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Non-asymptotic Closed-Loop System Identification using Autoregressive
Processes and Hankel Model Reduction

Bruce Lee and Andrew Lamperski

Abstract— One of the primary challenges of system identifica-
tion is determining how much data is necessary to adequately fit
a model. Non-asymptotic characterizations of the performance
of system identification methods provide this knowledge. Such
characterizations are available for several algorithms perform-
ing open-loop identification. Often times, however, data is
collected in closed-loop. Application of open-loop identification
methods to closed-loop data can result in biased estimates.
One method to eliminate these biases involves first fitting a
long-horizon autoregressive model and then performing model
reduction. The asymptotic behavior of such algorithms is
well characterized, but the non-asymptotic behavior is not.
This work provides a non-asymptotic characterization of one
particular variant of these algorithms. More specifically, we
provide non-asymptotic upper bounds on the generalization
error of the produced model, as well as high probability bounds
on the difference between the produced model and the finite
horizon Kalman Filter.

I. INTRODUCTION

One of the first steps in the control design process is to
obtain a model for the system of interest. In cases where
knowledge of the system is nonexistent or incomplete, mod-
els must be identified from input/output data. This process
can be viewed as a learning problem in which models are
optimized in order to give the best fit for the data [1]. The
quality of the model can be assessed via 1) generalization
error, which measures how well the model fits unseen data,
and 2) model error, which measures how far the identified
model is from the “true” model. (In many cases, analysis of
model error is an idealization, since the real system falls out
side the class of models studied.)

While system identification can be viewed as a learning
problem, correlations in the data lead to several challenges.
Typical machine learning problems assume that the data
are independent [2]. Using independence, learning theory
provides non-asymptotic bounds on the generalization error
obtained from finite amounts of data. In contrast, the data
from system identification are correlated due to 1) internal
system dynamics, 2) temporal correlations in the inputs, and
3) feedback from the outputs to the inputs. The result is that
most traditional analyses of system identification methods
focus on asymptotic bounds, which can only guarantee low
generalization error in the limit of infinite data [1]. There
have, however, been recent efforts to provide non-asymptotic
bounds on the performance of system identification methods.
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Most work on non-asymptotic system identification fo-
cuses on open-loop problems. Early works give non-
asymptotic analyses for the identification of transfer func-
tions [3] and autoregressive models [4]. Recently, several
works have provided non-asymptotic analyses of various
open-loop system identification problems for linear time
invariant systems with direct state measurement, [5], [6], and
with partial state measurement [7], [8]. Each of these works
assumes that the engineer may choose inputs to excite the
system. In [9], bounds are derived for the identification of
linear time invariant systems with no measured inputs.

The work in [10], [11] provides a non-asymptotic method
for output error identification of linear models. Unlike
the works mentioned above, the data could be collected
in closed-loop. However, these works utilize the non-
probabilistic framework of online optimization [12], [13],
and are not directly comparable to the work on generalization
bounds. Additionally, the models identified in these works
are restricted to stable systems.

As discussed above, the recent works on non-asymptotic
identification have focused on open-loop identification meth-
ods. However, for many systems, the plant is impossible to
isolate from its controller or is unstable in open-loop. Fur-
thermore, identification is most successful when performed
in circumstances that match the desired application, which
often includes a feedback controller [14]. This drives the
study of methods that are effective with closed-loop data.

The task of developing identification methods that work
on closed-loop data is nontrivial, as the correlation between
past output noise and future inputs produces a bias in model
estimates for many identification methods. This is particu-
larly troublesome for subspace approaches [15]. In [16], it
is demonstrated how subspace algorithms may be applied to
closed-loop data by fitting high order vector autoregressive
models with exogenous inputs (VARX models). The work of
[17] proposed a subspace technique which used the VARX
parameter estimates to recover the Kalman Filter. This helped
to develop algorithms such as the well known predictor
based subspace identification (PBSID) algorithm [18]. For
summaries on the advancements of subspace approaches for
closed-loop identification, see [19] and [20].

