PHYSICAL REVIEW E 102, 010604(R) (2020)

Rapid Communications

Emergence and persistence of flow inhomogeneities in the
yielding and fluidization of dense soft solids

Vishwas Venkatesh Vasisht
Indian Institute of Technology Palakkad, Ahalia Integrated Campus, Kozhippara P. O, Palakkad, Kerala 678557, India
and Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University,
37th and O Streets, N.W., Washington, DC 20057, USA

Gabrielle Roberts
Department of Physics, University of Chicago, 5720 South Ellis Avenue, Chicago, Illinois 60637, USA

Emanuela Del Gado
Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University,
37th and O Streets, N.W., Washington, DC 20057, USA

® (Received 4 October 2017; revised 19 August 2019; accepted 25 May 2020; published 6 July 2020;
corrected 22 July 2020)

In three-dimensional computer simulations of model non-Brownian jammed suspensions, we compute the
time required to reach homogeneous flow upon yielding, by analyzing stresses and particle packing at different
shear rates, with and without confinement. We show that the stress overshoot and persistent shear banding
preceding the complete fluidization are controlled by the presence of overconstrained microscopic domains in
the initial solids. Such domains, identifiable with icosahedrally packed regions in the model used, allow for stress
accumulation during the shear startup. Their structural reorganization under deformation controls the emergence

and the persistence of the shear banding.
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Under shear, soft solids such as emulsions, foams, or
colloidal pastes yield and eventually flow, a feature important
from paints and food to pharmaceutical products and wet
cements [1]. The shear stress increases with the strain y
and often overshoots before decaying towards a steady-state
value that depends on the shear rate . A major challenge to
control the flow properties is that the evolution towards the
steady state can be accompanied by spatial inhomogeneities,
with only part of the material flowing and the rest remaining
jammed [2-5]. Such a phenomenon, called shear banding,
is well known to geologists and engineers but its origin
and persistence in dense amorphous solids is largely not
understood [1].

Advanced rheological and computational tools have gained
new insights into inhomogeneous flows [2,5-14]. In various
complex fluids, bands flowing at different rates are ascribed to
flow-induced structuring or ordering transitions, and can sur-
vive in a steady state [15]. For dense soft solids, instead, flow
inhomogeneities are thought to emerge from the relaxation of
stress heterogeneities elastically stored in the material during
the stress overshoot, which can significantly delay the onset
of a homogeneous flow [2,3,11,16—-19]. It has been shown that
the age of the sample, which controls frozen-in stresses, has an
impact on the stress overshoot [5,12] and that the competition
between aging and flow-induced rejuvenation may lead to
shear banding [20-22]. However, microscopic mechanical
heterogeneities remain elusive to pin down, making it even
harder to elucidate their possible role during the startup
flow.
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Here, we identify the link between the shear banding and
its persistence in soft solids and the presence of stiffer, locally
overconstrained domains. We use computer simulations of
model dense non-Brownian suspensions where we can asso-
ciate the overconstrained domains to the predominantly do-
decahedral geometry of the Voronoi volumes, corresponding
to a prevalently icosahedral particle packing. Such domains
allow for stress accumulation during the stress overshoot and
organize in space into a nonflowing band as shear stresses
relax after the overshoot. The progressive, slow erosion of
the nonflowing band helps reorganize the mechanical con-
straints in the material, eventually leading to its complete
fluidization.

Our model soft solid is a non-Brownian suspension of
volume fraction ¢ &~ 70%, consisting of 10% (97 556, unless
otherwise specified) particles, with repulsive effective inter-
actions mimicked via a truncated and shifted Lennard-Jones
potential [23], whose strength € is the unit energy in the
simulations. The diameters of the particles are drawn from a
Gaussian distribution with a variance of 10%, whose mean
is used as unit length a. Albeit simple, the model captures
the essential features of sheared soft solids [5,14,24-27]. We
prepare the initial samples from a high-temperature dense
liquid, cooled to low temperature using a NV T molecular
dynamics (MD) protocol with a cooling rate I" varying from
5x 1072t0 5 x 107%/(kgty) (Where 7y = a+/m/€ is the MD
time unit with m the particle mass, and for the lowest I' we
perform 10° MD steps). Each sample is subsequently brought
to the closest energy minimum and to kg7 /e =~ 0 via energy
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FIG. 1. (a) The load curve at y = 10’4r0’ ! for a system prepared
at ¢ = 0.70 with cooling rate I' =5 x 107*¢/(kg1o). (b) The ve-
locity profiles (solid line) at points (i)—(ix) of the load curve. The
error bars are from sample-to-sample fluctuations for three samples.
The dashed lines are the percentages of icosahedral packing. (c) The
maximum (solid line) and minimum (dashed line) of the local shear
rate (the numerical derivative of the velocity profile), along with the
applied shear rate (dotted line), as a function of the strain.

