associated
DBN for 3 time slices.

do not show ¢ — ¢ in the generative graph and neither do
we show the processes F;. The generative graph describes the
relationships between the stochastic processes in Y.

The generative graph associated with the example described
in (2) is given by Fig. 2(a). When the time variable is
unraveled we obtain the Dynamic Bayesian Network.

Dynamic Bayesian Network (DBN): Let G = (V,A) be
a generative graph. Let Y; be as defined in (1) for all
1 € V. Suppose all discrete time sequences have a finite
horizon assumed to be 7. Let S;;[t] = {t' : Yj[t'] €
Yj(t*l)as an argument of f; in expression of Y;[t] in (1)}
for all j € P’'(i) U {i} and for all ¢. Consider the graph

G' = (V',A") where V' = U Yt | and
iV
t€{0,1,...T}
A= U ( U < U Yj[/ﬂHYi[t]>>
icV JEP(1)U{i} \k€S;;[t]

te{0,1,...T}
The joint distribution of Y(T) is given by:

T N
Pyry = Pyjo) - Py [ [ T[] Priweciiey: @)
t=1i=1
where the parents of Y;[t] are obtained from G’. It can
be shown that G’ is the Bayesian network for the random
variables {Y;[t] : t = 0,1,2,...,T, i = 1,2,...,N} and
is considered the Dynamic Bayesian Network for {Y; : i =
1,2,..., N}(see [34]). Figure 2(b) represents the DBN for
the system in (2) for three time steps.

I1l. UNCERTAINTY DESCRIPTION

In this section we provide a description for how uncertainty
affects the time-series Y;. We interchangeably use corruption
or perturbation to denote uncertainties in data-streams.

A. General Perturbation Models

Consider i*" node in a generative graph and it’s associated
unperturbed time-series Y;. The corrupt data-stream U, asso-
ciated with ¢ follows:

Uilt] = g: (Y., U8 ilt), )
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where g; can be any multivariate function that maps the
present and past values of uncorrupted data-streams in Yi(t),
the present value of an independent random process (;[t], and
past corrupt measurements in Ui(t_l) to the current corrupt
measurement, U [¢], such that Py, exists if U;[t] takes values
in a continuous alphabet. (;[t] is such that P, exists if (;[t]
belongs to a continuous alphabet, and is independent of F;, Y;
forall i € 1,---, N, and ([t] for i # j. We highlight a few
important perturbation models that are practically relevant.
Temporal Uncertainty: Consider a node ¢ in a generative
graph. Suppose ¢ is the true clock index but the node i
measures a noisy clock index which is given by a random
process, (;[t]. One such probabilistic model is given by the

following IID Bernoulli process:

di,
Gltl = {d:

where dy and d, are any non-positive integers such that at
least one of d; and dy are not equal to 0. Randomized delays
in information transmission can be modeled as:

Uilt] = Yilt + G[t]]. ®)

Noisy Filtering: Given a node ¢ in a generative graph,
the data-stream Y, is causally filtered and corrupted with
independent measurement noise ¢;[-]. This perturbation model
is described by:

with probability p;,
with probability (1 — p;),

Uilt] = (Li * Y)[t] + Gilt], (6)

where L, is a stable causal linear time invariant filter.

Packet Drops: Consider an IID Bernoulli process (;]t]
described by success probability, p;. The measurement U,][t]
corresponding to an ideal data-point Y;[t] packet reception at
time ¢ can be stochastically modeled as:

Uilt] = GIHY:[t] + (1 = GEDUs[t — 1. (7

B. Perturbed Dynamic Bayesian Network

Here, we provide a discussion on how the DBN associated
with the measured data-streams gets altered when the data-
streams are subject to corruption. Note that the measured
data-streams only includes the corrupted time-series for the
nodes that are corrupted and the data-streams for those nodes
that are not corrupted. The uncorrupted time-series for the
corrupted nodes are not measured and are hence, not observed.
When the time variable is unraveled we obtain the perturbed
DBN (PDBN) that depicts the causal dependencies between
the true data-streams for the network, and in addition shows
the dependencies between the uncorrupted measurements and
the corrupted values for the corrupted nodes, and between the
corrupted measurements for each corrupted node. Thus, the
perturbed DBN is the union of DBN when there is no data
corruption and the causal dependencies for the time-series
associated with the corrupted node. Figure 3(a) shows an
example of a PDBN corresponding to the generative graph in
Fig. 2(a) for three time slices. Here, node 1 data-streams are
corrupt following a noisy filtering model described in (6).

OO T ]

o = ~a

eauReanXeap)

I‘«I
1%

(a) PDBN for 3 time slices (b) Measured Data-Stream

Fig. 3: Figure (a) shows Perturbed DBN G, for 3 time slices when
node 1 is corrupt. Node 1 ideal stream, Y7, is shaded because it is
not measured. Figure (b) only shows the causal relations between the
measured data-streams without hidden Y7. There are no direct causal
connections between time-series U1 and other time series nodes as
there are no direct dynamic influences between them, and therefore,
are not shown

Consider a generative graph G = (V,A). Let Y; be
as defined in (1) for all ¢ € V. Suppose all discrete
time sequences have a finite horizon assumed to be 7.
Let G’ (V',A") be the associated dynamic Bayesian
network. Suppose Z C V is the set of perturbed nodes with
perturbation model described in (4). For i € Z, the measured
(corrupt) data-stream corresponding to agent ¢, U, is related
to Y; via (4). Let Uz = {Ui}iez and Y; = {Yj},cz
where Z = V' \ Z. Due to corruption only Uz and Y are
measured and observed. Denote the measured data-streams
by W=U,UY. Forall j € Z, let SU;[t] = {t' : U;[t'] €
U](t_l) is an argument of g; in the expression of Uj[t] in (4)}

and let  SYj[t] = {t' Y;[t'] €
Yj(t) is an argument of g; in the expression of Uj[t] in (4)}
for all t. Consider the graph G, = (V},A))
where V, = V' U Urlt]| and A}, =
keZ
te{0,1,..T}
AU U Yil[i] = Uklt] |U U Ugli] = U[t] | for

kezZ kez
1€SYy[t] 1€SUL(t]

all t € {0,1,2,...,T}. Note that the vertex set V consists
of all measurements given by the set W, and the uncorrupted
versions Yj, of the corrupted versions Uy, for k € Z.

Consider the set of random variables, R = {Y[t] : i €
{1,2,...,N}and t € {0,1,2,3,...,T}} U{Ui[t] : @ €
{1,2,...,N} and t € {0,1,2,3,...,T}}. The joint distribu-
tion Pp is given by:

T N
Pr= (HPUJOJ) T Pv '(HHPUi[tnP(Ui[t]))
=1

icv jez t=1

T N
A TI I Pvomrcvsmy |- ®

t=1j=1
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where the parents of U;[t], Y;[t] are obtained from G’,. G,
is the Bayesian Network for the random variables R and is
considered as the perturbed DBN associated with Uz UY.

Remark 1. Above, the discrete time sequences were consid-
ered to have finite horizon only to illustrate DBN and PDBN.
The main results in this article characterizing the structure
inference from corrupt data-streams holds for any horizon.