Our contribution is to analyze an algorithm for system
identification in which a VARX model is fit, followed by
balanced model reduction. This approach has been described
in [20], [21], and it was shown that its asymptotic properties
match those of a familiar subspace method. The primary
difference of our analysis from prior non-asymptotic system
identification characterizations is that we allow the presence
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of a feedback controller.

We note that the bound we obtain for the generalization
error requires some prior knowledge. In particular, we require
an upper bound on the of several system parameters such as
the Ho, norm of the closed loop system. In practice, we
would need to estimate these from data. We also note that
the generalization error bound obtained is loose when tested
in simulation (see [22]). Thus, the result is more interesting
from a theoretical perspective in that it quantifies how various
parameters of the identification algorithm and the system
impact the predictive capabilities of the model.

The paper is organized as follows. In Section II, we
present the algorithm, precisely define the problem, and
provide the main result: a non-asymptotic bound on the
generalization error of the produced model. The proof of this
result is available in Section III. Proofs for several supporting
lemmas are omitted. They may be found in the full report
[22]. Section IV presents a related result regarding the high
probability bounds on the H ., norm of the error system from
the identified model to the finite horizon Kalman Filter, and
highlights several practical considerations of the bounds.

II. PROBLEM AND RESULTS

We now describe the problem, and present the general-
ization error bound obtained. Subsection II-A summarizes
the notation used throughout the paper. In Subsection 1I-B,
we highlight the details and assumptions of the closed-loop
system. The algorithm to be analyzed is presented in II-C,
along with the main result: a non-asymptotic bound on the
generalization error of the obtained model.

A. Notation and Terminology

Random variables are denoted using bold symbols. The
expected value of a random variable, x, is denoted by E[x],
while the probability of an event S is given by P(S5).

The Euclidean norm of a vector, x, is denoted by ||z||. The
Frobenius norm of a matrix, G, is denoted by ||G|| ¢, while its
induced 2 norm is denoted by ||G||. The minimal eigenvalue
of a symmetric matrix, X, is denoted by Auin(X). The trace
of a square matrix G is given by Tr(G).

The power of a stationary process, y;, is defined by
Iyl = Ely{ y:]-

The forward shift operator is denoted by gq, i.e. ¢gx; =
X1 If G(g) is a time-domain operator defined in terms
of shifts, we will identify it with its corresponding transfer
matrix, G(z). The Ho norm of a transfer matrix, G(z), is
denoted by ||G||. The notation x;.; represents the sequence
starting from x; and up to, but not including x;.

B. Problem Setup
Consider a linear time-invariant (LTI) system of the form

Xi41 = Axy + Buy + B, wy (1a)

(1b)
Where x; is the n, dimensional state, u; is the n, dimen-

sional known input, w; is Gaussian white noise, and y; is
the n, dimensional measurement.

yi = Cxy + Dywy,

When the steady-state Kalman filter exists, the statistics
of (1) are equivalent the statistics of the following system in
innovations form:

Xt4+1 = AXt + But + Ket (Za)

(2b)

Here K is the Kalman gain and e; is Gaussian white noise
with dimension n,. For details about the Kalman filter and
innovation form, see section 3.3 of [23].
: T T17 r

For compact notation, we set z; = [u/ y/| € R".
For an integer p, we also define d; = z;_,.. For later
analysis, we have assumed that the system is strictly proper
in the known inputs, u;.

We will assume that u; can be represented as a linear
feedback with excitatory noise:

N CXt + e;.

St4+1 = AFSt + nyt + BQFVt
_ F F F
w =C"s; + Dy y: + D; vy

(3a)
(3b)
Here v, is identity covariance Gaussian white noise with
dimension n, which is independent of e;, and s; is the

state of the controller with dimension n;. A summary of
the system is shown in Fig. 1.
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Fig. 1.  The overall system.

The closed-loop system is assumed to be stable. This
implies that the signal power, ||z||p, is finite. Additionally,
we will assume that the joint covariance of the noise is
positive definite:

T
€ €t
]E [[ngt] |:D§Vt:|

This ensures that identifiability conditions hold, as in tradi-
tional system identification [1]. Note that we do not assume
that the open-loop system is stable.

