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An evolving perspective on the dynamic brain: Notes from the
Brain Conference on Dynamics of the brain: Temporal aspects of

computation

1 | INTRODUCTION

It is inescapable that we exist in a world that changes; so too
must the brain perform its computational feats of perception,
motor control, learning, memory, and speech online as the
world and the brain's own state dynamically evolve. Recent
theories have emphasized that neural computation might di-
rectly exploit dynamic principles as a powerful means of pro-
cessing inputs, exerting control over action, and regulating
and updating internal state, rather than by the maintenance of
static regimes of activity that attempt to counteract the inev-
itable process of time. A dynamic perspective on the brain,
with a focus on the computational role of transient patterns
of neural activity, has been energized by recent advances in
recording technologies and analysis methodologies, which
have revealed a diversity of patterned neural activity across
multiple brain regions and over multiple timescales. In con-
junction, methodological advances in the analysis, interpreta-
tion, and perturbation of dynamic brain activity have yielded
both fresh insight and novel questions regarding the compu-
tational nature of transient patterns of neural activity, and the
regulation and control of the dynamic brain.

Last summer, neuroscientists from around the globe gath-
ered in Denmark for the Brain Conference on Dynamics of
the brain: temporal aspects of computation, sponsored by
FENS and the Lundberg Foundation and chaired by Gilles
Laurent and Ila Fiete. The goal of this meeting was to dis-
cuss recent experimental findings and novel theoretical ideas
on the role of dynamic neural activity in the computational
repertoire of the brain, and to identify promising directions
for future research. Below, we survey the research presented
at the meeting, covering the state-of-the-art in the isolation
and interpretation of dynamic brain activity across a range
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of model systems and in the support of varied behaviors. We
have arranged this report thematically, to focus on the broad
concepts that emerged during the meeting relevant for un-
derstanding the dynamics of neural computation, although
many, if not all, speakers touched on several of these concepts
in the course of presenting their research. Along the way, we
highlight questions and considerations that arose as future di-
rections for the dynamic perspective on the brain.

2 | SPACE: A FUNDAMENTAL
SUBSTRATE FOR DYNAMIC
NEURAL COMPUTATION

The key dimensions for representing a dynamic variable
are space and time—accordingly, several talks focused on
the neural representation of these quantities in the brain
across a diverse range of behavioral tasks. Among these
was an in-depth survey presented by Edvard Moser of the
spatiotemporal properties of neural activity in the medial
entorhinal cortex (MEC), a brain region which is, jointly
with the hippocampus, thought to play an important role in
spatial navigation (Moser, Moser, & McNaughton, 2017;
Strange, Witter, Lein, & Moser, 2014). A subset of cells
in the MEC fire according to a hexagonal grid pattern, dis-
playing high activity at spatial locations that repeat at a
characteristic spatial scale for each sub-region (“module”)
of MEC (Hafting, Fyhn, Molden, Moser, & Moser, 2005;
Stensola et al., 2012). Influential “bump” attractor models
posit that local circuit interactions are responsible for the
establishment of these grid-like patterns of activity, with
external input able to move the network state continuously
among stable modes (McNaughton, Battaglia, Jensen,
Moser, & Moser, 2006). Consistent with these models,
Moser demonstrated that activity in MEC networks is in-
deed low dimensional, with structured pairwise correla-
tions between recorded neurons that are invariant across
running and epochs of short-wave and REM sleep, estab-
lishing that intrinsic neural activity is constrained (at least
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in part) by local interactions rather than solely by exter-
nal input (Gardner, Lu, Wernle, Moser, & Moser, 2019).
Furthermore, Moser showed recent work demonstrat-
ing that MEC neural activity is not only constrained by
a spatial grid structure, but also displays temporal struc-
ture—large multi-unit recordings in MEC during sensory-
deprived spontaneous locomotion (i.e., in the dark) display
robust sequences of activity that are highly stereotyped, di-
rectional and consistently repeated on the timescale of tens
of seconds, raising a challenge for attractor models of grid
cell activity to account for this dynamic activity sustained
intrinsically by the network across these long timescales.

Further extending our understanding of space in the
brain, Michael Yartsev presented a series of findings on
spatial representation in the flying Egyptian fruit bat, an
animal in which three-dimensional space is the ethologi-
cally relevant domain for brain computation and behavioral
control. These bats have sophisticated spatial navigation
skills and are able to both travel hundreds of kilometers to
aremembered location and then precisely move around that
location to forage. In his talk, Yartsev focused on the ways
in which bats' representation of 3D space must go beyond
simply extending the strategies and representations that we
know from 2D navigation. For example, a strategy in which
neurons are sharply tuned to particular locations may be
much less efficient in 3D, where there are many more lo-
cations to cover than in 2D. To highlight the characteris-
tic features of spatial representation in these bats, Yartsev
showed two distinct modes of their movement through the
air: these bats either perform large-scale commutes over
tens or even hundreds of kilometers, or they perform local
foraging at their destination by flying in and around trees.
In both these modes, bats move in a very restricted domain
of the huge movement space afforded by three dimensions
and, because they cannot stop in midair, appear to plan
a structured trajectory well before movement execution.
These observations suggest that neurons might encode
these stereotyped patterns with which bats traverse 3D
space. To test whether the neural representation of space
reflects the flying patterns observed in behavior, Yartsev
presented neural data from the hippocampus of fruit bats,
recorded wirelessly while they were flying around a room
with multiple foraging sites. Apart from finding a large
number of three-dimensional place cells, they found that
a sizable fraction of the neurons they examined showed
spatial tuning for the characteristic movement patterns.
Finally, elevating the floor of the room revealed that these
hippocampal neurons underwent remapping but main-
tained their spatial selectivity for particular flight trajecto-
ries. Yartsev observed that these hippocampal cells provide
a complementary encoding of space to place cells, and that
combining these representations can result in much better
positional accuracy in three dimensions.

André Longtin presented an inherently dynamical solution
to the widespread problem of how an animal might build a
spatial map of a static environment, using electrosensation in
the weakly electric fish as his model. The particular problem
he addressed is one of converting information that is naturally
represented in egocentric coordinates as an animal explores
a space, such as encounters with landmarks, to an allocentric
map where the representation does not depend on the location
of the individual. In these fish, a region of the thalamus (the di-
encephalic preglomerular complex; PG) acts as a bottleneck in
this transform, receiving egocentric sensory and motor infor-
mation from the optic tectum, and feeding it forward to higher
areas known to be important for learning (allocentric) spatial
representations. Neural recordings during object encounters
reveal that while PG neurons do indeed receive information
about object encounters in egocentric coordinates, individual
neurons respond broadly to object encounters across the entire
body, thus ignoring this spatial information. However, these
neurons are strongly adapting and their responses thus reflect
the time since the last object encounter. Longtin presented a
model that showed how the fish might combine this temporal
information with an estimate of its velocity to calculate the
distance between objects in space, as needed to construct an al-
locentric map, and then demonstrated how a map constructed
from these PG signals is consistent with the distribution of
spatial and temporal behavioral errors displayed by these fish
during navigation to a food target from different initial loca-
tions (Wallach, Harvey-Girard, Jun, Longtin, & Maler, 2018).