IV. STRUCTURE IDENTIFICATION

A. Structure Inference from Ideal Data-Streams

First, we recall how the structure of a generative graph
can be inferred using directed information in the case of
ideal data-streams. Consider a generative graph G with N
nodes and let Y denote the collection of N data-streams
that are measured. The authors in [18] defined and applied
causally conditioned directed information (DI) in a network
of dynamically interacting agents to determine if a process
causally influences another. A slightly modified definition of
DI as defined in [18] is:

Definition 12 (Causally Conditioned Directed Information).
The causally conditioned directed information (DI) from data-
stream Y} to Y; is given by:

PYiHY',Yz’
I(Y; = Yi || Yg) =E |log =2, ©)
YillYs;
T
where PYiHYJwY;; = HPY-[t]\Y.(t_l) y =D y (-1, PYiHY;; =
J =1 % i 1t 't o

T
pr_[t]lyv(t—l) =D and Y;; =Y\ {Y,, Yj}
t=1 " i T

For the rest of the article, we drop the word ‘causally’ for
convenience. Note that the conditional DI from Y} to Y; is
positive if and only if the history of Y} gives information
about Y;[t] that could not have been obtained from Y;’s own
history and the other signals from the network. So, if there is
no directed edge from j — 4 in G, then we have I(Y; — Y] ||
Yi5) = 0.

The following theorem was proved in [18] that specifies a
necessary and sufficient condition to detect a presence of link
in the generative graph.

Theorem 1. A directed edge from j to i exists in the directed
graph G if and only if I(Y; — Y; || Yi5) > 0.

Remark 2. In [18], the authors assume positive distribution
for the random processes in Y. The distribution is positive if
Py > 0 for all joint sequences Y. This assumption avoids
pathologies that arise in deterministic systems. For example,
if Y1[t] are 1ID random variables, and Y3[t] = Yi[t — 1]
and Y3[t] = Y[t — 1], then I(Y> — Y3 || Y1) = 0, even
though Y3 depends on Y, The positivity assumption ensures
that the computed expectations are non-negative and hence
avoids false negatives for true edges in the generative graph
and are therefore detected.

B. Main Result: Inferring Directed Graphs from Corrupt
Data-streams

In this section we characterize the spurious edges that arise
when using conditional DI to estimate network structure. In
particular, we will show that under appropriate hypotheses, the
estimated edges precisely correspond to edges in the perturbed
graph, defined next.

Definition 13 (Perturbed Graph). Let G = (V,A) be a
generative graph. Suppose Z C V is the set of perturbed
nodes with each perturbation model admitting a description
provided by (4). The perturbed graph, Gz = (V,Az), is a
directed graph where there is an edge i — j € Ay if and only
if there is a trail, trlg : i =vy —vo — -+ —Vp_1 — U = j in
G such that the following conditions hold:

P1) If j ¢ Z, then vy — j € A.

P2) For m € {2,3,...,k — 1}, if v,—1 — vy, < Vppt1, and
Um & Z, then vy,41 € Z.

P3) If v, is a node such that v,,_1 — Vs, —VUym+1 is @ sub-path
of the path v; — ... — v; and v,, is not a collider, then
Um € Z.

Remark 3. Note that the existence of a trail that does not
meet the ‘if” conditions in P1), P2) and P3) guarantees that
i — j € Ag. For example, if i — j € Atheni — j € Ay.
Indeed, if j ¢ Z theni — j € Az by condition P1).Conditions
P2) and P3) are not applicable. On the other hand, if j € Z,
then none of the conditions P1), P2) or P3) are applicable to
the trail i — j. So, 7 — j € Ag.

Definition 14 (Spurious Links). Let G = (V,A) be a
generative graph, Z C V be the set of perturbed nodes and
Gz = (V,Ayz) be the perturbed graph. Spurious links are
those links ¢ — j € Az that do not belong to A.

The conditions in P1-P3 specifies a path characterization
based on the location of corrupt nodes. This defines the paths
through which spurious probabilistic relations are introduced
due to data corruption. These probabilistic relations are cap-
tured by trails in PDBN that become active due to data-
corruption. The following theorem precisely gives a relation-
ship between the active trails in PDBN and the directed edges
in the perturbed graph. The proof is given in appendix I

Theorem 2. Consider a generative graph, G = (V, A),
consisting of N nodes. Let Z = {v1,...,v,} CV be the set
of n perturbed nodes where each perturbation is described
by (4). Denote the data-streams as follows: Uy := {U;}icz
and Yz = {Y;};cz where Z = V \ Z. Let the measured
data-streams be W = Uz UY; = {Wy,Ws,...,Wy}. Let
the perturbed graph be Gz = (V,Az) and its associated
PDBN be Gy, = (V},A%). If i — j ¢ Ay, then d-
sep(W; [t],Wig_l) \ {Wi(t_l),W%_l)}) holds in G’y for all
t>0.

We will now show that if conditional directed information,
I(W; — Wj || Wj;), are computed using corrupted data-
streams, and were applied for causal structure inference, then
we infer the perturbed graph that contains spurious links.
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(a) True Graph, G. (b) Perturbed Graph, G 5.

Fig. 4: This figure illustrates the intuition behind spurious links in
Example 1. Figure 4(b) shows the perturbed graph inferred. Spurious
links are shown in red and the true edges are depicted in black.

Corollary 1. Consider a generative graph, G = (V, A),
consisting of N nodes. Let Z = {v1,...,v,} CV be the set
of n perturbed nodes where each perturbation is described by
(4). Denote the data-streams as follows: Uy := {U;}icz and
Yy = {Y;};cz where Z = V \ Z. Let the measured data-
streams be W = Uz UY; = {Wy,Wa,...,Wn}. Let the
perturbed graph be Gz = (V, Az). If I[(W; — Wj || Wy;) >
0, then i — j € Ag.

Proof. We will show that if ¢ — j ¢ Ay, then I(W; — W ||
Wj;;) = 0. Suppose, i — j ¢ Az. Let Gy = (V', A);) be the
perturbed dynamic Bayesian network (DBN) associated with
the perturbed graph, G'z. Then, using Theorem 2, for all
t > 0, d-sep(W;[t], W1 | w1 w1y holds in G

A . Ji
In other words, this implies PWj[t”Wj(t—l)7Wi(t—1),ng—l)

PWj [t”Wj(tfl)’W%q) will hold true for all ¢ and thus, j(WZ —

W || Wj;) = 0. ]

The following example illustrates the intuition for the pres-
ence of spurious links in the perturbed graph.

Example 1. Consider a generative graph as shown in Figure
4 (a). Suppose node 3 is subject to packet drop corruption
model in (7) and let Uz be its measured data-stream. Denote
the measured data-streams at nodes 1 and 2 as Y7 and Y5. Uj
is related to its ideal counterpart Y3 via (7). The measured
data-streams are {W; = Y;,Wy = Yo, W3 = Us}. Since
measurements of node 3 are corrupted, measurements of Y;
and Y5 can give useful information for predicting states at
node 3 that would not be available in the noisily measured
history of Us. Thus, [(W; — W3 || W3) > 0 and I(W; —
W3 || W) > 0. The perturbed graph is shown in figure 4 (b).

The results in Theorem 2 and Corollary 1 respectively
shows that existence of active trails is the PDBN and non-
zero conditional directed information is sufficient to infer the
presence of a directed link in the perturbed graph. However,
under a mild assumption on the generative and the perturbation
model, it can be shown that the respective conditions are also
necessary to detect a directed link in the perturbed graph.

Assumption 1. Let the following conditions on the generative
and the perturbation model hold:

Cl) In the generative model (1), for all agents ¢ &
{1,2,...,N}, and all j € P’'(i), there is a number
k;; > 1 such that Y;[t — k;;] is an argument of f;.

C2) For all perturbed nodes i € Z, in the perturbation model
(4), there is a number k; > 1 such that g; always takes
Y;[t — k;] as it’s argument.

In addition, let at least one of the following conditions on

corruption model hold:

B1) If a node i € Z, then there is a number k. > 1 such that
Y;[t — EI] is an argument of f; in (1).

B2) If a node i € Z, then Y;[t] is an argument of g; in (4).