The finite horizon Kalman Filter represents the output
estimate for (2) provided the p previous time steps as
Yijt—pt = Elyt|ds], where the notation follows that men-
tioned previously; the sequence z;.; does not include x;.
This indicates that the finite horizon Kalman Filter estimate
depends only upon data collected at times k with ¢t — p <
k < t. The estimate is a linear function of d;. We define
Gopr as the linear transformation relating the two:

[\IJO

0 Q}:F>O.

y:ltfp:t = GOPTdt- (4)

We also define the operator H9""(q) such that yj, ., =
HOPT(q)z;. The steady state Kalman Filter operator H*(q)
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is given as y;, ., = H*(q)z:. Due to the special form of
the innovations model, we can write the steady state Kalman
Filter as

xi41 = (A — KC)x; + Bu; + Ky
Yt*|—oo:t = Cxy,
and the associated expected squared error, E[|ly; —
Yii—ocutll’]: 18 el
C. The REDAR Algorithm and its Prediction Error

The method of this paper is termed the REDAR (pro-
nounced “reader”) algorithm. See Alg. 1. Here H* is the
system corresponding to the least-squares model, while H%
is the result of balanced model reduction subject to H, error
tolerance ¢. See Chapter 7 of [24] for a description balanced
reduction with limited error tolerance. Our final predictor is
given by y; = H?(q)z;. Additionally, given the state-space
realization of HE, all of the parameters of the innovation
form model, (2), can be estimated.

Algorithm 1 The REDuced AutoRegressive (REDAR) algo-
rithm
1: Given signals Wi _p:741, Y1—p:7+1, VARX order p > 0,
a regularization paramater o > 0, and a reduction error
>0
2: Let Z; = [u: y;/l— and dt = Zt—p:t
3: Solve the VARX identification problem Gp =
argming S, ly: — Gdi||? + al|G||% using least
squares
4: Construct a state-space operator,
HA(q)Zt = G‘Tdt
5: Apply balanced model reduction to find H? such that
|HA— HA|, < ¢

]T

H4, such that

6: Compute estimates (A,B,C,D,K) by
A-KC|B K]_u»r
C |D o

The general scheme of the REDAR algorithm has been
proposed in closed-loop system identification literature [20],
[21]. However, its finite-sample behavior has not been char-
acterized. Our main result gives such a characterization:

Theorem 1. Suppose there exists L > 0 and p < 1 such
that for all |z| > p, ||H*(2)|| < L. Then there are constants
k and Ty depending upon n,, ny, p, o, the Hoo norm of the
closed loop system, and \p,;, (L) such that for all T > Ty,

Elly: — 3%
Lpp“)z
§e2+< z||% + 20||z||% + == ||z||>.
lell» 1, Izl + 26|zl ﬁll 53
where y; is the output generated by running the process
(2) in closed loop, and ¥, is the one step ahead prediction
generated by the model output of Algorithm 1.

2kp

It should be noted that the identification algorithm is only
run on a single data set consisting of ©1_p.741 and y1_p. 741
to construct a model which is capable of predicting the output

y; from the previous input and output data. Therefore, if the
data set was fixed, and the engineer was trying to evaluate
their model, the quantity of interest would be E[|ly: —
J¢|w1—p:T+1, Y1—p:7+1], OF the mean squared prediction error
of their model. This is not the quantity that we are interested
in bounding. Instead, we are interested in bounding the
expectation of this quantity over the possible data sets to
determine the tradeoffs in the modeling parameters and data
requirements prior to running the identification algorithm.

ITI. PROOF OF THEOREM 1

The proof of Theorem 1 has several stages. In Subsec-
tion III-A, the expected squared prediction error is decom-
posed into terms due to 1) noise, 2) finite autoregressive
order, 3) model reduction, and 4) a limited amount of data.
The error due to finite autoregressive order is bounded in
Subsection III-B. In order to bound the errors due to limited
data, some non-asymptotic convergence results are derived in
Subsection III-C. These results are used to bound the error
due to limited data in Subsection III-D. Finally, the errors
due to model reduction are bounded in Subsection III-E.
Complete proofs may be found in [22].

