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Abstract— One of the primary challenges of system identifica-
tion is determining how much data is necessary to adequately fit
a model. Non-asymptotic characterizations of the performance
of system identification methods provide this knowledge. Such
characterizations are available for several algorithms perform-
ing open-loop identification. Often times, however, data is
collected in closed-loop. Application of open-loop identification
methods to closed-loop data can result in biased estimates.
One method to eliminate these biases involves first fitting a
long-horizon autoregressive model and then performing model
reduction. The asymptotic behavior of such algorithms is
well characterized, but the non-asymptotic behavior is not.
This work provides a non-asymptotic characterization of one
particular variant of these algorithms. More specifically, we
provide non-asymptotic upper bounds on the generalization
error of the produced model, as well as high probability bounds
on the difference between the produced model and the finite
horizon Kalman Filter.

I. INTRODUCTION

One of the first steps in the control design process is to

obtain a model for the system of interest. In cases where

knowledge of the system is nonexistent or incomplete, mod-

els must be identified from input/output data. This process

can be viewed as a learning problem in which models are

optimized in order to give the best fit for the data [1]. The

quality of the model can be assessed via 1) generalization

error, which measures how well the model fits unseen data,

and 2) model error, which measures how far the identified

model is from the “true” model. (In many cases, analysis of

model error is an idealization, since the real system falls out

side the class of models studied.)

While system identification can be viewed as a learning

problem, correlations in the data lead to several challenges.

Typical machine learning problems assume that the data

are independent [2]. Using independence, learning theory

provides non-asymptotic bounds on the generalization error

obtained from finite amounts of data. In contrast, the data

from system identification are correlated due to 1) internal

system dynamics, 2) temporal correlations in the inputs, and

3) feedback from the outputs to the inputs. The result is that

most traditional analyses of system identification methods

focus on asymptotic bounds, which can only guarantee low

generalization error in the limit of infinite data [1]. There

have, however, been recent efforts to provide non-asymptotic

bounds on the performance of system identification methods.
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Most work on non-asymptotic system identification fo-

cuses on open-loop problems. Early works give non-

asymptotic analyses for the identification of transfer func-

tions [3] and autoregressive models [4]. Recently, several

works have provided non-asymptotic analyses of various

open-loop system identification problems for linear time

invariant systems with direct state measurement, [5], [6], and

with partial state measurement [7], [8]. Each of these works

assumes that the engineer may choose inputs to excite the

system. In [9], bounds are derived for the identification of

linear time invariant systems with no measured inputs.

The work in [10], [11] provides a non-asymptotic method

for output error identification of linear models. Unlike

the works mentioned above, the data could be collected

in closed-loop. However, these works utilize the non-

probabilistic framework of online optimization [12], [13],

and are not directly comparable to the work on generalization

bounds. Additionally, the models identified in these works

are restricted to stable systems.

As discussed above, the recent works on non-asymptotic

identification have focused on open-loop identification meth-

ods. However, for many systems, the plant is impossible to

isolate from its controller or is unstable in open-loop. Fur-

thermore, identification is most successful when performed

in circumstances that match the desired application, which

often includes a feedback controller [14]. This drives the

study of methods that are effective with closed-loop data.

The task of developing identification methods that work

on closed-loop data is nontrivial, as the correlation between

past output noise and future inputs produces a bias in model

estimates for many identification methods. This is particu-

larly troublesome for subspace approaches [15]. In [16], it

is demonstrated how subspace algorithms may be applied to

closed-loop data by fitting high order vector autoregressive

models with exogenous inputs (VARX models). The work of

[17] proposed a subspace technique which used the VARX

parameter estimates to recover the Kalman Filter. This helped

to develop algorithms such as the well known predictor

based subspace identification (PBSID) algorithm [18]. For

summaries on the advancements of subspace approaches for

closed-loop identification, see [19] and [20].

Our contribution is to analyze an algorithm for system

identification in which a VARX model is fit, followed by

balanced model reduction. This approach has been described

in [20], [21], and it was shown that its asymptotic properties

match those of a familiar subspace method. The primary

difference of our analysis from prior non-asymptotic system

identification characterizations is that we allow the presence
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of a feedback controller.