minimization. We prepare one to five independent samples for
each cooling rate (one in the case of slowest I') and use linear
oscillatory shear tests to verify that they are all initially in a
rheologically solid state, well beyond the jamming point. The
samples are subjected to a shear rate y using Lees-Edwards
boundary conditions (LEBCs) and, independently, by confin-
ing them between two walls [wall-based shearing protocol
(WB)], one of which is moving at a velocity determined by
the chosen rate [see also Supplemental Material (SM) [28]].
We solve equations of motion with a damping that guarantees
minimal inertia effects, as discussed in Ref. [27]. The virial
stress tensor is 045 [29], where A, B € X, Y, Z, with X, Y, and
Z corresponding to flow, gradient, and vorticity directions,
respectively. All simulations used LAMMPS [30] which we
modified to include size polydispersity. For all data, y is in
units of 7 L

The load curve (i.e., the shear component o = oyy of the
stress tensor versus the strain y or time = y/y) is shown in
Fig. 1 for y = 10_41()’ ' (LEBC). The initial elastic response
at small strain is followed by a stress overshoot, after which
the shear stress decays towards a steady-state value. Along
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FIG. 2. (a) The width of the shear band §/Ly as a function of
the strain y for different shear rates, for ¢ = 0.70 and cooling rate
I' =5 x 107*€¢/(kpo). The evolution of pressure in (b) and of the
percentage of icosahedral packing in (c) for the same set of shear
rates.

the load curve [Fig. 1(a)], we reconstruct the velocity profile
(vy)(y) averaged over a strain window of ~2% [Fig. 1(b)],
by slicing the sample along the gradient direction y and
averaging the x component of the velocity over all particles
(roughly 4000) in the same slice of thickness ~a [25]. Starting
from a linear velocity profile, as expected at short times
(i), the shear banding initiates close to the stress overshoot
(ii), where the local shear rate starts to deviate from the
imposed one [Fig. 1(c)]. By the time the stress starts decaying,
part of the material forms a nonflowing band and the deviation
from the applied shear rate is maximum [Fig. 1(c)]. As the
stress further decays (iii) we observe a backflow, similar to
the unloading of an elastic material [3,17,31]. Progressive
restoration of a linear profile (iv)-(v) is associated with a
weak but continuous decrease of the shear stress [17] with
significant fluctuations (not shown) [32].

The width § of the flowing band (measured from the veloc-
ity profiles) depends on the applied shear rate [2,3,11,15,33].
Figure 2(a) shows § /Ly, for a LEBC sample, as a function of y
(where Ly is the box dimension in the gradient direction) start-
ing from 1 at small strains when the whole system deforms
homogeneously (and elastically, as indicated by the negligible
dependence on y), dropping to a lower value dependent on
the rate, and approaching logarithmically 1 when the flow
becomes homogeneous [11]. The logarithmic growth of the
flowing band suggests coupling with the local aging of the
nonflowing region [34,35]. The complete fluidization (i.e.,
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FIG. 3. Fluidization time 7, as a function of the shear rate for
¢ =0.70 [ =5 x 10~*¢/(kzTo)]. (a) Main panel: Data for N = 10°
particles, for LEBC and WB protocols. Inset: Data for N = 10*
(LEBCQ). (b) Data for WB with different confinement lengths.

the onset of homogeneous flow) is signaled by the evolution
of the normal components of the stress [the trace of the
stress tensor is plotted in Fig. 2(b)], indicating that normal
stresses are strongly coupled to the flow inhomogeneities [36].
Similar features are found for all LEBC and WB samples (see
Ref. [28]). The fluidization time 7 is obtained independently
as the time where a linear velocity profile is recovered (within
local shear rate fluctuations) and as the time where both shear
and normal components of the stress tensor reach a steady
state. The two estimates are consistent with each other and
we use also their relative deviation to estimate error bars.