A. Decomposition

The expected squared prediction error of Alg. 1 is now
decomposed into the following components: the optimal
prediction error given the true model, terms resulting from
the limited model complexity determined by parameters p
and ¢, and a component from the limited amount of data.

Lemma 1. Let y! = Gpd; be the output of the VARX
model. Then the prediction error of the REDAR algorithm
can be decomposed as
Elllye — 3:lI°] < llelld + Ellyf oot — Yije—pit ]
+ 2E[[[¥7 e — ¥ 1P+ 2E[lly7 — 3¢ )1%)-
B. Finite Model Order Error

Here, we bound the term arising from Lemma 1 that results
from the finite model order:

E[”yafoot - y:\tfp:tHQ]' &)

Recall that H*(q) is the Kalman filter operator. Note that
H*(q) can be written as

H*(q)=CY A'B K¢,
i=1
where A = A— K C. Let HH°2d e the truncation of H*(q)
to p terms:

P
HHead(q> _ CZAz—l[B K]q—z.
i=1

Then the difference between these two systems is
HTail(q) — (H* _ HHead)(q) — Z CAi—l[B K]q_i.
i=p+1

To simplify notation, let H; = CA'™'[B K].
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Note that E[Hy:,oot - y:|t7p:t||2] S E[”ya,m:t -
yHead 2] where ytead = pHead(g)7, We therefore opt

to bound the term on the right hand side. This may be written

as B[y} _ ., — yio*?] = E[|[ H™(q)z|?).
For any operator H, E[||H (q)x:||*] < |H||% ||x||%. Thus
E[|H™(q)z|*]) < | H™2 ||2l%- ()

Lemma 2. (modification of [4], Lemma 1). Assume that there
are constants p < 1 and L > 0 such that the Kalman filter
satisfies ||H*(z)||a < L for all |z| > p. Then the coefficients
of H* satisfy

| H;|l2 < Lp* fori=1,2,...
and the tail is bounded as
LpPtt
1—p-

Combining the result of Lemma 2 with (6), we have a
bound for (5).

”I{Tanl”oo <

C. Convergence of Empirical Means

The least squares problem in Alg. 1 converges asymptot-
ically to a steady state value. This subsection takes the first
step in bounding the distance from the asymptotic value with
a finite amount of data. In particular, probability bounds are
provided for the difference of individual components of the
least squares solution from their asymptotic value.

Recall the definition of d; and the corresponding least-
squares estimator, G, from Alg. 1. The least-squares solu-
tion can be expressed as

1 & 1 &
_ E T _ E T
= T 2 dtdt y NT = T 2 Ytdt y

Gr =Nr (QT+%I)71-

Then optimal solution defined in (4) may be written

Q =E[Qr], N =E[N7], Gopr = NQ~ L

We will denote Qr — @Q as AQ and N — N as AN.
The focus of this subsection will be to derive a bound on
the probability that any element of AQ or AN exceed a
given magnitude. This will then be used in the following
subsection to bound the finite data error.

Let J(q) be the closed-loop operator that maps

‘1’71/2%
V¢ ’

Here, we have re-normalized the innovation error signal so
that the input to J has identity covariance.
T T 71T

Define Z = [z{ , ... z;_, zy;| . Let R =
E[ZZ"], and r, = E[z4z] ] be the autocorrelation function.
Then R; . = r;—,. Let ®,(e’“) be the Fourier transform of
7, which is the power spectral density. Note that P, (e7v) =
J(e?)J(e?)*, and so || @, (e?*)|| < [|]]I3,.

Lemma 3. The covariance, R, satisfies |R|| < ||J||%.

2 = J(0) [

Lemma 4. For all symmetric S and all 6 > 0, the following
bound holds for all T > p.

P(Z"SZ > Tr(RS) + 0T) <

e T min o 0
xp [ — .
P 3201112117115 8IS 112

Proof. Note that SR and R'/2SR'/? have the same eigen-
values, so all of the eigenvalues of SR are real. For all n > 0
such that nR'/2SR/? < I, Markov’s inequality implies that

P(Z"SZ > Tr(SR) + T¢)
< e 3(TSRHTOR [engsz}

— (-3 Tx(SR)+uTs+l0g det(I-nSR))) )

The equality follows from direct calculation.