Remark 4. The above assumption states that the dynamics in
generative model (1), Y;[¢t] depends on at least one previous
measurement value of its parent nodes. Similarly, for the per-
turbation model (4), the corrupt value U;[t] depends causally
on uncorrupted measurement value. We consider strictly causal
interactions in the generative model and causal interactions
in the corruption model and are therefore realistic in many
practical physical systems.

The following theorem asserts that if ¢ — j € Ay then
there exists a corresponding active trail in perturbed DBN.
The proof is given in appendix II.

Theorem 3. Consider a generative graph, G = (V,A),
consisting of N nodes. Let Z = {v1,...,v,} CV be the set
of n perturbed nodes where each perturbation is described by
(4). Denote the data-streams as follows: Uy := {U, }icz and
Yy := {Y;};cz where Z =V \ Z. Let the measured data-
streams be W = Uz UY, = {Wy, W, ..., Wn}. Suppose,
the generative model and the perturbation model satisfies the
conditions for dynamics that is mentioned in Assumption 1.
If there is a directed edge from i to j in perturbed graph,
Gz = (V,Ayz), then there exists a trail between a node in
Wi(t_l) and W;[t] that is active given {Wj(t_l),W%_l)} in
G, for some t > 0.

Under the following assumption we can in fact show that
I(W; — W; || Wj;) > 0 is also a necessary condition for
i — j € Az as shown in Corollary 2.

Assumption 2. We assume that the generative model in (1)
and the perturbation model in (4) are such that the corre-
sponding DBN and PDBN are faithful Bayesian networks.
Moreover, we consider positive joint distributions for the
random processes Y and U.

Corollary 2. Under Assumption 2 and dynamics following
Assumption 1, if i — j € Az, then I(W; — Wj || W) > 0.

Proof. By theorem 3, if i — j € Ay, then there exists an
trail in PDBN between Wi(t_l) and T;[t] that is active given
{Wj(t*l),W%*l)} in G';, for some ¢t > 0. Under faithful-

ness assumption, this implies Pwi[t“W;t—l)7Wi(t—1)’w%—1) #

J
PWj[t]\Wj(tfl),ngl)' Thus, I(Wl — Wj || Wﬁ) > 0. O

Remark 5. The faithfulness assumption is justified as the
unfaithful probability distributions are restricted to a set of
Lebesgue measure zero [34]. Here, system parameters for
which the algebraic conditions for the conditional indepen-
dence hold true with true dynamical dependencies must belong
to the set of measure zero.

V. ESTIMATION OF DIRECTED INFORMATION

Given the time-series WV, the reconstruction of the perturbed
graph is accomplished by (i) computing the conditional di-
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rected information, I(W; — W; || Wj;) (ii) placing a link
from node i to j if I(W; — W; || W) > 0. Thus, the
algorithm requires computation of I(W; — W; || Wj;) for
all pairs of nodes (W;,W;) in V. Toward computing the
conditional directed information we refer to methods based
on Context-Tree-Weighting (CTW) in [35], which provide
estimates on conditional probability mass function (PMF) of
a time-series admitting values in a finite alphabet. For the
reminder of this section, we consider f; in (1) and g; in (4)
to be such that Y;[t] and U;]t] belong to finite alphabet. Here,
from time sequence z(™) (recall the notation of x(")), the PMF
Q(x[i] | «¥=V) for all 4 = 1,...,n is computed where n
is the length of the sequence. () is also called as sequential
probability assignment for a sequence x(™). Furthermore it is
shown in [36] that () computed is a Universal Probability
Assignment as discussed next.

A. Universal Probability Assignment

The following definition characterizes the probability mass
function @ in relation to the true mass function P in terms
of the length of the time-series. It establishes that as the hori-
zon of the time-series is extended, the sequential probability
assignment estimate, (), approaches the true PMF P.

Definition 15 (Universal Probability Assignment). Let P be
the true joint PMF of z(™). Then, a probability assignment Q
is called as universal if the following holds:

1 P(z(™)
Jim R {log Q(gg(n))] =0,

where estimated joint PMF for (™ s given by Q(x(n)) -
Q[0))Q(z[1] | z[0])Q(x[2] | zM])---Q(z[n] | «~V).

Similarly, P(z("™)) can be factorized.

(10)

For the rest of the article () is estimated by CTW algorithm
which is a universal probability assignment as discussed in
[36] for each time series. The only assumptions made are that
the sequences belong to a finite alphabet and are stationary and
ergodic Markov sequences of a bounded order D. That is, for
a Markov sequence X, P(z[t]|z*=1)) = P(z[t]|z!~]) where
Il < D. The CTW algorithm uses a weighted distribution to
take into account of all possible D-bounded Markov sources
and estimates the sequential probability, Q(z[t]|z(*~1)) for ev-
ery symbol z[t] given the past observations. The computational
complexity of CTW algorithm is linear in horizon length n,
of the sequences considered.

B. Pairwise Estimation of Directed Information

Here, a pairwise estimator of directed information between
a pair of random process proposed by [36] is described. Let
X and Y be jointly stationary and ergodic processes. The
directed information from X to Y can be expressed in terms
of the entropy as follows:

I(X - Y)=HY)-HY | X) (11)

where H(Y) = E[-logP(Y)] and HY | X) =
E[—1log P(Y || X)] denotes the entropy of ¥ and the causally
conditioned entropy [37] respectively.

The directed information rate (DIR) from X to Y is defined
as:

1
I.(X -Y)= lim f](x(n) - y(n)).

n—o00 N,

(12)

The directed information rate in (12) characterizes the directed
information from X to Y in the limiting sense of the horizon
being infinite. Let H,(Y) := lim, o 2H(y™) and let
H. (Y || X) = lim,—oo LH(y™ || ™). Thus, if H,(Y)
and H,(Y || X) converge, then I, is convergent. That is,

I. = H7(Y) - HT’(Y ” X) (13)

In [36], the following DIR estimator is defined:

f(x(vb) N y(n)) _ Tll{ Z Z Q(ym ‘ x(i_l),y(i_l))-

i=1y[i]ey
1 1 n 4 .
log—————— b — — [ 26D, yG=D)y.
og Q(y[l] | y(ll))} Tl{ ;y%y@(y[z] ‘ x Y )
1 1
o8 Q(yli] | 2= y(i-1))
(14)

In [36], consistency results for estimating directed infor-
mation (DI) between a pair of random processes from data
was proposed. In this article we provide consistency results
of the conditional directed information estimator by showing
convergence in almost sure sense (denoted as P-a.s).

C. Estimation of Conditional Directed Information

Let X, Y, Z be jointly stationary and ergodic processes. The
conditional directed information from X to Y conditioned on

Z can be expressed in terms of the entropy as follows:
IX->Y|Z2)=HY || 2)-HY | X,2). (15)

The causally conditioned directed information rate (DIR)
from X to Y now is defined as:

o1 \
L(X =Y || 2) = Jim —I(™ —y™ | V). (16)

Let H.(Y || X,2) = lim, oo 2H(y™ || 2, 2(M),
Thus, if H.(Y || Z) and H,.(Y || X,Z) converge, then I,
is convergent. That is,

The conditional directed information estimator [ (™™ —
y™ || 2(") is defined as under:

_f(x(n) -y [ z(")) -
IR ; i i i
=3 DT QUi |2yt 2070),

i=1 y[iley
1

1 , ,
% QU Ty 20)
IR . i— i— i—
_;E ’ E Q(yli] | 207V, =D =1y,

=1 y[i]ey

1

1 . . ,
% QU T2,y 261)

(18)
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(c) Comparison of directed information estimates
between perfect measurements and corrupted data-
streams. DIR I is shown along X-axis and the sample
length n is along Y-axis.

