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Keywords: and left singular vectors of such finite difference matrices are
Sigma-delta quantization Bounded Orthonormal Systems (BOSs) with known upper
Difference matrix bounds on their BOS constants, objects of general interest

Singular vectors

. in classical compressive sensing theory. Such finite difference
Compressed sensing

matrices are also fundamental to standard r*" order Sigma-
Delta quantization schemes more specifically, and as a result
the new bounds provided herein on the maximum £°°-norms
of their #2-normalized singular vectors allow for several
previous Sigma-Delta quantization results to be generalized
and improved.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

For a twice differentiable real valued function on R? the Laplace operator (or
Laplacian) is a second-order differential operator given, in Cartesian coordinates, by

d
Af = Zl g%%c. Perhaps one of the simplest and most well known properties of the Laplace
=

operato} is that in the continuous setting of univariate functions on the unit interval,
its eigenfunctions take the explicit form of sinusoidal functions. For example, with the
homogeneous Dirichlet boundary condition

Aup(z) = —Apun(x),

we have eigenvalues )\, = n?72, and eigenfunctions u,, = sin(nmr), n € Z, . Similarly,
replacing the above Dirichlet boundary condition with a homogeneous mixed boundary
condition

Uy, (0) = un(1) =0, (1.2)

we have A\, = W, and u,, = v/2cos (m> Higher order Laplace operators in
the same setting have similar eigen-decompositions. Let A, be the 7" order Laplacian
obtained via r successive applications of the Laplace operator, then with the homoge-
neous Dirichlet boundary condition
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{Arun(:ﬂ) (1.3)
the eigenfunctions are identical to those for (1.1) while the eigenvalues are simply raised
to the r** power, so that X\, = n"n".

These examples indicate that eigenfunctions of the continuous Laplacian operator, and
its higher order counterparts, have well-spread energy. In other words, each eigenfunction
is not sparse and its support is not concentrated in any region of the domain. Our main
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interest in this paper is to explore whether, and to what extent, this property is preserved
after discretization. Despite its apparent simplicity, this question turns out to be highly
non-trivial. We answer this question affirmatively for a specific family of discretizations
of A, of use in signal processing applications. We believe the proof technique used in
this paper can be generalized to show similar results for many other high-order finite
difference matrices with various boundary conditions. The specific discretizations we shall
focus on correspond to a robin-boundary condition, which naturally arises in at least two
different scenarios that motivated this work. Both of these scenarios are related to the
quantization and encoding of finite dimensional vectors, and are discussed in detail in
Section 2 below. Given that discretizations of the Laplace transform are prevalent in
many applications, we hope our basic approach will also be of broader interest.

Let us now consider the specific discrete problem we are interested in. To that end,
define the (bi-diagonal) difference matriz, D € RVN*Y | by its entries

1 ifi=j
D;j:=¢ -1 ifi=j+1, (1.4)
0 otherwise

and note that DT D can be viewed as a discretized Laplacian, while for integers r > 2
the matrices D" are the building blocks of the higher order discretized Laplacians we
are effectively interested in (see, e.g., Section 2). More specifically, for an integer r > 1,
consider the singular value decomposition of D" = UXV™* where U and V are orthogonal
matrices and ¥ is a non-negative diagonal matrix. Our goal, ultimately, is to control
the ¢°° norm of the singular vectors v; (resp. u;), which form the columns of V' (resp.
U). An equivalent version of the question, which we consider herein, is to bound the ¢°
norm of the eigenvectors of (D")T D" = Vx2VT,

A few observations are in order to help illustrate the challenge at hand (see also
Section 1.1 below). First, when r = 1, the problem is relatively easy and the singular
values and vectors admit analytic expressions taking the form of simple trigonometric
functions with |[uj||ec = [|[Vjllee & N7/2 (see, e.g., [32]). This suggests that a direct
approach to the problem when r > 2 might work out easily, but unfortunately that is
not the case. The fundamental issue that arises is that, e.g.,

(D' D) # (D)D", (1.5)

so that the matrices on either side of the inequality admit different eigen-decompositions.
This is in contrast to the continuous case we saw earlier, where the eigenfunctions of
higher order operators are preserved and the eigenvalues are simply those of the first
order operator raised to the rth power.

While inequality (1.5) holds, it is also true that the difference (DT D)" — (D™)T D"
appears relatively well behaved in the sense that it is low-rank and sparse, which gives
us hope that we may be able to appeal to matrix perturbation analysis to control the
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eigen-decomposition of (D")T D" in terms of that of (DT D)". Indeed by appealing to
Weyl’s inequalities, [20] (see Lemma 3.3) was thus able to control the eigenvalues of
(D")TD". The eigenvectors turn out to be a different matter entirely. The standard
approach to eigenvector perturbation is to appeal to some version of the Davis-Kahan
sin(©) theorem [11] (see also [13]). In brief, such theorems state that if the (Hermitian)
matrix M = M + H is a perturbation of M by H, the subspace spanned by certain
eigenvectors of M is close to the analogous subspace spanned by eigenvectors of M,
provided |H|| is small compared to the gap between the eigenvalues of M and M.
Unfortunately, in our case, [20] (see Lemma 3.3) shows that the eigenvalues are quite
close to each other, so appealing to Davis-Kahan theorems yields vacuous bounds. In
recent years, similar problems in different settings have led to various results yielding
eigenvector perturbation bounds, for example when the matrix H is random and the
matrix M admits some structure (see, e.g., [15,33,25,14]).

In contrast with most such works, we must work with deterministic perturbations
that are very large in norm compared to the minimal spectral gap herein, and thus
our approach to obtaining eigenvector bounds is different. Indeed, applying preexisting
results to our setting also yields vacuous bounds. Thus, most of the paper is dedicated
to proving the following result via a more direct approach.

Theorem 1.1 (Main result). Suppose thatr > 2, and let 0; := 0; (D") have associated left
and right singular vectors u;,v; € RN for all j € [N]. There exists absolute constants
C,C3 > 0 such that if N > C%, we have max;ciny {[|u;lloo, [[Vjlloo} < %

The proof of Theorem 1.1, while utilizing relatively elementary techniques, is highly
nontrivial. In addition, we note here that while our analysis is specialized to the case of D"
for the particular finite difference matrix D defined in (1.4), much of the proof technique
can also be adapted to other higher order finite difference matrices that implicitly involve
different boundary conditions. We refer the reader to the next section for a more detailed
overview of the proof, and to Section 2 for a discussion regarding why these specific
finite difference matrices are so important in some applications. The actual proof of
Theorem 1.1 is then given in Section 3, with Section 4, Section 5, and the appendices
devoted to the proofs of supporting lemmas.

1.1. Some comments on the proof of Theorem 1.1

As the reader may have already noticed, the proof of Theorem 1.1 is quite long. Given
this preexisting condition we believe it is appropriate to extend the paper’s length just
a bit more to try to explain why the proof is so lengthy, and why one can not prove
the main result more quickly using, e.g., powerful general purpose perturbation results.
In order to get some intuition for the difficulties involved in bounding the entries of the
singular vectors of our difference matrices it is helpful to look at a small example. For
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instance, if r = 2 and N = 7 the matrix (D?)T D? whose eigenvectors we must consider
becomes

6 41 0 0 O
-4 6 -4 1 0 0
-4 6 =41 0
1 46 —41
0 1 -46 —4
0 0 1 -4 5 -2
0 0 01 -21

(DQ)TDQ _

= o O O O

S O O O =

Though (D?)TD? above clearly has a lot of nice structure, it is important to notice
that it is not quite, e.g., Toeplitz. Furthermore, by appealing to interlacing results for
the eigenvalues of (D?)”7 D? one can see after some computation that the spectral gaps
between neighboring eigenvalues of this matrix are small (on the order of N=% for the
smallest eigenvalues). As a result, the smaller spectral gaps between neighboring eigen-
values tend to go to 0 relatively rapidly as N grows, making them exceedingly small with
respect to the size of the minimal perturbation needed to make (D?)T D? e.g., circu-
lant, or Toeplitz. Similarly, the smallest eigenvalue gaps of the closest circulant/Toeplitz
matrices to (D?)TD? tend to be quite small as well, also going to 0 polynomially in
1/N as N grows. The upshot is that standard eigenspace perturbation methods such as
[11,13,15,14] do not appear to yield meaningful bounds on the ¢>°-norms of the eigen-
vectors in the setting of Theorem 1.1.

We find ourselves in a similar situation if we apply the singular vector perturbation
theory to the asymmetric matrix D?. Note that D? has a singular value gap on the
order of O(N~2). If we denote this singular value gap by §, then state of the art singular
vector perturbation results (see e.g. [24]) would bound the distance between the singular
vectors of D? and those of its closest circulant matrices by O(N~1/26=1) ~ O(N'9)
if measured in the ¢2-norm, and by O(N~=1§71) ~ O(N) if measured in the ¢*° norm.
Crucially, both of these upper bounds blow up as N — oo. Additionally, the situation
only appears to get worse for D" if r is chosen to be larger than 2.

Due to these complications, and inspired by the bravery of, e.g., Strang [30] and
Bottcher et al. [4,3] in more directly assaulting similar eigenvector problems involving
related matrices, we follow their example herein. More specifically, similar to, e.g., [4] we
effectively treat (DT)TD" as a banded Hermitian Toeplitz matrix Hr,ep with a structured
perturbation in its lower right corner. In order to understand both the structure of
the eigenvectors of Hroep, as well as the general structure of the perturbation P :=
Hroep — (D™)T D", in Section 4 we embed each eigenvector of (D™)7 D" into the solution
of a simple difference equation with prescribed boundary conditions corresponding to P.
We then solve this difference equation in order to obtain a formula for the entries of each
eigenvector v of (D")T D" of the form
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_ / 7
Ui = E Ck * Pk (16)
k=1

where the formula parameters ¢}, ..., c,, p1,...,p2r € C all depend on the (unknown,
but bounded) eigenvalue corresponding to v.

The desired £°°-bounds having already been obtained for all eigenvectors associated
with eigenvalues below a prescribed cutoff in Section 3, the vast majority of the proof
of Theorem 1.1 then involves using (1.6) to bound the £*°-norms of the eigenvectors
associated with eigenvalues above the cutoff. This portion of the proof is carried out in
several phases. First, the formula parameters pq,...,pa, in (1.6) are bounded (above,
below, and away from one another) in Section 4.3. Next, in Section 5, the formula
parameters cf,...,ch,. are upper bounded both individually, and in combination with
specific powers of their corresponding pi parameters. These upper bounds are quite
delicate and involve bounding the solutions to an O(r) x O(r) Vandermonde system
coming from the boundary conditions corresponding to P. Finally, the bounds on each
v; are then established using (1.6) in combination with the derived bounds on the ¢}
and p, parameters. We refer the reader to Section 3 below for additional details and
discussion.

2. Some applications of Theorem 1.1 in signal processing

Discretized versions of the Laplace operator play an important role in various appli-
cations. These applications include numerical analysis, where discrete Laplacians appear
as finite-difference approximations of the (continuous) Laplacian operator, and image
processing, where they are used, for example, in edge detection. Via discretizations of
the Laplace-Beltrami operator, they are also important in various applications involving
geometry, including mesh parametrization (see, e.g., [18]). Herein, we focus on two ap-
plications that are related to quantization schemes in signal processing, and that both
specifically benefit from Theorem 1.1.

2.1. Error bounds for sigma-delta quantization

In various signal acquisition systems ranging from classical ones related to audio and
image acquisition [29,28], to more recent ones like compressed sensing [7,12,9,6] (see also
[5]), continuum valued samples of signals need to be converted to digital bits. In or-
der to reduce the quantization error, various quantization schemes have been developed
including Memoryless Scalar Quantization (e.g., [17]), Sigma-Delta Quantization (e.g.,
[29,10,19,22,20]) and Beta Encoding [8], among others [26]. In particular, the Sigma-
Delta quantization family has received much attention from both engineers and applied
mathematicians seeking to understand its performance as it generally enjoys both hard-
ware simplicity and favorable error bounds. Nevertheless, its induced error bounds under
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certain signal types and measurement conditions are not entirely understood in part due
to a lack of bounds on the singular vectors of D" as considered herein.

Consider, for instance, the problem of measuring and digitizing a signal modeled as
a finite dimensional vector x in B?, the Euclidean unit ball of R? whose entries z; are
infinite precision real numbers that are, e.g., potentially irrational (see, e.g., [1,2,27]). In
various settings, one can model measurements of x as inner products with frame vectors
f; ¢ R% i = 1,...,N with N > d. Thus, one has y = Fx € RY, where the rows of
the N x d matrix F are the vectors f;. Having obtained y, one must digitize it, i.e.,
replace its entries by elements of a finite alphabet A, e.g., A = {£1} in order to store it,
transmit it, or process it on digital devices. To that end, consider a particular family of
quantization schemes Q : RY — AV known as Sigma-Delta (XA) quantization schemes.
The simplest such scheme is the first order XA quantizer which works as follows.

Given y = F'x, one computes a vector q € {—1,1}" via the following recursion with
initial condition ug = 0:

q; = sign (y; + ui—1), (2.1)
U; =Y + Ui—1 — ¢ (2.2)

for i =1,2,... N. We may succinctly restate the relationships between the vectors x, u,
and q as

Du = Fx—q,

where the matrix D is exactly the one defined in (1.4). In other words, typical hardware
implementations of first order XA quantizers based on (2.1) and (2.2) implicitly utilize
the matrix D.

Higher order versions of the above quantization scheme also exist, and in fact often
yield better reconstruction errors. With stable higher order schemes, equations (2.1)
and (2.2) are modified so that now their hardware implementations implicitly generate
matrix equations of the form

D'u=Fx—q, (2.3)

where ||ul|« is bounded independently of N [1,2,22,27].

Note that the matrix D" is both banded and lower triangular (i.e., not circulant) by
necessity since digital quantizers are only able to base the i*® quantized bit ¢; on the
past quantization errors, where the limited band of the Toeplitz matrix D" corresponds
to the limited analog memory units allocated to the circuit (i.e., g; can only be based on
u; with 0 <4 — j <r, which needs to be stored in the circuit’s memory units).

With such an approach, one has represented the underlying vector x € B by N bits
(when A = {£1}). One way to compress (i.e., encode) this N-bit representation without
compromising reconstruction accuracy is explored in [21]. The approach in [21] capitalizes
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on the potential redundancy in the measurements that is due to having N > d. To
encode q, one simply applies the map q — RD~"q, where R € {0, 1}™*" with m < N
is a random selector matriz with exactly one nonzero entry per row, which is selected
uniformly at random. Observing that RD~"q can be represented by ~ rmlog(N) bits,
we see that this representation can be quite parsimonious compared to storing all of
q when m < N, provided we can still recover x faithfully using only m entries from
D~"q. Towards such a reconstruction, rearranging (2.3) and applying R yields Ru =
RD™"Fx — RD™"q, which upon further manipulation yields

[(RD™"F) Rul|y = ||x — (RD™"F)TRD™"q|. (2.4)

That is, the reconstruction error associated with the above encoding and the de-
coding RD™"q + (RD™"F)'RD™"q can be controlled by [(RD"F)'Rul, <
|(RD~"F)T||||[Rul|2. This bound is small provided the matrix RD~"F has large sin-
gular values.

When r = 1, [21] shows that when the columns of F are the d singular vectors
of D associated with its smallest singular values, the reconstruction error (2.4) decays
exponentially in the number of bits used for the encoding. Extending this to » > 1 was

left as an open problem, with the stumbling block being the lack of a bound on the
C(r)
VN
Consequently, via minor modifications in the proof of Theorem 3 of [21] combined with

singular vectors of D" of the form ||v;|s < , which is Theorem 1.1 of this paper.

Theorem 1.1 we obtain the following result.

Theorem 2.1. Let ¢,p € (0,1), and R € {0,1}™*Y be a random selector matriz. Then,
there is a matriz F € RVN*? such that D := Hx - (RD_”'F)Jr RD‘"qH2 < C(e,r,d)N~"
for all x € B¢ with probability at least 1 — p, when m > C'(r)e~2dIn(2d/p). Here, q is

the output of a stable rth order XA quantization scheme applied to Fx. Furthermore,
RD~"q can be encoded using R < m(rlogy N + 1) bits.

From the above theorem one obtains the relationship D(R) < exp <_#g(d/p)>
between the bit-rate R used to encode x and the associated error (or distortion) D, where
C" depends on ¢, r, and d. Note that in the above application, it is entirely impossible to
replace D", and hence (D")T D", by easier to analyze matrices (i.e., matrices with nicer
boundary conditions) such as (DT D)" for two reasons. The first is that the algorithm
naturally works with the matrix D", and more importantly, the boundary conditions
associated with this choice are entirely imposed by the causal nature of the quantization
algorithm. Quantizing the current measurement can only depend on past measurements,
and not on future ones, so D" in (2.3) (or any realistic substitute) simply must be a
lower triangular matriz.