We note that the bound we obtain for the generalization

error requires some prior knowledge. In particular, we require

an upper bound on the of several system parameters such as

the H∞ norm of the closed loop system. In practice, we

would need to estimate these from data. We also note that

the generalization error bound obtained is loose when tested

in simulation (see [22]). Thus, the result is more interesting

from a theoretical perspective in that it quantifies how various

parameters of the identification algorithm and the system

impact the predictive capabilities of the model.

The paper is organized as follows. In Section II, we

present the algorithm, precisely define the problem, and

provide the main result: a non-asymptotic bound on the

generalization error of the produced model. The proof of this

result is available in Section III. Proofs for several supporting

lemmas are omitted. They may be found in the full report

[22]. Section IV presents a related result regarding the high

probability bounds on the H∞ norm of the error system from

the identified model to the finite horizon Kalman Filter, and

highlights several practical considerations of the bounds.

II. PROBLEM AND RESULTS

We now describe the problem, and present the general-

ization error bound obtained. Subsection II-A summarizes

the notation used throughout the paper. In Subsection II-B,

we highlight the details and assumptions of the closed-loop

system. The algorithm to be analyzed is presented in II-C,

along with the main result: a non-asymptotic bound on the

generalization error of the obtained model.

A. Notation and Terminology

Random variables are denoted using bold symbols. The

expected value of a random variable, x, is denoted by E[x],
while the probability of an event S is given by P(S).

The Euclidean norm of a vector, x, is denoted by ‖x‖. The

Frobenius norm of a matrix, G, is denoted by ‖G‖F , while its

induced 2 norm is denoted by ‖G‖. The minimal eigenvalue

of a symmetric matrix, X , is denoted by λmin(X). The trace

of a square matrix G is given by Tr(G).
The power of a stationary process, yt, is defined by

‖y‖2P = E[y⊤
t yt].

The forward shift operator is denoted by q, i.e. qxt =
xt+1. If G(q) is a time-domain operator defined in terms

of shifts, we will identify it with its corresponding transfer

matrix, G(z). The H∞ norm of a transfer matrix, G(z), is

denoted by ‖G‖∞. The notation xi:j represents the sequence

starting from xi and up to, but not including xj .

B. Problem Setup

Consider a linear time-invariant (LTI) system of the form

xt+1 = Axt +But +Bwwt

yt = Cxt +Dwwt,

(1a)

(1b)

Where xt is the nx dimensional state, ut is the nu dimen-

sional known input, wt is Gaussian white noise, and yt is

the ny dimensional measurement.

When the steady-state Kalman filter exists, the statistics

of (1) are equivalent the statistics of the following system in

innovations form:

xt+1 = Axt +But +Ket

yt = Cxt + et.

(2a)

(2b)

Here K is the Kalman gain and et is Gaussian white noise

with dimension ny . For details about the Kalman filter and

innovation form, see section 3.3 of [23].

For compact notation, we set zt =
[
u⊤
t y⊤

t

]⊤ ∈ R
nz .

For an integer p, we also define dt = zt−p:t. For later

analysis, we have assumed that the system is strictly proper

in the known inputs, ut.

We will assume that ut can be represented as a linear

feedback with excitatory noise:

st+1 = AF st +BF
1 yt +BF

2 vt

ut = CF st +DF
1 yt +DF

2 vt.

(3a)

(3b)

Here vt is identity covariance Gaussian white noise with

dimension nu which is independent of et, and st is the

state of the controller with dimension ns. A summary of

the system is shown in Fig. 1.
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Fig. 1. The overall system.

The closed-loop system is assumed to be stable. This

implies that the signal power, ‖z‖P , is finite. Additionally,

we will assume that the joint covariance of the noise is

positive definite:

E

[[
et

DF
2 vt

] [
et

DF
2 vt

]⊤]

=

[
Ψ 0
0 Ω

]

= Γ ≻ 0.

