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Abstract
The data generation sources are increasing in the past few years, such as mobile devices, embedded sensors, various intelligent
equipment and so forth. These increasing data sources push the deployment of deep learning models in a distributed manner.
However, the traditional distributed deep learning is to build a global model over all collected data and may overlook specific
components which are of vital importance to individual users. In this paper, we propose an adversarial learning framework
that allows an individual user to build a personalized model. Our framework consists of two stages, including efficient
similar data selection from other users and adversarial training. Instead of selecting similar data by computing hand-designed
similarity metrics, we train an auto-encoder and a generative adversarial network (GAN) on individual user’s data and use
them to request similar data from other users. To further improve the personalized model performance, we develop two
approaches that combine the requested data and user’s own data to build the personalized model. The first approach is that
we apply weighted learning to capture the different importance of the requested data. The second approach is that we apply
adversarial training to minimize the distribution discrepancy between the requested data and user’s own data. Experimental
results demonstrate the effectiveness of the proposed framework.

Keywords deep learning · personalized model · weighted learning · adversarial learning

1 Introduction

The past few years have witnessed an increasing role that
deep learning plays in various kinds of applications, such as
image classification [1], text generation [2], recommenda-
tion systems [3] and other artificial intelligence (AI)-related
tasks. More recently, data for training deep learning models
are increasingly distributed among different users. A tradi-
tional approach for the deployment of deep learning model is
to collect all these data into a central server and build a global
model. An alternative way is to collaboratively learn a global
model among distributed users via parameters exchange [4].
The key of previous works is to build a one-fit-all global
model and use it to perform classification or prediction for all
users. Although a global model captures generic information
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of training data from all users, it cannot fulfill the personal-
ized demand for each individual user due to the diverse data
distribution among different users.

It is necessary to construct a personalized model for each
individual user to improve intelligent services. Although
the global model learns generic information over all users,
the specific features of each individual user’s data, which
are of vital importance to build the personalized data, are
often overlooked by the global model. In many circum-
stances, building a personalized model can achieve better
performance for specific users. For instance, personalized
recommendation systems play important roles for many
online services [5], such as production advertisement, sales
promotion, and information recommendation. In addition,
electronic health records [6] are used to predict disease pro-
gression and provide treatment plans. Since electronic health
records are patient-specific, personalized models are more
effective for individual users.

In fact, in many cases, an individual user can only col-
lect a small amount of data, which is insufficient to build an
accurate personalized model to achieve satisfactory perfor-
mance. To improve the performance of personalized model,
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an individual user needs to request similar or complementary
data fromother users. Pioneerworks of building personalized
model have been done in medical field, e.g., Cheng et al. [6]
develop a framework of collecting data from similar patients
and then training a personalized model on the combination
of these collected data and his own data.

However, there are two challenges in the pipeline of
building personalized models. The first challenge is how
to efficiently and effectively collect similar data from other
users. It is obvious that randomly selecting data from other
users may not improve the performance of personalized
model as those collected datamay be different from the user’s
own data. Previous research [6] applies similarity metrics to
construct similarity index for data selection. However, it is
burdensome to construct similarity index and the similar-
ity metrics are often based on manually designed features.
The computational cost is high when one compares paired
data one by one due to the high operation complexity of
O(n2) especially when the number of data n is large. More-
over, it is often unclear to choose one appropriate similarity
metric so most appropriate data can be collected. Another
challenge is how to better train the personalized model with
the requested data. Previous research simply combines the
collected data with user’s own data, which may not build the
personalizedmodel with high accuracy. This is because there
may exist distribution discrepancy between the collected data
and user’s own data, especially when the user can only get a
small amount of data from other users (e.g., due to privacy
concerns or high data collection cost). Hence, it is imperative
to develop personalized learning models that can handle the
potential distribution discrepancy.

Motivated by the above two challenges, in this paper, we
develop a learning framework that enables an individual user
to effectively collect data and build a robust model on the
combination of the collected data and his own data. For data
collection, we propose an approach of using an auto-encoder
and a generative adversarial network (GAN) [7]. The auto-
encoder is used to obtain data representation that is further
used to train the GAN. The trained encoder and the discrim-
inator from GAN are sent to his neighbors. Each neighbor
user uses the encoder to obtain the representation of his data
and then uses the discriminator to calculate the probability
score of his data. Data with high probability scores are com-
bined with the user’s original data to train the personalized
model. The advantage of using GAN is that it can capture
inherent properties of the underlying data without manually
specifying features. With the requested data, we develop two
approaches to improve the performance of the personalized
model. The first approach is weighted learning by assigning
a different weight to each record of the requested data. The
data record with a high probability score computed by the
discriminator is assigned with a high weight. The weighted
learning is able to capture the importance of different data.

The second approach is the adversarial learning that aims to
minimize the distribution discrepancy between the requested
data and user’s own data. The core idea of the adversarial
learning is to map both the requested data and user’s own
data into the same feature space where the distribution dis-
crepancy is minimized. Our adversarial training is analogous
to the discriminator of theGAN.The role of the discriminator
is to predict whether the generated features are from user’s
own data or the requested data.

The main contributions of this paper are summarized as
follows. First, we demonstrate that building a global model is
not anoptimal choice for personalizedprediction. Second,we
develop a strategy based on auto-encoder and GAN to effec-
tively collect similar data from other users. Third, instead of
directly using the requested data for training, we design two
approaches, weighted learning and adversarial learning, to
further improve the performance of the personalized model.
Finally, we conduct extensive experiments and the results
demonstrate the efficiency of the proposed framework.

2 Related work

Distributed deep learning: Distributed deep learning from
multiple sources has been long investigated in the past few
years. In the pioneer work [4], the dataset is distributed in dif-
ferent machines and a global model is learned by exchanging
parameters between participating users. Following this work,
later researchers focus on how to train distributed deep learn-
ing models more efficiently. For instance, Chilimbi et al. [8]
propose an efficient and scalable system to allow the training
of distributed deep learning. Wen et al. [9] develop a strategy
to reduce communication cost in distributed deep learning
to accelerate the training process. Moreover, how to improve
the performance of distributed deep learning has been investi-
gated extensively [10–12]. Besides distributed deep learning
in the data center setting, federated learning [13] is proposed
to push deep learning to mobile and edge devices, in which
mobile devices only have limited data and users are willing
to collaboratively learn a joint model. Recent works focus on
achieving security guarantee [14] and solving data statistical
challenges [15]. However, the focus of the existing works is
to learn a global model from all training data.
Personalized deep learning and recommendation: Per-
sonalized model is popular in the areas of medicine and
recommendation systems. In these areas, building a per-
sonalized model for each individual user is necessary since
medical data and recommendation service are user-specific
and a global model cannot capture personalized features.
In personalized medical prediction area, similarity learning
is fundamental for building a personalized patient model.
In [16], Che et al. propose a dynamic temporal matching
approach to find similar data for individual users and build a
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personalized RNN model for each individual user to predict
disease. The authors [17] develop a CNN-based similarity
method for paired data comparison and perform personalized
disease prediction. Other works using different metrics for
similarity personalized learning [18–20] are also reported.