Fig. 5: This figure shows how unreliable measurements at node 3
results in spuriously inferring a causal influence from 1 — 3 and
2 — 3. 5(b) shows the perturbed graph inferred. Spurious edges are
shown in red while true edges are in black.

The following theorem establishes the consistency result in
estimating conditional DIR as defined in (18). The proof is
given in appendix III.

Theorem 4. Let Q) be the probability assignment in the CTW
algorithm. Suppose, X,Y, Z are jointly stationary irreducible
aperiodic finite-alphabet Markov processes whose order is
bounded by the prescribed tree depth of the CTW algorithm.
Then,

P-a.s,
(19)

lim I(z™ —y™ | ZM)=1(X - Y | Z)

n— oo

For computing (18), first  Q(x[d], y[d], z[i]

el gD 2070) and QQyfi] =[] |y, 207Y)
are estimated wusing CTW for all realizations of
tuples (x[i],y[i], 2[¢]) and (y[é], z[i]). The estimated
probabilities are tabulated and the required marginalized
conditional probabilities Q(y[i] | (D, y=D 2(=1) and
Q(yli] | =Y, 206=1) in (18) are computed from this table
for entropy estimation.

D. Simulation Results

To verify the predictions of Theorem 2, we first performed
a simulation on a network consisting of 3 nodes with a single
node being perturbed and on a network consisting of 6 nodes,
of which 2 are corrupt. We estimate the directed information
rates (DIR), which are DI estimates that are averaged along
the sequence length until the horizon. We used the estimator
described in (18) to compute DIR. For both the networks, the
horizon length are in the order 10%.
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(a) True generative graph.
Links from 1 using Y

(b) Perturbed Graph

Links from 1 using U
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(c) Comparison of directed information rate (DIR) estimates
for links from nodes 1 and 2, between ideal data-streams Y
and uncertain measurements U. DIR I is shown along X-axis
and the sample length n is along Y-axis.

Fig. 6:  6(a) shows true generative graph. 6(c) depicts DIR
estimates to detect links from nodes 1 and 2 using ideal measurements
Y and when there is corruption at nodes 2 and 5. 6(b) shows the
perturbed graph inferred. The spurious links are shown in red and
the true edges are shown in black. With cascaded perturbations, more
spurious links are inferred.

1) Single node Perturbation: Consider a network consisting
of 2 nodes with a common child as shown in Fig. 5(a). The
true generative model is described as follows:

] = Eit],
Ylt] = (W[t —1] = Y[t —2)|- Y3t — 1]* - Es[t]) mod 3,
Yslt] = Eslt]
where  E;[t] ~  Categorical(3,[0.15, 0.35, 0.5]),
Es[t] ~ Categorical(3,[0.35, 0.35, 0.3]) and Es[t] ~

Categorical(3,[0.4, 0.2, 0.4]). Each of Y;[¢],Y2[¢] and Y3[¢]
has a finite alphabet {0, 1,2}.

The perturbation considered here is the packet-drops uncer-
tainty at node 3. The corruption model takes the form:

Uslt] = (Y3[t] + Us[t — 1]) mod 3, with probability 0.55
YT (Vaft — 1) + Us[t — 1]) mod 3, with prob. 0.45.

The perturbed graph predicted by Theorem 2 is shown in
Fig. 5(b). The DIR estimates from ideal (Y') and unreliable
measurements (U) are shown in Fig. 5(c). We observe non-
zero DIR estimates and add edges to Gz respectively. In
particular, note the substantial rise in I(U; — Us || Uz) and
in I(Uy — Us || Uy). This indicates the presence of spurious
links 1 — 3 and 2 — 3 in the inferred perturbed graph.

2) Multiple Perturbation: Consider a network of 6 nodes as
shown in Fig. 6(a). The dynamic interactions in the true

plore. Restrictions apply.
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(a) A comparison of DIR estimates to detect links from nodes

3 and 4 using ideal measurements and when there is corruption

at nodes 2 and 5 is shown. DIR I is shown along X-axis and

the sample length n is along Y-axis.
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(b) A comparison of DIR estimates to detect links from nodes
5 and 6 using ideal measurements and when there is corruption
at nodes 2 and 5 is shown. DIR I is shown along X-axis and
the sample length n is along Y-axis.

Fig. 7: DI estimates to detect links from nodes 3,4,5 and 6. Notice
the large number of non-zero DIR estimates computed from corrupt
measurements corresponding to links from nodes 3 and 6 which had
no children in the true generative graph that now has lot of children
nodes in G 7.

generative model are as follows:

Yilt] = Eilt],

Vil = ilt - 1l|Ef,

Ys[t] = Yo[t —1]||E5[t],

Yalt] = E4lt],

Yslt] = (Yalt — 1]|[Yat — 1])&E5[],
Vel = Yalt— 1]|lEsl

where Fi[t] ~ Bernouilli(0.55), Fs[t] ~ Bernouilli(0.5),
Est] ~ Bernouilli(0.2), E4[t] ~ Bernouilli(0.4), E5[t] ~ and
Es[t] ~ Bernouilli(0.3)and ||’ is logical ‘OR’ operation while
‘&’ is logical ‘AND’ operation. Each of Y1[t], Y5[t],. .., Ys[¢]
has a finite alphabet {0, 1}. The perturbations considered here
are time-origin uncertainties at nodes 2 and 5. The corruption
models takes the form:

Ya[t — 2],
Ya[t],

with probability 0.5,

Uslt] = . i
with probability 0.5,
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Y:’:[t_2]7
Ys[t],

with probability 0.5,

Us[t] = . o
with probability 0.5.

The perturbed graph predicted by Theorem 2 is shown in
figure 6(b). The DIR estimates from ideal (Y) and unreli-
able measurements (U) are shown in figures 6(c) and 7.
We observe non-zero DIR estimates and add edges to Gz
respectively. For clarity of visualization, only non-zero DIR
estimates predicted by Theorem 2 are shown.

VI. CONCLUSION

We studied the problem of inferring directed graphs for a
large class of networks that admit nonlinear and strictly causal
interactions between several agents. We provided necessary
and sufficient conditions that delineated the effects of data
corruption on the directed network structure inferred using
directed information. We presented a tight characterization
for the spurious links that arise due to corruption of data-
streams by determining their location and orientation. Finally,
we provided convergence results for the estimation of con-
ditional directed information that was used to determine the
directed structure. Simulation results were provided to verify
the theoretical predictions.

Future Work

Currently, the emphasis was on characterizing the effects
of data corruption on network inference and determining how
spurious probabilistic relations are introduced. Future work
will focus on quantifying the amount of data that is needed to
detect network inter-relationships using directed information.
Another interesting direction would be to consider network
reconstruction for non-target specific nonlinear dynamical
systems. Non-target specific network reconstruction for linear
systems studied in [38] and [39] may yield useful insights in
this direction. Moreover, it would be interesting to characterize
effects of data corruption in other network reconstruction
methods. Verifying identifiability conditions [14], [15] and
quantifying error in the identified transfer function due to data
corruption can be an interesting line of work.

APPENDIX |
PROOF FOR THEOREM 2

We will show that if i — j ¢ Ay, then there is
no trail between Wi(tfl) and Wj[t] that is active given
{Wj(t_l), W%_l)} in the PDBN G, for all ¢ > 0. However,

trail in G, between Wi(tfl) and W [t] can contain future state
node o, [ty] such that ¢,, > t and b, € V. Note that such
nodes are not observed in {Wj(t_l), W%_l)} and can therefore
make the trail in PDBN active. However, the following lemma
proves that such nodes actually makes the trail inactive given
{W;t—l),w§§—l)}.