This ensures that identifiability conditions hold, as in tradi-

tional system identification [1]. Note that we do not assume

that the open-loop system is stable.

The finite horizon Kalman Filter represents the output

estimate for (2) provided the p previous time steps as

y⋆
t|t−p:t = E[yt|dt], where the notation follows that men-

tioned previously; the sequence xi:j does not include xj .

This indicates that the finite horizon Kalman Filter estimate

depends only upon data collected at times k with t − p ≤
k < t. The estimate is a linear function of dt. We define

GOPT as the linear transformation relating the two:

y⋆
t|t−p:t = GOPTdt. (4)

We also define the operator HOPT (q) such that y⋆
t|t−p:t =

HOPT (q)zt. The steady state Kalman Filter operator H⋆(q)
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is given as y⋆
t|−∞:t = H⋆(q)zt. Due to the special form of

the innovations model, we can write the steady state Kalman

Filter as

xt+1 = (A−KC)xt +But +Kyt

y⋆
t|−∞:t = Cxt,

and the associated expected squared error, E[‖yt −
y⋆
t|−∞:t‖2], is ‖e‖2P .

C. The REDAR Algorithm and its Prediction Error

The method of this paper is termed the REDAR (pro-

nounced “reader”) algorithm. See Alg. 1. Here HA is the

system corresponding to the least-squares model, while HR

is the result of balanced model reduction subject to H∞ error

tolerance φ. See Chapter 7 of [24] for a description balanced

reduction with limited error tolerance. Our final predictor is

given by ŷt = HR(q)zt. Additionally, given the state-space

realization of HR, all of the parameters of the innovation

form model, (2), can be estimated.

Algorithm 1 The REDuced AutoRegressive (REDAR) algo-

rithm

1: Given signals u1−p:T+1, y1−p:T+1, VARX order p > 0,

a regularization paramater α > 0, and a reduction error

φ > 0

2: Let zt =
[
u⊤
t y⊤

t

]⊤
and dt = zt−p:t

3: Solve the VARX identification problem GT =
argminG

∑T
t=1 ‖yt − Gdt‖2 + α‖G‖2F using least

squares

4: Construct a state-space operator, HA, such that

HA(q)zt = GTdt

5: Apply balanced model reduction to find HR such that

‖HA −HR‖∞ ≤ φ
6: Compute estimates (Â, B̂, Ĉ, D̂, K̂) by
[

Â− K̂Ĉ B̂ K̂

Ĉ D̂ 0

]

= HR

The general scheme of the REDAR algorithm has been

proposed in closed-loop system identification literature [20],

[21]. However, its finite-sample behavior has not been char-

acterized. Our main result gives such a characterization:

Theorem 1. Suppose there exists L > 0 and ρ < 1 such

that for all |z| ≥ ρ, ‖H⋆(z)‖ ≤ L. Then there are constants

k and T0 depending upon nu, ny , p, α, the H∞ norm of the

closed loop system, and λmin(Γ) such that for all T ≥ T0,

E[‖yt − ŷt‖2]

≤ ‖e‖2P +

(
Lρp+1

1− ρ

)2

‖z‖2P + 2φ‖z‖2P +
2kp√
T
‖z‖2P .

where yt is the output generated by running the process

(2) in closed loop, and ŷt is the one step ahead prediction

generated by the model output of Algorithm 1.

It should be noted that the identification algorithm is only

run on a single data set consisting of u1−p:T+1 and y1−p:T+1

to construct a model which is capable of predicting the output

yt from the previous input and output data. Therefore, if the

data set was fixed, and the engineer was trying to evaluate

their model, the quantity of interest would be E[‖yt −
ŷt|u1−p:T+1, y1−p:T+1], or the mean squared prediction error

of their model. This is not the quantity that we are interested

in bounding. Instead, we are interested in bounding the

expectation of this quantity over the possible data sets to

determine the tradeoffs in the modeling parameters and data

requirements prior to running the identification algorithm.