Now we will examine the exponent from (7). Let \; be
the eigenvalues of SR for ¢ = 1,...,T + p. As discussed
above, these are real and furthermore, |\;| < [|SR||
ISIIIRI < |IS|I|]|%- Using the bounds on the eigenvalues,
the exponent can be bounded as follows.

NTr(SR) + nT6 + logdet(I — nSR)

T+p
=Y (nAi +log(1 — nX;)) + nTs
1=1
T+p oo
=nTé —
1=1 k=2
- (nIISIIHJII2 )"
>nTs—2T Y ~—r-re/
> ]; -

>nTs — 27 (| S|I[I1T)1%)"

k=2
(S| T11%)2
=nT§ -2~~~ 1/
7 1— ][ SITI11%

Now say that < 1/(2||S||2]lJ||2,). Then the above
expression can be bounded below by

T (06 — 4 (1811211 711%.)%) - ®)

Now we will see how to choose 7 to ensure that (8) is
positive. For simple notation, let a = 8(||S||2]|.7]|%,)? and let
b= 1/(2||SH | 7||2,)- Then 7 can be chosen by maximizing
6n — % over 0 <7 < b. The optimal solution is given by
17 = min{d/a, b}. If n = §/a, then the optimal value is given
by 62/(2a). If n = b, then we must have that § > ab and so
the optimal value satisfies bd — ab?/2 > b6 — b6 /2 = b6 /2.
Thus, we get the final bound on (8) as

T min { ” 0 }
16][S12 1715 " 4l SITI3 S
The lemma follows by plugging this into the exponential
bound on the probability from (7). O

Note that every entry of N and Qg is of the form

T
Eztk Zté
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forsomei,j € {1,...,n,}and k,¢ € {0, ..., p}. Recall that
r; is the autocorrelation function of z. The next lemma shows
that these empirical means converge to the corresponding
autocorrelation values exponentially in probability. The proof
follows from an application of Lemma 4.

Lemma 5. For all i,5 € {1,...,n,}, all k,0 € {0,...,p},
and all T > p, the following bound holds

p< >5>

< 2ex —T min L 0
=S 321715 8712 S )

Now note that every element of AQ and AN may be
expressed as

1 T
T D (@er)i(ze—0)i = (re—1)

1 T
T > (z—i)i(ze—e)j — (ri—k)ij

for some i,5 € {1,...,n,} and k,¢ € {0,...,p}. The
following lemma uses this fact to bound the probability of
elementwise deviations of AQ and AN from zero.

Lemma 6. For all i,j,k € {1,..pn.}, all | € {1,..n,},
and all T > p, the following expression is satisfied.

P(max{|AQy |} > & or max{ AN} > 6)
3V s

< %exp | —T mi e ¢
= O M B R

z z ]'
b frng pnynz + %.

where

D. Finite Data Error

We now use the results from the previous subsection to
bound E[ly;,_,.. —¥7'lI’] < E[|Gorr — Grl]l|z]3p. As
lGopr — Gr||? > 0, the expected value may be written

E[|Gr — Gopr|?] = / E(|Gr — Gopr|? > dlde ©)
0

An upper bound on this integral may be computed if, for
any € > 0, we can bound P[||Gr — Gopr||* > €. To do so,
define § > 0 such that

|AN;;| <di=1,...,nyj=1,...,pn.

‘AQ13| §5 Z,j = 1, ceey PNy
We will proceed by bounding |Gr — Gopr| in terms of

0. It will then be possible to determine a value § > 0
corresponding to all sufficiently large e such that

|AQ;;| < 3§ and |ANy;| <6 = |G — Gopr|? < e

Then Lemma 6 may be applied to bound the probability that
the elementwise bounds hold.
The elementwise bounds above provide the following

To simplify notation, we define & = A\ (T) < [|Q 71|71
Then the above results may be applied to compute the
following bound.