Lemma 1. Consider a generative graph, G = (V, A), con-
sisting of N nodes. Let Z = {v1,...,v,} C V be the set
of n perturbed nodes where each perturbation is described
by (4). Denote the data-streams as follows: Uz := {U,; }icz

and Yy := {Y;};c; where Z =V \ Z. Let the measured

plore. Restrictions apply.
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data-streams be W = Uz UY; = {Wy,Wa,...,Wn}. Let
G' = (V' A") be the dynamic Bayesian network (DBN)
associated with G and G';, = (V},, A')) be the perturbed DBN.
Ifi — j ¢ Aand if a trail in G, between Wi(tfl) and W;|t]
contains a node oy, [ty] such that t,, >t and by, € V, then
for all t > 0, the trail is not active given {Wj(t_l), W%_l)}.
Proof. Consider any trail from a node in m(t_l) to W;[t] in
G/Z Denote this by tTZG/Z = Wi[tl] = Qp, [tﬂ — Qp, [tz] —
=, [tr—1]—a, [tr] = W;[t] where 0 < ¢; < ¢. Here, by,
denotes the corresponding vertex in V for k = {1,2,...,7}.
Also, Qap,, [tk} = Ubk[tk] if b, € Z or Ozbkgtk] = )/bk[tk]
otherwise. For compact notation, set 6 := {th_l), W%_l)}.

The trail has length at least 3. As i — j ¢ A and if
j ¢ Z, then Yj[t] does not dynamically depend on process
Y; and clearly not on U;. If j € Z, then by (4), U;[t] does not
dynamically depend on Y; nor U;. Thus, there is no direct link
of the form «;[t'] — «;[t”] in G',, for any ¢',¢”. In particular,
W;[t1] — W;[t] ¢ G',. Thus, there are at least 3 nodes in the
trail, triG’,.

Unobserved collider in trail. Without loss of generality,
choose t,, = max{ty,...,t,—1} > t. Consider the sub-trail
subtrl’ == o, [tm—1] — o, [tm] — ., ., [tm41] Of trlG,.
By maximality of ¢,,, t,, > t,,—1 and ¢, > £, 41. We will
show that one of ay,,,_, [tm—1], ap,,[tm], and ay,,,, [tm41] is
a collider not in 6 and therefore the trail ¢rl/G’, cannot be
active given 6.

Suppose tp, > tp_1 and t,, > t,a1. Then, subtrl’ is of
the form, oy, [tm—1] — . [tm] < b, [tms1]. Note
that, as ¢,, > t, it follows that neither «,  [t,,] nor any of its
descendants can be in 6 and hence not observed.

Now, consider t,, > t,,—1 and t,, = t;,4+1. (The case of
tm > tmy1 and t,, = t,,—1 can be proven similarly). By
the generative model in (1), by strict causality, for any node
p € V, Y,[ty] does not dynamically depend on any Y[t,]
for ¢ € {p,P'(p)}. By the perturbation model described by
4), for any ¢ € Z, U,[t,] dynamically depends only on
{Uq(t“fl),Yq(t")}. As t,, = tm+1, we therefore have b,, =
b1 such that b, € Z and, one of ay,, [t,] and oy, [tm1]
is actually a perturbed measurement Up, [t,,] while the other
being Yy, [tm]-

Suppose ay,, [tm] = Up, [tm]. Then, o, [tmt1] =
Yo, [tm]. AS ty > tpm—1, subtrl’ is in fact ap,,_, [tm-1] —
ap,, [tm] = Uy, [tm] < 01 [tms1] = Yb,, [tm]. Therefore,
ap,, [tm] is a collider and as t,,, > ¢, it is not observed in 6.

Suppose instead that «p [tm] = Yb, [tm]. Then,
iy [tms1] = Up,,[tm]. As by € Z and maximality of
tm implies g, ., [tm2] € {Ulffnfnfl)7Yb(7:f"71)}. Thus, we
have ay,, , [tm—1] — aw,, [tm] = Yb,,[tm] = b, [tmt1] =
Up,.[tm] < ,,o[tms2] in trlG’,. Therefore, g, [tm1]
is a collider not observed in 6.

Proof of Theorem 2
For rest of the proof, denote 6 := {WJ-(FI),W%A)}.
Note that if ¢ — j ¢ Ay, then there is no directed edge

from i to j in G, and every trail from i to j in G violates
at least one of the conditions of Definition 13. We will

consider these cases separately and show that no active trail
exists in G’, in each case. Denote any trail connecting a
node in Wﬁ_l) and W;[t] in G, by triGY, = W;[t1] =
ay, [t1] — o, [to] =+ —aw,_ [tr1] — au, [t;] = Wj[t] where
0 < t; < t and by denotes the corresponding vertex in
V for k = {1,2,...,r}. Here, a,[t,] = Uyft,] if v € Z
or aylty] = Y,[t,] otherwise. Using Lemma 1, if any ¢’ in
{ta,...,t,—1} is such that ¢ > ¢, then trlG", is not active.
Now, consider 0 < tq,%9,t3,...,t,_1 <t. We will first show
that any such trail in G',, trlG’,, can be mapped to a trail in
G, trlG:=i=v] —vy —v3...V_1 — Vg = j as follows:

Initialize: £ = 1 and v; = b;.
for/=1:r—1do
if b1 # by in g, [ti] — by 44 [ti+1] along tTlG/Z then
Set vy = bl+1.
Add edge v, — vg41 with the same direction as
ap, [t] = oy [tiga].
Set s, =t; and Ti41 = 141
Setk=k+1
end if
end for

Additionally, note that vy — viy1 corresponds to an edge
Qyy, [Sk] = Qyp gy [Tk-‘rl] in G/Z

Now, let us reason out why such a construction is always
feasible. To this, we claim that for any successive pair ay, [t;] —
abl+1[tl+1], either by = b;41 or, by # byy1 and by — b1 € A
with the same direction as in oy, [t;] — ., [ti41]. Assume
Qp, [tl] — abl+1[tl+1]- (The case of Qy, [tl] — O‘bl+1[tl+1] is
similar). Then, either ¢; = ¢;1 or ¢; < t;4+1. Consider, t; =
ti+1. Then, the link must have the form Yy, [t;] — Uy, [ti], as
this is the only instantaneous influence defined in (1) or (4).
Thus, b; = b;41 in this case.

Suppose, t; < t;+1. Either, bjy1 € Z or b1 ¢ Z.
Consider b;41 € Z. By the perturbation model described by
@), ay[t1] € {Yb(Liifl_l),Ulfltil_l)}. Therefore, b; = byy.
Suppose, b1 ¢ Z. Then, oy, [tiy1] = Yy, [ti41]. By the
generative model in (1), we either have dynamic dependence
on self-history or history of other nodes. That is, ay,[t;] €

{Yb(t“rl*l), U Yq(tl“fl)}. Then, b; = b;1 when there
! qEP’ (bi41)
is dependence on self-history. Otherwise, b; € P’(b;41). Thus,

by — byy1 € A. Let us consider an example- from a trail of the
form Uy [tl] ~ Y [tz] — ng[tg] — ng[t4] — Y3[t5] — Ug[t]
in G/, a trail ¢rIG in G can be constructed as 1 < 2 — 3.
Additionally, we may assume that form =2,--- ;r—1 we
have that oy [tm] # Wiltm] in trlGY,. If ap, [tm] = Wiltm]
for some m > 1, then the sub-trail of triG’,, W;ltn] =
ap,, [tm] — v, ) [tmg1]) — - — an[t,] = Wj[t] is a trail from
Wiltm] € Wi(t_l) to W;[t]. This trail is of strictly shorter
length than trlG’Z. Thus, if the shorter trail cannot be active
then the longer trail, trlG”,, cannot be active either. Also,
by following the construction procedure described above, this
condition implies that v; # ¢ for [ = 2,3,--- k in triG.
Call this condition [oop;. To summarize, let triG = i =
V] —Ug —Us...Vp—1 — U = j be any trail connecting ¢ and j
in G constructed by following the above procedure from the
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trail t’/‘lG/ZZ Wi[tl] = Qp, [tl] — Qip, [tg] — = O, [t»,«_l] —
ap, [tr] = W;[t]. Since, ¢ — j ¢ Az, this trail must violate
any of the conditions P1), P2) and P3). We will now consider
these cases separately and prove that there is no corresponding
active trail in G.