III. PROOF OF THEOREM 1

The proof of Theorem 1 has several stages. In Subsec-

tion III-A, the expected squared prediction error is decom-

posed into terms due to 1) noise, 2) finite autoregressive

order, 3) model reduction, and 4) a limited amount of data.

The error due to finite autoregressive order is bounded in

Subsection III-B. In order to bound the errors due to limited

data, some non-asymptotic convergence results are derived in

Subsection III-C. These results are used to bound the error

due to limited data in Subsection III-D. Finally, the errors

due to model reduction are bounded in Subsection III-E.

Complete proofs may be found in [22].

A. Decomposition

The expected squared prediction error of Alg. 1 is now

decomposed into the following components: the optimal

prediction error given the true model, terms resulting from

the limited model complexity determined by parameters p
and φ, and a component from the limited amount of data.

Lemma 1. Let yA
t = GTdt be the output of the VARX

model. Then the prediction error of the REDAR algorithm

can be decomposed as

E[‖yt − ŷt‖2] ≤ ‖e‖2P + E[‖y⋆
t|−∞:t − y⋆

t|t−p:t‖2]
+ 2E[‖y⋆

t|t−p:t − yA
t ‖2] + 2E[‖yA

t − ŷt‖2].
B. Finite Model Order Error

Here, we bound the term arising from Lemma 1 that results

from the finite model order:

E[‖y⋆
t|−∞:t − y⋆

t|t−p:t‖2]. (5)

Recall that H⋆(q) is the Kalman filter operator. Note that

H⋆(q) can be written as

H⋆(q) = C

∞∑

i=1

Ãi−1[B K]q−i,

where Ã = A−KC. Let HHead be the truncation of H⋆(q)
to p terms:

HHead(q) = C

p
∑

i=1

Ãi−1[B K]q−i.

Then the difference between these two systems is

HTail(q) = (H⋆ −HHead)(q) =

∞∑

i=p+1

CÃi−1[B K]q−i.

To simplify notation, let Hi = CÃi−1[B K].
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Note that E[‖y⋆
t|−∞:t − y⋆

t|t−p:t‖2] ≤ E[‖y⋆
t|−∞:t −

yHead
t ‖2], where yHead

t = HHead(q)zt. We therefore opt

to bound the term on the right hand side. This may be written

as E[‖y⋆
t|−∞:t − yHead

t ‖2] = E[‖HTail(q)zt‖2].
For any operator H , E[‖H(q)xt‖2] ≤ ‖H‖2∞‖x‖2P . Thus

E[‖HTail(q)zt‖2] ≤ ‖HTail‖2∞‖z‖2P . (6)

Lemma 2. (modification of [4], Lemma 1). Assume that there

are constants ρ < 1 and L > 0 such that the Kalman filter

satisfies ‖H⋆(z)‖2 ≤ L for all |z| ≥ ρ. Then the coefficients

of H⋆ satisfy

‖Hi‖2 ≤ Lρi for i = 1, 2, . . .

and the tail is bounded as

‖HTail‖∞ ≤ Lρp+1

1− ρ
.

Combining the result of Lemma 2 with (6), we have a

bound for (5).

C. Convergence of Empirical Means

The least squares problem in Alg. 1 converges asymptot-

ically to a steady state value. This subsection takes the first

step in bounding the distance from the asymptotic value with

a finite amount of data. In particular, probability bounds are

provided for the difference of individual components of the

least squares solution from their asymptotic value.

Recall the definition of dt and the corresponding least-

squares estimator, GT , from Alg. 1. The least-squares solu-

tion can be expressed as

QT =
1

T

T∑

t=1

dtd
⊤
t , NT =

1

T

T∑

t=1

ytd
⊤
t ,

GT = NT

(

QT +
α

T
I
)−1

.

Then optimal solution defined in (4) may be written

Q = E[QT ], N = E[NT ], GOPT = NQ−1.

We will denote QT − Q as ∆Q and NT − N as ∆N.

The focus of this subsection will be to derive a bound on

the probability that any element of ∆Q or ∆N exceed a

given magnitude. This will then be used in the following

subsection to bound the finite data error.