Complementary to the representation of space is the rep-
resentation of head direction. Neurons in the anterodorsal tha-
lamic nucleus and the postsubiculum of the rodent show head
directional tuning, encoding an animal's heading direction with
respect to the external environment. Adrien Peyrache showed
that the representation of head direction is coherent across areas
(thalamus and cortex) and across waking and sleep, consistent
with an underlying attractor representation (also see Ila Fiete's
talk, described below). Significantly, his analyses suggest that
thalamocortical coordination in the head direction system is
brain state independent. Peyrache next presented work further
examining thalamocortical coordination, both in the head di-
rection system and more generally. In particular, replays during
SWRs during sleep have been linked to memory consolidation,
but the role of the head direction system during these replays
is unclear. Peyrache showed that activity in the head direction
system is precisely coupled to SWRs, reliably entering a partic-
ular set of stable states right before SWR onset. This coupling
was homogeneous and specific to head direction neurons, with
other neurons and nuclei in the thalamus showing a different
pattern of couplings (Viejo & Peyrache, 2019). Peyrache ended
by linking differences in coupling properties of thalamic neu-
rons to both the intrinsic properties of the neurons and their
functional role in setting cortical state, suggesting a general or-
ganizational principle for thalamic responses.
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More generally, it is an open question how neural dynam-
ics could be spatially invariant, low dimensional and robust
on the one hand and yet allow for flexible representations to
be used in different contexts. Ila Fiete began her talk with the
search for low-dimensional structure in neural activity, pre-
senting work identifying the low-dimensional representation
of latent variables in the brain. She introduced a new method
to extract smooth geometric structures (so-called “manifolds™)
from neural population activity recordings using insights from
topological analysis. When applied to the head direction sys-
tem, this method revealed a one-dimensional ring structure
within the data, with the angular position on the ring encoding
the animal's heading direction, allowing for excellent unsuper-
vised decoding of heading direction. This ring appeared to be
an attractor, in that activity states that diverged from the ring
flowed back on to it. Furthermore, the low-dimensional at-
tractor was preserved across wake and REM sleep, suggesting
a rigid, invariant representational space (Chaudhuri, Gergek,
Pandey, Peyrache, & Fiete, 2019). She then used correlations
between neurons across different environments and sleep
recording data to show that the grid cell representation was
similarly low dimensional (in this case, 2D; Trettel, Trimper,
Hwaun, Fiete, & Colgin, 2019) and invariant across state. In
the second half of the talk, Fiete presented work showing how
such low-dimensional rigid representations could nevertheless
be used to flexibly encode higher-dimensional cognitive vari-
ables. This work was driven by recent observations of spa-
tial-coding-like signals (particularly grid cell-like responses)
in a number of abstract tasks and contexts, suggesting that
invariant low-dimensional representations might be reused
across contexts. The proposed coding scheme used multiple
2D (or low-dimensional) grid cell modules to represent a
higher-dimensional variable, with each module encoding a 2D
projection of the higher-dimensional variable (Klukas, Lewis,
& Fiete, 2020). Fiete showed how this modular scheme has
several advantages over simply building a higher-dimensional
grid representation. It is efficient, with the modular structure
providing a representational capacity that grows exponentially
with the number of modules, providing enough coding states
to encode a high-dimensional variable. Moreover, the same
architecture can be reused to encode variables of any dimen-
sion without reconfiguring the whole circuit. Thus, the grid
cell representation is both rigid and flexible, able to represent
an arbitrary continuous high-dimensional variable and update
the representation by integrating an input signal encoding
changes.

3 | IMPLICIT AND EXPLICIT
REPRESENTATIONS OF TIME

Dynamical systems provide an implicit code for time, yet it
remains an open question to what extent temporal features of

3513
EJN European Journal of Neuroscience.  [FENS| WI LEYJ—

an environment or task are also explicitly represented by the
brain. A number of talks interrogated the neural processing of
explicitly temporal tasks to ask how neurons represent time
for use as a feature in prediction, decision-making and action.
Joseph Paton addressed this question in the context of a time-
based decision, in which the delay between consecutive tones
indicates which of two alternatives should be selected in
order to obtain reward. In this task, neural activity in the (dor-
sal) striatum of rats organizes into a sequential representation
that tiles the relevant temporal interval. This dynamic repre-
sentation is flexible, in that subpopulations are “tuned” to a
particular moment relative to the full interval (Mello, Soares,
& Paton, 2015), and functional, in that the rate of progression
through the neural sequence correlates with the likelihood of
choosing the long duration option (Gouvéa et al., 2015). The
implication that this sequence acts as a clock—that is, as a di-
rect representation of elapsed time—was confirmed through
a series of experiments in which thermal manipulation was
used to directly modulate the progression of the striatal tem-
poral representation, showing how cooling and heating the
striatum (slowing and speeding the sequence respectively)
produced a bidirectional and dose-dependent effect on choice
behavior during the task. Interestingly, this manipulation did
not alter the properties of movement itself, suggesting these
striatal dynamics are indeed tracking time as a decision vari-
able for action, at least somewhat independent of the repre-
sentation and control of movement itself. But how then does
this dynamic representation of elapsing time relate to the
representation of movement, with which striatal activity has
also long been associated? By controlling the spatial location
of the trial initiation port, but not changing the locations of
the “short” and “long” response ports, Paton and colleagues
were able to demonstrate that the striatal representation of
elapsed time is composed of separable movement-dependent
and -independent subspaces. That is, a distinct fraction of
the striatal population was insensitive to spatial location at
trial initiation (forming an allocentric temporal representa-
tion unresponsive to the position of the mouse) and explained
a relatively large fraction of the overall variance in these
recordings. Moreover, these movement-dependent and -in-
dependent temporal representations were spatially distinct
within the architecture of the striatum, suggesting a dorsal/
egocentric to ventral/allocentric organization of neural repre-
sentation within this brain structure.

Considering instead the representation of elapsed time
subsequent to a decision, and during the anticipation of an
upcoming reward, Angela Langdon presented a new model
for the dynamic regulation of reward prediction by learned
temporal expectations. This model proposes that the reward
learning circuitry centering on the midbrain dopamine sys-
tem separately learns both the amount and timing of an up-
coming reward, rather than an aggregate value prediction
as posited by many classic reinforcement learning models.
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Looking at the impact of lesions of the ventral striatum (VS)
on both dopamine prediction error signals and anticipatory
behavior during an odor-guided choice task in rats showed
that the temporal specificity of reward predictions, and thus
temporally precise dopaminergic reward prediction errors, is
critically dependent on an intact VS (Takahashi, Langdon,
Niv, & Schoenbaum, 2016). However, dopamine prediction
error signals to changes in the amount of reward were un-
affected, consistent with a neural separation between these
two dimensions of reward prediction. Furthermore, by decod-
ing reward-related activity in neurons recorded from the VS
during the same task, Langdon demonstrated that the neural
representation of reward predictions in this region dynam-
ically varies with time and is segregated into distinct sub-
spaces that reflect the hidden block-wise structure of the task.
This suggests that latent structure of multiple types, includ-
ing, but not limited to, temporal structure, is learned from ex-
perience during a task, and used to dynamically regulate the
neural representations that support reward-guided behaviors.