Personalized recommendation has also made rapid
progress in many areas, such as e-commerce, advertising,
audio and video recommendation [21]. Collaborative fil-
tering, which is one of the most popular recommendation
approaches, makes predictions about the interests of a user
by collecting preferences from many similar users. Various
metrics are used to measure the similarity between different
users. For instance, Luo et al. [22] apply cosine similarity to
build recommendation system for smart grid end users and
Kouki et al. [23] use Pearson’s correlation to compute data
similarity. Recently, deep learning models are widely used to
improve the performance of personalized recommendation.
For example, Hu et al. [24] propose to diversify personalized
recommendation results by leveraging user-session contexts
and designing session-based neural networks to efficiently
learn session profiles over large number of users and items.
Yu et al. [25] design an attention-based LSTM framework to
generate users’ representations and adaptively to learn and
predict according to the specific context.

Different from above works, we propose an efficient
similarity approach based on auto-encoder and GAN and
apply adversarial training to reduce potential distribution
discrepancy. In fact, ourwork can be integrated into personal-
ized recommendation systems to improve their performance.
For example, our auto-encoder and GAN based similarity
approach can be used to efficiently group different users in
collaborativefiltering recommendation.Moreover, the adver-
sarial training can also be applied to learn and differentiate
the representations of different users and then improve the
personalized prediction in content-specific scenarios.
Representation learning: Representation learning has been
a well-studied research area in the past few years [26], espe-
cially in computer vision, natural language processing and
transfer learning. There are several works that apply repre-
sentation learning to solve distribution discrepancy between
different parties. For example, Tzeng et al. propose to learn
domain invariant representations from the source domain and
transfer to the target domain for prediction [27]. Liu et al.
develop a framework that disentangles domain-invariant and
domain-specific features in image translation and manipu-
lation [28]. In [29], Gupta et al. extract invariant features
between different agents in the reinforcement learning.Misra
et al. propose amulti-taskmodel to learn common representa-
tions between different tasks and use it to improve prediction
performance [30]. Our work falls into the general area that
exploits feature representation among different groups for
performance improvement [31,32]. Different from previous
works, our work applies adversarial training to reduce the

distribution discrepancy and learns the prediction task simul-
taneously to improve its performance.
Robust learning: Robust learning is of great importance
for many machine learning applications because we usually
experience distribution shift from the training data to the test-
ing data. Extensive research has been conducted to correct
distribution shift in order to build a robust machine learn-
ing model. For example, Zadrozny et al. [33] investigate the
sampling selection bias scenario between the training and the
testing data and propose a reweighing method to correct the
data bias. Wen et al. [34] formulate the robust learning as
an adversary game and optimize model performance under
the worst case distribution to improve the robustness of the
model. Mehran et al. [35] design a robust learning method
in the area of domain shift by training the model on noisy
labeled data. In [36],Wang et al. propose a flexible and robust
framework for transfer learning by transforming the training
data distribution to the target data distribution. In [37] and
[38], the authors use kernel mean matching method to deal
with the covariate shift. Our work also falls into the area
of robust learning and we apply the adversarial learning to
reduce the distribution shift between user’s own data and the
collected data from neighbors.

3 Weighted learning and adversarial
learning

3.1 Framework overview

Consider there exist N individual users in this distributed
setting and each user has his own local dataset that con-
tains features X and label Y . Let U and D represent the
set of users and datasets, respectively, where each user Ui

is associated with dataset Di . Suppose Di contains Mi data
samples, namely (X1,Y1), (X2,Y2) , . . . , (XMi ,YMi ). The
goal of each user Ui is to build a personalized classification
model fi which takes Di as input and minimizes the predic-
tion loss Li = ∑Mi

m=1 li ( fi (Xm),Ym), where li is the given
loss function. To boost the performance of classifier fi and
reduce prediction loss Li , user Ui will request similar data
from his neighbors. The neighbors can be defined from dif-
ferent ways. For example, in a sensor network, the neighbors
can be sensors within a physical region. In our experiments,
we treat the neighbors of Ui as all other users except Ui .

For the personalized learning, the joint distribution of
Ui could be different from that of its neighbor U j , i.e.,
P(XUi ,YUi ) �= P(XU j ,YU j ). The most rigorous assumption
is that P(XUi ) �= P(XU j ) and P(YUi |XUi ) �= P(YU j |XU j ).
Although the overall distribution of Di and D j are not the
same, it is possible that a subset of D j at user U j could be
similar to Di and hence in our framework Ui can request
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Fig. 1 The framework of personalized learning where a, b and c is for weighted learning and a, b and d is for adversarial learning

a subset of similar data, Ds , from its neighbors such that
P(XUi ) ≈ P(XUs ) and thus P(YUi |XUi ) ≈ P(YUs |XUs ).