Theorem 2.1 above uses Theorem 1.1 to prove the existence of a matrix F which
can be used to compactly and accurately quantize arbitrary vectors. However, in many
applications the matrix F in (2.3) is determined by the application, and is not something
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that the designer of the quantizer can choose however they like. Thankfully in such
settings there are still general formulas that bound the quantization error for a large class
of general matrices F' (see, e.g., [34]), but their theoretical application again depends on
understanding the structure of the singular vectors of D". For example, consider the
following proposition.

Proposition 2.2. ([3/] Proposition 2.3) Let F be an N x d matriz with normalized rows.
Then, there exists a decoder such that for any x € column-span(F) N B%, the reconstruc-
tion X from the r-th order Sigma-Delta quantization of x using this decoder obeys

. N\" vN
=%\ — 7=
¢ Umin(VT,N,zF)

for any ¢ with d < ¢ < N. Here V. no € RNX? contains the £ least significant left
singular vectors of the N x N r*® order difference matriz D". Here < hides a constant
independent of NI and r.

Note that the matrix V, y ¢ in Proposition 2.2 corresponds to the objects of interest
in this paper. As a result, it should not be surprising that Theorem 1.1 can be used
in combination with Proposition 2.2 in order to make its upper bound on the error
|| —x||2 more explicit. For example, in the critically important case of bandlimited signal
quantization via sampling, one can assume that F' contains columns of an N x N DFT
matrix. If we further assume that entries from the bandlimited signal x are subsampled
randomly, then F' becomes the composition of an N x N Discrete Fourier Transform
(DFT) matrix with a random sampling matrix R € R™*" containing exactly one 1 in
each row (in an i.i.d. uniformly random position). That is, F' = RF holds, where F
now denotes a full N x N DFT matrix. In this setting the following probabilistic lower
bound is known for the smallest nonzero singular value owin (V1 F) = omin(V RE )

rym,l r,m,¢
appearing in Proposition 2.2.

Theorem 2.3. ([3/] Theorem 2.7 and Theorem 2.8) Let F consist of d columns of the
N x N DFT matriz, and R be the operator that randomly samples m rows from a matriz.
Suppose the £ in Proposition 2.2 also satisfies m/m? > € > %dlog?’(m/}o), then
with probability at least 1 — p, it holds that

o—min(vrj,ﬂm,lRF) > (]' - 77)\/27

where Vy.m.o are the £ least significant left singular vectors of the m x m r*® order dif-
ference matriz D" for all ¢ < m. Here c is an absolute constant.

Combining Proposition 2.2 and Theorem 2.3 and setting ¢ as its allowable lower bound
implies the following quantization reconstruction error
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1
||}A< - X||2 5 (”V”’,m’e||I2naxd10g3(m/6)) e

This brings the need to control ||V;. ., ¢llmax well enough to guarantee that the bound
decays for fixed r as m increases. Our Theorem 1.1 (stated as a conjecture in [34])
addresses this issue, and gives rise to the polynomially decaying bound in m

1
1% - xlla < (—C“)dl‘)gg(m/ 6))T gy

m
where C(r) is a constant that depends on r. This same type of improvement of related
error bounds in, e.g., [34] can also be derived for other signal types (i.e., choices of F
above) by using our Theorem 1.1 together with other existing analogs of Proposition 2.2
and Theorem 2.3 proven therein.

3. Proof of the Main result (Theorem 1.1)

Below we will denote the set {1,2,...,n} C N by [n]. For any matrix A € R™*" we
will denote the j*" column of A by a; € R™. The transpose of a matrix, A € R™*N
will be denoted by AT € RV*™  and the singular values of any matrix A € R™*" will
always be ordered as o1(A) > 02(A) > -+ > Opminem,n)(A) > 0. We will denote the

standard indicator function by

{ 1ifi=j

(Si,j = . L

0ifi#£j

for i, 7 € IN. Given a matrix A with a singular value decomposition A = UXV™*, we use
u; (resp. v;) to denote the columns of U (resp. V).

To begin the proof, it is straightforward to verify that with reversed row and column
orders, D"(D")T coincides with (D")TD". That is, the (i, j)th element of D"(D")T is
equal to the (N —i, N —j)th element of (D")? D" for all » > 1. Then, since the eigenvectors
of D"(D™)T and (D")T D" are the left and right singular vectors of D", respectively, this
then implies that the left singular vectors of D" are just the right singular vectors with

reversed entries. As a result, we have the following lemma, which we prove in detail in
Appendix A.1.

Lemma 3.1. Suppose that D" has singular value decomposition D" = UXV™ for r > 1.
Then, ||lujlloc = [IVjlloo for all j € [N].

In light of Lemma 3.1 it suffices to prove the following result bounding just the £°°-
norms of the right singular vectors of D" in order to obtain a proof of Theorem 1.1.
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Theorem 3.2. Suppose that r > 2, and let o; := 0; (D) have associated right singular
vector v; € RYN for all j € [N]. There exists absolute constants C,C3 > 0 such that if

N > C5, we have ||v|| < % for all j € [N].

The proof of Theorem 3.2 will be broken up into cases depending on the size of oy,
the jth singular value of D". Thus, we begin by providing bounds for each o;.

Lemma 3.3. Let oj := o; (D") be the j** singular value of D" € RN*N where j € [N],
and o1 > 09 > -+ > on. Then,

T
s
0< O'j < (QCOS (m))

holds for all j € [N]. Moreover, there exist absolute constants ¢,C € R™ such that

., ] r . j r
r c (N) S ON—j+1 S r"C (N)
also holds for all j € [N].

Proof. Since D is of full rank we have that o; > 0 for all j € [N]. In addition ||Dv|j2 <
2cos (ﬁ)”vﬂg holds for all v € CV (see, e.g., [21]), which implies that |D"v|s <
(2003 (ﬁ)) [ vl2 for all v € €V, and hence that oy < (2005 (ﬁ)) . The second

item is a direct consequence of Proposition 2.2 in [23]. O

We see that this result implies that o; € (0,2"). Going forward we will prove The-
orem 3.2 by bounding ||v;||c in two separate cases: the case where o; is “small”

(namely 0 < J;/T < CQTT for a constant Co > 0), and the case where o; is “large”
(2 > ajl-/r > C2T’6) In Section 3 below we prove the result for the case of “small” o;.

This proof is a fairly straightforward application of results about D together with a sim-
ple lemma concerning discrete dynamical systems. We also state the result for “large” o;
and then formally prove Theorem 3.2 given that the stated result holds. The remainder
of paper is then dedicated to proving that the stated result for the case of “large” o;
actually does indeed hold.

To begin the proof of the “large” o, case (i.e., Lemma 3.6 below), we first find a
formula for the right singular vectors of D" in Section 4. To achieve this goal, we extend
each singular vector v; to an infinite sequence v;, and then use techniques from the
solution of difference equations to find a formula for each entry of v;. In particular, we
are able to write each v; in terms of the roots py ¢ of a characteristic polynomial p(z)
(which differs for each j) in the following way:

1 r—1

(Vi) =D ckr Phs (3.1)

£=0 k=0
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The rest of the section is then devoted to proving results about the roots pj ¢ which then
ultimately allow us to bound ||v;||s-

Finally, in Section 5, we prove the main result in the case that o; is “large”, and so
complete the proof of Theorem 3.2 as a result. To do this, we first seek to find a bound
on the constants ¢y ¢ from the above expression (3.1) corresponding to roots py , with
|ok,e| > 1. This proof is rather involved, and so is contained in Appendix E. After this,
we use this bound and the properties of the infinite sequence v; to bound cg in the
case that |pg ¢| < 1, which gives us a bound on ¢ ¢ for all k, £. We then use those bounds
together with the properties of each infinite sequence v; to bound cwpkN, jl_’“ for all &, £.
Combining these bounds, we are then able to prove the main result in the case that o;
is “large”, thereby completing the proof of Lemma 3.6 below (and, therefore, proving
Theorem 3.2 as well).

We next begin by proving the result in the “small” o; case. To do this, we will utilize
the following general result concerning the £*°-norms of the ¢?>-normalized right singular
vectors of an arbitrary matrix power A" € CN*N. More specifically, the following lemma
can be used to show that the right singular vectors of A" associated with its smallest

1

singular values will always be “flat” (i.e., have ¢*°-norms on the order of ~ \/ﬁ) when

the rows of A=1 are all sufficiently small in /2-norm.

Lemma 3.4. Let r € Z+, A € CN*N and A" have the singular value decomposition
AT =UXV. If (0 (AT))I/T < a-on (A) holds for some j € [N] and o« € RT, then

[Vjlleo < a"on (A)- e 1A= exl2-

Proof. Consider the discrete dynamical system defined by @, (k+1) := (o (A"))_l/ " x
Ad, (k) for all k € ZT with @, (0) := v;. It is not difficult to see that both

o @y, (")ll2 = [lujlls = 1, and
o @, (B)ll2 = A7 (05 (A7) @y, (k + D))o

i (AT 1/r
< @D Dy, (k + 1))

>~ on (

< af|®y; (k + 12

hold for all k € Z™ since (o (AT))I/T < a-op (A). As a consequence, || Dy, (1)[]2 < !
must also hold.
Continuing, we can now see that

_ — ry\1/7 o r\1/7 _
1Villoo = 147" (a5 (AN))" @y, (1[I0 = (0 (A)) max (A7 Dy (1), e4)|

= (05 (A")"" max [(@y, (1), (A7) ey)|

< (05 (A7) max [ @y
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<a"on (A)- max (A~ ex]l2,

where the last inequality uses both our assumed upper bound on (c; (AT))l/ " and the
fact that || @, (1) <o '. O

With Lemma 3.4 in hand we may immediately obtain the following result, which we
will use to bound v; in the case that o; is “small”.

Corollary 3.5. Let 0; := o, (D") have associated right singular vector v; € RN for all
j €[N]. If Ujl-/r < § for some a € RT, then there exists an absolute constant co € RT

(caa)”

such that ||v;|lec < N

Proof. We apply Lemma 3.4 with A = D. Note that

_ 1 ifi<y
Dl .= - .
J { 0 otherwise

Thus, maxge(n) [(D~!)*ex|2 = V'N. Furthermore, Lemma 3.3 (with r = 1) tells us that
= < on (D) § % so that al/T < 2.£ < 2.05(D). Thus, Lemma 3.4 allows us to
conclude that

Ivillee < (£) o (D) VAN < (cz)’“fﬁé (fﬁ)

max{l C} > C

where ¢y := " for c¢,C € RT asin Lemma 3.3. O

We see from Corollary 3.5 that we can bound the £°°-norm of v; in the case that o}
is “small”. As discussed previously, the remaining sections of the paper will be devoted
to proving the following main result, which bounds v; in the case that o; is “large”:

Lemma 3.6. Let 0; := o (D") have associated right singular vector v; € RN for all

J € [N]. There exist absolute universal constants Co, Co,C3 € RT such that for all r > 2
r Cor)4r—> . 1/r r6

and N > C3, ||[villoo < % holds for all j € [N] with o; m> L

Proof. This proof is quite involved. See Sections 4 and 5 below. 0O

Using Corollary 3.5 and Lemma 3.6 we can now prove Theorem 3.2, thereby estab-
lishing our main result.

Proof of Theorem 3.2. Suppose that N > C% for (5 as in Lemma 3.6. Then, if a;/r

4r—>5
CQTTG (for Cy as in Lemma 3.6), Lemma 3.6 implies ||v;]|o < % If a;/r < CZTT{i,

then by setting a = Cyr% in Corollary 3.5, we have
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(C/r)Gr
VN
where C’ > 0 is an absolute constant chosen such that (caCor%)” < (C'r)5" for all r > 2.

Thus, choosing C' > 0 an absolute constant such that (C7)%" > max{(Cyr)* >, (C'r)®"}
for all r > 2, we have

[Villoo <

(Cr)or
N

1Vlloo <

for all j € [N]. O

The remaining sections of the paper are dedicated to proving the result Lemma 3.6
which will allow us to complete the proof of Theorem 3.2 (and therefore, to complete
the proof of our main result).

4. Toward the proof of Lemma 3.6: a formula for the right singular vectors of D"

Before we can prove Lemma 3.6 we will need some basic facts about the structure
of the right singular vectors of D" € ZVN*N for any r € Z*. Note that these singular
vectors will be identical to the eigenvectors of the related symmetric matrix (D)7 D".
As a result, the remainder of this section will be devoted to studying the structure
of (D")TD". The next lemma begins our study of (D")T D" by establishing a general
formula for its entries, which turn out to be closely related to the alternating binomial
coeflicients.

Lemma 4.1. Let r, N € Z* be such that r < N/2. All the entries of (D")T D" € ZN*N
are given by

(—1)m<ri7"m> ifi—m<N-—r, me{0,1, - r}
(D)D) = N-j ,
j—m,j (1)m§<l_:m)(?> ifj—m>N—r, me{0,1,---,r}

0 ifm>r

combined with the fact that (D")T D" is symmetric.
Proof. See Appendix A.2. O

With Lemma 4.1 in hand we are now ready to study the eigenvectors of (D’“)T D". Let
A € RT be an eigenvalue with associated eigenvector v. Note that we know A € (0,4")
from Lemma 3.3. Considering the equation (D’”)T D"v = Av in light of Lemma 4.1, we
can see that
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i(—l)’“” @’”) Vierk = g (4.1)

holds for all N —r > ¢ > r. Our strategy going forward will be to extend v to an infinite
sequence v which satisfies the simple recurrence (4.1) for all ¢ € Z, instead of just for
€ (r, N — r]. That is, we want to construct an infinite sequence v such that both

0; = v; for all ¢ € [1, N],

and

2r

2
Z(—l)k“”(]:) Vi—rak = A, for all i € Z, (4.2)
k=0

hold. Once we have managed to complete this task we will then be able to use standard
techniques for the solution of difference equations (see, e.g., [16]) in order to construct
a simple formula for every entry of v. This same formula will then also generate every
entry of v. Finding such a formula is the ultimate goal of this section.

4.1. Eaxtending v to a sequence vV that satisfies (4.2)

We will extend v to an infinite sequence v as follows. Let v be the sequence of real
numbers whose entries ¢ € [1 —r, N + r] are given by

0 ifl—r<i<0
=< v ifl<i<N , (4.3)
v EN+1<i<N+r

where the vy, ..., vy, € R above are chosen so that

zr:(—l)k (;) Ui =0 (4.4)

holds for all i € [N +1, N +r]. Note that these 9; = v} are uniquely defined by v together
with (4.4) for all ¢ € [N+1, N +r]. Having extended v to the larger index set [1—r, N +7]
in this fashion, we may now finish extending v to all of Z by inductively setting
i { (—1)" Ay — (2;) if i< —r

k Ia

iy
= -1 . 4.5
vi (=1)" Aoy — 2’“_ 1 - (Qk) i—orpn ifi> N+r (45)

Lemma 4.2. Equations (4.3) — (4.5) imply that (4.2) holds.

Proof. See Appendix B. O



94 T. Faust et al. / Linear Algebra and its Applications 626 (2021) 79-151

In the next subsection we will solve (4.2) via its characteristic polynomial. Note that
real solutions are guaranteed to exist for (4.2) whenever A is an eigenvalue of (D")" D",
and we can always find them via the approach below (see, e.g., [10]).

4.2. Solving the related recurrence relation for v

Before we can write a formula for v we must first find the roots of the characteristic
polynomial of (4.2) (for simplicity, we multiply each side of (4.2) by (—1)")

2r
pl) = Y (2;)(3;)’“ —(=D)"Az" = (1—2)* —(=1)"xa". (4.6)
k=0
By considering (4.6) when p(z) = 0 it is not difficult to see that
r—1 )
p@) = [] (—(1 — ) - Al/re%ﬂ/rx) . (4.7)

k=0

Examining (4.7), one can now easily deduce the following lemma concerning the roots
of the characteristic polynomial p(x).

Lemma 4.3. The roots of p(x) are given by

9 _ \/rg2kwi/r + \/)\2/7'®4k7ri1/7' — A)\Y/rg2kmi/r

Pk,0 = B) (4.8)

and

9 _ \Y/rg2kwi/r _ \/)\2/7'®4k7ri1/7' — AN/ rp2kmi/r

Pk,1 = 9 (49)

for k€ {0,1,...,r —1}. Moreover, it is also not difficult to see that both
pko=pry  Jorall ke{0,1,...,r—1}

and
Pk = Pr—k,; Jforall ke{l,...,r—1}

are true. That is, both the multiplicative inverse and complex conjugate of every root are
also a root.