Let J(q) be the closed-loop operator that maps

zt = J(q)

[
Ψ−1/2et

vt

]

.

Here, we have re-normalized the innovation error signal so

that the input to J has identity covariance.

Define Z =
[
z⊤1−p . . . z⊤T−1 z⊤T

]⊤
. Let R =

E
[
ZZ⊤], and rt = E[ztz

⊤
0 ] be the autocorrelation function.

Then Rt,τ = rt−τ . Let Φz(e
jω) be the Fourier transform of

rt, which is the power spectral density. Note that Φz(e
jω) =

J(ejω)J(ejω)∗, and so ‖Φz(e
jω)‖ ≤ ‖J‖2∞.

Lemma 3. The covariance, R, satisfies ‖R‖ ≤ ‖J‖2∞.

Lemma 4. For all symmetric S and all δ > 0, the following

bound holds for all T ≥ p.

P
(
Z⊤SZ > Tr(RS) + δT

)
≤

exp

(

−T min

{
δ2

32‖S‖2‖J‖4∞
,

δ

8‖S‖‖J‖2∞

})

.

Proof. Note that SR and R1/2SR1/2 have the same eigen-

values, so all of the eigenvalues of SR are real. For all η > 0
such that ηR1/2SR1/2 ≺ I , Markov’s inequality implies that

P
(
Z⊤SZ > Tr(SR) + Tδ

)

≤ e−
η

2
(Tr(SR)+Tδ)

E

[

e
η

2
Z

⊤SZ

]

= e(−
1
2
(ηTr(SR)+ηTδ+log det(I−ηSR))). (7)

The equality follows from direct calculation.

Now we will examine the exponent from (7). Let λi be

the eigenvalues of SR for i = 1, . . . , T + p. As discussed

above, these are real and furthermore, |λi| ≤ ‖SR‖ ≤
‖S‖‖R‖ ≤ ‖S‖‖J‖2∞. Using the bounds on the eigenvalues,

the exponent can be bounded as follows.

ηTr(SR) + ηTδ + log det(I − ηSR)

=

T+p
∑

i=1

(ηλi + log(1− ηλi)) + ηTδ

= ηTδ −
T+p
∑

i=1

∞∑

k=2

(ηλi)
k

k

≥ ηTδ − 2T
∞∑

k=2

(η‖S‖‖J‖2∞)k

k

≥ ηTδ − 2T

∞∑

k=2

(η‖S‖‖J‖2∞)k

= ηTδ − 2T
(η‖S‖‖J‖2∞)2

1− η‖S‖‖J‖2∞
.

Now say that η ≤ 1/(2‖S‖2‖J‖2∞). Then the above

expression can be bounded below by

T
(
ηδ − 4η2(‖S‖2‖J‖2∞)2

)
. (8)

Now we will see how to choose η to ensure that (8) is

positive. For simple notation, let a = 8(‖S‖2‖J‖2∞)2 and let

b = 1/(2‖S‖2‖J‖2∞). Then η can be chosen by maximizing

δη − aη2

2 over 0 ≤ η ≤ b. The optimal solution is given by

η = min{δ/a, b}. If η = δ/a, then the optimal value is given

by δ2/(2a). If η = b, then we must have that δ ≥ ab and so

the optimal value satisfies bδ − ab2/2 ≥ bδ − bδ/2 = bδ/2.
Thus, we get the final bound on (8) as

T min

{
δ2

16‖S‖2‖J‖4∞
,

δ

4‖S‖‖J‖2∞

}

.

The lemma follows by plugging this into the exponential

bound on the probability from (7).

Note that every entry of NT and QT is of the form

1

T

T∑

t=1

(zt−k)i(zt−ℓ)j
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for some i, j ∈ {1, . . . , nz} and k, ℓ ∈ {0, . . . , p}. Recall that

rt is the autocorrelation function of z. The next lemma shows

that these empirical means converge to the corresponding

autocorrelation values exponentially in probability. The proof

follows from an application of Lemma 4.