Lemma 7.
|Gr — Goprl < (s + ) [(@+aQ+ 207

I c JII2
where c3 = ¢1 + 1Ll ”g°°2 and ¢y = 17l ”é’"a.

We know that the following always holds

T
l@+aQ+ 2D <, an

as Q+AQ = Zgzo d;d! = 0. A tighter bound is available
when § is small.

Lemma 8. For § < %

1

@1
||(Q+AQ+?I) | < [ g

Lemma 9. Assume T > max{%a, 1}. Let

(2N (2AIETN
€y — W and €1 = T .

For any € > €y, we can find § > 0 such that
‘AQ13| < and |AN”| <§=|Gr— GOPTH2 <e

by selecting

T _ _
(€7 - a)ye—c w<e<ea  (12a)
(5 _ CQT\/E —+ CgT
m €> e (12b)
CgT

The reason for the two different expressions for § in the
above lemma is that (11) provides a tigléter bound than
Lemma 8 when § becomes greater than 5—6727
Lemma 10. For some k and Ty depending on n,, ny, p, o,
H‘]”oor and A’min(r):

k
E[|Gr — Gorr|?] < —=

VT

Proof. Let 61(¢) be given by (12a) and d2(e) be given
by (12b). We obtain a bound on the right side of (9) by
application of Lemma 9 along with Lemma 6.

0o o
| ®UGr ~ Goprl? > e < [ 1ae
0 0

dy
“ T . 51 () )2 81 (e)
+/ 2bexp | ——min ( , de
o ( 2 { A1) A

for all T > Ty.

bounds on ||AN]|| and ||AQ]|. ¢ )
T I %2(¢) %2 L4
IAN]| < erd, 1AQ] < 20 (10) o O AT i) A [ )0
where ¢; = ,/pnyn; and co = pn.. ds
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where the integrand of d; results from the fact that the

probability is at most 1. The bounds above were valid for

T > max %a,p . We now bound each term separately.

We may solve d; explicitly. The others may be split up
further using crude bounding techniques. We may then show
ds and ds to be bounded by an expression of the form

aT™ exp(—bT"™), which decay faster than ﬁ Thus the
entire expression decays at a rate ﬁ O

E. Model Reduction Error

The only term that remains to be bounded is that from the
model reduction step. The bound on this term is E[||y; —
V|I?] < ¢||z||%, and results from step 5 of Alg. 1.

Theorem 1 now follows by the combining the bounds on
the components of the decomposition from Lemma 1.

IV. DISCUSSION

Another result following from the same analysis is now
provided, along with a note about the bounds obtained.

Theorem 2. For 0 < 6 < 1, let

2 2b 2 2b
_ 2 “ i = =
§ = 4||J||5, max Tlog 7 Tlog 7

Assume T > p. With probability at least 1 — 0,

c30 + & — 2
(375”@%%5 5§'57T
HHOPT_HRH < §—c2 - T €2
)T (6 + & — 2
(Cg +T)p+¢ 5>€ T
« C2

Remark 1. There are free parameters in the bound from
Theorem I which can greatly impact the quality of the bound.
In particular, p may be chosen as any value between the
spectral radius of the Kalman Filter and one. Smaller values
of p will increase L, but decrease %. As such, we can
optimize over p to obtain the tightest bound. Another free
parameter is Ty, which may take values greater than that
supplied in Lemma 10. Higher values of Ty will decrease

the value of k, but make the bound invalid for small T.

V. CONCLUSION

The finite sample behavior of an algorithm known as
REDAR was characterized for data generated in closed-loop.
The algorithm first fits the data to a VARX model, and then
finds the system model via a balanced reduction step. The
simple nature of the algorithm allowed for the derivation of
a non-asymptotic upper bound on the generalization error.
The bound provides the engineer with a notion of the
effectiveness of the model generated from a finite amount
of data. Additionally, high probability bounds on the H,
norm of the error system from the estimated model to the
finite horizon Kalman Filter are obtained. It may be possible
to extend the results to bounds which may be applied in
robust adaptive control.
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