In a thorough behavioral study of learned temporal ex-
pectations in a speeded response task in humans, Matthias
Grabenhorst asked how probability is represented over time
in the brain? Many influential models have suggested that
humans and other animals predict the timing of events by
computing the hazard rate: the conditional probability that an
event is about to happen, given that it has not yet occurred.
Using an elegant task design, in which the probability of the
target event occurring at a particular moment in time was
exponentially distributed or “flipped-exponentially” dis-
tributed (i.e., events became more likely at longer delays),
Grabenhorst was able to demonstrate that the distribution of
reaction times to the onset of the target reflect the reciprocal
of the probability density of events in time, rather than the
hazard rate, and that temporal uncertainty, which is usually
assumed to monotonically increase in time, was also dynami-
cally modulated by this learned probability distribution. This
result was replicated across visual, auditory, and somatosen-
sory modalities, suggesting the reciprocal probability density
of events in time is a fundamental, and domain general, com-
putation in the brain (Grabenhorst, Michalareas, Maloney, &
Poeppel, 2019).

4 | NEW DIMENSIONS IN
OLFACTORY SPACE

Research probing the nature of neural representations was
not confined to the physical dimensions of space and time;
several speakers focused on the neural representation of ab-
stract spaces. In particular, work presented probed the organ-
izational and dynamic structure of sensory representations in
piriform cortex, a cortical structure in mammals dedicated
to olfaction. Odor representations in piriform cortex are

generally thought to be highly decorrelated across distinct
odors and optimized for high discriminability, which would
seem to require representations that are stable across time.
However, work presented at the meeting complicated this
picture, pointing both to shared structure in piriform repre-
sentations as well as changes over time in the representation
of olfactory space.

Bob Datta began by asking whether odor representations
in piriform cortex might actually reflect the shared chemical
structure of the odorants? The presented results suggest they
do: while responses in layer 2 of mouse piriform cortex are
highly decorrelated, as is ideal for discrimination but poor
for classification, responses in layer 3 are organized to reflect
certain structures in odor chemical space and edit out oth-
ers. This odor chemical representation is actively reshaped
by recurrent local circuits in cortex, which integrate both
inputs from the olfactory bulb and recent odor experience,
in order to produce an odor representation finely balanced
between the demands of discrimination and generalization
(Pashkovski et al., 2020).

Carl Schoonover & Andrew Fink proposed that piriform
cortex is not primarily involved in odor identification per se
and that instead it serves as a fast learning system for encod-
ing regularities in the olfactory environment—a short-term
scratchpad for recent experiences. By testing the stability
of odor responses to a panel of odors presented at varying
intervals across days and weeks, they found that odor rep-
resentations in long-term recordings from populations of
neurons in piriform cortex are stable over short periods (i.e.,
days) but are profoundly reorganized on a timescale of weeks.
Schoonover and Fink hypothesized that this representational
drift arises from the continuous encoding of odor memory
traces, causing continuous overwriting of older ones. In this
view, ongoing odor experience, for example arising from
sampling odors in the home cage, will overwrite old memory
traces, thereby causing the representations of infrequently en-
countered odors to change. Two further observations support
this interpretation: daily experience with a set of odorants
dramatically reduced the instability of their corresponding
odor representations, although this experience-induced sta-
bilization lasted only so long as the animal continued to have
regular experience with the stimuli. Critically, if daily odor
presentation was halted, these odor neural representations be-
came labile once again.

The question of which dimensions of dynamic neural
representation are invariant, and which might be flexibly
controlled is a fundamental one that recurred through the
meeting. While space and time are stable dimensions of the
external environment, one feat of representation and compu-
tation in the brain is to perform abstraction over dimensions,
as in the case of an egocentric to allocentric map transforma-
tion, or in the construction of an abstract space for odor repre-
sentation that generalizes over specific chemical signatures.
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Which dimensions of neural representations are flexible in
different brain areas, tasks and model systems, and which
are invariant, yielding an irreducible feature of experience
in all domains? Future efforts to answer this question will
yield valuable insight into the fundamental organization of
dynamic neural representations in the brain.

5 | BIOPHYSICAL AND
ENVIRONMENTAL CONSTRAINTS
AND OPPORTUNITIES

A natural dynamic constraint on neural activity is smoothness,
which appears in two guises. First, many variables encoded
in the brain (or latent variables) are continuous over time and
do not change dramatically on very short timescales. Second,
the tuning curves of neurons are smooth, meaning that the
responses to nearby stimulus values are similar. Exploiting
these constraints, Jonathan Pillow discussed methods for
identifying low-dimensional latent dynamical structure from
neural data (Wu, Pashkovski, Datta, & Pillow, 2018; Wu,
Roy, Keeley, & Pillow, 2017). Pillow showed how to formal-
ize these smoothness constraints by using appropriate prior
distributions over both the latent variable and neural tuning
curves, and combined these with a statistical model for spike
generation and an inference method to estimate the latent
variables. The resulting method has the appealing feature of
allowing both the underlying latent dynamics and the tuning
curves to be nonlinear (unlike most previous methods), and
is able to extract complicated low-dimensional structure from
data. Pillow showed how this method could be used to extract
latent manifolds from neural responses in both the hippocam-
pus and the piriform cortex, recovering the underlying spatial
map from hippocampal responses and a 2D odor representa-
tion from piriform cortex (where standard methods like prin-
cipal components analysis performed poorly).

The requirement of smoothness is also likely to shape the
particular computational solutions used for a task. An exam-
ple of this was provided by Mark Churchland, who pointed
out that the dominant signals in motor cortex do not seem to
reflect either kinematic parameters of the movement or cor-
respond to muscle activity in a simple way. Instead, he argued
that they corresponded to a dynamical system set up to drive
muscular activity and that such a dynamical system required
smoothness, either as a consequence of fundamental biophys-
ical constraints on what neurons can do, or from the need
to make trajectories robust to noise-induced perturbations.
For a dynamical system, smoothness requires that similar
patterns of activity lead to future trajectories (or outcomes)
that are also similar. Churchland formalized this requirement
by defining a measure of trajectory “tangling” that is high
when nearby states have very different derivatives (i.e., lead
to different outcomes), and predicted that neural trajectories
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in motor cortex should have low tangling. Indeed motor cor-
tex shows much less tangling than either muscle responses
or sensory cortex and a number of features of motor cortex
responses can be predicted from the requirement of low tan-
gling (Russo et al., 2018).