If condition P1) is violated, then ¢r{G must have that j ¢ Z
and vi_1 < j. In this case, W; =Y. Then, either b,_; = j
or b,_1 # j. By construction of triG, if b._; # j, then
br—1 = vg—1. As vp_1  j, we must then have o, _, [t,—1]
ap, [t-]. However, this implies ¢, = ¢ < t,_1 which violates
the condition that 0 < ty,ts,t3,...,t.—1 < t. Thus, b._1 = j.
That is, o, , [tr—1] = Yj[tr—1]. As t,_1 < tand j ¢ Z we
have ap, , [tr—1] = Yj[t,—1] = , [t] = Yj[t] as a sub-trail
of triG',. Clearly, y;[t,_1] is not a collider. As t,_; < t, we
have y;[t,_1] € 6. Thus the trail cannot be active.

Recall the definitions of si and 7% during construction of
the trail in G. If condition P2) is violated, then a sub-path of
triG, Vpym—1 — Uy < Upm41, must have a collider, v,,, such
that v, ¢ Z and vy,,11 ¢ Z where m = {2,3--- ,k — 1}.
If v,,41 = J and 7,41 = ¢, P1) also fails, and the argument
above shows that the trail in G’ is not active. If v,, 11 = j and
Tm+1 < t then we have that o, ., [Tmy1] = Yo, .\ [Tm1] €
6 which is an observed node along the trail and is not a
collider. Thus, the trail ¢rIG’, cannot be active. So, assume
that v,,4+1 # j. By condition loop;, m + 1 # i. As v, <
Um41 € trlG, by construction we must have Y, [sp] =
o, [8m] < oy [Tmt1] = Yo i1 [Tm1] along trlGY, with
Tm+1 < Sm < t. Note that since v,,41 ¢ Z and Ty < 8,
Qi [Tmt1] = Yoo [Tms1] is an observed non-collider in
0. Thus, the trail cannot be active.

Finally consider the case that P3) is violated. Then along
the trail, ¢rlG, in G, there must be a sub-trail v,,,—1 — Uy, —
Um+1 such that the intermediate node, v,,, is not a collider
and v, ¢ Z. As v, is not a collider, there is one outgoing
directed edge from wv,, in the trail ¢rlG to either v,,_; or
Um+1. By construction, there must be a corresponding node
Qy,, [tf] in the trail ¢rlG’, such that it has an outgoing edge
to either av,,, , [t,] or v, ., [tq] for some t, > t,, ort, > t,,
respectively. Clearly, there is one a,,, [t,] in ¢rlG’, which is a
non-collider. Then, as v,, ¢ Z, we must have that «,, [t,,] =
W, [tm] = Yo, [tm]. Note that v, # i by condition loop;.
As t,, <1, ay,, [tm] is an intermediate non-collider node in @
and is thus observed. Hence, trlG’Z cannot be active. O

APPENDIX Il
PROOF FOR THEOREM 3

Suppose i@ — j is in Az. Then there is a trail, trig,
described by i = vy — vy — -+ — v = j in G satisfying
conditions in Definition 13. We will first construct a trail in
the perturbed DBN, G, from a node in Wi(t_l) to W;[t] for
some ¢ > 0. We can construct a trail in G, as follows: for
all 1 € {1,2,...,k—1}, sett; = t;41 — ko yo, 1T vp = v
holds in ¢rlG. Otherwise, set t; = tj11 + kyv,, if 01 = V41
holds in t¢rlG. Such a construction is feasible because by
condition C 1), numbers k£, ,,, and ky.,, exists for all
l1e{1,2,...,k — 1} and at all times. Thus, we have a trail
}/;‘[tl] — sz [tg] — ng [tg] — ... Yvk_l [tkfl] — Y}[tk]. For all

m € {1,2,...,k} if v, € Z, there exists a number k,, > 0
following conditions C 2). If B 2) also holds, then k,, > 0.
Let t > max{ty,...,t,—1}, and for all m € {1,2,... k} if
Um € Z, let t > t,,, + k,,, also hold. Depending on whether @
or j is a perturbed node, we have four cases on either end of
the above trail.

A) Consider the case ¢, € Z. As ¢ € Z, using condition C 2)
U;[t1 +k;] < Y;[t1] holds true. Choose ¢ sufficiently large
so that ¢t > t; 4+ k; also holds. As j € Z, using C 2), t can
be sufficiently large so that we have Yj[t;] — U;[t] where
t =tr+k; and k; > 1. If B 1) holds, then we can choose
t sufficiently large such that at the end of the trail we take
s steps from Y [tx] to U;[t] such that the tail is of the form
Yilte] = Yjlte + K] = -+ = Y[ty + sk}] — U;[t] with
t =1ty —&-sk;—kkj. Thus, the constructed trail in G’Z is either
Wilti+ki] = Us[ti+hi] < Yi[t1] = Yo, [t2] =Y, [ta] = - - —
Yoo [te—1] = Yj[tr] = Uslt] = Wj[t], or Wity + ki] =
Uilts+ki] < Yilt1] = Yo, [to] = Yo, [ts] = - = Yo, [te—1] -
Yilt] = Yjltx + K] = - = Yjlte + sk)] — Ujlt] =
Wi[t] with ¢ > max{ty +ki, t1,... tg, ..., tx+sk}}, and
for all m € {1,2,...,k} if v, € Z, t > by + k-

B) Consider the case i € Z but j ¢ Z. Choose t as ti. As
i € Z, using condition C 2) U;[t;+k;] < Y;[¢1] holds true.
Choose t sufficiently large so that ¢ > ¢; + k; also holds.
Thus, we have constructed a trail in G’Z which is of the
form: Wi[tl + kz] = Ui[tl + k‘l] — Y;[ﬁ] — Yv2 [tQ] —
Yoslta] = - = Yo [tiea] = Yylt] = W;l1] with ¢ >
max{t; + ki, t1,...,tk—1}, and for all m € {1,2,...,k}
if v, € Z,t>t, + kn.

C) Consider the case i ¢ Z but j € Z. Following arguments
presented in case (A) we conclude that the constructed
trail of form W;[t1] = Yi[t1] — Yo, [ta] — Yo, [ts] — - —
Yo, o [tk—1] — Yj[ts] — Ujt] = W;[t], or of form
Wilt1] = Yi[t1] = Yo, [ta] — Yo, [ts] — - = Yo [te—1] —
Yilte] — Yjlte + k3] — = Yj[ty + ski] —
Uj[t] = W;[t] exists in the perturbed DBN G, with
t > max{ty,...,th,...,tk + sk:;}, and for all m €
{1,2,.. .k} if vy € Z, t >ty + k.

D) Consider the case i ¢ Z and j ¢ Z. Following argu-
ments presented in Case (B) we conclude that the trail
Wilta] = Yi[t1] = Yo, [to] — Yoy [ts] — -+ = Yo, [te—a] —
Y;[t] = W;]t] exists in the perturbed DBN G, with
t > max{t1,...,tk—1}, and for all m € {1,2,...,k}
if vy, € Z, 1 >ty + k.