However, there could still exist possible distribution shift
between Di and Ds , therefore, the second part of our frame-
work is focused on how to better use the requested data to
build a personalized model. We propose two approaches on
how to combine the requested data Ds with Di to build a
personalized model for Ui . The first approach is weighted
learning shown as Fig. 1(a–c), while the second approach is
adversarial learning shown as Fig. 1a, b and d. We show the
workflow of our personalized learning framework in Algo-
rithm 1. The workflow has three subsections.
Train auto-encoder and GAN: The first subsection (lines
2 - 4) is to train auto-encoder and GAN for Ui based on his
own dataset Di . Line 3 trains a normal auto-encoder for Ui .
With the trained auto-encoder, we apply its Enc to compute
the representations ofDi and use the learned representations
as the input to train the GAN. For clear illustration, we show
the training process in Fig. 1a.
Request Ds for Ui : The second subsection (lines 6–8) is to
request similar data for Ui from his neighbors. This subsec-
tion is also illustrated in Fig. 1b. Ui first sends his Enc and
D1 to his neighbors. Each neighbor U j uses Enc to compute
the representation of each sample and then uses discrimina-

tor D1 to obtain a probability score p for each sample. U j

collects all data samples with score p > τ , puts into Ds and
sends Ds back to Ui .
Personalized learning: The final subsection is to build a per-
sonalized model for Ui based onDi andDs . We propose two
approaches to train a personalized model. The first approach
is the weighted learning (Fig. 1c) and lines 10-14 show its
training process. Ui first uses the discriminator D1 to com-
pute the probability score p of each data sample fromDs and
uses p as the weight for each data from Equation 7. With the
probability score, the personalized model can better capture
the importance of each requested data sample. The second
approach is the adversarial training (Fig. 1d) and lines 15–22
show its training process. The adversarial training can reduce
the distribution discrepancy between Di and Ds , which can
further improve the performance of fi compared to training
fi directly over Di and Ds .
In fact, the proposed personalized learning is a general

framework. It can apply to different machine learning mod-
els, such as logistic regression, convolutional neural networks
and long short-term memory neural networks. In our frame-
work, the goal of the auto-encoder and GAN is used to select
similar data from other users. In fact, we do not need to train
a perfect GAN using lots of data as previous research on
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generating fake images/sentences to fool human. When the
user has limited data, the auto-encoder andGAN trainedwith
insufficient data may select data samples that are not similar
to the individual’s own data. This is the reason why we pro-
pose AdvPL to further reduce the distribution discrepancy
between the individual user’s data and requested data.

3.2 Train auto-encoder and GAN forUi

The first step of AdvPL is to train the auto-encoder and GAN
forUi . Typically both Enc and Dec are deep neural networks.
The Enc takes the data inDi and obtains its hidden represen-
tation. The hidden representation is then fed into the Dec to
output a reconstructed input. The advantage of using repre-
sentations by the auto-encoder is to make the training of the
GAN easier, especially for sequential data. The Enc obtains
hidden representation of data inDi andGAN takes it as input.

GAN has a very appealing property: its discriminator can
implicitly learn hidden similaritymetric and use it to discrim-
inate real data and fake data. As a result, the discriminator is
able to capture data distribution pattern of Ui .

Encoder: The encoder is a neural network which takes
mth data Xm and outputs a hidden representation as:

hEnc
m = Enc(Xm), (1)

where hEnc
m is the hidden representation of Xm and Enc(·)

denotes the computation of hidden representation by the
encoder neural network.Thehidden representation is deemed
to capture the information of the input data, which will be
the input of the decoder.

Decoder: The decoder is used to reconstruct original input
based on hEnc

m and the reconstruction of Xm is expressed as:

X ′
m = Dec(hEnc

m ), (2)

where X ′
m is the reconstructed data of Xm and Dec(·) denotes

the computation of reconstructed input by the decoder neural
network.

The performance of the auto-encoder is evaluated by
the distance between Xm and X ′

m , and the loss over Di is
expressed as:

LAE = 1

Mi

Mi∑

m=1

(Xm − X ′
m)2 (3)

After the training process of auto-encoder, Ui can use the
Enc to transform input data into hidden representation and
train the GAN based on the representation data. The GAN
consists of a generator G and a discriminator D1. The goal
of G is to generate fake representation hEnc

f ake and D1 is to

distinguish real representation hEnc
real and fake representation

Algorithm 1 The framework of personalized learning
Require:

Ui with dataset Di and threshold τ ;
Option: [Weighted learning, Adversarial learning]

Ensure:
Well trained personalized model fi ;

1: /* Train auto-encoder and GAN */:
2: Initialize parameters in auto-encoder (Enc, Dec) and GAN(G, D1)

for Ui ;
3: Ui trains the auto-encoder usingDi and updates parameters for Enc,

Dec using Eq. 1, 2 and Eq. 3;
4: Ui trains the GAN using representations by Enc and updates param-

eters for G, D1 using Eq. 4;
5: /* Request Ds for Ui */:
6: Ui sends Enc and D1 to his neighbor users U j ;
7: Requested dataset Ds = ∅;
8: For each neighbor user U j : encodeD j by Enc, compute probability

score p using D1, and put data in Ds with p > τ ;
9: If Option = Weighted learning:
10: /* Weighted training */:
11: while not converged:
12: Compute probability score for each data from Ds

from Eq. 6;
13: Compute weighted loss based on Di and Ds from

Eq. 7 and update model parameters;
14: end while

15: Elif Option = Adversarial learning:
16: /* Adversarial training */:
17: Initialize parameters in feature extractor (F), model

classifier (C), and discriminator (D2) for adversarial
training;

18: Ui trains C and F to optimal performance using Di ;
19: while not converged:
20: Fix D2 and F , and update C with loss Eq. 10 over

Di and Ds ;
21: Fix C , update D2 and F with loss Eq. 9 and 8

over Di and Ds ;
22: end while
23: return personalized model fi

hEnc
f ake. The objective function of the GAN is the same as the

traditional GAN in previous work [7]:

min
G

max
D1

EhEncreal∼Pdata
logD1(hEnc

real)

+ EhEncf ake∼P(G)log(1 − D1(G(hEnc
f ake))),

(4)

where Pdata (PG) denotes the probability distribution of Di

(noise).
The data distribution ofUi is captured by his auto-encoder

and GAN. To request similar data,Ui only needs to send Enc
and D1 to his neighbor users U j . If a data point of U j passes
the D1 with high probability score, then these data are more
likely to be sampled from the same distribution of Ui and can
be put into Ds .
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3.3 WL: weighted learning for personalizedmodel

A straightforward approach is to directly incorporate Ds to
his personalized model so that we have the combinedDs and
Di as the training data. The total loss based on the combina-
tion of Ds and Di is expressed as:

Lunweighted =
|Di |∑

m=1

li ( fi (Xm),Ym) +
|Ds |∑

n=1

li ( fi (Xn),Yn), (5)

where li is the loss function and fi is the classifier for Ui . In
Equation 5, each data sample in Di and Ds is assigned with
the same weight.