Internal biophysical constraints are not the only restric-
tions on neural computation; the environment imposes its
own dynamic constraints on the brain as well. Among these
is the fundamental learning problem of credit assignment,
in which an organism must learn what events or actions in
a dynamic and multi-dimensional environment produced an
outcome, even if the precipitating event is no longer pres-
ent. This problem is exacerbated by the stark mismatch in the
timescales on which neural activity is typically observed to
evolve (milliseconds to seconds) and the sometimes extended
delay between events or actions and their associated outcome
(which can arrive minutes, hours or even days after the pre-
cipitating event). Robert Giitig took this fundamental conun-
drum and showed a model in which a spiking neural network
can solve the problem of spatiotemporal credit assignment
when features (and their associated spiking neural responses)
are fast, but feedback is relatively slow. He introduced the
concept of “aggregate-label learning” to train a neural net-
work to emit a discrete number of spikes that matches a
feedback signal that is proportional to the number of times a
patterned cue was present. Algorithmically, this learning rule
relies on the insight that while spike counts do not provide
a finite, continuous gradient along which to adjust synaptic
efficacies during learning, one can substitute the voltage re-
quired to elicit the next spike (Giitig, 2016). This solution
produced a spiking neural network that responded to the oc-
currence of various temporally patterned inputs, embedded
in noise and temporally divorced from the feedback signal
used for training, with the appropriate number of spikes. In a
novel extension, Giitig then showed how this same learning
mechanism could be used in a “self-supervised” fashion, to
train a spiking network to accurately identify spatially and
temporally extended regularities directly from signals from
the environment without explicit feedback.

As Wolfgang Maass pointed out, the architectures and al-
gorithms for learning in artificial neural networks far outstrip
the capabilities of our models for biological learning. There
exist a number of dynamical processes in the brain that likely
play an important role in allowing the brain to do complex
learning over time. Maass' talk focused on two powerful ideas
from artificial neural networks that allow efficient temporal
computing—Long Short-Term Memory networks (LSTMs)
and Backpropagation through time (BPTT)—and showed
how biophysical features of neurons may afford the brain
similar capabilities. With a network of LSTMs, the individual
units in the neural network are not biologically plausible neu-
rons but abstract nodes possessing several regulatory gates.
LSTMs have been important in the construction of artificial
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networks that can easily store information over time and
learn long-term dependencies. Maass showed how adding
a population of neurons with adapting thresholds to a spik-
ing network could allow a biologically constrained network
to show performance nearly on par with artificial LSTMs
(Bellec, Salaj, Subramoney, Legenstein, & Maass, 2018).
Next, BPTT is the current gold standard for training artificial
recurrent neural networks. In this algorithm, error signals are
propagated backwards through time, so that a neuron's syn-
aptic weights can be modified depending upon its effect on a
(much) later outcome. Maass showed how a combination of
local eligibility traces at synapses (for which there are several
candidate biological mechanisms) and top-down feedback
signals (such as might arise from neuromodulation) could
combine to provide a neural algorithm that is similar to BPTT
(Bellec et al., 2018, 2019). In summing up, Maass argued that
the temporal computing capabilities of the brain dramatically
improve when one accounts for slow temporal processes and
urged a more thorough accounting for neuronal biophysics on
longer timescales in our models of the brain.

A theme that emerged from these talks is that biophysi-
cal and environmental constraints need not be simply under-
stood negatively, as barriers that organisms must overcome.
They can also serve as priors, such as smoothness, which can
be used to make data analysis techniques more specific and
powerful. Furthermore, these constraints can also serve as
resources for neural computation, as in the case of slow syn-
aptic and cellular timescales, that provide robust mechanisms
to ensure stability and control over dynamic activity in the
brain.

6 | BRAIN STATES: AT THE
INTERSECTION OF INTERNAL
NEURAL DYNAMICS AND THE
EXTERNAL WORLD

Neural dynamics have a very strong internal component, re-
flecting the role of both local circuit influences and the mod-
ulation of global brain state by different behavioral drives,
such as hunger and sleep. In a fascinating demonstration of
the complex relationship between behavior, neural state, and
the environment, Jennifer Li and Drew Robson presented be-
havioral and whole-brain imaging results from freely moving
larval zebrafish, in which the animals switch between hunting
(exploitative) and exploratory behavioral states (Marques,
Li, Schaak, Robson & Li 2020). These states shape numer-
ous aspects of behavior, affecting locomotor strategy, hunt-
ing probability, hunting accuracy and so on, as well as both
coarse and fine motor movements. Intriguingly, Li & Robson
showed that these behavioral states are themselves at least
partially independent of both hunger and the presence of
prey: for example, even after an unsuccessful hunting bout,

fish will switch into the exploration state and ignore prey.
At the neural level, they found that global brain state oscil-
lates along an axis in principal component space that reflects
dorsal raphe neural activity. Identifying the neurons in the
dorsal raphe that were most correlated with the transition into
the exploitation (i.e., hunting) state led them to a model of
zebrafish brain state alternation involving a distributed net-
work of trigger signals that feed into a generalized trigger
signal from the dorsal raphe. This dorsal raphe trigger signal
initiates the transition to the exploitation state, with time de-
pendence well modeled by a stochastic nonlinear oscillator,
consisting of a short impulsive rise phase and long relaxation
phase, and with the duration of the exploitation state set by
the amplitude of the trigger signal. They ended by arguing
that this dynamic behavioral state transition mechanism re-
flects an ancient and evolutionarily conserved system with
parallels to serotonergic neuromodulation in C. elegans.

Stanislas Dehaene presented results on the triggering of
conscious perception, a quite different but also seemingly
global brain state. He introduced an appealingly simple
method to decompose a cognitive task into a sequence of op-
erations by testing for stability in the underlying neural repre-
sentations. The method (King & Dehaene, 2014) proceeds by
training a classifier (such as a support vector machine) to de-
code aspects of the stimulus from neural data at one moment
in time, and then asks how this decoder generalizes to other
points in time. If the representation is sequential, decoding
performance should be high around the training point and low
elsewhere (with the falloff determined by the timescale of the
sequence). By contrast, if the representation is sustained, then
the classifier should generalize well. Thus, how decoding
generalizes across time may illuminate the temporal organi-
zation of mental representations. Dehaene applied this de-
coding approach to a masking task, where a picture is briefly
flashed followed by a mask. The delay between the target and
the mask affects whether the target is seen subliminally or
consciously, and he asked what aspects of brain responses
are correlated with conscious visibility. Their results showed
evidence for early gradual unconscious evidence accumula-
tion in visual areas, that seemed sequential, followed by an
all-or-none transition to a distributed metastable state that is
sustained over time, involves prefrontal cortex (PFC), and is
correlated with conscious perception (van Vugt et al., 2018).
Interestingly, the early unconscious transient could be used to
partially predict whether the stimulus would be consciously
seen or not. Dehaene argued that this was evidence for a
“global workspace” picture of consciousness, where many
segregated unconscious processors exist in parallel and the
transition to consciousness reflects the global availability of
a piece of information.