Proof. The lemma can be directly verified by substitutions using (4.7) — (4.9), coupled
with the fact that A € (0,4") by Lemma 3.3. O
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In the following lemmas we will establish several other important properties of the
roots of p(x), including their uniqueness for all » > 2. These properties will be useful
later. In particular, the fact that each root of p(z) is unique (i.e., has multiplicity one)
will be crucial to our ability to write down a simple formula for each entry of v, and
therefore, will also be crucial to our discovery of a compact formula for each eigenvector
of (D" D",

Lemma 4.4. Let p be any root of p(x) as given in (4.8) and (4.9). Then, for r > 2
(14+V2) 2 < pl < (14 V2)? (4.10)
and

(1+V2) A2 < |p—1] < (1+V2)A7. (4.11)

Furthermore, using (4.8) and (4.9) we see that po o # po1,

lpo.ol = po.1| =1,

and

|pr,j| # 1 holds unless k = 0.
Proof. We will begin with (4.11) and (4.10). Examining (4.7), we have that

1 .
cr = cx(p) == /p — 7 +i\zr b/, (4.12)

Recalling again that 0 < A < 4" by Lemma 3.3, we have |c;| < 2. For each k € {0, ...,r—1}

2 _ 2
note that /pro = VA VQC’“+4, and /pr.1 = STV TR V26"+4 are the two solutions of

2% —cpz—1=0,

where ¢ is defined in (4.12). Using that |cx| < 2 we can now see that |\/p| < 1+ V2
holds. As % is also a root of (4.7) by Lemma 4.3, we also have |,/p| > 1/(1 + v/2). This
establishes (4.10). To obtain (4.11) note that since p(p) = 0, it follows by (4.7) that
lp—1| = Aer |/pl, and hence (4.10) implies the desired result.

The fact that pgo # po,1 and that |po 0| = |po,1| = 1 can be readily obtained by direct
calculation using (4.8) and (4.9) together with Lemma 3.3 (to prove |po,o| = |po1| = 1,
we note that A7 € (0,4), and hence VA2/7 —4\V/7 = iv/4\L/7 — \2/7). To finish we
may now use the calculations in the paragraph above to see that
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Ck+\/0k—4 ck+m \/ck—4 ck—m

lpk.ol + |pr1| =

ek | + \/|ck|4 +4(c; + %) + 16
= 5 ,

(4.13)

Then, we first observe that |cx|* = (|c2])? > (Re(c}))? (since |ci| > |Re(c})|), and
therefore we have

ler|t +4(c2 +T2) +16 > (Re(c}))? + 8Re(c?) 4 16 = (Re(ci) + 4)? = (Re(c +4))?
= (4 — A" cos(2km /1)) (4.14)

Combining (4.13) and (4.14) and Lemma 4.3 we can now see that

jeal? + \/lexl* +4(cE +72) + 16
2

prol + |—\ _
PEk,0

N flewlt + 4 + @) + 16
- 2
S AT 4 — N7 cos(2km /1)
- 2
A7(1 = cos(2km /7))
2

> 2, forall ke {1,2,---,r—1}.
Thus, |pro| # 1, for all k € {1,2,--- ,r — 1}. The desired result follows. O

Lemma 4.4 above tells us that all of the roots of the characteristic polynomial p in
(4.6) are contained in a disk of radius (1 + v/2)A2r centered at 1. This information
alone is enough for us to easily upper bound the distance between any two roots of p
by 2(1 + \/5))\% Obtaining lower bounds between the distances of the roots of p from
one another is a much more difficult task, however. We will now begin the process of
computing such lower bounds with the following lemma. It establishes that all of the
roots of the characteristic polynomial p are unique so that their pairwise distances are
nonzero.

Lemma 4.5. The characteristic polynomial (4.7) always has 2r unique roots (with multi-
plicity one).

Proof. Suppose that p is root of p with multiplicity > 1. We will consider two cases
based on (4.7). First, suppose that

_(1 _ p)2 _ /\1/r®2km‘1/r’p — _(1 _ p)Q _ )\1/7‘®2l7r1'1/rp =0



T. Faust et al. / Linear Algebra and its Applications 626 (2021) 79-151 97

for k # [. This can only occur if p = 0 since A > 0 by Lemma 3.3, which then implies
that —(1 — 0)2 = 0 (a contradiction).
Thus, it must instead be the case that

_$2+ (2_)\1/T®2kﬂﬂ/7")x_ 1= —(I—I)Q _)\1/r®2k7r1'1/rx — c(m—p)Q = cx? —2cp:c+cp2

for some ¢ € C and k € {0, ..., —1}. This in turn implies that ¢ = —1 and p? = 1 must
be true. However, this also can’t be the case since then we’d have

9 _ Al/T(BQkTrﬂ/T — +9 — either Al/T(BQkTrﬂ/T =0 or Al/r(Brirﬂ/r =4,
both of which are impossible since A € (0,4") by Lemma 3.3. O

As a consequence of Lemma 4.5 together with the discussion above, we can see that
all 2r roots provided by (4.8) and (4.9) above are unique (i.e., with multiplicity one).
Therefore, the general solution to the recurrence relation (4.2) is

1 r—1

v = chlw‘ P (4.15)

=0 k=0

for all ¢ € Z, where the ¢; ; € C are chosen so that that the first line of (4.3) together
with (4.4) both hold.

4.8. Additional properties of the roots of the characteristic polynomial (4.6)

Unfortunately, the uniqueness of the roots of p alone will ultimately not be enough
for our purposes below. We will also require lower bounds on their distances from one
another. The following lemmas provide such estimates.

Lemma 4.6. For any two roots of p(x), p # p, either p=p, p=p, p * = p

|
I

>
Q
3

er 2N < ||| = |o]| < OAV/2, (4.16)

where ¢,C € RY are both absolute constants (i.e., universal constants independent of
N,r, A, etc.).

Proof. See Appendix C. O

Lemma 4.7. Let p,p' € C, p # p', be two roots of (4.6) with |p| # 1. Then, there exist
absolute constants C,c,ci,ca € RT, ¢; > 1, such that

t(p, p)AF < |p— p/| < OXF, (4.17)

where t,.(p,p') > cacy " if either p = p' or p' = p~! holds, and t.(p, p') > cr=? otherwise.
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Proof. See Appendix D. 0O

Lemmas 4.6 and 4.7 collectively bound the distances between all roots of p from below
except for |po,o — po,1|, the distance between the two unimodular roots of p. Thankfully,
however, simply knowing that this single distance is nonzero will suffice below. Finally,
we conclude this section with a corollary of Lemma 4.3. It characterizes when the roots
of the characteristic polynomial p will be real.

Corollary 4.8. The roots py ; € R if and only if v is even and k = r/2.

Proof. First, we see by Lemma 4.3 and (4.7) that pg o, pk,1 are the roots of

q(z) = —(1 —z)? — AL/ @2k g

It is clear that ¢x(0) = —1, so ¢x does not have a root at 0. We also note that if
z € R\ {0}, then g (z) ¢ R if @**7/7 ¢ R, so no such values of k will lead to real roots
2kmi/r

of qi. Therefore, it suffices to only consider values of k for which e € R, namely
k=0 and k =r/2 for r even.

By (4.8) and (4.9), we can see that the roots of ¢ are

9 _ Al/r®2kmi/r 4 \//\2/r®4km'1/7" — AN/ rp2kmi/T
2

and so it suffices to check the sign of A2/7e*7/7 — 4\1/72k7i/" to determine whether or
not these roots are real in this case. We note that x? — 4z = x(x — 4) < 0 if and only if
x € (0,4) and 2% — 4z > 0 if and only if = ¢ (0,4). Let x := AY/"e?*7/" and note that
A7 € (0,4) by Lemma 3.3. When k = 0 we have x = \/" and z(z — 4) = \2/7 — 4\1/7
which is negative since z = A/ € (0,4) when k = 0. On the other hand, when k = r/2
we have x = —AY" and x(x —4) = A\?/" + 4\Y/7 > 0 since x = —A/" ¢ (0,4) in this
case. Thus, pi; € R if and only if r is even and k =r/2. O

We are now prepared to begin proving Lemma 3.6.
5. The proof of Lemma 3.6

Our main goal in this section is to prove Lemma 3.6 (here restated using notation
from Section 4).

Lemma 3.6. There exist absolute universal constants Co, Ca, C3 € RY (namely, for Cy, Cs
4r—>5
the same as in Lemma 5.4 below) such that for allr > 2 and N > C3, ||v]lo0 < %

holds for all j € [N] with \J/*" > S22°.
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Proving this lemma will require recalling several results from Section 4. In particular,
from (4.3) and (4.15) we know that the entries of each eigenvector v; satisfy

1 r—1

(V)i =D chu Ph (5.1)

£=0 k=0

for all ¢, j € [N], where the py ¢ above are the roots from Lemma 4.3 of the polynomial p
in (4.6) with A = A;. To prove Lemma 3.6 we will use Lemmas 5.1 and 5.2 below about
the coefficients cg ¢ and roots pg ¢ in (5.1). These lemmas will then allow us to bound
the magnitude of each entry of v; via (5.1).

Lemma 5.1. There exist absolute universal constants C,C2,C3 € RT (for Cz,C3 the

same as in Lemma 5.4 below) such that for allr > 2, N > C%, and )\;/QT > CJZ\}”G ,

for all (k,0) € [r — 1] x {0,1}.

Lemma 5.2. There exist absolute universal constants CJ,Co,C3 € RT (for Co,C3 the
same as in Lemma 5.4 below) such that for allr > 2, N > C%, and A;/QT > CZTTﬁ,

Ntl-r, ‘< (06’T)4T—6

‘pk,é 4 = \/N V|Pk,£‘ > 1.

The proof of Lemma 3.6 is a fairly simple consequence of (5.1) given Lemmas 5.1
and 5.2.

Proof of Lemma 3.6. Let 4,5 € [N]. Below we will reorder the 2r roots {pr ¢}, , in (5.1)
by magnitude so that the resulting reordered sequence p; := py, ¢, satisfies

1] < p2| < -+ <lprl =1 = |prs1]| < |prg2| <+ < |parl- (5.2)

Note that Lemmas 4.3 and 4.4 guarantee that such an ordering of the roots exists.
Similarly, we will also reorder the roots’ associated coefficients ¢; := ¢y, ¢, correspondingly
so that the resulting reordered sum in (5.1) still satisfies

2r
(Vi)=Y _cipi
=1

for all ¢ € [N].
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We can now see that

2r 2r r+1 2r
(vl = 1D o] <D Ml <D lal+ > lant]
=1 =1 =1 l=r+2

where our final inequality uses the properties of the ordering of the roots in (5.2). Rear-
ranging this last expression and using Lemma 4.4 now reveals that

r+1 2r r+1 2r
(i), < D lal+ 1o ™ Y e T <Y Jal+ (14 v2) ( > |cmf”“|>-

=1 l=r+2 j=1 l=r+2

6
Lo CZTT by assumption,

Employing Lemmas 5.1 and 5.2 (since r > 2, N > C%, and A=

their conditions are met), we can now see that

(Chr)r=*
VN

<(r+1)(1+V?2)

ar—2 (Cgr)* 0
+ (T’ - 1)(1 + \/5) W

2r—2 (maX (C(/)’ C(/)Ia 1) T)4T_6

VN

[(v);| < (r+1)

(Cor)*—°
\/N )

IN

where Cj is an absolute constant chosen such that Cy" > > (max (G}, CY/,1))*~6(1 +
V2)r—2rt forallr > 2. O

We will devote the remainder of this section to proving Lemmas 5.1 and 5.2. In order
to do so we will need several supporting results.

5.1. Supporting lemmas

First, we will require the following result about the inverse of a Vandermonde matrix
in several places below.

Lemma 5.3. Suppose A is a Vandermonde matriz

1z 22 zh

2 n—1

1 zp 3 T4
A:

2 n—1

1 =z, = x,

Then A=Y = UL~ with
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0, 1<j
. 1, i=j=1
(L i
1
H , otherwise
k1 ket 3 T Tk
That 1is,
1 0 0
1 1 0
L_1 _ I1T$2 wziwl 1
(z1—x2)(z1—23) (z2—21)(T2—23) (T3—21)(T3—22)
Moreover,
1, 1=
(Ui =10, j=1i#]
(U_l)i,m,l — (U_l)i’j,lxj,l otherwise

where (U_l)oﬁj is considered to be 0 for the purposes of the recursion. That is,

1 —I T1T9 —X1X2T3

0 1 7(I1 +.Z‘2) T1T9 +I2.§C3 +I3.§C1
U*l _ 0 0 1 7(1’1 +3§2+[L’3)

0 0 0 1

This recurrence is equivalent to the following closed form expression for the entries of
U-1t:

(U™, = (—1)it Z Tay+ Tay s (5.3)

1<a1<<aj_;<j—1
for all i < j, where the empty sum is defined to be equal to 1, and
(Ui =0
otherwise.

Proof. The first two results concerning the entries of U~! and L' are proven in [31].
We prove the third result concerning the closed form expression for the entries of U~! by
induction. We first show that for i > j, (U~'); ; = 0. By our earlier result, (U~ '); ; =0
for j =1, ¢ # j, hence the result holds for our base case j = 1. Then, suppose the result
holds for all such entries in columns 1,--- , j, and suppose that ¢ > j + 1. Then, we have
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(U Digar = U Yiz1; = (Ui 525 =0—0x; =0, since (U™)i—; = (U™);; =0as
1> j+ 1 implies ¢ — 1 > 7,7 > j. Thus, the desired result holds by induction.

Next, we show the result holds for ¢ < j by induction. We first see that the result
holds for the base case (U~1);,1 due to the empty sum being defined as 1. Now, suppose
the result holds for all entries in columns 1, --- , j. First, suppose that ¢ < j+ 1; we then
have

(U Dijrr = U icry — (Ui j;
— (_l)iJrjfl Z Ty Ta;_ i

1§a1<~--<a]‘_i+1§j71

— (_1)i+j Z Tay * Tay_,

1<ai1<--<a;—;<j—1

= (_1)i+j+1 Z Lay " Laj_ipa

1<a1<-<aj_i+1<j—1

+ (_1)1+J+1 Z xal e majiixj

1<a1<-<a;—;<j—1

= (_1>1+]+1 Z xal - maj7i+1

1<a1<-<aj—i+1<j

where the second equality holds since ¢ < 7 + 1 implies ¢ — 1 < 5,4 < 7, and where the
last equality holds since the first term consists of the sum of all products of j — ¢+ 1
terms consisting of variables indexed in the range [j — 1] while the second term consists
of the sum of all products of j —i+1 terms with variables indexed in the range [j] which
contain ;.

Then, suppose that i = j + 1. We see that the sum in the right hand side of (5.3) is
the empty sum, hence, it suffices to show that (U~'); j+1 = 1. We have (U™1); j41 =
(U121, — (U 25 =1—0z; = 1, where (U71);_1 ; = 1 by our inductive hypothesis
and the fact that the sum in the right hand side of (5.3) is empty, and where (U~1); ; =0
by our previous case, since i = j + 1 implies ¢ > j. Thus, the desired result holds by
induction. O

Next, the following result bounds the magnitudes of the coefficients ¢y ¢ in (5.1) asso-
ciated with the r + 1 largest-magnitude roots py, ¢ of the polynomial p in (4.6) whenever
A = ); is sufficiently large. It is used to prove Lemma 5.1.

Lemma 5.4. There exist absolute uniform constants Cq,Cq,C3 € RT such that for all
r>2, N>Cj, and A/ > G

)

i,
|ck,e| < \/—% if ol = 1, (5.4)
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for all (k,0) € [r — 1] x {0,1}.

In particular, to prove this result, we will prove the following two lemmas, from which
Lemma 5.4 immediately follows:

Lemma 5.5. There exists absolute uniform constant Cy € RY such that for allr > 2 and

/4227 > G

24 1/2
<
e] < (minﬂpk,ﬂw,lw) ’
for all (k,0) € [r — 1] x {0,1}.

Lemma 5.6. There exists absolute uniform constant C3 € R, such that for all v > 2,
N > C%, and \'/?" > 1/4,

48 1/2
<
1l = (i)
for all (k,0) € [r — 1] x {0,1}.

The proofs of Lemmas 5.5 and 5.6 are rather involved, and so have been moved to
Appendix E.