Lemma 5. For all i, j ∈ {1, . . . , nz}, all k, ℓ ∈ {0, . . . , p},

and all T ≥ p, the following bound holds

P

(∣
∣
∣
∣
∣

1

T

T∑

t=1

(zt−k)i(zt−ℓ)i − (rℓ−k)ij

∣
∣
∣
∣
∣
> δ

)

≤ 2 exp

(

−T min

{
δ2

32‖J‖4∞
,

δ

8‖J‖2∞

})

.

Now note that every element of ∆Q and ∆N may be

expressed as

1

T

T∑

t=1

(zt−k)i(zt−ℓ)j − (rl−k)ij

for some i, j ∈ {1, . . . , nz} and k, ℓ ∈ {0, . . . , p}. The

following lemma uses this fact to bound the probability of

elementwise deviations of ∆Q and ∆N from zero.

Lemma 6. For all i, j, k ∈ {1, ...pnz}, all l ∈ {1, ...ny},

and all T ≥ p, the following expression is satisfied.

P(max
i,j

{|∆Qij |} > δ or max
k,l

{|∆Nkl|} > δ)

≤ 2b exp

(

−T min

{
δ2

32‖J‖4∞
,

δ

8‖J‖2∞

})

where

b = pnynz +
pnz(pnz + 1)

2
.

D. Finite Data Error

We now use the results from the previous subsection to

bound E[‖y⋆
t|t−p:t−yA

t ‖2] ≤ E[‖GOPT −GT ‖2]‖z‖2Pp. As

‖GOPT −GT ‖2 ≥ 0, the expected value may be written

E[‖GT −GOPT ‖2] =
∫ ∞

0

P[‖GT −GOPT ‖2 > ǫ]dǫ (9)

An upper bound on this integral may be computed if, for

any ǫ ≥ 0, we can bound P[‖GT −GOPT ‖2 > ǫ]. To do so,

define δ ≥ 0 such that

|∆Nij | ≤δ i = 1, . . . , ny j = 1, . . . , pnz

|∆Qij | ≤δ i, j = 1, . . . , pnz.

We will proceed by bounding ‖GT − GOPT ‖ in terms of

δ. It will then be possible to determine a value δ ≥ 0
corresponding to all sufficiently large ǫ such that

|∆Qij | ≤ δ and |∆Nij | ≤ δ ⇒ ‖GT −GOPT ‖2 ≤ ǫ.

Then Lemma 6 may be applied to bound the probability that

the elementwise bounds hold.

The elementwise bounds above provide the following

bounds on ‖∆N‖ and ‖∆Q‖.

‖∆N‖ ≤ c1δ, ‖∆Q‖ ≤ c2δ (10)

where c1 =
√
pnynz and c2 = pnz .

To simplify notation, we define ξ = λmin(Γ) ≤ ‖Q−1‖−1.

Then the above results may be applied to compute the

following bound.

Lemma 7.

‖GT −GOPT ‖ ≤
(

c3δ +
c4
T

)∥
∥
∥(Q+∆Q+

α

T
I)−1

∥
∥
∥

where c3 = c1 +
‖J‖2

∞
c2

ξ and c4 =
‖J‖2

∞
α

ξ .

We know that the following always holds

‖(Q+∆Q+
α

T
I)−1‖ ≤ T

α
, (11)

as Q+∆Q =
∑T

k=0 dtd
T
t � 0. A tighter bound is available

when δ is small.

Lemma 8. For δ <
(ξ− α

T
)

c2
,

‖(Q+∆Q+
α

T
I)−1‖ ≤ 1

ξ − c2δ − α
T

Lemma 9. Assume T ≥ max
{

2α
ξ , 1

}

. Let

ǫ0 =

(
2‖J‖2∞α

ξ2T 1/4

)2

and ǫ1 =

(
2‖J‖2∞T

α

)2

.