For relatively small samples (N = 10*, Ly = 20a), the
dependence of 7y on y is Ty o y %, with o = 1 [Fig. 3(a)
inset]. That is, the timescale needed for the complete flu-
idization is simply set by the imposed shear rate. For large
samples (N = 10°, Ly = 42a), instead, o > 1.0 [witha ~ 1.3
for both shearing protocols as shown in Fig. 3(a)], as also
found in experiments [11]. The magnitudes of 7, are larger
in the WB protocol due to the wall-bulk interface (where the
flow localization nucleates), but the value of « is consistent
with LEBC and hence likely dictated by bulk processes.
The system size dependence of « is confirmed with WB, by
increasing the confinement distance in the gradient direction
9 [Fig. 3(b)]. @ > 1.0 for large enough samples indicates
that the microscopic dynamical processes underlying the flu-
idization are not trivially slaved to the shear rate y, because
they are spatially correlated over large distances that increase
with the sample size. The possibility to reconcile, also in
soft glassy solids, the complex phenomenology of the stress
overshoot, and the yielding and banding with an underlying
phase transition [37,38] is increasingly debated. Our findings

hint at a nucleation process or to a critical-like growth for the
flow inhomogeneities, as proposed for steady-state banding in
complex fluids but here at play for a transient banding [15].

The nonflowing band is not obviously associated with
shear-induced crystallization [10], phase separation [14], or
any visible density gradients [39], but we find a striking link
between the shear banding and a local structural signature.
Through a Voronoi tessellation we obtain the statistics of
polyhedra that correspond to different local packing geome-
tries and particle coordination numbers [40]. The analysis
reveals that the time evolution of the percentage of particles
associated with dodecahedral Voronoi volumes (or to a icosa-
hedral packing) is strongly correlated to the shear banding
[Fig. 2(c)]. Furthermore, there is a strong spatial coupling
between the banding and the organization of the icosahedrally
packed particle domains: In Fig. 1(b) the dashed lines indicate
the local icosahedral packing percentages along the gradient
direction J, using the same procedure employed to compute
the velocity profiles, proving that, by the time the shear
stresses start to relax from the overshoot, domains with mainly
icosahedrally packed particles organize into the nonflowing
band.

The icosahedral particle packing points to the existence
of regions where the local coordination number, and hence
the number of mechanical constraints on a particle, is much
higher than the isostatic conditions [i.e., 6 in three dimensions
(3D)] of the onset of jamming [41]. Microscopic overcon-
strained domains in amorphous solids allow for local com-
pression and tension to develop under load with no net force
[42]: Hence, under load, stress can be accumulated locally
without necessarily changing the mechanical state of the
material (e.g., yielding). Such a feature could explain why the
spatial organization and the amount of icosahedrally packed
domains are coupled to the emergence and persistence of the
nonflowing band, consistent with the transient banding being
associated with the relaxation of the stresses stored through
the overshoot [3,21,43]. While the persistence of icosahe-
drally packed domains under shear and their participation
to shear localization has also been noted in the context of
locally preferred structures in supercooled liquids and glasses
[44-46], here we propose that they signal overcoordinated
(and hence overconstrained) regions, where stresses accumu-
late under load. Hence icosahedrally packed domains are akin
to self-stress states discussed in Ref. [42].

In glassy solids and supercooled liquids with spherically
symmetric potentials (as here) local icosahedral packing are
energetically favored structures that geometrically frustrate
long-range order [47]. Therefore by cooling a liquid sample at
different rates I' we can control the prevalence of icosahedral
symmetry in the initial solid. Deeper local minima (or inherent
structures) of the total potential energy are accessible upon
decreasing I', as shown in Fig. 4(a) through the inherent
structure energy per particle [48]. Deeper local minima also
correspond to solids with a higher mechanical strength as
measured through the storage modulus G’ [Fig. 4(b)] and
higher percentages of local icosahedral packing [Fig. 4(c)]
[49-51]. The logarithmic increase of the stress overshoot
with decreasing I', shown in Fig. 4(d), indicates that higher
percentages of local icosahedral packing allow for a larger
accumulation of stresses under deformation. The prevalence
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FIG. 4. (a) The inherent structure energy per particle as a func-
tion of the temperature for cooling rates I' =5 x 1072 (square),
5 x 1073 (diamond), 5 x 10~ (up triangle), 5 x 107> (side triangle),
and 5 x 107%¢/(kpto) (down triangle). (b) Storage modulus G’ and
(c) percentage of icosahedral packing computed in initially solid
samples as a function of I". (d) Stress overshoot and (¢) normal stress
difference computed at the stress overshoot as a function of I" for
y =107