Many cognitive tasks require the ability to flexibly switch
between different brain states in different contexts. In a set of
detailed studies of frontothalamic interactions in mice during
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a context-guided choice task, Michael Halassa showed how
the thalamus is a critical node for the rapid reconfiguration
of task-relevant dynamic representations in the PFC. In the
task, a “rule” cue prior to each trial communicated which
of a spatially conflicting visual or auditory cue should be
chosen in order to receive a reward (i.e., “attend vision” or
“attend auditory”). Rule-selective sequences in populations
of PFC neurons coded for the context during the delay be-
fore the choice cues were presented (Schmitt et al., 2017).
Training with an additional set of contextual cues demon-
strated that these sequences do indeed represent the rule
and not simply the contextual cue itself (Rikhye, Gilra, &
Halassa, 2018). Interestingly, these PFC sequences are not a
purely local phenomenon: bilateral optogenetic inhibition of
the mediodorsal thalamus (MD) specifically during the delay
period diminished rule maintenance in PFC, suggesting MD
coordinates with PFC to sustain rule representation during
the task. Furthermore, MD also displays context-selective
activity during the delay period, and based on inactivating
PFC inputs to MD, appears to be computed from PFC re-
sponses that lack context selectivity. This contextual repre-
sentation then feeds back to cortex to exert two processes:
amplification of context-relevant PFC inputs and suppression
of context-irrelevant ones. In that manner, PFC input—out-
put patterns are configured in a context-appropriate manner
(Rikhye et al., 2018).

Moving to a larger-scale picture of the relationship be-
tween internal states, external inputs and information pro-
cessing in the brain, Wolf Singer outlined a biophysically
grounded general theory of cortical computation. In the first
part of his talk, he contrasted two strategies by which neurons
could encode relationships between features. One is a feed-
forward architecture, where units respond to specific con-
junctions of features (a so-called “labeled-line” code). This
strategy is simple but computationally inefficient, requiring
a very large number of neurons to encode the possible fea-
ture combinations. Moreover, it has trouble encoding rela-
tionships between features that are separated in time and with
novel combinations, and does not account for the large num-
ber of lateral and feedback projections in the cortex. A sec-
ond strategy encodes relationships dynamically, exploiting
the natural tendency of cortical networks to oscillate. Singer
suggested that this tendency, when combined with recurrent
connections endowed with Hebbian learning, allows cortical
columns coding for related features to transiently synchro-
nize, converting related features into temporal correlations
and thus binding them together. The temporal patterning
coordinates the timing of spikes, allowing for the operation
of learning rules. Such assembly codes coexist with the
feedforward labeled-line codes, with synchronous patterns
better able to drive the selection of conjunctive features in
further layers. In the second part of his talk, Singer moved
beyond assembly formation, highlighting that the framework
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described above does not account for high-dimensional and
asynchronous activity patterns. He suggested that cortex acts
as a high-dimensional coding space that is able to store prior
information about stimuli, integrate these priors with input
signals, and rapidly represent the resulting computations in
an easy-to-read-out format for future classification and ac-
tion selection (Singer & Lazar, 2016). The lower-dimensional
synchronized assemblies described above represent the read-
out of this Bayesian computation. Thus, resting state activity
exhibits a high-dimensional correlation structure, reflect-
ing stimulus priors stored in synaptic weight distributions.
Stimuli that match prior expectations (i.e., predicted stim-
uli) induce low-dimensional synchronized sub-states. These
readout patterns are easily separable by downstream circuits.
Moreover, they persist for some time in cortical activity,
exhibiting fading memory (as in reservoir computing ideas
of neural computation) and allowing for the encoding of se-
quences. An intriguing feature of this proposed framework
is that the firing rates of neurons and their finer-timescale
synchrony code for different aspects of stimuli, with firing
rate signaling surprise and salience (e.g., a mismatch between
sensory evidence and predictions) while synchrony (perhaps
in the gamma band) signifies a match with prior expectation.
Singer presented evidence supporting a number of predic-
tions of this framework and ended with a call for the devel-
opment of new mathematics to analyze high-dimensional
dynamically evolving activity vectors.

The talks presented investigated internal brain states
across scales, systems and levels of abstraction as they ranged
from zebrafish hunting to human consciousness, and from the
specifics of rule-switching in the mouse to a general theory
of cortical computation. A common theme that emerged is
the utility of using dynamics to study internal states, with
two natural questions being how a given internal state shapes
finer-timescale neural dynamics and what the dynamics of
inter-state transitions are. Dynamics may thus offer an inte-
grative perspective on brain states, how they are formed and
how they evolve, along with new ways to identify and define
them across organisms.

7 | SEQUENCES: A GENERAL
MOTIF FOR DYNAMIC NEURAL
COMPUTATION

The idea that computation in the brain uses transient se-
quences has a long history, ranging from stereotyped motor
trajectories as seen in central pattern generators (Marder
& Bucher, 2001) to more abstract and flexible sequences
in the context of navigation and decision-making tasks
(Buzsaki & Tingley, 2018; Harvey, Coen, & Tank, 2012).
Of late this idea has regained computational prominence,
with sequences of neural activity observed in a variety of
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model systems, brain areas and behavioral computations.
A number of talks exemplified this resurgence of interest
in neural sequences and both Gilles Laurent and Michael
Long showed extensive lists of the variety of brain areas
and task domains in which neural sequences have now
been found, including hippocampal replay and preplay,
bird song encoding in the HVC, olfactory neural trajec-
tories, behavioral choice sequences in parietal and frontal
cortex, basal ganglia dynamics and motor cortex dynam-
ics. In the context of this renewed interest, several talks
focused on general purpose mechanisms for sequence gen-
eration and learning, inspired by the idea that sequences of
neural activity might act as a temporal scaffolding, with
neural representations or motor commands inheriting tem-
poral structure through binding to the appropriate stage in
the sequence.

Sequences in the mammalian hippocampus, such as place
cell trajectories, can be activated in response to behavior or
can be internally generated in the absence of the correspond-
ing behavior, either as replays during sharp wave ripples
(SWRs) or as theta sequences. These observations suggest
that the hippocampus may act as a general-purpose sequence
generator. Claudia Clopath synthesized a number of empiri-
cal features of hippocampal sequences to construct a model
showing how CA3 neurons could form abstract sequences or
a “temporal backbone,” which could then be used to flexi-
bly and rapidly learn desired spiking sequences in a down-
stream area (such as CA1) by binding them to the appropriate
moment in the abstract sequence (Nicola & Clopath, 2019).
Intriguingly, rather than these abstract sequences being
learned at the behavioral timescale, in the model the default
timescale at which these sequences evolve is set by the in-
trinsic theta rhythm—a pronounced component of hippo-
campal neural activity—allowing them to be learned using
rapid Hebbian learning. Adding a second oscillatory input
with a slightly different timescale to the sequence neurons
(putatively from the medial septum) caused oscillatory inter-
ference between the input and the intrinsic theta oscillations,
which served to dilate the timescale of the neural representa-
tion and produce activity that varied at the appropriate behav-
ioral timescale. The model suggested that during sharp-wave
ripples (henceforth SWRs), when replay is seen, the external
input drops (as is true for medial septal input) revealing the
rapid intrinsic timescale.