Using Lemmas 5.3 and 5.4, we now prove Lemmas 5.1 and 5.2, which completes the
proof of our main lemma, Lemma 3.6. To prove Lemma 5.1 we use the bound on the
coefficients ¢y ¢ corresponding to roots with |pg ¢| > 1, and use the boundary conditions
(4.3) to extend this bound to a bound which holds for all ¢ .

Proof of Lemma 5.1. As in (5.2) in the proof of Lemma 3.6, we reorder the roots py ¢ in
the following way

1] < |p2| < -+ <lpr| =1 = |prs1]| < |prg2| < < |parl,

and similarly rearrange the associated coefficients cj ¢ such that

PO =Y
=1

By Lemma 5.4, since » > 2, N > (4, and /\;/% > CZT’”G by assumption, the coefficients
ler] < % for i =r,---,2r are bounded by %, since |p;| > 1 for these roots.

To establish similar bounds for the remaining ¢;, we need to use the boundary condi-
tions of ¥ from (4.3), namely the fact that v; = 0 for 1 — r < ¢ < 0. This is equivalent
to
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2r
[B(N\)))i = ch pi=0, fori=1-r,..,0. (5.5)

=1

We can then rewrite this equation in terms of matrices in the following way:

p%_rcl 1 . 1

pr"er
Pt Pr-1 pl_TCQ Pr 0 P2r piirCrJrl
: . 2 - . “, (5.6)
Pt o i \plhe pr2 e o 2L\ ph ey
By multiplying both sides of (5.6) with H € RC"=1*("=1) defined as
Ho— (—1)1‘—]‘(;‘:;) fori>j ’
! 0 fori<yj
we have
A101 = —AQCQ (57)
where A} € Cr=Dx(r=1) " Ay ¢ Cr=Dx(+D) I particular,
C1 Cy
cp = S (Cr_17 Cy = S crt+t
Cr—1 Cor
L . A0
p1—1 pr—1 —1 1—r
A = . , . 0 r ,
' r—2 - . r—2 . i 0
(p1—1) o (pro1— 1) 0 0 P:’j
and
1—r
1 1 Pr 0 0
r— 1 . r— 1 1—r
Ay = P . ) P2 ) 0 P :
: r—2 - : r—2 i e 0
(pr —1) o (p2r = 1) 0 0 py"
since the (4, j)th entry of
1 ... 1
pl P p’l“fl
H .
r—2
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is

r—1 i . i1 .
S Hupt=> (-1 <; B Dpél =" (1)t <Z z 1)/)2 =(p; — 1)
=1 =1
and similarly for the right hand side of (5.6).

From (4.11) in Lemma 4.4, we know that |p; — 1| < (1 4+ v/2)AY/?" for all [ and
from (5.2) we have |p;| > 1, for any I € {r,---,2r}. These therefore imply that for
ie{l,---,r=1},je{l,--- ,r+1},

[(A2)i ;] < [(1+ V2)A/2)1
< (1 + \/5)7“—2()\1/27")1’—1
< CR (W) (5.8)
for C1; > 0 an absolute constant. Recall that our goal is to bound c¢; = _AIIAQCQ, SO

we next seek to bound the operator norm of Afl by bounding its entries.

We first note that by (5.2), |p1],--- ,|pr—1| < 1, and therefore |p}~t|,---[pr"}] < 1.
Hence, to bound the entries of Afl, it suffices to bound the entries of the inverse of the
Vandermonde matrix

1 1
p—1 g1
V= . . .

(=172 o (g — 1)

since the entries of A] ! will therefore not increase in norm if the inverse diagonal matrix
is included. Let VT = LU be the LU decomposition of V7. By Lemma 5.3, we have

1 0 0

1 1
1 P1L—P2 p2—p1 0
L = 1 1 1

(p1—p2)(p1—p3)  (p2—p1)(p2—p3)  (p3—p1)(p3—p2)

To bound the entries of L™!, recall that from (4.17) of Lemma 4.7, we know that
pi%pj‘ <t Y(r)ATY? for any i # j and |py|, |p;| # 1, where ¢(r) = cac; " in the case of

conjugate or inverse roots, and t(r) = cr =2 otherwise. As a result,

1
Pi — Pk

(L™T)igl = [(L71);

X2

J
k=1 k#
J

< H t_l(T))\_l/Zr

k=1,k+#i
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< cg(c7"_2)2_j()\_1/27')]4_17 (5.9)

where the last inequality holds because at most one of the pairs p;, pr can be conjugate
(since p; is held fixed in each term), and none of the pairs can be inverses or conjugate
inverses of each other since |p)| < 1 for I € {1,---,r — 1}. Here c3 is chosen such that
s > cyteh e > (er=2)~! for all 7 > 2. Similarly, we can compute the entrywise bound
for U= from its explicit expression derived in Lemma 5.3

(Ui

= (Ul = |(=1)"F > (Pay = 1)+ (pa;_; — 1)

1<a1<-<a;—;<i—1
(l_;>[(1+\/_))\1/27‘]1
< 2" (CpaAM/?ryid (5.10)

IN

for C12 > 1 an absolute constant, i > j (where the last inequality holds since (2_;) <2
since 4,j < r).
Since we defined VT = LU, we have that V—' = L=TU~". As a consequence

r—1r—1
(AT A2)ig | <D I )il )l (A2
k=11=1
r—1r—1
< ZZCQ 1/27")k 127*(0 )\1/27")1{ lcr (/\1/27‘)
k=11=1
r—1r—1

< T2r—6 max(c, C3_T)(263011012)T ()\—1/27‘)k—1()\1/2T)k—l(>\1/2r)l—1

gl

o
I
—o=
3
I
=

ﬂ
|

_ 7,,2r—6 max(c, c3—T)(2C3C‘111012)7‘ ()\1/2r)(1—k)+(lc—l)+(l—1)

B
Il
-
-
Il
—

< p2rd max(c, cgfr)(203011 Ci2)"
< (€ (5.11)

where the first inequality holds because |(A;1)i;| < [(V™1)| for all 4,5, the second
inequality used (5.8), (5.9) and (5.10), the third inequality follows since (cr=2)27F <

r2r=6 max(c, A7) since k € {1,---,r — 1}, and similarly C¥ ' < Cf, since k,1 €
{1,---,r — 1} with & > [ and Ci2 > 1. The fourth inequality holds because
S 1 -1 "1=(r— 1) r?, and in the last inequality, C’ > 0 is an absolute constant

chosen so that max(c, c3~ )(2036’116’12) < C? % for all r > 2.
Thus, since ¢; = —A; ' Ascy, (5.11) implies that

leilloe < (€)= + Dllez]loe < (C'r)* 74 (r +1)

2%
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(5.2)). Here C§ > 0 is an absolute constant chosen so that (C§)* 3 > (C’)*~4C, =t

and (C})?"=3 > Cy for all r > 2 (this second condition is so that % > %; thus
the desired bound will hold for all choices of (k,¢)). O

where we used ||ca]|oo < % (by Lemma 5.4, and since |p;| > 1 for I € {r,--- ,2r} by

We will now use the bound on |¢i ¢| just proven in Lemma 5.1 to prove Lemma 5.2.
Similar to the proof of 5.1, we extend the bound on a subset of the roots to all of the
roots by using the boundary conditions (4.4).

Proof of Lemma 5.2. Asin (5.2) in Lemma 3.6, we reorder the roots pi ¢ in the following
way

lp1] < p2| < - <pr| =1 = |prsa| <|prez| < -+ < |p2sls

and similarly rearrange the associated coefficients ¢ ¢ such that

B, =i
=1

We first note that

(Chr)>—

o

for j =1,....,7 + 1, by Lemma 5.1 and the fact that |p;| < 1 by (5.2). We then follow a
similar argument as the one used in the proof of Lemma 5.1, to extend this upper bound

lepi| < ler] < (5.12)

of lep| to I = r+2,...,2r by using the last » boundary conditions (4.4) and the general
solution to the recurrence (4.15).
Using (4.4) we obtain

0= z_:o (;) (1)1 [5(A))] g = z_g (;)(—w <§ clpf—Q>  fork=N+1,..,N+r

Factoring pf_q = pF~"p;~% and exchanging the two summations above we obtain

2r r
_r T\ o
Ozz:clpgC Z(—l)q< )pl 1,
=1 q=0 q
This is equivalent to
2r

S apf T (p—1)" =0, fork=N+1,..N+r,
=1
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or to
r+1
Z clpl "(pr—1)" chpl (=17, fork=N+1,...,N+r.

l=r+2

As in the proof of Lemma 5.1, we write the first 7 — 1 of these equations in matrix

form:
1 1 [l =17 0 T 0 Py e
Pr+2 0 Por 0 (praz—1)" . : Piv+31 "Crys
r—2 r—2 : : . 0 N+1. r
pr+2 e Poy i 0 e 0 (p2r _ 1)7‘ Do Cor
1 11 Mp—1)r 0 0 pN+1 e
e 0 (p—1)7 : P,
r:_2 ’ r—2 ’ R 0 N+1 .r
P1  Prgrd 0 s 0 (pr+1 - 1)T Pry1 Cr41

Then, by the same argument as in the proof of Lemma 5.1, multiplying both sides of the
resulting matrix equation by the (r — 1) x (r — 1) matrix

. i*j 7 . .
Hi,j:{(() 1) (J) fori>j

fori<j’
results in
Ag Bs
1 1 (1= prs2)” 0 0
pT+2. — 1 e pQT"_ 1 0 (1 _ pr+3)r .
: r—2 ' ] r—2 : - ’ 0
(pr2 —1) o (p2r — 1) 0 . 0 (1— po)”
pi\;gi ey
pr-&-—g 767"""3
X .
Pé\ﬁ_l 7627‘
- 1 1 (1—p)" 0 0
_ p1—1 pry1— 1 0 (1= pg)" :
' r—2 ) ] r—2 : B ’ 0
L(p1 — 1) o (pr1— 1) 0 0 (1—pry1)”
Ay

By
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N+1—r

1 €1
N+4l—r
P2 C2

N+1 r
Pry1 Cr+1

Since we have

N+1—7r N+1—7r
Pryz2  Ort2 P1 a1
= —B§1A§1A4B4
N+1— Nti—r
Par a2 Pry1 Grtl

we begin by bounding the entries of A3 1A,

First, we see that essentially identical arguments used to prove (5.9) and (5.10) and
bound the entries of V! in the proof of Lemma 5.1 apply here, and result in the same
bounds the on the entries of A3 , since the indices of the roots are not considered in
either argument. The only slight difference is that, in this case, when bounding the entries
of L=, all of the roots have norm strictly greater than 1 rather than strictly less than
1, but the same argument still holds in this case. Also, by a similar argument to that
used in showing (5.8) we see that

(A4)i,j < [(1 + \/5))\1/27"]1'71 < (1 + \/5)7‘72()\1/27")1'71 < O{l(/\l/QT)i71 (513)

for C1 the same constant in (5.8). Thus, by essentially the same argument as for (5.11),
we have that

r—1r—1

(A5 A0)igl =D D UL )iwll T rall(Aa)i s
k=1 1=

r

1i=1
r—1r—1

< Z Z ch(er™2) 2R AT/ 2R Lor (O A2 RSO (A2
k=1 1=1

< (C/T‘>2T_4, (514)

for the same constant C’.
Then, by Lemma 4.4 we have |1 — pg|/|1 — p| < (14 +/2)? for all £,1. Hence, we have

|(=B3 ' A5 AuBa)is| < (14 V2)7 (C'r)*
Also, recall that from (5.12), we have

N+1— TCl| < (C(ST)

7 STUN

for 1 € {1,---,r+ 1}. Therefore,
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N+1— N+1—
Piria) Cr+2) Pay ey
: =||-B;'A;'A4B,
N+1—r N+1—r
Pary  Cer) - Pr4+1) C(r+1)
) C/ 2r—3
S (1 + \/5)2T(C/T)27_4(7" + 1)( OT)

VN
(C(/)/T)4r—6
=TUN

for C{/ an absolute constant chosen such that (C§)"=6 > (14-/2)2"(C")*—4(Cf)?r—3 L
forallr>2. O

(5.15)

Having established both Lemma 5.1 and Lemma 5.2 now finishes our proof of
Lemma 3.6.
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Appendix A. Proving the basic results: Lemmas 3.1 and 4.1

We will begin with the proof of Lemma 3.1.

A.1. Proof of Lemma 3.1

To begin the proof that ||uj]lc = ||Vjllec for all j € [N], we first observe that by
Definition 1.4, D; ; = Dn_j v—;. We now prove by induction that

(D")ij = (D")N—j,N—i (A1)

for any r € N. Suppose that (D"); ; = (D")n—j nv—i.- Then we have

Mz

D7+1

kel

[

N
Z IN—k,N—i(D)N—j,N—k, (A.2)

=
=
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where in the last equality we used the inductive hypothesis (D"); ; = (D")n—_jn—; and
the fact that D; ; = Dn_j; nv—;. Then making the change of variables ¥’ = N — k, we
have

N N
Z IN—kN—i(D)N—jN—k = Z(Dr)k’,Nfi(D)ij,k’
k=1 k=1
N
= (D>N7j,k’(Dr)k’,N7i
k=
(DTH)N —j,N—is (A.3)

and hence combining (A.2) and (A.3) we have (D"t1); ; = (D""!)N_; n_i, completing
the proof by induction.
Next, we claim that

(D"(D"))ig = (D)D) y—iN—;- (A.4)

We have

I
WE

(D"(D") )i (D")ik(D")j .k

>
Il

1

I
] =

(D")N—k,N=i(D")N—k,N—j (A.5)

=
Il
—_

where the last equality holds by (A.1). Now, making the change of variables k¥’ = N — k,

we have
N N
Z IN—k,N=i(D")N—k,N—j = Z(Dr)k/,Nfi(Dr)k’,ij
k=1 k=1
= ((D")'D")N—iN—j> (A.6)

so combining (A.5) and (A.6), we see that (D" (D")T); ; = (D")TD")n—i n—j, verifying
(A4).

Finally, for ease of notation, we let ¥ be the vector v written in reverse order, i.e.
(\7)1' = VN_;.

Observe that (A.4) implies that D"(D™)T and (D")” D" have reversed row and column
orders. Hence, if v is an eigenvector of D"(D")T with eigenvalue A, then ¥ is an eigen-
vector of (D")T' D" with eigenvalue \. In other words, the eigenvectors of (D")T D" can
be obtained by reversing the order of each eigenvector of D" (D")T, and vice versa. Since
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the eigenvectors of D"(D™)T and (D")T D" correspond to the left and right singular vec-
tors of D", respectively, the same relationship holds between the left and right singular

vectors of D". In particular, the left singular vectors can be obtained by reversing the

order of each right singular vector, and vice versa. Thus, since reversing the order of a

vector does not change its £°°-norm, we have

[Vlloo = llujll

for all j € [N], the desired result.

A.2. Proof of Lemma /.1

Recall that we are seeking to prove the following lemma:

Lemma 4.1. Let r, N € Z% be such that r < N/2. All the entries of (D")T D" € ZN*N

are given by

(D)D" = Ned
(

r

ifj—m<N-r, me{0,1,---,r}

)

l) ifj—m>N-—-r, me{0,1,---,r}

ifm>r

combined with the fact that (D")T D" is symmetric.

Define the upper and lower triangular nilpotent shift matrices U € RY*Y and L €

RNXN as
Ui,j = {

and

Note that D = I — L so that

Similarly, DT = I — U so that

1
0

ifi=j—1
otherwise

ifi=454+1
otherwise
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(p")" = Z (;) (—1)FU*.

k=0

Since we are interested in the right singular vectors of D" we will consider the symmetric

matrix
T pr— "\ (kg "Y_kpk ) = "N (T~ kR
(D) (Z(k)mv S (Deve) =3 ()7 cvw
k=0 k=0 k,1=0
(A7)
Note that UFL! = X1, where
1 ifj<N—-l andi=j—k+1>0
Xki), . = : A.
( k’l)” {0 otherwise (A4.8)

Thus, if j < N—randi=j—m, m e {0,1,...,r}, we will have

@), - (S00w) - or S0

k,l=0 i =0

8 (ir-m-1) ()

Simplifying the expression above using Vandermonde’s identity we can now see that

((DT‘)T DT)jfm,j = D" Tf:n <(7‘ - ;) - l) (7;) = U7 (7“ 3"m>

=0

forall j < N —r, me {0,1,...,r}. By inspecting (A.7) and (A.8) it is not difficult to
see that, more generally, we will have

T =) ifo<m<r
<(D )'D )j—m,j B {0 it m>r (A-9)

for all j < N —r. In fact, (A.9) gives ((DT)T Dr)l for all 4,j € [N] with max{s,j} <
0.
N —r by symmetry. If j > N —r and i = j —m for m € {0,1,--- ,r}, then

T

((DT)T DT)_ = i: (Z) C)(_l)kHXM _ Z <]:> (?)(—1)“1()(;@,1)1-,]-

©J k,1=0 o k,1=0
2%

SR Y o [ S ey

=0
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whenever r —m < N — j, or equivalently, whenever i < N — r. Otherwise, when j >
N —r 4+ m, or equivalently, when ¢« > N — r, this last equation becomes

(7o) = 52 (2 0)

=0

Also note that, by the same argument that was used in (A.9), we will have
((DT)T D’”) = 0 for m > r in the case that j > N — r. Utilizing symmetry

J—m,j

now allows us to determine all the entries of (DT)T D", and completes the proof of
Lemma 4.1.