We will now argue that in each of the cases above, the
constructed trail is active given 6 := {Wj(t*l), W%fl)}.

Sub-trails with colliders: For all the trails in G’ constructed
under various cases above consider a sub-trail of the form
Yo, i [tm=1] = Yo, [tm] < Yo, 1 [tm+1]. Clearly, v, cannot
be either ¢ or j. If v,, & Z then as t,, < t, we have
Yo, [tm] € WY and thus the sub-trail is active. If vy, € Z
then the corrupted version of Yy, [tn] is Uy, [tm + kv,,] =
Wy, [tm + kv, ] and as t,, + k,, < t, we have W, [t +
km] € Wi(it _lsn. Thus the collider Y, [t,,] has a descendant
W, [tm + kv, | € 0. Thus the sub-trail remains active. Thus
no collider can deactivate the trails in G,.

Sub-trails with with no colliders: Now consider any node
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Y., [tm] which is not a collider. Note that in the trails for
the cases (A), (B), (C), and (D), Y; and Y; can only appear
as an intermediate node only if they are corrupted. In such
cases, neither Y;[t;] nor Y;[t] belong to 6. Thus, if Y; or
Y, are intermediate nodes, they cannot deactivate the trails
given 0. Consider an intermediate node v,,, ¢ {i,j}. From
Definition 13P 3), vy, is corrupted. Thus Y, [ty,] # W, [tm]
and Y, [t;,] cannot deactivate the trail as Y, [t,] ¢60. O

APPENDIX I
PROOF FOR THEOREM 4

To prove the theorem, we require two results from [36]. The
following lemma shows that with sufficiently large data, the
conditional probability assignment by CTW converges to the
true probability assignment for a Markov process.

Lemma 2. Let () be the probability assignment described
by CTW. Let X be a stationary and finite alphabet Markov
process with finite Markov order which is bounded by the
prescribed tree depth of CTW algorithm. Let P be the true
probability for X. Then,

lim Q(z[n] | ") — P(z[n] | 2"7Y) =0 P-as. (20)

Next, we will later use the following proposition which is
a rephrased result from [36].

Proposition 1. Let Q) be the probability assignment in the
CTW algorithm. Suppose, X,Y are jointly stationary ir-
reducible aperiodic finite-alphabet Markov processes whose
order is bounded by the prescribed tree depth of the CTW
algorithm. Let H(y™ | z(™) = 5™ > ylijey QUL |
(=1 y=1) og a0 Then,

1
MOIECERTCENE

lim H(y™ | 2) = H(Y || X) =0

n—oo

P-a.s, (21)

Recall the expression for conditional DI estimator from (18):
j(x(n) — y™ [ z(")) -

z”: > QU 207Y ), 207h),

1
" is ylgey

1
log - , -
Q(yli] [ y(=1,20=1)

1 ¢ . i— i— i—
_EZ Z Qyli] | =D 4= =Dy,

i=1yliley

1
! - . .
%8 QUyli] | 2D, yi—D, 2G-1)

(22)

We will show that the first term (call it T1) in equation (22)
converges to H,.(Y || Z) and the second term (call it T2) in
(22) converges to H,.(Y || X, Z).

Convergence of T2: Let V = {X,Z}. Thus, T2 can
be written as fl(y(”) | ™) = %Z?:l Zy[i]ey Qyli] |
v~ 4 (=1)) og Q(y[i“v(i}l),y(i*l))' Using, proposition 1,
we thus have that lim,, ., H(y™ | v™) = H.(Y || V)
almost surely.
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Convergence of T1: Subtract H,.(Y | Z) from T1 and
express T'1 — H.(Y || Z) = F,, + S,, where,

1 & . , ,
F o= 20 =1 (i=1) (i—1)y,
n=n 2 2 POl a0y S0
i=1 yli]ley
log P(y[i] |y, 2071)

! n ) i— i— F
ST ST QU] £y, D),

i=1y[iley
log Q(y[i] |y, 2071), (23)

1« , , ,
S == ] 2D =1 =1y,
== 30 D PGl |0 26
=1 yliley
log P(yli] | 4~V 2" D) — H.(Y | Z) (24)
By ergodicity, .S,, converges to zero almost surely. We need to
show that F), converges to zero almost surely. Rewrite F),, =

LS~ | Bi where,

fi= 3 P(yli] | 2lD, 40 £,
yliley
log P(yli] |y, 207Y)
— Z Qyli] | 21 =1 (=D,
yliley
log Q(yli] |y~ 217)  (25)
By Lemma 2, the CTW probabilities Q(yl[i] |
01 (=1 »G=1)) " converges to true probabilities
P(y[i] | 01,y 2G=1)) almost surely. Therefore,

lim ;=0 P-a.s. (26)
11— 00
Hence, by Cesaro mean [40] we have:
1
lim F, = lim —f3; =0 P-as. O 27
n—o00 n—oo n
REFERENCES

[1] M. Kretschmer, D. Coumou, J. F. Donges, and J. Runge, “Using causal
effect networks to analyze different arctic drivers of midlatitude winter
circulation,” Journal of Climate, vol. 29, no. 11, pp. 4069-4081, 2016.

[2] A. Sendrowski, K. Sadid, E. Meselhe, W. Wagner, D. Mohrig, and
P. Passalacqua, “Transfer entropy as a tool for hydrodynamic model
validation,” Entropy, vol. 20, no. 1, p. 58, 2018.

[3] N. Omranian, J. M. Eloundou-Mbebi, B. Mueller-Roeber, and
Z. Nikoloski, “Gene regulatory network inference using fused lasso on
multiple data sets,” Scientific reports, vol. 6, p. 20533, 2016.

[4] D. S. Bassett and O. Sporns, “Network neuroscience,” Nature neuro-
science, vol. 20, no. 3, p. 353, 2017.

[5] P. Fiedor, “Networks in financial markets based on the mutual informa-
tion rate,” Phys. Rev. E, vol. 89, p. 052801, May 2014.

[6] S.P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca, “Network analysis
in the social sciences,” science, vol. 323, no. 5916, pp. 892-895, 2009.

[71 C. Zhu, V. C. Leung, L. Shu, and E. C.-H. Ngai, “Green internet of
things for smart world,” IEEE Access, vol. 3, pp. 2151-2162, 2015.

[8] S. Yang, U. Adeel, Y. Tahir, and J. A. McCann, “Practical opportunistic
data collection in wireless sensor networks with mobile sinks,” IEEE
Transactions on Mobile Computing, vol. 16, no. 5, pp. 1420-1433, 2016.

[9] D. Deka, S. Backhaus, and M. Chertkov, “Structure learning in power
distribution networks,” IEEE Transactions on Control of Network Sys-
tems, vol. 5, no. 3, pp. 1061-1074, Sept 2018.

plore. Restrictions apply.

/publications_standards/, ublications/ri§hts{indexhtml for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOT 10.1109/TAC.2021.3093301, IEEE

Transactions on Automatic Control

13

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

J. D. Finkle, J. J. Wu, and N. Bagheri, “Windowed granger causal
inference strategy improves discovery of gene regulatory networks,”
Proceedings of the National Academy of Sciences, vol. 115, no. 9, 2018.
M. S. Stankovic, S. S. Stankovic, and K. H. Johansson, “Distributed
time synchronization for networks with random delays and measurement
noise,” Automatica, vol. 93, pp. 126 — 137, 2018.

H.-H. Cho, C.-Y. Chen, T. K. Shih, and H.-C. Chao, “Survey on
underwater delay/disruption tolerant wireless sensor network routing,”
IET Wireless Sensor Systems, vol. 4, no. 3, pp. 112-121, 2014.