In the rodent, when animals are active, hippocampal se-
quences are thought to be structured by the phase of the theta
oscillations: activity at the early phase is thought to corre-
spond to an animal's current location, and activity at the later
phase thought to correspond to future plans. This patterning
by the theta oscillation has a counterpart at the level of the
gamma oscillation, with so-called “fast” gamma rhythms
reflecting periods of high CAl coupling to the medial en-
torhinal cortex, possibly important for representing current

location, and “slow” gamma reflecting high CA1 coupling
to CA3, possibly linked to retrieving sequences and planning
trajectories.

Laura Colgin and Matthew Wilson both presented com-
pelling evidence for the role of hippocampal sequences and
frequency-based patterning in learned spatial behaviors.
Laura Colgin showed results from a delayed match-to-sample
spatial memory task in which a rat had to learn and remem-
ber the location of a reward across trials. She used Bayesian
decoding of simultaneously recorded place cell ensembles to
look at how place cell sequences developed across learning
and whether these sequences were abnormal when animals
failed to remember. As the animal learned the location of the
reward, place cell sequences that predicted paths toward the
reward developed. These sequences predicted longer paths in
correct as opposed to error trials. Over the course of learn-
ing, replay of trajectories during SWRs also developed a bias
to terminate at the goal location across correct but not error
trials. Finally, preliminary data suggested that slow gamma
power increased during the sample phase of error trials, sug-
gesting that slow gamma rhythms may interfere with memory
encoding.

Matt Wilson showed results from a navigation task where
a mouse had to run along an H-shaped maze. In one arm
of the maze, the mouse had to turn in an experimenter-de-
termined direction. It then had to remember the direction
in which it turned and turn in the same direction at the end
of the next arm in order to receive reward. Thus, the task
had a component where the mouse had to learn and encode
the location of the reward and a second component where it
had to retrieve the memory to get the reward. Wilson paired
this task with theta-phase locked optogenetic stimulation
of parvalbumin-positive interneurons neurons in area CAl.
Intriguingly, activating inhibitory neurons did not lead to
performance deficits. Instead, for the right combination of
theta phase and task state, inhibiting CA1 lead to enhanced
performance. Stimulation at the theta trough during the mem-
ory retrieval phase enhanced performance dramatically (by
about 15% on a 65% baseline), and stimulation at the theta
peak during memory encoding also enhanced performance.
These results suggest that the hippocampus shifts between
encoding and retrieval on every theta cycle, with the encod-
ing phase potentially driven by increased coupling to ento-
rhinal cortex and the retrieval phase displaying increased
coupling to CA3. During the encoding phase of the task, the
animal's current location is important but where it is going is
not; the converse is true during the retrieval phase of the task.
Given these two competing task demands, suppressing the
task irrelevant component improves performance (Siegle &
Wilson, 2014). Wilson then turned to the replay of sequential
activity during SWRs. Such replay is thought to be important
for reward learning, and Wilson asked if the relationship be-
tween reward learning and SWRs may be different between
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sleep and quiet wakefulness. Using analyses of simultaneous
recordings of neurons in the hippocampus and in the ventral
tegmental area (which contains reward modulated dopamine
neurons), he showed that while reward-related VTA neurons
were coordinated to hippocampal replays during quiet wake-
fulness, the relationship was much weaker during sleep, and
reward-related VTA neurons actually reduced their firing
(Gomperts, Kloosterman, & Wilson, 2015). Thus, during
sleep information seemed to be replayed but not reinforced
in the reward system, suggesting that replays have different
roles in different states.

In another model system known for producing neural se-
quences, Michale Fee posed the general question of how the
songbird brain learns vocal behaviors consisting of a com-
plex sequence of motor gestures. While there are reinforce-
ment learning models that address this question, they require
a good representation of the underlying state space in which
learning should be performed. In the songbird, Fee argued
that the premotor nucleus HVC acts as a simple sequence
generation circuit, generating a sparse representation of time
that provides an appropriate state space for song learning.
Appropriate connections from HVC to a downstream motor
area, RA, could then drive motor commands at the right
times. Recordings of HVC neurons in young birds show how
these sequences might emerge over the course of develop-
ment, starting from a single parent sequence (protosyllable).
Over time, this sequence starts to split into two, with neu-
rons initially participating in both before becoming selective
for one sequence or the other (Okubo, Mackevicius, Payne,
Lynch, & Fee, 2015). This splitting continues, generating se-
quences selective for each syllable in the bird's adult song.
Fee's proposal thus uses unsupervised learning to construct
an inherently dynamical latent space that can then be used
as a substrate for reinforcement learning (Mackevicius &
Fee, 2018).

Michael Long began with the observation that despite
widespread noise in the brain, dynamic sequences of neu-
ral activity can be surprisingly precise. This is true not just
for responses to external sensory stimuli but, at least in the
songbird, for internally generated sequences of activity. He
considered a set of candidate models that might allow for
such sequences. Learning on a set of randomly chosen ini-
tial synapses yielded activity sequences that either did not
propagate through the network or were not sparse. A syn-
fire chain model (Abeles, Prut, Bergman, & Vaadia, 1994)
yielded sequences that were composed of discrete steps un-
like the continuous sequences observed in the data. Finally,
a “polychronization” model (Izhikevich, 2006) with a spread
of synaptic delays allowed for sparse continuous sequences
that propagated through the population. In a demonstration
of a close theory—experiment loop, Long then looked for the
source of these synaptic delays and used a combination of
tracing studies, whole cell recordings and calcium imaging
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to argue that conduction delays from local axons showed the
right distribution of timescales and are sufficient to account
for the predicted delays. Thus, local conduction delays, which
are often ignored in models of interacting neurons, may play
an important dynamical role. A lively discussion followed,
in which Wolf Singer pointed out that the myelination prop-
erties of axons change during learning (Sampaio-Baptista &
Johansen-Berg, 2017), and Eve Marder noted that conduc-
tion velocity can change for bursts or due to changes in brain
temperature (which can be caused by, e.g., the presence of
an opposite-sex conspecific). Thus, we ended by discussing
the exciting idea that conduction delays, amongt other cellu-
lar and biophysical variables that go beyond simple rate and
spike dynamics, might be hitherto underexplored dynamical
variables.

Taking a more abstract system-independent perspective,
Giulio Bondanelli addressed coding with transient trajecto-
ries, which are closely linked to sequences. Classical popu-
lation coding typically assumes that unchanging stimuli are
encoded by the steady-states or time-averaged firing rates
of neurons, but neural responses exhibit strong temporal dy-
namics even when stimuli do not change. Moreover, stim-
ulus decoding is sometimes better during transient phases
than when dynamics have converged to a fixed point (Mazor
& Laurent, 2005). In a typical linear dynamical system, re-
sponses will decay away monotonically in the absence of
a stimulus, making them poor candidates for coding with
transients. Building on ideas from a class of linear systems
called “non-normal,” Bondanelli presented a framework for
encoding multiple stimuli in strongly amplified transient tra-
jectories by choosing the connectivity matrix to be the sum
of appropriate low-rank pieces (Bondanelli & Ostojic, 2020),
and showed that it could explain various observed features of
auditory cortical neural data, such as non-monotonic transient
activity at stimulus offset and better discriminability during
the offset transient phase (Bondanelli, Deneux, Bathellier, &
Ostojic, 2019).