However, the importance of data samples inDs should not
be the same and generally should be less than data samples in
Ds due to the distribution discrepancy. As we discussed, the
neighbor userU j uses Enc and D1 to compute the probability
score p for each data sample as the following:

pn = D1(Enc(Xn)), (6)

where Xn is the nth data from Ds . As aforementioned, the
discriminator D1 captures the distribution of Di . Therefore,
pn can be seen as a metric to measure the similarity between
Xn and Di . Higher pn indicates that Xn is more likely to be
sampled from the distribution of Di . Hence, we take pn into
consideration and assign pn as the weight of Xn to construct
a weighted loss:

Lweighted =
|Di |∑

m=1

li ( fi (Xm),Ym) +
|Ds |∑

n=1

pnli ( fi (Xn),Yn),(7)

The intuition of Equation 7 is that it assigns a higher (lower)
weight for the data sample which is more (less) similar to
the distribution of Di . Consider the following two cases.
First, if the probability scores of all requested data from Ds

are approaching to 1, then the weighted loss Equation 7 is
reduced to the unweighted loss Equation 5, indicating that the
unweighted loss is a special case of the weighted loss. Sec-
ond, if the probability scores of the requested data are mixed,
then the weighted loss can capture the importance difference
of different data samples so that it can better improve the
performance of the personalized model.

3.4 AdvPL: adversarial learning for personalized
model

We explain the motivation and necessity of the adversarial
training. Our aim is to reduce the distribution discrepancy
between Di and Ds . As shown in Fig. 2a, the data in Ds

(Di ) are represented by circular (triangular) dots. In raw data
space, Ds and Di are partially overlapped and there exists

Fig. 2 a It depicts rawdata distribution using dots and triangles between
Di and Ds . In raw data space, the distribution between Di and Ds is
partly overlapped. b By optimizing a loss function that simultaneously
maximizes overlap in the feature representation space and improves the
model performance,we can reduce the distribution discrepancy between
Ds and Di

a distribution discrepancy between them. Consequently, the
model performance may not be optimal if Ui directly uses
them to train the personalized model. However, if we can
transform the raw data into another space where Di and Ds

can be well overlapped as shown in Fig. 2b, then the distribu-
tion discrepancy in this new space will be reduced and these
new transformed data can be used to build a more accurate
model. To minimize the distribution discrepancy between
Ds and Di , we present an adversarial learning framework as
shown in Fig. 1d. The adversarial learning simultaneously
reduces the distribution discrepancy between Ds and Di in
the feature space and trains the model with these feature data
simultaneously.

The adversarial training for personalized model is com-
posed of three parts including feature representation extractor
(F), discriminator D2 and model classifier C . It should be
mentioned that F and C are two parts of a complete neural
network model, so the extracted representations by F can
be directly used as intermediate input for C . F is used to
extract representations of data in Di and Ds . The adversar-
ial training process is analogous to the traditional GAN. The
role of F is to mimic the function of the generator in GAN,
while the role of the discriminator D2 is to distinguish the
feature representations between Di and Ds created by F . In
our proposed AdvPL, F is trained in a manner that maps
the data in Di and Ds to feature representations with binary
labels, where the label is 1 if feature representation belongs
to Di and is 0, otherwise. The key of the AdvPL is that F
and D2 are trained together through the adversarial learning
process. More specifically, the goal of F is to generate the
feature representations of data in Di and Ds into the same
space. F is to fool D2 and makes D2 unable to distinguish
the representations between Di and Ds . On the contrary, D2

is trained to predict whether the feature representations are
from Di or Ds .
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The loss function of F is similar to the generator in tradi-
tional GAN and has the following expression:

LF = −EZ∼Ds logD2(F(Z)) (8)

where F(Z) is the representation of data in Ds .
The discriminator D2 is trained to identify whether a data

sample is from Di or Ds given the feature representations.
It is obvious that if the transformed representation suffers
from huge distinction betweenDi andDs , then D2 is able to
separate them easily. The adversarial loss of D2 is:

LD2 = −EX∼Di logD2(F(X)) − EZ∼Ds log(1 − D2(F(Z)))

(9)

where F(X) denotes the representations of his own data in
Di . It can be seen that D2 plays the same role as the traditional
discriminator in traditional GAN.

The combination ofLF andLD2 canmimic the adversarial
training process of traditional GAN. Through the adversar-
ial learning process, the data in Di and Ds are transformed
into the hidden representation space. In this space, D2 can-
not tell the difference between them so that the distribution
discrepancy between Di and Ds can be minimized.

Different from the traditional GAN which only generates
realistic examples, our ultimate goal is to train a more accu-
rate model for individual user. As shown in Fig. 1d, the
extracted representations from Di and Ds will be fed into
C and the loss function of C with K classes is:

LC = −
Mi∑

m=1

K∑

k=1

1k=Ym logC(F(Xm))

−
|Ds |∑

m=1

K∑

k=1

1k=Ym logC(F(Zm)),

(10)

where C is the final layer of model classifier and Ym are the
corresponding labels.Mi is the data number ofDi and |Ds | is
the size of Ds . Therefore, the full framework is to minimize
the joint loss function L:

L = LC + LF + LD2 , (11)

where L denotes the sum loss of the adversarial learning
framework. The joint training process of the adversarial
learning framework is summarized in Lines 17 - 21 in Algo-
rithm 1. It mainly includes two parts. The first part is that
Ui trains C and F using Di . Our goal is to build a per-
sonalized model and use similar data Ds to improve model
performance, so we first achieve optimal model performance
based on Di . The second step is to alternatively train C , F
and D2. To train C , we fix F and D2. To train F and D2,

we fix C . In this way, the balance of the adversarial train-
ing will be under better control. To be noted here, we first
train the personalized model to optimal performance before
starting the adversarial training. Compared to training D2 at
the beginning, it is easier to improve the performance of the
adversarial training.

4 Experimental results

In this section, we evaluate the performance of WL and
AdvPL using three real-world datasets. In Sect. 4.1, we
present experimental setup details including dataset descrip-
tions, hyperparameters and baselines. In Sect. 4.2, we present
our main results of the accuracy comparison of our proposed
framework and other baseline models and the correspond-
ing training efficiency on three datasets. In Sect. 4.3, we
present detailed analysis on the performance of the proposed
framework using the first two datasets. First, we compare the
performance of the personalized model (without requested
similar data) and global model to demonstrate the benefits
of the personalized model. Second, we measure the per-
formance improvement of the personalized model, WL and
AdvPL, with requested similar data. Third, we compare our
algorithms with other similarity metrics and demonstrate the
advantages of our proposed framework. Fourth, we conduct
sensitivity analysis and investigate the effects of the proba-
bility distribution of the requested data and the budget size
on the performance of WL and AdvPL.