A. S. Leong, S. Dey, and D. E. Quevedo, “Sensor scheduling in variance
based event triggered estimation with packet drops,” IEEE Transactions
on Automatic Control, vol. 62, no. 4, pp. 1880-1895, 2017.

H. H. Weerts, P. M. V. den Hof, and A. G. Dankers, “Identifiability of
linear dynamic networks,” Automatica, vol. 89, pp. 247 — 258, 2018.
J. M. Hendrickx, M. Gevers, and A. S. Bazanella, “Identifiability of dy-
namical networks with partial node measurements,” IEEE Transactions
on Automatic Control, 2018.

D. Materassi and M. V. Salapaka, “Signal selection for estimation
and identification in networks of dynamic systems: a graphical model
approach,” arXiv preprint arXiv:1905.12132, 2019.

, “On the problem of reconstructing an unknown topology via
locality properties of the wiener filter,” IEEE transactions on automatic
control, vol. 57, no. 7, pp. 1765-1777, 2012.

C. J. Quinn, N. Kiyavash, and T. P. Coleman, “Directed Information
Graphs,” IEEE Transactions on Information Theory, vol. 61, no. 12, pp.
6887-6909, 2015.

S. Sinha, P. Sharma, U. Vaidya, and V. Ajjarapu, “Identifying causal
interaction in power system: Information-based approach,” in 2017 IEEE
56th Annual Conference on Decision and Control (CDC). IEEE, 2017.
——, “On information transfer based characterization of power system
stability,” IEEE Transactions on Power Systems, 2019.

S. Sinha and U. Vaidya, “On data-driven computation of information
transfer for causal inference in discrete-time dynamical systems,” Jour-
nal of Nonlinear Science, 2020.

D. Hayden, Y. Yuan, and J. Goncalves, “Network reconstruction from
intrinsic noise: Non-minimum-phase systems,” IFAC Proceedings Vol-
umes, vol. 47, no. 3, 2014.

D. Hayden, Y. Yuan, and J. Gongalves, “Network reconstruction from
intrinsic noise: Minimum-phase systems,” in 2014 American Control
Conference. 1EEE, 2014.

Y. Yuan, G. B. Stan, S. Warnick, and J. Goncalves, “Robust dynamical
network structure reconstruction,” Automatica, vol. 47, no. 6, pp. 1230
— 1235, 2011, special Issue on Systems Biology.

V. Chetty, D. Hayden, J. Goncalves, and S. Warnick, “Robust signal-
structure reconstruction,” in 52nd IEEE Conference on Decision and
Control, Dec 2013, pp. 3184-3189.

J. Goncalves and S. Warnick, “Necessary and sufficient conditions for
dynamical structure reconstruction of 1ti networks,” IEEE Transactions
on Automatic Control, vol. 53, no. 7, pp. 1670-1674, Aug 2008.

A. Dankers, P. M. Van den Hof, X. Bombois, and P. S. Heuberger,
“Errors-in-variables identification in dynamic networks—consistency
results for an instrumental variable approach,” Automatica, vol. 62, 2015.
N. Everitt, G. Bottegal, and H. Hjalmarsson, “An empirical bayes
approach to identification of modules in dynamic networks,” Automatica,
vol. 91, pp. 144 — 151, 2018.

J. Runge, “Causal network reconstruction from time series: From theo-
retical assumptions to practical estimation,” Chaos: An Interdisciplinary
Journal of Nonlinear Science, vol. 28, no. 7, p. 075310, 2018.

V. R. Subramanian, A. Lamperski, and M. V. Salapaka, “Network
topology identification from corrupt data streams,” in /EEE 56th Annual
Conference on Decision and Control (CDC), 2017, pp. 1695-1700.

F. Sepehr and D. Materassi, “Blind learning of tree network topologies in
the presence of hidden nodes,” IEEE Transactions on Automatic Control,
2019.

K. R. Ramaswamy and P. M. J. Vandenhof, “A local direct method for
module identification in dynamic networks with correlated noise,” IEEE
Transactions on Automatic Control, 2020.

V. R. Subramanian, A. Lamperski, and M. V. Salapaka, “Inferring
directed graphs for networks from corrupt data streams (in progress),” in
IEEE 57th Annual Conference on Decision and Control (CDC), 2018.
D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. The MIT Press, 2009.

F. M. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context-tree
weighting method: basic properties,” IEEE Transactions on Information
Theory, vol. 41, no. 3, pp. 653-664, 1995.

[36] J. Jiao, H. H. Permuter, L. Zhao, Y. Kim, and T. Weissman, ‘“Universal
estimation of directed information,” IEEE Transactions on Information
Theory, vol. 59, no. 10, pp. 6220-6242, 2013.

[37]1 G. Kramer, Directed information for channels with feedback. Hartung-
Gorre, 1998.

[38] J. Adebayo, T. Southwick, V. Chetty, E. Yeung, Y. Yuan, J. Goncalves,
J. Grose, J. Prince, G.-B. Stan, and S. Warnick, “Dynamical structure
function identifiability conditions enabling signal structure reconstruc-
tion,” in IEEE 51st IEEE Conference on Decision and Control (CDC).
1EEE, 2012.

[39] V. Chetty, J. Eliason, and S. Warnick, “Passive reconstruction of non-
target-specific discrete-time Iti systems,” in American Control Confer-
ence (ACC). IEEE, 2016.

[40] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

Venkat Ram Subramanian received the B.Tech
degree in electrical engineering from SRM Uni-
versity, Chennai, India, in 2014, and the M.S. de-
gree in electrical engineering from the University
of Minnesota, Minneapolis, in 2016. Currently,
he is working towards a Ph.D. degree at the
University of Minnesota. His Ph.D. research is
on learning dynamic relations in networks from
W\ A «\\‘ corrupt data-streams. In addition to system iden-
A\ R tification and stochastic systems, his research
interests also include grid modernization and

optimal energy management in Distributed Energy Resources (DER).

Andrew Lamperski (S’'05-M’11) received the
B.S. degree in biomedical engineering and
mathematics in 2004 from the Johns Hopkins
University, Baltimore, MD, and the Ph.D. degree
in control and dynamical systems in 2011 from
the California Institute of Technology, Pasadena.
He held postdoctoral positions in control and
dynamical systems at the California Institute of
Technology from 2011-2012 and in mechanical
engineering at The Johns Hopkins University in
2012. From 2012—-2014, did postdoctoral work in
the Department of Engineering, University of Cambridge, on a schol-
arship from the Whitaker International Program. In 2014, he joined
the Department of Electrical and Computer Engineering, University of
Minnesota as an Assistant Professor. His research interests include
optimal control, optimization, and identification, with applications to
neuroscience and robotics.

Murti Salapaka (SM'01-F'19) Murti Salapaka
received the bachelor's degree from the In-
dian Institute of Technology, Madras, India, in
1991, and the Master’s and Ph.D. degrees from
the University of California, Santa Barbara, CA,
USA, in 1993 and 1997, respectively, all in
mechanical engineering. He was with Electrical
Engineering department, lowa State University,
from 1997 to 2007. He is currently the Vincentine
Hermes-Luh Chair Professor with the Electrical
and Computer Engineering Department, Univer-
sity of Minnesota, Minneapolis, MN, USA. Prof. Salapaka was the
recipient of the NSF CAREER Award and the ISU—Young Engineering
Faculty Research Award for the years 1998 and 2001, respectively. He
is an IEEE Fellow.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but républicatjon/rqdistribution requires IEEE permission. See httj ://www.ieccoré/ ublications_standards/| ublications/ri§hts{indcx.htm1 for more information.

uthorized licensed use limite

to: University of Minnesota. Downloaded on July 3%),2021 at 21

:35 UTC from IEEE Xplore. Restrictions apply.