While the various ideas regarding computing with neu-
ral sequences presented at the meeting were compelling, it
remains an open question how general the proposed mecha-
nisms of sequence generation and computing with transient
activity are across the brain. Working at the interface of the-
ory and experiment in the songbird vocal learning circuit or
on hippocampal circuitry in spatial tasks in rodents affords
a level of anatomical and neurological detail that lends cre-
dence to these theories, but potentially restricts their rele-
vance for understanding dynamic sequence-like activity in
other brain areas or model systems. Is it perhaps the case that
different areas have evolved different dynamic and circuit
solutions to produce similar patterns of sequential activity?
These questions remain to be answered, but the convergent
picture arising from hippocampal circuits in mice and vocal
song circuits in songbirds provides a promising place to start.
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8 | SOCIAL INTERACTION AND
COMMUNICATION: A DYNAMIC
LOOP

In a more naturalistic setting, sensory processing and
behavioral control must proceed within the context of
a dynamic interaction with social partners as well as the
environment. A number of talks emphasized this impor-
tant aspect of neural computation, focusing on communi-
cation and social interaction in songbirds, Drosophila and
mice. In an elegant analogy to the development of language
specificity during human development, Sarah Woolley
presented work showing how the neural representation of
song vocalizations varies across the auditory processing
hierarchy of juvenile songbirds. In thalamoreceptive lay-
ers of auditory cortex the neural representation of a par-
ticular song is highly similar across individual birds, but
differs greatly across birds in the deep output and second-
ary layers. Like language learning, the development of this
song representation depends critically on the experience of
hearing the tutor's song. Perhaps surprisingly, juveniles ex-
posed to a cross-species tutor, and thus a song with differ-
ent characteristic auditory features (“syllables”), learned to
produce a song with the tutor's species-specific syllables
remarkably well. Woolley then demonstrated the highly
adaptive nature of the neural representation of song in the
auditory cortex, which failed to display selective neural re-
sponses for own-species vocalizations in higher auditory
areas in the cross-species tutored birds. Rather, auditory
neural activity in birds that acquired a cross-species song
showed selectivity for the acoustic features of the song
“language” they had learned through experience (Moore &
Woolley, 2019).

Successful communication occurs in a dynamic envi-
ronment in which the brain must continuously process in-
coming information and modulate behavioral output online
as the interactive setting evolves. Mala Murthy presented
her lab's work on dynamic communication, using courtship
in Drosophila as a model system. Successful courtship is
promoted by the male production of a song—produced
by wing vibrations—while the female arbitrates the mat-
ing decision. Male song structure and intensity depend on
the interactions between the male and the female; rather
than repetitively executing stereotyped wing-vibration se-
quences, the male continuously modulates song production
according to the social interaction (Coen et al., 2014). What
then are the auditory features of the male song that female
(and male) brains respond to? Murthy identified pC2 neu-
rons in the Drosophila brain of both sexes that act as au-
ditory pulse feature detectors, demonstrating a common
brain response to this property of the male song. However,
the relationship between this neural response and behav-
ior diverged for females and males: females slowed down

when the pC2 neurons responded to a particular pulse rate,
while males sped up and also sang. This dynamic feedback
loop between the courting individuals through their com-
mon pC2 neurons allows both males and females to detect
and modulate both locomotor activity and song produc-
tion in an inherently social behavior (Deutsch, Clemens,
Thiberge, Guan, & Murthy, 2019). Additionally, Murthy
presented work mapping auditory activity throughout the
entire central brain of Drosophila (Pacheco, Thiberge,
Pnevmatikakis, & Murthy, 2019). The discovery of wide-
spread and diverse auditory responses in nearly every brain
region of both males and females suggests that courtship
song has a strong modulatory impact on a variety of sen-
sory and motor processes. Murthy concluded with a call
for more sophisticated tools to map behavior at the highest
resolution (Calhoun, Pillow, & Murthy, 2019; Pereira et al.,
2019), in order to more precisely map the role of internal
states on these dynamic acoustic courtship behaviors.

The social consequences of many ethologically relevant
behaviors raise the question of whether socially relevant
cues are represented differently in the brain from those that
are non-social, and, as a consequence, whether distinctly
social neural representations are implicated in impair-
ments of social behaviors. Tal Tamir showed neurons in
the PFC of mice that responded preferentially to socially
relevant olfactory cues, such as male or female odors, over
non-social (food) olfactory cues. At the population level,
neural activity in PFC showed a similar pattern at baseline,
but followed distinct low-dimensional trajectories for so-
cial and non-social stimuli both during and after stimulus
presentation. Interestingly, in neural populations recorded
from Cntnap2 mice (a genetic model of autism), the sep-
aration between social and non-social representations in
the PFC was greatly reduced. In a demonstration of brain
dynamics over a relatively longer timescale, Tamir then
showed that the separation between social and non-social
neural representations in the PFC increased with experi-
ence over consecutive days in the wild-type mice, a refine-
ment of dynamic neural representation that failed to occur
in the autism-model mice (Levy et al., 2019).

Together, these talks highlighted the importance of the
social dimension of neural representation, a behavioral
setting that remains relatively underexplored. Insight into
neural computation will naturally benefit from a richer and
more detailed understanding of the dynamic, interactive
setting in which much of behavior takes place. Dynamical
systems approaches to multi-agent systems suggest new
frameworks for integrating empirical data from multiple
brains and behavior and provide paradigmatic examples
from artificial intelligence of competitive (such as gen-
erative adversarial networks) or cooperative computation
(such as distributed decision-making systems) in an inter-
active social setting.
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9 | THE DEVELOPMENT OF
NEURAL DYNAMICS: LEARNING
AND ORGANIZATION ACROSS
MULTIPLE TIMESCALES

While the focus on dynamic neural activity has typically
been at the timescale of seconds and minutes during a
task, a major piece of the puzzle is uncovering how the
brain is dynamically reorganized across the days, months,
and years of development to support neural computation.
Several speakers took this interesting perspective, probing
how patterns of brain activity evolve through early life,
when brain circuits are both substantially and relatively
rapidly reshaped as an animal or human acquires new expe-
riences and novel abilities. Julijana Gjorgjieva asked how
spontaneous brain activity might refine functionally spe-
cialized neural circuits in early development, even before
any sensory experience has been acquired. She presented
a biophysically realistic model of synaptic plasticity to
show how spontaneous activity can establish remarkably
precise fine-scale structure in the spatial organization of
dendritic synapses (Kirchner & Gjorgjieva, 2019). Using
a burst-timing-dependent plasticity rule based on the ac-
tion of neurotrophic factors in which postsynaptic calcium
spread induces spatial competition, this model demon-
strates how functional synaptic clustering emerges in re-
sponse to spontaneous waves of activity in the developing
retina. Gjorgjieva proposed that the critical ingredients of
spontaneous activity and synaptic plasticity are already
present in the early developing brain, allowing networks of
neurons to wire themselves to the finely structured circuits
observed in adulthood.