4.1 Experimental setup

Datasets: To evaluate the performance of our algorithm,
we conduct our experiments on three real-world datasets,
including UNIX Command Sequence, Shakespeare Text and
YesiWell health data. TheUNIXCommandSequence dataset
[39] is composed of 50 files, where each file corresponds
to one user’s command sequence collected by the UNIX
acct auditing mechanism. Each user is recorded with a long
sequence consisting of the UNIX command in a period of
time, such as troff, dpost, eqn, sed, cat, ls, gs and so forth.
The sequence length of each user is 15000 and the average
number of command types for these 50 users is over 100. We
split the long command sequence of each user evenly into
500 sequences. For each sequence, we aim to build a clas-
sifier that predicts the final command based on the previous
commands in this sequence. More specifically, the input data
are a sequence consisting of UNIX commands with length
T and the task is to predict the next command at the T + 1
step. It is natural that different users have their own typ-
ing styles. For example, technical users and non-technical
users often have different command sequences. In our exper-
iment, we build one personalized model for each user. The
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Shakespeare Text dataset is constructed from The Complete
Works of William Shakespeare [13]. This dataset is writ-
ten in the form of plays and each speaking role in the plays
is treated as an individual user. We subsample 40 speaking
roles and build one personalized model for each speaking
role. For each speaking role, we process its input text data
to a sequence list where each sequence has a fixed length
100. The numbers of sequences of each speaking role are
within the range between 5000 and 10000. The task is to pre-
dict the next character after reading previous characters in
each sequence. YesiWell health dataset [40] was collected
between 2010 and 2011 as a collaboration study by different
institutes, including PeaceHealth Laboratories, SK Telecom
Americas, and theUniversity ofOregon, to help peoplemain-
tain active lifestyles and lose weight. The dataset includes a
group of 254 overweight and obese individuals and records
the information of various aspects such as physical activ-
ities, social activities, biomarkers, and biometric measures.
The total distance ofwalking and running is included in phys-
ical activities and measured via a mobile device carried by
each user. The distance of each user is reported daily and
forms a long sequence. Our task is to build a classifier for
each user to predict the daily distance based on the distance
sequence of previous days. For this classification task, we
divide the distance into 30 ranges and assign a label to each
distance range. After preprocessing, we select 69 users by
removing sequences with missing values and abnormal pat-
terns due to data reporting error. The sequence length is set as
10 and the data size of each user is between 200 and 500. We
summarize the characteristics ofUNIXCommand Sequence,
Shakespeare Text and YesiWell data in Table 1.
Hyperparameters: In our experiment,weuse two-layer long
short-term memory (LSTM) neural networks as the classi-
fication model for both two tasks. Each layer of the LSTM
classification model has the dimension 256 and the output of
the second LSTM layer is sent to a softmax output layer for
prediction. For each user, we select 80% of the sequences
as training data and the rest as testing data. We also choose
LSTM to build the auto-encoder which is composed of an
encoder and a decoder. Both the encoder and a decoder con-
sist of two-layer LSTMs. The dimensions of the hidden layer
in the encoder and decoder are both set as 256. Each subse-
quence is embedded with 512 dimensions before sending to
the encoder as input. The last hidden layer of the encoder is
taken out to be the input of the decoder. For the GANmodel,
both the discriminator and generator are feedforward neural
networks. More specifically, the generator has two hidden
layers with dimensions 50 and 100, respectively. The dis-
criminator also has two hidden layers with dimensions 100
and 50, respectively. The dimension of the Gaussian noise
is the same as the size of the hidden representations by the
encoder.

Baselines: In our proposed WL (AdvPL), each user collects
Ds from other users and trains his personalized model using
Di andDs in a weighted training (adversarial training) man-
ner. We compare our WL and AdvPL with the following
baselines:

– Global: the global model is a one-fit-all model for all of
the users, which is built on the collection of all users’
training data.

– PL: each user trains his own personalized model (the
same structure as the global model) only based on his
own training data.

– PL_Rand: each user randomly requestsDs and trains the
model simply with the combination of Di and Ds .

– PL_Euc: each user requestsDs from other users based on
the Euclidean similarity metric and trains his model as
PL_Rand. The Euclidean similarity metric is computed
as follows: for each user, we compute the one-hot-vector
of each command and obtain a vector vi by averaging
the one-hot-vector of all commands. Similarly, for each
subsequence of other users, we compute its vector vs .
Then, we can compute the Euclidean similarity metric
between vi and vs .

– PL_Cos: each user requests Ds from other users based
on the cosine similarity metric and trains his model as
PL_Rand. The computation of the cosine similarity met-
ric is the same as PL_Euc.

– PL_Multi: each user requests Ds using our proposed
auto-encoder and GAN. We apply the multi-task frame-
work [41] and treat Di and Ds as two different tasks. In
this implementation, only the final classification layer for
Di and that for Ds are different.

We run our methods and all baselines for five times and
report the mean and standard deviation of accuracy in our
evaluation.

4.2 Main results

4.2.1 Accuracy comparison

The accuracy comparison of our proposed framework and
other baseline models on three datasets is shown in Table 2.
The size of requested data Ds is 1000 for UNIX Command
Sequence, 8000 for Shakespeare Text and 300 for YesiWell.
From the experimental results, we summarize key obser-
vations and leave the detailed comparison in the following
sections. First, the average accuracy of PL is higher than that
of Global, indicating that one-fit-all model maymiss the spe-
cific features of individual’s data, especially in the scenarios
where the distribution of individual’s data is rather diverse.
Second, our proposed framework outperforms other simi-
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Table 1 The characteristics of
UNIX Command Sequence,
Shakespeare Text and YesiWell
data

Dataset Users Sequence length Data size

UNIX command sequence 50 50 500

Shakespeare text 40 100 5000–10000

YesiWell data 69 10 200 - 500

Table 2 Accuracy comparison (mean± std) of the proposed framework and baselines based on five runs onUNIXCommandSequence, Shakespeare
and YesiWell. The scale of the numbers is %