Appendix B. Proof of Lemma 4.2

We need to show that under the condition (D")T D"v = \v, the infinite sequence v
defined by (4.3) — (4.5) satisfies (4.2) for each ¢ € Z. We will divide ¢ € Z into five
regimes: 1 < 0,0 <i<rr<i<N-—-r,N—r+4+1<i<N,i> N.In the first and last
regimes, (4.2) trivially holds because of the way the sequence Vv is extended in (4.5). For
the second and third regimes, it is easy to verify using Lemma 4.1 and (4.3) that (4.2) is
exactly the i*® row of (D)7 D"v = Av, and hence holds true. It only remains to prove
(4.2) for i € {N —r+1,...,N}. In this case, we will show that (4.2) is implied by the
i*" equation in the system (D")TD"v = Av and (4.4).

Let 2 =i — N +r. Lemma 4.1 then tells us that the i*" equation in (D")TD"v = \v
is

r—x 2 L r—zx r r
~ r—k ~ _1\r—k ~
AT =Y (1) (k>vk+w + Y TRy <l+r— k) (l)vkﬂr (B.1)
k=0 k=r—x+1 =0
2r—x 2r—xz—k r r
_1\k—r ~
= 2 0 () (1)
k=r+1 =0

foralli € {N —r,..,N} (sothat x =i — N +r € {0,...,r}).

Note that the righthand side of equation (B.1) has three terms in accordance with
Lemma 4.1. The first term involves entries ¥4, with k+i—r < N —r (i.e., before the
entires associated with the irregular lower-right r x r submatrix of (Dr)T D), the second
term involves entries U4 ;—, with i > k+4i—r > N —r (left up to the diagonal), and the
third involves entries 0y, with k+i —r > ¢ (right of the diagonal). Furthermore, the
lefthand side of (B.1) matches the righthand side of (4.2). Hence, if we can show that
the righthand side of (B.1) matches the lefthand side of (4.2) we will be finished with
our proof. We will accomplish this task below by showing that the difference between
the lefthand side of (4.2) and the righthand side of (B.1) is always zero.

Let the function f : {0,1,--- ,r} x {N —r+1,--- ,N} — C be defined to be the
related difference
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T

fei= 3 () (e B2)

k=r—x+1
2r—z 2r—x—k r r 2r %
k—r ~ r—k ~
s Y () (e X e (e
k=r+1 =0 k=r—x+1

where the first vacuous term is ignored when x = 0. As per the preceding discussion, the
lemma will be proven if we can show that f(i—N+r,i) =0foralli € {N—r+1,--- ,N}.
To show this, we will now prove that both

(a) f(0,7) =0, and
(b) f(z,i)— f(x—1,9)=0forallz € {1,...,i— N +r}

hold for all ¢ € {N —r + 1, N}. As long as (a) and (b) above both hold, we can then
deduce for any given i € {N —r +1,..., N} that

i—N+r

fli—= N +rd) = f(0,i) + Z f(z,4) — f(x—1,i) =0

as desired. Thus, it suffices to prove both (a) and (b) in order to finish our proof of
Lemma 4.2.

Both (a) and (b) can be verified by direct calculation. For (a), we can see from (B.2)
that

f(0,4) = i (—nFr 2ik (l —H:— r) (;) Vkpir — i (=" (2]:) Vktior

k=r+1 =0 k=r+1

S (B0 @)

Here the last equality is obtained by observing that all the coefficients of x4;—, are 0
via Vandermonde’s identity. Thus, it suffices to prove (b) in order to finish our proof of
Lemma 4.2.

To verify (b) we can now use (B.2) to see that

i a1 = (1) (e

B Z (=) (2r - xr— k+ 1> <x . 1)5’“*”

k=r—x+2

. o\ .
- (=" +1< )vrr+1+i

r—1
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2r—x
_ _1\k—1r r r T
2( 2 (r—x—i—l)(?r—x—k—i—l)vkﬂr

o 2r -
_ (—1) 1<r_x+1)’0i_£+1

where the first, second, and third lines of the righthand side above result form the
differences between the first, second, and third terms in (B.2) for f(x,4) and f(x — 1,4),
respectively.

Simplifying the equation directly above we get that

F8) = fo = 1,0) =(-1)° 1Z(Hx_l)(l)vz -
R zim = (27“ - xr— k+ 1> (x i 1> Uktimr

k=r—z+4+2

r—z r ~ z— 2r -
- (_1) i <x B 1) Ur—g+1+4i — (_1) ! (7’ —r+ 1) Vi—z4+1
z 1
Z (l—i—x - 1> (z)”Z Hl

2r—xz+1 r r
— -1 Tk v i—r
Z (=1) <2rxk+l>(xl>vk+

k=r—x+2

ey (T Joen
=(=D™ 1Z<l+x—1><l>vl i

2r—xz+1 r r
o 71 r—k 7 i—r
Z (=1) <2r—x—k+1><x—1>vk+

k=r—z+4+2

r— r ~
(r—x—i—l)vl w1+ (=) 1(z—1>viz+1
<J} )vz x+1
r—xr+1
— w 1 ~
A3 (a ) (e

2r—xz+1 r r
_ _1)—k =
Z (=1) <2r —x—k+ 1> (x - 1> Ukeir

k=r—z+1

:r 1
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. 2r -
= (=1) ! (r e 1)Ui—ac+1~

Using Vandermonde’s identity we can now see that the first and third terms cancel. Thus
we have that

i) =flo=Ly)=- 2753“ o (2r - + 1) <a: . 1) D

k=r—xz+1
r

(e e

Jj=0

Note that i —z+r+1 € {N+1,...,N +r} whenever i € {N —r+1,...,N} and
x€{l,...,i— N +r}. Thus, (b) will hold by (4.4). This finishes the proof.

Appendix C. Proof of Lemma 4.6

We begin with some facts from the proof of Lemma 4.4. For each k € {0,...,r — 1}
recall that ,/pro = crty/ctd V26’2€+4, and ,/pk1 = S A VQC’%JA are the two solutions to

22—ckz—1=O,

where ¢y, is defined in (4.12). Hence, by Vieta’s formulas, we observe that /pr.o0./Pk1 =

—1,ie /pro=— \/plkj. Let py, be either one of the roots py. o or pi 1. To bound | x| —|fi]

we will make use of the equality

|okllpi] — 1 . (C.1)

||ﬁk+|1/ﬁk|—<|m|+|1/m|>|=\uﬁk—|m|> U7l
2

In particular, our strategy is to bound both the left hand side, and the term on the right
hand side of (C.1) that multiplies (|gx| — |g1]), from both above and below.
We begin with the left hand side, and recall using (4.13) that

|exl® + \/|ck|4 +4(cp + o) + 16

o] + 11/ px| = |prol + lpra| = 5

Consequently,

ek |? + \/\ck\‘* +4(c} + &%) + 16
2
et + \/|cl|4 +4(cf +a%) + 16
- 2

okl + 11/ pk| — (1] + 11/ pul) =
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_ A(Re(cg — cf))
V0eelt +4(c +@2) + 16+ \/lal* +4(¢ +@2) + 16
(C.2)

where the last equality holds since |¢x| = |¢| by (4.12).
We now observe that a lower bound for the left hand side of (C.1) holds because the
denominator in (C.2) satisfies

0< \/|ck|4 +4(c? + %) + 16 + \/|cl\4+4(cl2 +@2%) +16 < 16
while the numerator, provided that ¢ # ¢ and ¢ # ¢; s.t. k+1 # r and k # [, satisfies
[Re(c? — )| = A7 | cos(2mk /1) — cos(2xl/r)| = A7 |2sin(w(k — 1) /r) sin(w (k + 1) /7))
> 2sin?(m/2r) AV

This implies that

di ()Y < 1wl + 11/l = (I151] + 11/ 1)1 (C3)

where d;(r) := ¢//r? for ¢ > 0 such that ¢//r? < Sin:)(% for all » > 2. Now that we
have established (C.3) we are almost done with proving (4.16).

To finish the argument establishing (4.16) note that at most one of p =: p; and p =: pi,
can be unimodular by Lemma 4.4. Thus, we only need consider two cases: First, assume
without loss of generality that |5;| = 1 and |pg| # 1. Then k # 1, k+1 # r, and

(|px| — 1)2’
124

Plugging the above into (C.3) and noting that (4.10) guarantees |py| > (1 + v/2) 72
obtain

56l = 11/5] — (7] + 11/31])] = \

(L+ VA2 > |5 — 1) > |Ipe] — 1] = (1 + V2) " /di(r) A2, (C.4)

which uses (4.11) for the upper bound.
Second, assume that both |px| # 1 and |p;| # 1. Then

1Pkl + 11/ okl = (Il + 11/ pl)| = |(Ip]| = =
\PkHPl\

Ifp#p,p#p, p ' #p and p~! # p all hold then we have k # I, k +1 # r by
Lemmas 4.3 and 4.4. Thus, we may use (C.3), along with the bounds on g and p; from
(4.10) and (4.11), to see that
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([px] = Dlpel + (pe] = 1) |
1ok p1]

1
P! = 1pull = dy (r)AY”

k[l 1/
> di(r)A/"
= vl + o+ vare 1

> di(r)(1+ ﬂ)—lr’l"’“fl»/%

> e(r)AY?, (C.5)

where e(r) := ¢/r? is such that e(r) < di(r)(1 + ﬁ)_l%. On the other hand,

from (C.4), we have

1K) = 17l < 17 = 1 + |51 = 1] < 2(1 + V)N,
This finishes the proof.
Appendix D. Proof of Lemma 4.7

The upper bound of (4.17) follows directly from Lemma 4.4 as |p — p'| < |p— 1| +
lp' — 1] < 2(1++v/2)A/?". As for the lower bound of (4.17),if p# p/, p~ L # p/, ' # 0/,
then Lemma 4.6 gives that [p — p/| > ||p| — |¢'|| > er=2AY?". Thus, it only remains to

L=y or p~! = p’ holds. We

lower bound |p — p/| in the case where one of p = p/, p~
will do this by producing a new (weaker) lower bound for |p — p’| which does not assume
anything other than that |p| # 1.

Let A :={p1,..., p2r } be the set of roots of p(z) in (4.6), and note that

H (P - Pt)
|p . p/| _ pt€A\{p} (D 1)
H (P - Pt)
pt€A\{p,p'}

where both the denominator and numerator are strictly positive by Lemma 4.5. Conse-
quently, we can bound |p—p’| by appropriately bounding the numerator and denominator
in (D.1).

To deal with the numerator in (D.1), note that (4.6) implies that the leading coefficient
of p(x) is 1, and hence

R VTR

pt€A\{p} z=p
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(<)

P N 717"_)\ r—1
- (=1)"5Ap
—-1" 1

:( ) )\prflp_k )

2 p—1

where the third equality uses the fact that p(p) = 0 and that p # 1, i.e., that

(p— 1)1t = (=1)"Ap"
p—1
Consequently,
1
[T (o—r0|=rx p”pJ_rl‘ > 0. (D.2)
pr€A\{p} P

For the denominator of (D.1), recall that for each p; € A, p; # p, we have by Lemma 4.4
that

0= pel < lp— 1+ |pe — 1| < 2(1+ V2)A/".

As a result, we can recombine the numerator and denominator of (D.1) and then invoke
(4.11) of Lemma 4.4 once more to obtain

r—1p+1
rA|p %‘ r‘p’“_l(p—l-l)’ /2

227‘—2(1 +\/§)2r—2/\(r—1)/r - 22r—2(1 4 \/§)2r—1

lp—r'l =
Appealing one additional time to Lemma 4.4 we now get that

rl(p+1)] 1/2
AET D.3
221"72(]_ + \/5)47‘73 ( )

lp—p'| >

Continuing with our bound, we will now finishing controlling the numerator on the
right hand side of (D.3). For any p € A and its associated ¢, (defined in (4.12)) we have

] ) cr+2iE\/AE+4 ¢ —2it /2 +4
o+ 11 = (VB + 1) (V5 )] = AL AN L BAY

B —4 + 2¢y —4 — 2¢yi S 414 + 2| (D.4)
ck+2F b +A| e —2iF /R +4| T 64 '

where in the inequality we used the fact that |c;| < 2. It remains to obtain a lower bound
on the magnitude of |ci + 4| above. We have that
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|4+c2| = \/(4 — AT cos(2km /r))2 + (A7 sin(2km /r))?2

= \/16 + A2/ — 8N/ cos(2km /1)

= \/16 — 16 cos?(2km /1) + (AY/7 — 4 cos(2km/r))?

> /16 — 16 cos?(2kn /1)
= 4 |sin(2kx /7)] . (D.5)
Here we note that |p| # 1 implies that k = 1,...,r —1 by Lemma 4.4. Furthermore, if

k =1r/2 then ¢ = A1/ so that |4 4 ¢| > 4 in that case. Hence, we may combine (D.4)
and (D.5) to see that

lp+1| > isin(ﬂ'/r) (D.6)

holds for all > 2. Combining (D.6) with (D.3) now yields the desired result where here
¢ > 4(14v2)* and ¢ > Lrsin(n/r) for all 7 > 2 (note that since 7 > Lrsin(x/r) for

all r > 2, we can choose ¢y = /4, for example).
Appendix E. Proof of Lemma 5.4

In this appendix, we seek to prove Lemma 5.4, here restated below for clarity.

Lemma 5.4. There exist absolute uniform constants Cq,Co,Cs € R such that for all

6
r>2, N>Cy, and A/ > G

Cr .
x| < \/71N if lowel > 1, (E.1)

for all (k,0) € [r — 1] x {0,1}.

As mentioned in the discussion after its statement, to prove this result, we will prove
separate results for \1/2" < 1/4 and for /2> 1/4, namely Lemmas 5.5 and 5.6, again
restated below.

Lemma 5.5. There exists an absolute uniform constant Cy € RY such that for all r > 2
and 1/4 > )\]1./% > CQTTB,

‘ _ 24 1/2
C
S0 \min[pr PV, 3N

for all (k,0) € [r —1] x {0,1}.
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Lemma 5.6. There exists an absolute uniform constant C3 € RY, such that for all v > 2,
N > 05, and \)*" > 1/4,

48 1/2
<
0 < ()
for all (k,0) € [r —1] x {0,1}.
The first subsection of this appendix is dedicated to the /\1/ ar

second to the )\1/% > 1/4 case.
We begin Wlth a toy example that demonstrates our approach for proving Lemma 5.4,

< 1/4 case, and the

namely the case of two real roots pi1, p2. Although this case does not occur in practice,
it motivates the main ideas used in proving Lemma 5.4.

Example 1. [Toy example: two real roots] Suppose v € R is a normalized vector ||v]|2 =
1 with the following element-wise representation

vi = B1pi + Paph,
where 8;, pj,j = 1,2 are real numbers. Assuming o := }Z—;I > 1, then it holds that

< 2
- \/N—210g2 a—1

|ﬂj ) if Pj > 1.

To prove this result, we will first prove the following result which bounds the number
of indices for which two sequences bounded by geometric progressions will have terms
sufficiently far apart.

Lemma E.1. Let pq, po, 81,82 be positive numbers with o = % > 1. Let {Bi}ien

{Bi}icn), be sequences of positive numbers such that 1“ > p1, B]igtl < po for any
i € [N]. Then, for any q € N, the set of indices K C [N] for which /

B; B; q
K:{ ESQ——logza 0T§t22210g2a}

i

is of cardinality
K| >N—-¢q-1.

Proof. Let I'; = B,,
and so I'; is th‘lCﬂy increasing in 7. We have

and note that since o > 1 we have I';;; = gi“ > gl Lt >al; > 1Y,
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+q- i+g—1 / q
B; B 1 1
H = 11 ( )(—*)S(”—) == (B2)
1+q =i Bi+1 B! pP1 ol 2qlogy o

j=i g

Thus, if T'; € I :=[2~ 3logo 97 log, @], then I'; 1,11 must be outside the interval I. Define
ip := min{s,T; € I}. Then for any ¢ > ip+q+ 1, we have I'; > T'; 44 = 2alogz o - >
24/21082 & which implies [N]\K C {io,...,50 + ¢}. O

Using this result, we can now prove the result in the example by using Lemma E.1 to
show that for any element in K, 31p% and Bap} differ sufficiently, and using this result
to bound the |5;].