At the opposite end of the spatial scale, Shruti Naik
showed how the macroscopic brain signal in scalp EEG of
very young infants evoked by unfamiliar face stimuli evolves
through development as they acquire sophistication in their
ability to recognize faces. While averaging single trial re-
sponses reveals stereotyped features of the face-evoked
event-related potential (ERP) by 12 weeks of age (tracking
a developmental milestone in early visual areas), individual
trial responses are highly variable, raising the question of
how such dynamic variability in brain activity can support re-
liable face recognition. By quantifying this across-trial vari-
ability in face-evoked EEG activity of individuals between 2
and 6 months of age, Naik demonstrated how the distribution
of the latency of single-trial ERP-like events becomes grad-
ually more concentrated around the time of the mean ERP
component—a quenching of variability around these stereo-
typed patterns of brain activity—in accordance with develop-
mental age. This suggests that the stabilization of single-trial
dynamics around the large-scale activity patterns typically
measured by the grand-average ERP is a critical stage of the
maturating infant brain.
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10 | EVOLVING FLEXIBLE
CONTROL OF THE DYNAMIC
BRAIN

Over an even longer timescale, organisms have evolved a
complex set of mechanisms by which to control the dynamic
patterns of neural activity that support the various behaviors
they perform. A major theme was the control of dynamic
neural activity, asking the fundamental question of how com-
plex patterns of activity are reliably reproduced by an organ-
ism despite sometimes wild variation in sensory input and the
broader environment.

Eve Marder asked how finely-tuned do the parameters
that control intrinsic properties and synaptic efficacies of
neurons need to be for “good enough” circuit activity? In
other words, how variable can brains be and still produce
successful behavior? She focused on the stomatogastric
ganglion (STG) neurons of wild-type crabs (i.e., crabs that
have evolved to be successful in their natural habitat, not a
laboratory) responsible for producing the pyloric rhythm
in this organism. She pointed to the variability in this
three-neuron circuit across individuals: cell morphology
is highly variable and wiring is inefficient and “tortuous.”
And yet the pyloric rhythm is highly stereotyped despite a
two- to sixfold variation in circuit parameters for different
individuals, suggesting degenerate mechanisms by which
this macroscopic dynamic pattern can be achieved in the cir-
cuit. Indeed, by generating families of models with differ-
ent conductance densities, she showed how distinct circuit
mechanisms are able to achieve largely identical oscillatory
patterns of activity (Gutierrez, O'Leary, & Marder, 2013;
Prinz, Bucher, & Marder, 2004). These distinct model cir-
cuits reveal their difference in their response to perturba-
tion: a prediction borne out in the individual response of
STG circuits to perturbations arising from temperature, pH
and chemical manipulations. For instance, increasing tem-
perature will ultimately disrupt the pyloric rhythm for all
individuals, but the temperature at which this occurs, and
the dynamic patterns of activity produced as the pyloric
rhythm fails were highly variable across individual STG
preparations. This intriguing demonstration of dynamic de-
generacy in what is a relatively small and well-character-
ized circuit raises the interesting and important question of
how neural circuits maintain stability and resistance to per-
turbation in an environment in which unexpected changes
in conditions are bound to occur.

Despite the probable degeneracy in specific brain cir-
cuits and mechanism, Gilles Laurent pointed to the re-
markable prevalence of sequential neural activity across
phylogenetically distinct organisms operating in hugely dif-
ferent environments. He proposed that this prevalence owes
directly to the fact that the physical and biological world
is dominated by correlations over many timescales; brains
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have adapted over evolution toward common solutions for
controlling behavior in such a world. He then traced three
cases of transient neural dynamics across distinct model
systems to highlight a fundamental motif of stereotyped
and low-dimensional sequential trajectories that move away
from, and then return to, a resting state (i.e., a fixed point in
the state space). In the olfactory system of the arthropod, he
showed how the population response of projection neurons
of the antennal lobe to an odor stimulus traces out a dy-
namic trajectory that is highly stereotyped, and evolves on
a low-dimensional manifold toward an odor-specific fixed
point (Mazor & Laurent, 2005; Wehr & Laurent, 1996). In
natural conditions, however, odors are brief, and this tran-
sient activity does not evolve rapidly enough to reach this
fixed point. Interestingly, downstream Kenyon cells only
decode the odor during the transient phase of the projection
neuron population response, confirming that this dynamic
pattern of activity is indeed the critical representation of
the odor. Asking next how the dynamic response of a pop-
ulation of neurons might be controlled, Laurent introduced
the chromatophore system of the cuttlefish. A pattern of
chromatophores provide camouflage for the animal, and
each are controlled by muscles to expand and contract,
blanching the macroscopic pattern after a threat from the
environment. By tracking the state of tens of thousands
of chromatophores following a blanching event, Laurent
and colleagues demonstrated that the global chromato-
phore state follows a stereotyped trajectory away from, and
then back to the resting state. This stereotypy arises de-
spite the high dimensionality of the pattern itself, consis-
tent with the existence of a low-dimensional motor control
representation that orchestrates this enormously complex
spatiotemporal pattern (Reiter et al., 2018). Finally, he
presented neural data from the dorsal cortex of turtles in
response to the electrical stimulation of single neurons,
demonstrating surprisingly reliable sequences of activity
that propagate through tens of neurons in the local corti-
cal circuit after even single spikes are elicited in individual
pyramidal neurons (Hemberger, Shein-Idelson, Pammer, &
Laurent, 2019). That this is possible suggests a topology
of excitation that effectively primes certain patterns of se-
quential activity to flow through the cortical circuit.

11 | SUMMARY

Ultimately, the diversity of research presented at this Brain
Conference revealed that we are at an exciting juncture in
the study of the brain: theoretical and empirical progress
has afforded a view of the building blocks of dynamic com-
putation in neural systems. The research presented pro-
vided a compelling picture of how transient neural activity
can represent space, time and various features of a task,

be it an abstract experimental manipulation or a natural-
istic feature in a social setting such as communication or
mating. The frontier is now to press forward in our under-
standing of how dynamic computation in the brain is flex-
ibly controlled, and what mechanisms allow the reliable
propagation of transient patterns of activity across different
circuit architectures and in different environmental condi-
tions. One of the key concepts for debate that emerged
was the tension between invariance and flexibility: neural
dynamics are naturally constrained by specific local con-
nections, brain architecture, and biophysical mechanisms,
yet time and again throughout the meeting, researchers pre-
sented patterns of neural population activity that displayed
surprisingly similar dynamics despite different model
systems, different stimuli, and different tasks and global
behavioral states. Continuing the search to find the funda-
mental mechanisms by which dynamic neural activity is
flexibly controlled to produce these diverse behaviors will
be an exciting next chapter for the field.
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