Dataset PL Global PL_Rand PL_Euc PL_Cos PL_Multi WL AdvPL

UNIX 54.86 ± 3.42 51.98 ± 2.89 54.46 ± 3.16 55.88 ± 2.77 56.10 ± 3.05 59.46 ± 3.17 59.34 ± 2.96 61.42 ± 3.26

Shakespeare 53.67 ± 2.25 51.87 ± 2.37 52.60 ± 2.07 53.91 ± 2.12 53.88 ± 2.27 55.49 ± 1.96 56.19 ± 2.21 57.45 ± 1.97

YesiWell 32.79 ± 4.19 30.48 ± 4.37 32.19 ± 3.67 34.21 ± 3.94 34.62 ± 3.77 35.46 ± 4.01 35.82 ± 4.23 37.84 ± 3.75

Table 3 Training time (second)
of the proposed framework and
other baselines

Dataset PL Global PL_Rand PL_Euc PL_Cos PL_Multi WL AdvPL

UNIX 118.2 1053.7 211.5 598.2 701.6 543.2 533.5 581.2

Shakespeare 677.7 4762.5 1213.2 4078.2 4983.4 2785.3 2752.4 3042.5

YesiWell 65.3 584.7 118.9 313.5 372.9 252.7 259.3 273.2

larity metrics in selecting similar data. As we explained, the
auto-encoder andGANcan capture implicit complex features
from the data, whereas other similarity metrics only compute
simple statistical information. Third, the proposed AdvPL
performs the best among all approaches. It demonstrates that
AdvPL can reduce the distribution discrepancy between indi-
vidual’s data and requested data and thus improve the overall
prediction accuracy.

We further test the statistical significance of the improve-
ments between our proposed methods and baseline models.
We run our methods and all baseline models for five times,
use the independent two-sample t test and then calculate the
p-value. For UNIX dataset, the p-values of testing AdvPL
against Global, PL, PL_Rand, PL_Euc, PL_Cos, PL_Multi,
andWL are 0.0006, 0.0073, 0.0045, 0.0102, 0.0143, 0.1819,
and 0.1619, respectively. Using the threshold of 0.05, AdvPL
has statistically significant improvement over Global, PL,
PL_Rand, PL_Euc and PL_Cos. AdvPL can still achieve
decent p-values (less than 0.2) when comparingwithWL and
PL_Multi (using GAN based similarity metric). For Shake-
speare and YesiWell datasets, we have similar observations.

4.2.2 Training efficiency

The training efficiency is an important metric to evaluate
the performance of the proposed framework. In this section,
we compare the training time of our proposed framework
and baselines. We report the results in Table 3 and summa-
rize the key findings as the following. First, we can see that
the training of auto-encoder and GAN can increase the total
completion time from the comparison between PL_Rand and

WL. However, this extra training time is worth as we demon-
strate that the proposed framework can improve the overall
performance significantly. Second, other similarity metrics,
PL_Euc and PL_Cos, need to compare paired data one by
one, which incurs high computational cost. Although auto-
encoder and GAN will increase the total training time in our
framework, each data sample only needs one single compar-
ison when using the discriminator of the trained GAN for
similar data selection. Third, adversarial learning takes more
time to finish the training than WL, but the burden increased
by the adversarial learning is not significant.

4.3 Detailed performance analysis

In this section, we conduct detailed evaluations and compare
the performance of WL, AdvPL and other baseline models.
We study the effects of probability distribution and requested
dataset size on the performance of the proposed framework.
For demonstration purpose and space limit, we only show
the performance analysis on UNIX Command Sequence and
Shakespeare Text.

4.3.1 Accuracy comparison of global and PL

In this experiment, we compare the performance of the
Global and PL for each user to show the necessity of building
the personalized model. The experimental result for UNIX
Command Sequence (Shakespeare Text) is shown as Fig. 3a
(Fig. 3c). To illustrate the result more clearly, we sort the
users according to the prediction accuracy of the personal-
ized model. The accuracy of each user using the Global (PL)
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Fig. 3 UNIX Command
Sequence a: The accuracy of the
Global and PL for each user. b:
The accuracy of the Global, WL
and PL_Adv for each user.
Shakespeare text c: The
accuracy of the Global and PL
for each user. d: The accuracy of
the Global, WL and PL_Adv for
each user

is shown as the red star line (black dot line). It can be seen
that the trend of the PL is above the Global for most users.
More specifically, the average accuracy of the Global and PL
forUNIXCommandSequence (ShakespeareText) is 51.98%
(51.87%) and 54.86% (53.67%), respectively. Themaximum
accuracy increment of the PL over the Global for UNIX
Command Sequence (Shakespeare Text) is 8.0% (3.7%). As
aforementioned, Global captures the overall information of
all training samples and overlooks the user-specific infor-
mation. However, the user-specific information is the key to
improve the performance of the PL. Hence the PL can better
learn the pattern of each user.

4.3.2 Accuracy comparison of WL and AdvPL

In this experiment, we test the effectiveness of the proposed
algorithms and show the accuracy of the WL and AdvPL for
UNIX Command Sequence (Shakespeare Text) as Fig. 3b
(Fig. 3d). The size of requested Ds for UNIX Command
Sequence (Shakespeare Text) is set as 1000 (8000). The accu-
racy of the WL (AdvPL) is shown as the black dot line (blue
triangular line). For comparison, we also plot the accuracy
of the Global as the red star line.

We have the following observations. First, the accuracy
of the AdvPL is higher than that of the WL. It demon-
strates that adversarial learning canminimize the distribution

discrepancy between Di and Ds . The reduced distribution
discrepancy can help the AdvPL achieve higher accuracy
than the WL. Second, both WL and AdvPL have a great
advantage over the Global. It shows that our proposed algo-
rithms are effective to select similar data for each user and
help improve the performance of the personalized model.
More specifically, the average accuracy of the WL and
AdvPL for UNIX Command Sequence (Shakespeare Text)
is 7.36% (4.32%) and 9.44% (5.58%) higher than that of
the Global, respectively. In contrast, the average accuracy of
the PL for UNIX Command Sequence (Shakespeare Text) is
only 2.88% (1.80%) higher than that of the Global.