Proof of Example 1. Let £ = {i : Igl’;l‘ > 2or Ig;g}} < 1/2} be the set of indices
2

at which the two components in the expression of v are sufﬁciently different (differ

= Bap, and hence

= |p2| (and thus o = |pl}, which we

by a factor of 2). From Lemma E.1 above with B, = pip}, B

Bit1 _ |Bipit? 825"
B N \ [B2p% |
assumed was greater than 1), the cardlnahty of IC is of the same order as N, in particular,

we have || > N —
of K that

'L'
7,+1

= |p1], and similarly

— 1. For each of those indices i € KC, we have by the definition

log [eY

i i 1 i i 1 i .
|vi| = [B1p] + Baps| > 3 max{|B1p1|, |B2p3|} > §|ﬂjpj|a for j =1,2.

Summing up the squares of all entries of v; whose indices are in K, we have
1> 07 >Z H (E.3)
ek ze)C

If |pj| > 1, (E.3) can be used to show that

) <l P
2 21 2 21 2 2
DS AED I —Z 1% = 7IK15;-

i€iC i=1

Together with (E.3), it yields

18i] < 2 <
VIK]

T logya

In this example, we were able to directly apply Lemma E.1 since the roots were real.
In reality, however, it will not be the case that the roots will be real. In order to resolve
this issue, we prove the following lemmas to resolve the issue of complex roots by writing
the singular vector as a sum of real-valued terms. First, we prove the following result
about the coefficients ¢y ¢ in the expansion (4.15).
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Lemma E.2. For

1

GO =33 e ol (E.4)

£=0 k=0

as in (4.15), co1 = Co0, and cke = Gr_ge for allk € {1,--- ,r—1}.

Proof. Since the singular vector #();) is chosen to be real (note that such a choice is
always possible because (D")T(D") is symmetric), we have

1 r—1 1 r—1 1 r—1
g E Cht Pry = E E Cht " Pro = E E Cht " Pkt
=0 k=0 =0 k=0 =0 k=0

for all i € Z. Then, using the results in Lemmas 4.3 and 4.4, we first note that pg o = pa&

and |poo| = |po,1] = 1, hence pp1 = Poo. Then, again by Lemma 4.3 we also have
Pke = Pr—py for all k € {1,--- ,r — 1}. Hence, the above equation is equivalent to
1 r—1 1 r—1
C0.0Ph 0+ C01Pb1 T DD ChitPhe = Co0Por +C0aPbot D D Chile ks
£=0 k=1 £=0 k=1
1 r—1
= C0,09,1 + C0,1P0,0 + oy
£=0 k=1

where the last equality in the sequence holds by a change of variables.
Then, since the equality holds for all 7 € Z, we thus have

1 1 1 1 €0,0
¢
£0,0 0,1 £1,0 o Pr—1,1 0,1
. . . . cl’o
2r—1 2r—1 2r—1 2r—1 .
Po.,o Po,1 P10 o Pr-11 c
r—1,1
1 1 1 - 1 Co,1
C
£0,0 Po,1 P10 0 Pr-11 _t00
= . . . . CT‘—l,O
2r—1 2r—1 2r—1 2r—1 .
£0,0 Po,1 P1,0 o Pro1a a1
Since
1 1 1 1
£0,0 0,1 P£1,0 o Pr—1.1 %o
V= . . ) . . e Crer

2r—1 2r—1 2r—1 2r—1
Poo  Poar  Pro 7 Pre1
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is a Vandermonde matrix, we hence have detV = H(j O£G ) (*) By

=Py 0t
Lemma 4.5, the roots p are distinct, and thus V is invertible. Hence ’

€0,0 €o,1
Co,1 €0,0
C1,0 — | &r—1,0
Cr—1,1 C1,1
and therefore cp1 = o0 and ¢y =Cr—p¢ forall k € {1,--- ,r — 1}, as desired. O

Using this result, we can now prove the following lemma, which allows us to write
[0(A;)]i (the ith entry of © corresponding to A = ;) in terms of real-valued terms.

Lemma E.3. Let pr o = |pre|e® %, cpo = |cpo|l@ L, for pry and cp e as in (E.4), and

let
] lerl ifr €27 and £ =1r/2
T | 2lere]  otherwise.
Then
1 Lr/2]
[B(A))i = G0.0lp0.0/° c08(i0.070.0) + D > Erlpr.el’ cos(ibr e + Yi.0)- (E.5)
=0 k=1

Proof. From the results in Lemmas 4.3, 4.4, and E.2 we have pg.1 = pg,0 and cp,1 = Cp0;
we also have pi ¢ = pr_r¢ and ¢y = G_p ¢ for all k € {1,--- ,r—1}. Hence, we see that
Co1Ph1 = €0,00h.0, and ck,gp};g = Crpupl_p, forall k € {1,--- 7 — 1}. We also note
that ¢y ¢ = ¢, ¢ implies that if r is even, ¢, 5, is real, and since by Corollary 4.8, p,. /2
is also real, we can see that 07/273[):;/27@ is real as well.

Then, (for k # r/2) since Ck75p27€ = cr,k’gpi_k 4> we have

ChtPhg + CrokPi o = 2Re(ckpl o) = 2Re(|ck ol pr,e| @0k e T1R0%)

= 2ck,e||pr.e|* cos(ibk.e + Yr.e),

where the second equality holds since we have assumed that pg s = | pk,4|e9k’“, Cho =

|k ¢|@7e¢t. Similarly, since co’lpfm = 00,0,06,0, we have
c0,0Pb.0 + Co,100,1 = Re(co,0p,0) + Re(co,10h,1) = 2|co,0llpo.0| cos(ibo,0 + Y0,0)
Finally, if r is even, and hence C?"/Mpi/z,e is real, we thus have
1 1 1

Z Cr/upi/z,z = Z Re(cr/upi/z,z) = Z |Cr/2,e||Pr/2,e|i COS(’i9r/2,e =+ %/2,@)~
=0 =0 =0



126 T. Faust et al. / Linear Algebra and its Applications 626 (2021) 79-151

We then see that we can break the expansion (4.15) into parts as follows:

1 r—1 1 [(r—1)/2]
BN =D ke phe=D_ D Chabhs+ CrokiPioy o+ 00000+ C01Ph 1+
=0 k=0 (=0 k=1
L2l
Do D kerhe
=0 k=[r/2]

Here, the last term in the sum will be empty if r is odd, and cr/upi/” if r is even.
Thus, combining the three equations above, we have

L Le-1)/2) |
=3 > 2lenellprel cos(ibh.e + Yi.e) (60,0 +Y0,0)+
(=0 k=1
L L) |
D> lenillprel’ cos(ibre + o).
(=0 k=[r/2]

Thus, by our definition of ¢ ¢, we have

1 |r/2]

[5(A\)]i = o.0lpo.0l’ cos(if0.070.0) + Y Y Exelpr,el” cos(ibre + Ye),
(=0 k=1

as desired. O
E.1. The )\;/27" < 1/4 case: proof of Lemma 5.5

The proof of Lemma 5.5 follows the same idea as in our toy example, Example 1. Our
goal is still to find the set of indices for which the components in the expansion of ¥ are
well separated, and to show that this set has a large enough cardinality. These were easy
to prove in the toy example because each time the index increases by 1, the increments
of the two components in the expression of v has a ratio that is lower bounded by some
positive number independent of N, which fulfills the assumptions of Lemma E.1, leading
to the desired coeflicient bound.

In the general scenario, however, the presence of complex roots and the cosine func-
tions in the expansion (E.5) of ¥ prevent such lower bounds from existing. Indeed, we
observe that it is the large oscillation of the components from index to index that de-
stroys the lower bound, but at the same time, we observe that the average oscillation
over an interval of indices is much smaller. This motivates us to look at the increments of
components of ¥ from interval to interval instead of from index to index, with the hope
of finding a positive lower bound that is sufficiently large. We first establish the intervals
in the following definition by dividing [N] into a number of subsets of equal length AN.
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Definition E.4. Given AN > 0 and m := |[N/AN], let Iy,...,I,—1 be intervals with
I, ={A;, .., Aijy1 — 1}, where A; =iAN + 1 for all i € {0,--- ,m}.

As described before, in a similar fashion to Example 1, we seek to show the summands
in the expansion (E.5) differ sufficiently from each other. However, because of the pres-
ence of cos(ifk ¢ + Yk,e) in the summands, we must consider sets of summands rather
than individual summands. We begin by defining the following terminology to discuss
sets of summands.

Definition E.5. In (E.5), we call each summand a component of 9(};), we call the squared
summand at index ¢, i.e., 6%7£|pk,g|2f cos? (0 o +7k.¢) the energy of the (k, £) th component
at i, and the sum -, & y|p.e|* cos® (10, + k) the energy of the (k,£) th component
over interval I,,.

We then define the following sets which make precise the comparison of the increments
of components of 7.

Definition E.6. For some fixed (k,¢) # (k',¢') with (k,£¢),(k',¢") € {(0,0)} U ({1,---,

[r/2]} x {0,1}), we define the index set Cy 4.5/ ¢ where for each i € Cy o1/ ¢ the energy
of the (k, /)th component on I; is comparable to the (k’,¢')th component on I;, i.e.,

Gro 2 |pre? cos®(nBr.e + i )

. 1 nel; 2
Crprr =11 5 < 2 - sdr
¥, WS G, e P oo nf e + )
nel;
Also, we define
C= [\ Ciewe (E6)
(k,O)F#(K' L")

where (k,¢), (k',£") again run over {(0,0)} U ({1,---,[r/2]} x {0,1}).

In the previous definition, the bound 472 is chosen out of consideration for a later
argument. Also, on the complement set of Cy ¢, ¢/, the (k, £)th and (', ¢')th components
are sufficiently different, more specifically, one component will be 472 times larger than
the other. The idea is that we compute Cj, 4.5 ¢+ for all (k,£) and (K, ¢'), so that on C, all
components will be sufficiently different from each other, and therefore there must exist
a dominant component that behaves similarly to their sum over all of the components,
which is the square of the £2 norm of the singular vector of D" we are considering. The
coefficient of this dominant component can in turn be bounded by the energy of the
singular vector on the corresponding interval. The claim is, if we have enough intervals
in C, then we can expect a small bound for the coefficient (Lemma 5.5). To compute |C|
we first find a lower bound for |C,§,e;k,7z,|, for each k., ¢; k', /' quadruple.
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We begin by supposing that |pk.¢|, |pxre/| > 1. In this case, define

E%,e‘ﬁk,dm”l > cos®(nb.e + Vi)

D Z nel; < 1 or
Tt P = N _
k, k!0 EJIZC/’@/|PI¢’,Z’|2A" 2:1 COSQ(nak/,gl _1_,}%%/) = 47,2»
nel;
. st (E.7)
Civolpre*0 Y7 cos®(nbk,e + Yi,e)
nel; > 47"2

E%/’Z/|pk/,él|2Ai+1 Z COS2(n0k/,[/ +'Yk’,€’) -
nel;

Then, since we assumed |py.¢|, |pr | > 1, for I € A; we have |pg o[> < |pre|? <
|pk.e|>Ai+1 (and likewise for pys ), by the definitions of I; and A; in Definition E.4.
Therefore any i € Dy, ¢, must be in Cf .}, v, and hence |CF 410 o] > [D pp 00|, and
|Di.o.kr o] 1s easier to compute as |pg ¢| is pulled out of the sum.

In the other cases, for example for |pge| < 1,|pr | > 1, we will have analogous
expressions for Dy, g1 ¢ such as

Ejlzc,e|Pk,é|2Ai’ > cos® (b, + Vi)

. I
Dkv&k/yfl = 1 ~2 24, et 2 S 2 or
ck/ Z/|pk”Z’| B Z COS (nek/’[/ —+ ’Yk’,l’) 4'{‘
' nel;

CrolprePAr 30 cos? (nbe + Yie)

nel; >47’2
5%/’@|pk/,z/|2141:+1 Z cosQ(an/ygl +’Yk'7e') -
nel;

As a result, the proof of Lemma E.9 will differ slightly depending on the case we are
considering, and these differences will be briefly mentioned in its proof.

To simplify the notation, we denote the accumulated sums of the angles in the i’th
interval I; by ¢(i,0,7), i.e.,

@(i,0,7) == Z cos?(nf + ). (E.8)

nel;

and define a close approximation '} ;... to the complex ratio in the definition (E.7) of
Dy o1 00

~2 2A; 2
Cr ol Pr,e] 7 cos” (b ¢ + Ve L
; B kd EI ( :  elpr P60, O e vre)
. ! 5 — p— N
BERETR, ok o PATY cos2(nbrr e + k) G plon e PR (i O i )
nel;
(E.9)

Note that in ch,z;k,j,, |px.e] and |ps e| have the same power while they do not in the
definition (E.7) of Dy, ¢,k . We will need to take this difference into account when using
FZ,Z;I@’,W to bound |Dk,g;k/,gl|.
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Using these definitions, we will now prove Lemma 5.4 for )\;/ < /4. Explicitly, we
shall prove the following main lemma.

Lemma 5.5. There exists absolute uniform constant Cy € R™ such that for all v > 2 and

/4>)\]/ > —CN2
{|)ij| N }

)

|0

for all (k,0) € [r —1] x {0,1}.

In order to prove this result, we will show the following two intermediate results. The
first result is used to bound ¢(i, 6,~). The second result is the key result that allows us
to prove the main lemma,; it allows us to ensure that |C| is sufficiently large, i.e. that
there is a sufficiently large set of intervals such that the energy of every component is
sufficiently different from the energy of every other component.

Lemma E.8. Suppose \}/>" < 1/4. For all (k,0) # (K',¢') with (k,0), (K',¢') € {(0,0)} U

({1,---,|[r/2]} x {0,1}), there exists absolute universal constant Cy € RT such that if
AN > max { sin(ﬂ/;i)xl/'zw ngg“f)l:% log 12} =: B(r)A\~Y/?", either
Tl o0 , Ly .
—r 2 4/3 foralli € [m—1], or 5= < 3/4 for alli € [m — 1],
NN Lylon o

(for m = |[N/AN| as defined in Definition E.J). Additionally,
(1, 0,0, 7k,0) > AN/3.
for alli € [m], (k,€) € {(0,0)}U ({1,---,|r/2]} x {0,1}).

Corollary E.11. Suppose that the assumptions of both Lemmas E.10 and E.9 hold. Then,
there exists an absolute universal constant Cy such that if N > C’grﬁ)\;l/%, then |C| >
m/2, where m = |[N/AN| > 2 is the total number of intervals.

Using these results, we have the following proof of Lemma 5.5.

Proof of Lemma 5.5. For (k,¢) € {(0,0)} U ({1,---,|r/2]} x {0,1}), we have |cr | <
|€x.¢| by its definition in Lemma E.3. Additionally, for (k,¢) ¢ {(0,0)}U({L,---,|r/2]}x
{0,1}), then we have cg1 = €g0, and ¢, ¢ = G—g¢, by Lemma E.2. Therefore it suffices to
show that [ ¢| < (minwl%)l/z for all (k,¢) € {(0,0)}U({1,---,[r/2]}x{0,1}).
On each I; with t € C, by the definition of C (Definition E.6), all of the components
are sufficiently different from each other. Hence we can reorder them according to their
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energy on I;. For simplicity of notation, we denote the component (corresponding to
index (k,¢)) which has the gth largest energy over Iy as ay.¢ - |pk,e|* cos(i0.e + Yi,e) =
a§Q)|p§‘”|i cos(i@iq) —l—’yt(q)) = P(q)( ). We also denote [0();)]; as ©(¢). Using this notation,
(E.5) becomes

2|r/2]+1 _ 2(r/2]+1
0@ = > a? P cos(ity? + 4" = > PVG), iel.
q=1 g=1

We can now see that

2r/2)+1 2
Yo=Y | > B0
i€l i€l q=1
[ 2r/2)+1 2r/2]+1 2
1), (1
=2 | rerte 3 PRGOS 3 AT
i€l q=2
_1 2(r/2]+1 2
ED N H O I SRR A0
i€l q=2
1 2[r/2]+1
1),. .
> 52 (FU@P - @lr/2) Yo Y (RP0)
i€l q=2 i€l

where the first inequality is obtained by applying 2|ab| < %aQ + 2b? (derived from the
Arithmetic Mean/Geometric Mean Inequality) to the cross term followed by a direct
simplification, and the second inequality uses the Cauchy-Schwarz inequality on the
second term.