For any ǫ ≥ ǫ0, we can find δ ≥ 0 such that

|∆Qij | ≤ δ and |∆Nij | ≤ δ ⇒ ‖GT −GOPT ‖2 ≤ ǫ,

by selecting

δ =







(ξT − α)
√
ǫ− c4

c2T
√
ǫ+ c3T

ǫ0 ≤ ǫ ≤ ǫ1

α
√
ǫ− c4
c3T

ǫ ≥ ǫ1

(12a)

(12b)

The reason for the two different expressions for δ in the

above lemma is that (11) provides a tighter bound than

Lemma 8 when δ becomes greater than
ξ− 2α

T

c2
.

Lemma 10. For some k and T0 depending on nu, ny , p, α,

‖J‖∞, and λmin(Γ),

E[‖GT −GOPT ‖2] ≤
k√
T

for all T ≥ T0.

Proof. Let δ1(ǫ) be given by (12a) and δ2(ǫ) be given

by (12b). We obtain a bound on the right side of (9) by

application of Lemma 9 along with Lemma 6.
∫ ∞

0

(P[‖GT −GOPT ‖2 > ǫ])dǫ ≤
∫ ǫ0

0

1dǫ

︸ ︷︷ ︸

d1

+

∫ ǫ1

ǫ0

2b exp

(

−T

2
min

{(
δ1(ǫ)

4‖J‖2∞

)2

,
δ1(ǫ)

4‖J‖2∞

})

dǫ

︸ ︷︷ ︸

d2

+

∫ ∞

ǫ1

2b exp

(

−T

2
min

{(
δ2(ǫ)

4‖J‖2∞

)2

,
δ2(ǫ)

4‖J‖2∞

})

dǫ

︸ ︷︷ ︸

d3

,
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where the integrand of d1 results from the fact that the

probability is at most 1. The bounds above were valid for

T ≥ max
{

2α
ξ , p

}

. We now bound each term separately.

We may solve d1 explicitly. The others may be split up

further using crude bounding techniques. We may then show

d2 and d3 to be bounded by an expression of the form

aTm exp(−bTn), which decay faster than 1√
T

. Thus the

entire expression decays at a rate 1√
T

.

E. Model Reduction Error

The only term that remains to be bounded is that from the

model reduction step. The bound on this term is E[‖yA
t −

ŷ‖2] ≤ φ‖z‖2P , and results from step 5 of Alg. 1.

Theorem 1 now follows by the combining the bounds on

the components of the decomposition from Lemma 1.

IV. DISCUSSION

Another result following from the same analysis is now

provided, along with a note about the bounds obtained.

Theorem 2. For 0 < θ ≤ 1, let

δ = 4‖J‖2∞ max

{

2

T
log

2b

θ
,

√

2

T
log

2b

θ

}

.

Assume T ≥ p. With probability at least 1− θ,

‖HOPT −HR‖∞ ≤







(
c3δ +

c4
T

)

ξ − c2δ − α
T

p+ φ δ ≤ ξ − 2α
T

c2

T
(
c3δ +

c4
T

)

α
p+ φ δ >

ξ − 2α
T

c2

Remark 1. There are free parameters in the bound from

Theorem 1 which can greatly impact the quality of the bound.

In particular, ρ may be chosen as any value between the

spectral radius of the Kalman Filter and one. Smaller values

of ρ will increase L, but decrease
ρp+1

1−ρ . As such, we can

optimize over ρ to obtain the tightest bound. Another free

parameter is T0, which may take values greater than that

supplied in Lemma 10. Higher values of T0 will decrease

the value of k, but make the bound invalid for small T .

V. CONCLUSION

The finite sample behavior of an algorithm known as

REDAR was characterized for data generated in closed-loop.

The algorithm first fits the data to a VARX model, and then

finds the system model via a balanced reduction step. The

simple nature of the algorithm allowed for the derivation of

a non-asymptotic upper bound on the generalization error.

The bound provides the engineer with a notion of the

effectiveness of the model generated from a finite amount

of data. Additionally, high probability bounds on the H∞
norm of the error system from the estimated model to the

finite horizon Kalman Filter are obtained. It may be possible

to extend the results to bounds which may be applied in

robust adaptive control.
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