We further investigate the effects of the assigned weights
inWLandcompare its performancewithPL_Sim (unweighted
learning as shown in Equation 5). From our experimental
results, the average performance of WL and PL_Sim over
all users are at the same level. This is because for most of
the users in our experiments, the probability scores of their
requested dataDs are high, i.e., approaching to 1, and the loss
function (Equation 7) of WL is reduced to the loss function
(Equation 5) of PL_Sim. However, for a few other users, the
probability scores of the requested data Ds are mixed, i.e.,
some data samples have lower probability scores while other
data samples have higher probability scores. In this case, the
performance of WL is better than Pl_Sim. Taking one user
(ID = 3) from UNIX Command Sequence as an example, the
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Table 4 Accuracy comparison (mean ± std) based on five runs for UNIX Command Sequence using different similarity metrics andDs sizes. The
average accuracy of the Global and PL is: 51.98% and 54.86%, respectively. The scale of the numbers is %

|Ds | PL_Rand PL_Euc PL_Cos PL_Multi WL AdvPL

400 54.48 ± 3.23 55.12 ± 3.04 55.34 ± 2.91 56.84 ± 3.27 56.82 ± 3.15 60.14 ± 3.77

600 54.24 ± 3.19 55.28 ± 3.55 55.62 ± 2.89 57.96 ± 3.02 57.72 ± 3.37 60.68 ± 2.75

800 54.62 ± 3.43 55.56 ± 3.24 55.78 ± 2.10 58.62 ± 3.22 58.48 ± 2.88 61.10 ± 3.73

1000 54.46 ± 3.16 55.88 ± 2.77 56.10 ± 3.05 59.46 ± 3.17 59.34 ± 2.96 61.42 ± 3.26

Table 5 Accuracy comparison (mean ± std) based on five runs for Shakespeare Text using different similarity metrics and Ds sizes. The average
accuracy of the Global and PL is: 51.87% and 53.67%, respectively. The scale of the numbers is %

|Ds | PL_Rand PL_Euc PL_Cos PL_Multi WL AdvPL

2000 52.36 ± 2.04 53.63 ± 2.23 53.45 ± 1.83 54.21 ± 2.19 54.32 ± 2.57 56.62 ± 2.79

4000 52.49 ± 2.57 53.65 ± 1.79 53.61 ± 2.18 54.70 ± 2.28 54.95 ± 2.62 56.91 ± 2.42

6000 52.35 ± 1.95 53.79 ± 2.17 53.80 ± 2.33 55.24 ± 2.29 55.64 ± 1.93 57.31 ± 2.14

8000 52.60 ± 2.07 53.91 ± 2.12 53.88 ± 2.27 55.49 ± 1.96 56.19 ± 2.21 57.45 ± 1.97

accuracy of WL is 3% higher than that of PL_Sim. We pro-
vide more detailed analysis in 4.3.4 and discuss under what
scenarios WL can outperform PL_Sim.

4.3.3 Accuracy comparison using different similarity
metrics

Previous section shows the performance between theWLand
AdvPL. In this section, we compare with the personalized
models using other similarity metrics. For better compari-
son, we show the average accuracy rather than plotting the
accuracy of all users. The comparison result for UNIX Com-
mandSequence (Shakespeare Text) is shown as the 5th row in
Table 4 (Table 5) with |Ds | = 1000 (|Ds | = 8000). We have
the following interesting observations. First, if the user ran-
domly requestsDs , the average performance of the PL_Rand
is slightly decreased compared to the PL. Second, the per-
formance of the PL_Euc and PL_Cos helps improve the
performance over the PL, however, the performance incre-
ment of our proposed WL is the best among these three
similarity metrics. Third, the AdvPL achieves the best per-
formance among all strategies. PL_Multi adopts the general
multi-task learning framework [41] to learn common fea-
tures between Di and Ds , however, it only achieves similar
performance as WL, which demonstrates that our proposed
AdvPL ismore effective than the traditional multi-task learn-
ing method.

Moreover, we also study the effect of requested datasetDs

size on the performance of the WL and AdvPL. The result
for UNIX Command Sequence (Shakespeare Text) is shown
in Table 4 (Table 5) with Ds size increasing from 400 to
1000 (2000 to 8000). We have the following three observa-
tions from the results. First, the performance of the PL_Rand

is slightly decreased compared to the PL under different
Ds sizes. It is reasonable that large distribution discrepancy
of the randomly requested Ds and Di can deteriorate the
personalized model performance. Second, the accuracy val-
ues of the PL_Euc, PL_Cos, PL_Multi and WL increase
with the increasing size of Ds . Third, we discover that with
smallerDs size, the accuracy increment fromWL to AdvPL
ismore significant.More specifically, the accuracy increment
of the AdvPL over the WL for UNIX Command Sequence
(ShakespeareText) is 3.32% (2.30%), 2.96% (1.96%), 2.62%
(1.67%) and 2.08% (1.26%), respectively, with the corre-
spondingDs size as 400 (2000), 600 (4000), 800 (6000), 1000
(8000). The reason is thatwith smallerDs size, some less sim-
ilar data inDs impedes the model performance improvement
to a greater extent due to the smaller total amount of data. In
contrast, if the total data size is larger, then the effects of some
less similar data are smaller and the advantage of the AdvPL
is also weakened. As a result, the AdvPL plays amore impor-
tant role for personalized model with smaller budget size of
Ds . It is more practical in real scenarios that one user can
only request limited amount of data from other users due to
the privacy concern or communication cost burden.

To further compare the performance of different strate-
gies, we plot the percentage of users with accuracy increment
greater than 5% using the PL_Euc, PL_Cos, PL_Multi, WL
and AdvPL over the PL under different Ds sizes. The result
is shown in Fig. 4. It can be seen that the AdvPL greatly out-
performs other strategies. In addition, theWL achieves better
performance than the PL_Euc and PL_Cos, demonstrating
the effectiveness of our proposed method in requesting sim-
ilar data.
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Fig. 4 The percentage of users
with accuracy increment over
5% using the PL_Euc, PL_Cos,
PL_multi, WL and AdvPL
compared to the PL

4.3.4 Effects of probability distribution and budget size on
WL, AdvPL and PL_Sim

In this section, we investigate the effects of the probability
distribution of the requested data determined by D2 and the
budget size of Ds for the WL, AdvPL and PL_Sim. We ran-
domly select a single user (ID = 29) in the UNIX Command
Sequence dataset and conduct the experiments for demon-
stration purpose. Table 6 shows the effects of probability
distribution of the requested data for the WL, AdvPL and
PL_Sim. We divide the range of probability score by D2

evenly into five regions between 0.5 and 1.0. For each region,
we select Ds containing 1000 samples and test the accuracy
of theWL,AdvPL and PL_Sim. For example, if we select the
range [0.5, 0.6], itmeans the probability score of all requested
data falls into the range [0.5, 0.6].