Now, suppose that ¢ € C. By the definition of C' in Definition E.6, the energy of
the gth component over I; is at least (4r2) times larger than the energy of the (g + 1)th
component over Iy, and hence >, ;. (P(q)( )? < 2= Zielt(Pt(l)(i))Q. Therefore, we have

2|r/2]+1
1 .

S EG? @2 Y, SR 2 A @)
i€l q=2 i€l i€l

Furthermore, since Pt(q) (i) is the component with [th largest energy over Iy,

Sier, (P()? 2 Sep, (PLV(0))? for all g € {1,...,2|r/2] + 1}. Hence, we have

20r/2)+1

252(2‘)232(#”()) 2[r/2)) Z S (P9 0)

S i€l q=2 i€l
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\
e e
—
3
=
=
—~
S
=
=
©

v
I

i ST (POi))?, for any q € {1,...,2[r/2] + 1}

1 ] .
1 D & elowe* cos® (16,0 + Yr.0),
iel,

for all (k,¢) € {(0,0)}U ({1,---,|r/2]} x {0,1}). (E.10)

Now we can see that, since the above calculation holds for any I; with ¢t € C, we can
sum over all such I; and use the fact that |v;| = 1 and the above result (E.10) to get

9. 1 i .
1>3"% 0%(i) > 1 D G0 D okl cos® (k.0 + Yroe))-

teCicl; teC i€ly

Then, since i < N, we must have |py ¢|** > min{|py¢|*"V, 1}, and by Lemma E.8, we have

Aty Ok 0, vk0) = > cos? (b0 + Vi) > AN/3, hence
i€l

1 AN
—Z 20 D (lpw.el* cos®(ik.e + Yi.0)) chzmm{|Pke|2N 1}
teC i€l teC

Finally, Corollary E.11 implies that |C| > m/2 for m = |[N/AN|, and it also implies
W > w. Hence,

that m > 2. Since m > 2, we also have

1 AN 1AN [N/AN]| ,

chemm{\Pkd Ny > - i3 3 ¢ o minf|pro*N, 1}
teC
LAN N/AN ,
> LN AN minlp
> 48Cumm{|mce\ 1}.

Combining these results, we therefore see that

L 7 .
1= Z Zzi,f Z(|pk,£|2 COS2(29k,Z + 'Yk,z))

teC i€l

1AN
—— D Gemin{lo*Y, 1}
teC

| \/

=

> EE%’Z min{|py¢[*™, 1}

and rearranging this inequality produces the desired result. O
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Therefore, to complete the proof of Lemma 5.5 it suffices to prove our two intermediate
results. We begin by proving the first result, Lemma E.8. In order to prove this result,
we first prove the following lemma, which will in turn allow us to bound sin(6y ), which
will allow us to bound ¢(, O ¢, k,¢) using trigonometric identities.

Lemma E.7. Assume )\1/2T
k=0,. 1and€—01:

< 1/4, then one of the following two cases holds for any

o if ris even and k =1/2, sin(f¢) =0,

. . AY27 sin(r /27
o otherwise, sin(fy ) > ’T(/)

Proof. Recall that 6, is defined in Lemma E.3 such that py, = \pk,g|®9k‘~fﬁ. Thus, if
Pk.e is a real root (which by Corollary 4.8 happens iff r is even and k = r/2) then

sin(fy,¢) = 0. Otherwise, as discussed in the proof of Lemma 4.4, | /pg.¢ = cktyetd VQC’%-M with
cr, complex, where we recall that

.\ 1/2 i
Cck = :I:z/\j/ "kl

Hence

I - _
Tm(\/pr.e)| 575 T 5

1 + 5 = = 3 ) .
c, +4+ep© +4

| o )\1/27"

where the last inequality follows since |cg, < 1/4, by our assumption on \;, and

therefore |c + ¢ < 3 and |\/c + 4+ /&2 + 4| = 2|Re(\/cZ +4)| > 2 > 1.

_ ckgtCr

Using a similar argument to bound 1 F NG R Ty mw from above, we see that
2 :

[tm(/pie)| =

Cr —Cr cr + ¢k e — x|
< . E.12

\/ck 4+ e +4

This implies

Vo — 24 12 12 ’

where the second inequality follows from (I.11) plus the fact that | /pre| < 1++v2 <3

from (4.10). First, since we are assuming that pj ¢ is not real, by Corollary 4.8 we
kmi/r

1/2v femi/r 1/2r kri/r
(152 - L0 e _ [Im(Eix/ eI [Re(EA) k)
2

must have k # r/2, and hence e must have a nonzero real part. We then see that
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is greater than or equal to the smallest

|, which is clearly A;/ZT cos(§ —5-) = )\]1/% sin(m/2r)

the smallest nonzero value of |Re(:|:)\1/2T kmi/m))]

nonzero value of |Re(:|:)\1/2’” kmi/2ry
since €*™/2" lies on the imaginary axis for k = 7 (hence, setting k = r — 1 gives the
desired result).

This bound therefore implies

>\

1/2r kmi/r .
NN [Re(£A;/ 2 ebmi/m)| | sin(r/2r)
2 - 12 - J 12 '

We also have

' . (%,e)‘ _ [Im(\/pel)
s | —— =
2 [

where the first inequality follows from (E.12) and since |\/pr¢| > (1++v2)7! > L from
(4.10). The second inequality follows since |cg| < 1/4. Thus,

§|Ck_@|gl/27

| sin(Og,e)| = sm “ ‘|1/1— sin? H >2 UQTSIH(W/QT))( 3/4)
> /\1/2T51n(7r/27'
25

Using this bound, we can now prove Lemma E.8, one of the two lemmas needed to
prove the main result.

L2 < 1/4. There exists absolute universal constant Cy € R

P2 CONY/2T _1/2¢
o /;f)kmr, i log 12} =: B(r)A; /*", for all (k,0) #

Lemma E.8. Suppose A;

such that if AN > max

(K, ") with (k,0), (K, ¢) € {(0,0)}U ({1, -, |r/2]} x {0,1}) either
k. ;K0 F}c k!0 .
1 >4/3 for alli € [m — 1], or —=5—— < 3/4 for alli € [m — 1],
Uilen o Ktk 00

(for m = |[N/AN| as defined in Definition E./). Additionally,
(b(lv ek,év /yk,f) > A-1\7/3

for alli € [m], (k, €) € {(0,0)} U ({1,--- , [r/2]} x {0,1}).

Proof. Recall that in (E.8), ¢(i,0,) is defined as accumulated sums of the angles in the
i’th interval I;, i.e.,

o(i,0,7) = Z cos?(nf + 7).

nel;
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We first derive bounds on ¢(i, 0k ¢, Yi.e). As A;/zr < 1/4 by assumption, from Lemma E.7

we know that either |sin(fr,)] = 0 (if r is even with k¥ = r/2) or |sin(bke)| >
73“1(;5/27') )\;/QT. First, we consider the case |sin(fy )| = 0. Since r is even, with k = r/2,

by the proof of Lemma E.3, we also have ay ¢ real, and hence, by the definitions of 6 ¢,
Yk,¢ in Lemma E.3, 0 ¢, vx,¢ € 7Z. Hence, COS2(t9k’g+’7k’5) = 1forallt € Z. As a result,

Ai+171 1+2 1
D1, Or,0, Yie,0) = cos®(t0re +he) = », 1=AN.
t=A; t=Ait1
. . 1. /2r sin(7/27) 75
Next, we consider the case where |sin(0y, ¢)| > ~————. Since AN > e 2 A
J
in(m 1/ar in .
we have that ﬁ < : ( /3?}\ < <ls (g’“'[)l, and hence |sin(0y ¢)| > ﬁ. As a result,
Aigr—1
G0, 0o, hp) = Y cos®(t0x 0 + e
t=A,
Ajp1— 1
Z - cos (2t0k.0 + 27k.0)
t=A;
sin((24i11 — 1)0k¢ + 27vk,0) — sin((24; — 1)0 ¢ + 2% ¢)
2 4sin Oy ¢
AN 1
>-"____ -
~ 2 2|sin(Bk,e)|
AN AN
- 2 6
> AN/3. (E.13)

where the second-to-last inequality follows since |sin(fy )| > <.

Thus, since it holds in all cases, ¢(i, 0k ¢, Vk,e) > AN/3 for all i € [m], (k, £) # (K',¢')
with (k, £), (K',¢) € {(0,0)}U({1,---,|r/2]} x {0,1}). Also noting that ¢ (i, O ¢, Vi) <
AN holds for all ¢ € [m], we have

(1, Or,0 Vi t)
¢(i 41, 0k.0, Vior)

1/3 < <3 (E.14)
for all ¢ € [m —1].

Suppose that |pg¢| > |prr o], with (k, £), (K, ") € {(0,0)} U ({1,---,[r/2]} x {0,1}).
We first note that the our choices of (k, £), (k’, ¢') do not allow py, ¢, prr ¢ to be conjugates,
since they are paired in (E.5). Lemma 4.6, which states that there exists ¢, C' absolute
positive constants such that for any two roots p, p, if p and p are not conjugates, inverses
or conjugate inverses, then cr‘2)\}/2r <|1p] = Ipll < C)\jl-/% and (4.10), which states that
any root p has (1++/2)72 < |p| < (1++/2)?, imply that there exists an absolute constant
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1/2r

C, such that Pee=lewel i—. Note that we can apply Lemma 4.6 because the

logkr o -
two roots cannot be conjugates, and if the roots are inverses or conjugate inverses, their

CaA
P

magnitudes must be separated by 1, hence ||p ¢| — |P;:H| <\lprel =1, llprel = [Pre | <
llpr.el — 1| and since there must be a root (namely pgo) with magnitude 1, we can
apply Lemma 4.6 to ||pk.e| — |po,o||- (Note that we cannot have |py ¢| = |p,:%| =1 or
|pk.e| = [Pre | = 1, since such roots would be conjugate or equal, respectively.)

We then see that

1/2r

AN CyA
AN . L AN C )\1./27” St N _.AN
(||/J’k,e||) _ <1+ |Pk,fz|| |P|k Y |> > <1+ 1 J ) > e > 19
Pk e Pk’ e r

(E.15)
’I“2+C4)\1-/2T'
where we also used the fact that AN > W log 12 and the fact that log(1+ z) >
4A;

AN
115 for @ > —1. If |pxe| < |ps,e|, we apply the same argument to (lfp’“;j‘l) to find

AN AN
that (ka/,yl) > 12 and hence that (M) < L.
[Pk, el [Prr o] 12

To complete the proof, we again assume first that |pre| > |pr.e|. Then, by the
definition (E.9) of T} ;.. » we have

Tiewe ( |0k c| )AN 00, One. ) DG+ 1 0o ) _ <1> (3)(3) = 3
Tt o | O(i+1,0k0,9,0)  O(0 Op e, v e)  — \12 4

for all 4 € [m — 1]. In the case where |pg¢| < |px o], we will instead get

Lh g o 1\ /1 4
itz a2 (g) (5) =3
Fk,é;k/,é/

forallie [m—1]. O

Next, we will prove the second main result, Lemma FE.11. In order to prove this bound,
we recall from (E.7) that we can bound |Dy k| and use the fact that |Cf . ] >
| Di,e; 0| to bound |Cf ;s | and ultimately bound |C| in Lemma [.10. We therefore
prove the following lemma which uses the result in Lemma E.8 to bound | Dy g5 ¢ |.

Lemma E.9. For any (k,0) # (K',¢') with (k,0),(k',¢) € {(0,0)} U ({1,---,|r/2]} x
{0,1}), if either

I"]Z ek/ e/ . Fi: ek/ zl .
I—\ZT >4/3 for alli € [m —1], OTW < 3/4 for alli € [m —1]
k0K 0 ke 0K 0

then | Dipr,r] 2 [N/AN] = 16(14 V2)A;/* AN — log(41715).
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Proof. As mentioned in the discussion following Definition E.G, this proof will have
slightly different arguments depending whether |pg.¢l, |pk /| are greater than or less
than 1. ,

L,E;k/,l/

r
Without loss of generality, assume Fit > 4/3 (As mentioned in a later note, the
k., ek’ 0

2(1+v2)A}*" AN +log 41

Tog2 , then 2° =

same argument holds if ;’fﬁ’“"” < 3/4). Let S =
k,ek! e
4r202(0HV2)NPTAN. By Lemma E.1 with B; = 1, Bj = T} ;4 , (for all i) and hence
p1 =1, p2 = 3/4, and a = 4/3 (note that the hypotheses of the lemma are fulfilled since
F;c,(;k,,l/
F:‘c‘ffl;k",l/

[25/1og,(4/3)] +1 > 25/1og,(4/3) 4 2 consecutive subsets, it holds

> 4/3 for all i), setting S = 2 log,(4/3) and solving for ¢, we see that except for

FZ,Z;k’,é’ S 2_S or FZ,Z;k’,Z' Z 2S. (E16)

Note that Lemma E.1 can also be used (with B; = ch,é;k',e'v Bl =1,p1 =4/3, p2 =1,

1_\7/ !’ !
and a = 4/3) to derive the same result in the case of #¥== < 3/4.
koe;k! e

If \prel <1, |pkr o] > 1 or |pre|l > 1, |pr | <1, then the expressions in Dy g o will

1/27r
62(1+\/§),\j AN > 472, we have

be either I'} ;.1s o or T}f o As a result, since 25 = 472
the desired conclusion in all but 25/1og,(4/3) + 2 consecutive subsets.

Next we note that in the case that |pg ¢|, |oxr /| > 1, we then note that

" 1/2r
2AN _ (1+ |pk7l| o 1)2AN < (1+ (1+\/§))‘31/2 )2AN < 62(1+\/§)>\j AN, (El?)

|Pk7z

where the first inequality follows by Lemma 4.4 and the second inequality follows since
1+ 2 < e* for all x. Now suppose that F;;,z;k/,e' < 279, If this is the case, then we have

5%/,@/|Pk’,e/|2Ai¢(i7Qk/,el,’m/,w) > 235%,@|Pk,z|2Ai¢(i, Ok,0s Vie,t)

= 2% ook e P it 2N B4, O, Vi)

_ 1/27r . 3
> 25 2014V2), AN oA (i, Or e, Vi)
=41 ol pre P4 G0, Ok Yis0), (E.18)

where the first inequality is from the definition (E.9) of Fz’é;k/’g” and where the last
equality is due to the definition of S. A similar argument using (E.17) on |pk | shows
that

ootV D0, O o, Yit) = 470 gl pkr 0| P S, Ok, Va7

if ch.e;k',e' > 25,

Aiso, an analogous argument implies the same result if |py |, |pr .| < 1, since using
Lemma 4.3 to note that py o = pl;ll, we can apply the previous result (E.17) to pge = p,;é
and therefore we see that
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—2AN 2(1+v2)A)* AN
[P 2N < HIVDATEAN,

Finally, the bound on the number of the excluded intervals

4(1+V2)\ 1/2TAN + 2log 4r?
log 2log,(4/3)
A1+ V2)A/ P AN + 21og 412
log(4/3)
16(1 + V2)AL* AN + 8log 472 + log(4?)
< 16(1 + V2)A) P AN + log(410r10)

25/1log,(4/3) +

+ 2log(4)

IN

now implies the conclusion of this lemma. O

Given this bound on |Dy, . e[, and hence on |Cf 4.1/ /|, we can now prove a lemma
which produces the desired bound |C| for sufficiently large N. We note that we need the
conditions of Lemma E.8 to be satisfied (i.e., we need to choose AN to be large enough),
since the conclusions of Lemma E.8 are the assumptions of Lemma E.9.

Lemma E.10. Suppose AN = [E(r)\ _1/2T1 +1, where E(r) is defined as in Lemma E.8.
Then for N > max(ul(r))\_l/% 2AN), |C| > m/2, where m = |[N/AN| > 2 is the
total number of intervals, and vy(r) := 4r(2r — 1)(log(4'°71)(E(r) + 1/2) + 16(1 +
V2)(E(r)(E(r) +1/2) + 3(E(r) +1/2))) + 2(E(r) + 1/2).

Proof. First, we clearly note that if N > 2AN, then m = |[N/AN| > [2AN/AN| > 2.
Hence, it suffices to show that if N > v1(r)A; 2 , then |C| > m/2.

r 1‘/27"
Set AN = [E(r)A; 1/2T] + 1, where E(r) = max{ Sm(w/%), +CC4:\7 log 12} as per

Lemma E.8. We then note that

(B(r) +1/2)07% = B(r)A; "+ (12777 = (AN —2) +2= AN,
since A;/ZT < 1/4 by assumption. By Lemmas E.9 and E.8, we now have that
D] > [NJAN] —16(1 + V2)A*" AN — log(41919).