of icosahedral symmetry enhances the tendency of the mate-
rial to dilate, as indicated by the first normal stress difference
oxx — oyy at the stress overshoot plotted as a function of I
in Fig. 4(e), indicating that icosahedral packing corresponds
to regions locally under compression. All findings support
the idea that the icosahedrally packed domains here play the
role of overconstrained domains that drive stress localization,
triggering the shear banding.

By shearing at different y the samples prepared at different
I, we obtain the fluidization time 7, as a function of y in
Fig. 5 (LEBC), where the fluidization exponent « increases
with decreasing I' (see Fig. 5 inset) and hence with the in-
creasing icosahedral packing percentage in the initial sample.
The value of « reach values as high as ~1.7, and for the lowest
cooling rates (largest amounts of icosahedral packing) and
lowest shear rates one might have to shear the samples up to
strain y = 10 to get rid of flow inhomogeneities, a scenario
possibly relevant to ultrastable glasses [38]. The emerging
picture is that the redistribution of the mechanical constraints
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FIG. 5. Main panel: The fluidization time as a function of the
shear rate (LEBC) for samples obtained from different cooling rates
I' and hence containing different percentages of icosahedral packing.
The error bars are from sample-to-sample fluctuations, except for the
lowest I' where we use two independent determinations of 7. Inset:
The fluidization exponent as a function of I" for ¢ = 0.70 and ¢ =
0.80.

under shear introduces a characteristic time that interferes
with the imposed shear rate and strongly affects the timescale
over which fluidization occurs.

To summarize, overconstrained domains favor stress stor-
age (and a stress overshoot) in dense soft solids under shear,
by concentrating stresses in self-stress states that are mainly
compressive and that self-organize into a nonflowing band
in the material. As a consequence, a complete fluidization at
an imposed shear rate can only be attained by progressively
redistributing constraints and eroding the nonflowing band.
Such processes are responsible for the dramatic increase of the
persistence of flow inhomogeneities upon decreasing the shear
rate. The true steady-state behavior of the model material con-
sidered here is generic to simple yield stress fluids, well de-
scribed by a Herschel-Bulkley form ¢ — oy o p" (where oy
is the yield stress and n ~ 0.65) [25,52] (see SM [28]). Since
overconstrained domains are a generic feature of amorphous
solids, the mechanism unveiled should be relevant to yielding
and shear localization in a variety of dense soft solids, well
beyond the specifics of our study. Overconstrained domains
may have different morphologies in different materials, not
necessarily associated with dodecahedral Voronoi volumes
and local icosahedral packing, but the overall physical picture
will still apply.

Our results give additional input to the understanding of
yielding and fluidization of dense soft solids, elucidating
the role of mechanical heterogeneities and unraveling their
spatiotemporal coupling with the imposed deformation. Re-
cent mesoscopic theories rationalize the nonlinear response of
dense soft solids in terms of the statistics and the spatiotem-
poral correlations of microscopic plastic processes [34,53,54].
Our study suggests that overconstrained domains can be the
microscopic fingerprints of the mechanical heterogeneities
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that those theories rely upon [20,21,43]. The connection we
propose between the overconstrained domains and the concept
of self-stress states for amorphous materials [42] can shed
light on the dynamical and rate-dependent implications of
self-stress states, beyond their current understanding, and
potentially link them to the emerging plasticity in a long-
sought-after unifying framework for amorphous solids. Over-
constrained domains could be specifically designed into smart
soft solids during solidification, to control shear localization
or to tailor dynamic timescales that affect material processing,

with consequences for energy costs, efficiency, and perfor-
mances.
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