We have the following observations. First, the accuracy
of the WL is lower if the probability distribution of the data
in Ds is in a low range. For example, if all of the data in Ds

are requested within the range [0.9, 1.0], then the accuracy
of the WL is 5% higher than that of the Ds within the range
[0.5, 0.6]. As we know, higher probability by the discrimi-
nator indicates the data are more likely to be sampled from
Di . Consequently, lower probability distribution range ofDs

will cause larger distribution discrepancy withDs and lower
performance improvement of the WL. Second, the accuracy
of the AdvPL for Ds with different probability distribution
ranges is stable. The advantage of the AdvPL is that it can
reduce the distribution discrepancy between Di and Ds , so
that the performance of the AdvPL can still be improved
greatly under a higher distribution discrepancy. It demon-
strates that the AdvPL can better improve the personalized
model performance if only less similar data are available.
Third, the advantage of the AdvPL is weakened if the distri-
bution discrepancy betweenDi andDs is smaller. The reason
is that if Ds is of high similarity compared with Di , then the
user can directly combine them and train the model without
considering the effect of distribution discrepancy.

Table 6 Accuracy comparison (mean ± std) based on five runs for a
single user (UNIX Command Sequence) based on Ds with different
discriminator scores

Discriminator Score PL_Sim WL AdvPL

0.5–0.6 60.8 ± 1.64 63.0 ± 1.94 66.8 ± 1.79

0.6–0.7 63.0 ± 2.05 63.2 ± 1.48 67.0 ± 2.12

0.7–0.8 64.6 ± 1.67 66.0 ± 1.41 68.2 ± 2.17

0.8–0.9 67.0 ± 1.49 67.2 ± 1.10 67.8 ± 2.16

0.9–1.0 66.8 ± 1.31 67.0 ± 1.58 68.2 ± 1.92

Table 7 Accuracy comparison (mean ± std) based on five runs for a
single user (UNIX Command Sequence) based on Ds with different
sizes

Ds Size PL_Sim WL AdvPL

400 57.6 ± 1.51 59.2 ± 1.48 63.0 ± 2.00

600 58.8 ± 1.64 60.4 ± 1.81 64.0 ± 2.44

800 60.2 ± 1.48 60.2 ± 1.09 65.4 ± 1.87

1000 60.8 ± 1.64 63.0 ± 1.94 66.8 ± 1.79

We also investigate the difference between WL and
PL_Sim. In fact, both WL and PL_Sim are sensitive on the
probability score. When the probability score is within low
range, the accuracy ofWL is higher than that of PL_Sim.This
is because that WL lowers the importance of the requested
data, while PL_Sim treats all requested data with uniform
weight. Taking the probability score within the range [0.5,
0.6] as an example, the accuracy values (mean ± std) of
PL_Sim and WL are 60.8 ± 1.64 and 63.0 ± 1.94, respec-
tively. Its p-value from the t test is 0.0230, which indicates
a significant improvement of WL over PL_Sim. When the
probability score is within the high range, WL and PL_Sim
have similar performance becauseWL is reduced to PL_Sim
as aforementioned. In short, WL outperforms PL_Sim when
the similarity between requested data and original data is
relatively low.WL and PL_Sim achieve similar performance
when sufficient similar data can be collected from neighbors.
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Table 7 shows the effects of Ds size on the performance
of the PL_Sim, WL and AdvPL. To test the sensitivity of the
adversarial training process, we request less similar data and
set the probability distribution of the data in Ds within the
range [0.5, 0.6]. We have the following observations. First,
the accuracy of the WL increases slowly with the increasing
size of Ds as we select less similar data with the probability
distribution in the low range [0.5, 0.6]. So although the user
requests more data, the performance gain by these increasing
less similar data is still insignificant. Second, with the adver-
sarial training, the accuracy of the AdvPL improves greatly
over the WL. It can be seen that the performance improve-
ment of the AdvPL is almost stable under different sizes of
Ds . It demonstrates that the AdvPL can still improve the
model performance greatly even with a limited budget size
and less similar data available.

5 Conclusions and future work

In this paper, we proposed the AdvPL framework enabling
individual users to effectively collect data from other users
and train a robust personalizedmodel.We proposed to use the
auto-encoder andGANto select similar data fromother users.
The trained auto-encoder and GAN, which capture inherent
information of user’s personal data, can be efficiently used
to choose similar data from others, thereby avoiding tedious
process of paired data comparison. We have developed two
approaches to combine the requested data and user’s own
data to improve the performance of personalized learning.
The first approach is weighted learning that assigns different
weights to different requested data. Then, the model can cap-
ture the importance of different requested data. The second
approach is adversarial training that maps selected data and
user’s own data to the same feature space and jointly trains
the personalized model. The adversarial training can effec-
tively mitigate potential distribution discrepancy between
selected data and user’s own data. We conducted extensive
experiments to demonstrate the effectiveness of the proposed
framework.

There are two major directions for our future work. First,
we will study how to achieve privacy in our AdvPL. The
auto-encoder and GAN contain private information of the
individual user’s data. Previous works demonstrate that deep
learning models can memorize abundant information of the
training data [42]. To protect the privacy of training data
in Di , we can build differential privacy preserving versions
of auto-encoder and GAN, e.g., by adopting the ideas of
[43] and [44], respectively. Moreover, the data Ds collected
from other users are also private and users may not want
to share. We will study the use of local differential privacy
[45] for private data comparison and collection. Second, we
will investigate how to determine most appropriate data to

improve the performance of personalized model. Our current
work is based on the idea of selecting similar data to boost the
performance. Ideally, we want to determine the properties of
new data that can best improve the model performance, e.g.,
reducing the prediction error of the built model. With that,
we only need to collect truly useful data and skip redundant
ones, which will greatly reduce the communication burden
and improve efficiency. One idea is to use active learning
to select new data that improve personalized model perfor-
mance. However, existing active learning strategies [46] may
not be directly applied here because the data determined by
the active learningmay contain large distribution discrepancy
from individual user’s own data. It is interesting to investigate
how to combine the active learning and personalized model.
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