Recall from (F.6) in Definition E.G that C' = (¢, 4) (s ¢y Ck g0 (Where (k, €), (K, 1)
run over {(0,0)}U({1,---,[r/2|} x{0,1})), and that |Cf ;.1 p| > |Dg,e;kr,er|- Therefore,
using the above bound on |Dy gk |, the desired result follows since

IOl =N Cyeprol = [NJAN] = [U Crpper |

> [N/AN| - > |Cl, k7 0|
kL k"0 (k,0)F#(K0)
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> [N/AN] - > ([N/AN] = [Dyep0r)
kL k"0 (k0)F# (K0

> | N/AN| —2r(2r — 1)(16(1 + V2)A[*" AN + log(41%719))
> w =m/2.

In particular, the last inequality holds by substituting v (r) = 4r(2r —1)(log(4'°r'6) x
(E(r) +1/2) + 16(1 + V2)((E(r))(E(r) + 1/2) + 3(E(r) +1/2))) + 2(E(r) 4+ 1/2) and
noting that

1 —1/2r
VAN = 22 1

- 3% lzxr(zr 1) (1og<4wr16>xj VEE() +1/2) + 161+ VA (E(r)

x (BE(r) +1/2) + %(E(r) + 1/2))) +2) V(B +1/2)| -1

> ﬁ [47“(27" —1) (10g(410r16)AN +16(1 +V2) (E(T)AN + %AN))
+ 2AN] —1

=4r(2r — 1) <1og(410r16) +16(1 + V2) (E(r) + %)) +1
>4r(2r —1) (log(4107"16) +16(1 + ﬁ)(k}/QTAN)) +1

where the second and last inequalities follow from the result shown earlier: (E(r) +
1/2))\;1/2T > AN (and hence A;/QTAN <E(r)+1i). O

Finally, using this lemma, we can now show the desired result, Corollary E.11, by
simplifying the bound for AN in Lemma E.10.

Corollary E.11. Suppose that the assumptions of both Lemmas FE.10 and E.9 hold. Then,
there exists an absolute universal constant Cy such that if N > 027"6)\;1/2T; then |C| >
m/2, where m = |[N/AN| > 2 is the total number of intervals.

Proof. By Lemma E.10, it suffices to show that there exists some Cy such that Cor6 >
vi(r) = 4r(2r —1)[log(419716) (E(r) + 1/2) + 16(1 + V2)((E(r))(E(r) + 1/2) + 2 (E(r) +
1/2))] + 2(E(r) 4+ 1/2), and 027"6)\;1/2r > 2([E(7’))\;1/2T] + 1) for all positive integers
r. We then see that there exists some absolute universal constant Cs such that Csr? >

2 1/2r
_ 75 T +C4)\j
E(r) = max{sm(w/%), o
1

32% < Za (by Taylor’s Remainder Theorem) for any 0 < z < /2, so sin(w/2r) >

A

log 12} for all positive integers r, since x — sin(x)
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w for any r > 1 (and hence there exists constant Cg such that Cgr > Sm(;% for

all positive integers ), and since )\;/ < % (so there exists constant C7 such that C7r? >
2Lyl e -
% log 12 for all positive integers r). Also, by a similar argument we see that

there exists constant Cg such that Cgr? > 2E(r)+1 > 2E(r) +4>\;/2T > 2(E(r)>\j_1/2r +
2)A;/2r > 2([E(7"))\j_1/2r] + l)A;/Zr. Hence, substituting into the expression for vy (r),
and combining the two bounds, the desired C; must indeed exist. O

E.2. The A}/QT > 1/4 case: proof of Lemma 5.0

In a similar fashion to the previous section, we will seek to prove Lemma 5.4 in the

case that )\1/27«

;0 >1 /4. In particular, our main result is as follows:

Lemma 5.6. There exists absolute uniform constant C3 € R, such that for all v > 2,
N > Cj, and \J/*" > 1/4,

el < 48 1/2
PO= \min{lpr PV, 1IN )

for all (k,0) € [r — 1] x {0,1}.

To prove this result, we will use similar reasoning to the argument in the previous
section. As before, we will prove two intermediate results, which we can use to prove the
main result. In particular, we use the following two results, one which bounds | sin(6 )|
and one which bounds |C| (as defined in (E.6) in Definition E.6):

Lemma E.12. Assume A;/QT > 1/4. There exists absolute constant Cg > 0 such that one
of the following two cases holds for k=1,...,7m—1,£=0,1:

o if ris even and k =1/2, sin(fy¢) = 0;
o otherwise, sin(fy ¢) > Cg_’“/\;/gr,

: 2m 3VT
Sln(2N+1) ’ 32 }

Lemma E.16. Let AN = [CZ,r*] where Cip > 0 is an absolute constant that is the same
as in Lemma E.1/ below, then

Moreover, |sin(6o,0)| = |sin(p,1)| > min{

|C| > |[N/AN| —2r(2r — 1)(32AN 4+ 8log 1672 + 2).

Note the similarity between Lemma E.12 and Lemma E.7 from the previous section,
as well as between Lemma E.16 and Corollary E.11. In particular, the reasoning used in
this section is very similar to the reasoning used in the previous case. The main difference
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is that when )\;/%

namely Lemma E.12. This weakness is later compensated for with a larger value of |C|,

> 1/4, Lemma E.7 no longer holds, so we have to use a weaker result,

and ultimately, by a larger bound on N.
Using these two main results, the proof of Lemma 5.6 is fairly straightforward.

Proof of Lemma 5.6. First, we note that by the same reasoning as in Lemma 5.5, it suf-
) 1/2

fices to show that [¢j ¢| < (W%) for all (k,¢) € {(0,0)}U({L,---,|r/2]} x

{0,1}).

We take AN = [C%,r*], for Cjp as in Lemma E.14 below. Therefore there exists an
absolute universal constant C3 such that

1
C% > max {605, 12(AN + 2r(2r — 1)(AN)(32AN + 8log 1612 + 2)), \/—67} ,  (E.19)

for all r > 1, and let V > C5.
The proof of this theorem follows the same line of reasoning as the proof of Lemma 5.5,
until the end of (E.10), which reads

S0 > § Sl

i€l iel,

for all (k,¢) € {(0,0)}U ({1,---,|r/2]} x {0,1})

# cos? (0k ¢ + Viot),

and for all ¢ € C where
|C| > |[N/JAN| — 2r(2r — 1)(32AN + 8log 1612 + 2),

since the assumption of Lemma F.16 is fulfilled for the given choice of AN. Therefore,
analogously to Lemma 5.5, we see that

123 o)

teCiel,
1 .
2 4 Z E)lzaf Z(|Pk,z|2l cos? (100 + Yr.r))
teC i€l
1
2 4 Z Elzw min{|px[*Y, 1} Z COS2(i0k,£ + Vi)
teC e,

Y

1 . . o .
ZE%’e min{|pp.¢|*V, 1} Z cos?(i0.o+ ko) — |{i 1i € I, t € CY||,  (E.20)
1€[N]

where the last inequality holds since cos?(i0 ¢ + Vk,¢) < 1 and by rearranging the sums.
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If | sin(0x ¢)| = 0, p.e is therefore real, and hence as discussed in Lemma E.8, we thus
have cos?(t0y ¢ + yk¢) = 1 for all ¢, and hence ‘%\/] cos? (10,0 + V) = N > %7 and if
1€
|'sin(fk.e)| # 0, we then have

. N 1 .
Z COS2(’L9]€75 + ’Y]@e) = 5 + 5 Z COS(QZG&@ + 2’)%,[)
i€[N] i€[N]
N sin(NO ) cos((N 4+ 1)0k.¢ + 27k.0)
2 2sin 6y ¢
N 1
> -
- 2 2|Sin9k,g|
N 1 2 \|7' 16
> = — 205, = |sin | ——— —
z 5 max{ 505 SIH(2N+1> 73\/?}
N 5N 16
> — — 208, —, ——
23 max{ s 2473ﬁ}
N
> I (E.21)

where the third to last inequality in (E.21) used Lemma E.12, namely that |sin(0 )| >
min {ng_T sin (2]3[11) VT

732

}, while the second to last inequality used the fact that

and the fact that N > 6 implies that 2]\2,% < 5, 80

WA oy

|sin(z)| > 2|z| for |z <
-1
sin (%)‘ < 2];’:1 = % < % (where the last inequality holds since

N > 2) and the last inequality used the assumption (E.19) on N. Hence, we see that
‘%v] cos? (10 o + Vo) > % in all cases.
1€

In addition, we have

therefore

{i:i€l,t € CH <N—AN[C]|
< (N — |[N/AN]AN) + 2r(2r — 1)(32AN + 8log 161% + 2)
< AN +27(2r — 1)(AN)(32AN + 8log 16r% + 2),

since, as discussed earlier, we have
|C| > |[N/JAN| — 2r(2r — 1)(32AN + 8log 1612 + 2).

Thus, combining these two results, and the earlier result (E.20), we have

1 . . . .
1> ZEIZM min{|pg ¢|*, 1}( Z cos? (100 +re) — |{i 11 € I, t € C°Y}))
1€[N]
Ly . 2N N 2
> 16kt min{|pk.e|*", 1} i (AN +2r(2r — 1)(AN)(32AN + 8log 167r° + 2))
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>

&=

& ominf|py o[>, 1}, (E.22)

where the last inequality follows from the assumption (E.19) on N. Rearranging (E.22)
thus completes the proof. O

Thus, to complete this proof, it suffices to prove the intermediate results Lemmas E.12
and E.16. We first prove Lemma E.12, which we use to bound |sin(6y ¢)|.
1/2r
)\j

Lemma E.12. Assume > 1/4. There exists absolute constant ¢ > 0 such one of the

following two cases holds for k=1,...r—1,£=0,1:

o ifris even and k =r/2, sin(6y¢) = 0;

o iy 1/2
o otherwise, sin(fy¢) > Cy "N}/

Moreover, |sin(0o0)| = |sin(fo1)| > min{ , 34T

sin (%) 3‘/7}

1/2r

Proof. From Lemma 3.3, we know that A}’ < 2cos ( I ) Also, by our assumption,

2N+1

;/QT > 1/4. Hence, we have = < A; < 4" cos?" (ﬁ) From Lemmas 4.3 and

2 AT AT ga
4.4, we know that py o = J 5 1

we have \

1/r 2/r 1/r
20T AT AN

and po1 = s PO,0 = PO,15
and [po,0| = [po,1| = 1. Hence
1/r 2/r
. . £0,0 — Po,1 4>‘j B )‘j
|sin(fo,0)| = [sin(bo,1)| = = :
2 2
where the expression inside the square root was changed to 4/\;/ " - )\?/ " since Aj €

(0,4™) implies /\i/r — 4)\;/T < 0. Now, note that 4)\}/T — Ai/r has one critical point

in (0,47) at \; = 2" (a maximum), so \/4)\;” — )\i/r takes on its minimum value in

[ﬁ,éf cos?" (ﬁ)} C (0,47) at one of the endpoints. Hence, since

1/r 2/r
AN = A

T ™
= /16 cos? — 16 cost
;=47 cos2"'(2N"'+1) \/ cos (2N+ 1) cos (2N+ 1)
s T
=4 2 in2
\/cos <2N+1>sm (2N—|—1>
cos T sin _T
2N +1 2N +1
. 2T
sin N 11

=4

=2

)
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we thus have

3ﬁ}.

|sin(fp,0)| = |sin(fp,1)| > min { TR

. 27
111 e
M\aN 11

Then, for k = 1,...,r — 1, = 0,1, if py, € R (which by Corollary 4.8 happens iff r is
even and k = r/2) then sin(fy ¢) = 0. Otherwise, if pg o ¢ R, Lemmas 4.7 and 4.4 (which
guarantee, respectively, that there exist constants ¢y, co such that for any conjugate roots
Pk.¢, Pke Whose norms are not 1, |pg.¢ — Pre| > cocg r/\1/2r and that |pge| < (14 V2)?)
imply that there exists an absolute constant Cg > 0 such that

|pk.e — Pr il —ry1/2r
sin (0 ¢ — = >Cy"AT. O
| ( )| 2|pk:,€| 9 J

Next, we seek to prove Lemma E.16. In the same vein as Lemma E.8 in the previous

section, we will first bound the quotient =%~ To this end, we will prove the following
k,e;k! 0! .
, T ot o
lemma which bounds %, which will, in turn, allow us to prove bounds on Ff e
k, ek’ 0!

Lemma E.13. If AN > 10, then for all i € [m — 1], where m = |[N/AN| as defined in
Definition E./), we have

1 90i,0,9)

< 3AN3
SANS = gli+1,0,7) = AN

where ¢ is as defined in (E.8).

Proof. Let AN > 10. We first recall from (E.8) that

o(i,0,7) : Zcos (nd + 7).
nel;

We then break the argument into cases, depending on the distance from 6 to an integer
multiple of 7, since the process for bounding ¢(i, 6, ) will be different in each case.

Case 1: mi%l |0 — jm| < m/AN. Suppose first that miél |0 — jm| < m/AN. We will begin
J€ S
by proving by contradiction that

#(i,0,v) = Z cos®(nf + ) > sin?(9). (E.23)
nel;

First, since AN > 10, note that it suffices to show that the first three terms of (E.23)
satisfy

cos?(A;0 + ) + cos?((A; + 1)0 + ) + cos*((A; +2)0 + ) > sin?(6). (E.24)
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Let 6 = 0y + kom where kg € Z,00 € [—7/AN,7w/AN] (since r_ni%l|9 —jn| < w/AN).
VIS

2

Thus, since each of our functions of interest (cos?,sin?,---) is m-periodic, it suffices to

prove the result with 6 replaced by 6. Now, assume the inequality (E.24) (where 6y is
substituted for #) does not hold. Then it must be the case that cos?(A4;0p+7), cos?((A; +
2)fp + ) < sin®(fy), and thus we have

| sin(A;60p + v+ 7/2)| = | cos(A4;6p + )| < | sin(6p)], (E.25)
and
[sin((A; +2)0p + v + 7/2)| = | cos((A; + 2)bp + )| < |sin(p)]. (E.26)
From (E.25) we deduce that

Aibo+v +m/2 € | (jm — 0o, jm + 6o). (E.27)
JEZL
Similarly, (E.26) implies that
(Ai +2)00 + 7+ /2 € | (i — b0, 57 + 6o),
JEZ
or equivalently
Aifo + v+ /2 € | (i — 300, 57 — 6y). (E.28)
JEZ

which contradicts (E.27), since 6y € [-n/AN,n/AN] and AN > 10 ensures that [46y| <
m, and hence none of the intervals in (E.27) and (E.28) overlap.

Now that we have proved (E.23) which shows ¢ has a lower bound, we now seek to
find an upper bound for ¢. We first observe that

o(1,0,7) = Z cos?(nf + v — ANG)

neli1

= > (cos(nf + ) cos(ANO) + sin(ANG) sin(nf +7))>.  (E.29)

neljf1

Then, we note that

(cos(nf 4 ) cos(ANG) + sin(ANG) sin(nf + v))?
< cos?(nf + ) 4 |2 cos(nb + ) cos(ANG) sin(AN) sin(nf + )| + sin?(AN),

and since
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|2 cos(nb + ) cos(ANB) sin(ANO) sin(nb + )| < 2| cos(nf + ) sin(ANG)|
< cos(nf + )% + sin?(ANG)

by the AM-GM Inequality, we thus have
(cos(nf + ) cos(AN®) + sin(ANG) sin(nf 4+ v))? < 2cos?(nd + ) + 2sin?(ANG),
and so

Z (cos(nf 4 ) cos(ANG) + sin(ANG) sin(nf + v))?

neli1
< ) 2cos’(nf +v) + 2sin®(AND). (E.30)

n€l;y1

Then, by the definition of ¢, the fact that |I; ;1| = AN, and the fact that sin?(AN6) <
(AN)?sin%(0) (which follows from repeated use of the identity |sin(a + b)| < |sin(a)| +
|sin(b)|, which in turn holds since |sin(a + b)| < |sin(a)cos(b)| + |sin(b) cos(a)| <
[sin(a)| + [sin(b)]),

Z 2cos?(nf + ) + 2sin?(ANG) < 2(AN)sin®(ANG) + Z 2 cos®(nf + )

nelif1 n€lit1

<2¢(i+1,0,7) + 2(AN)?sin?(0) (E.31)
Finally, combining (E.29), (E.30), and (E.31), we see that
#(i,0,7) < 26(i + 1,0,7) + 2(AN)3sin*(0) (E.32)

By combining the lower and upper bounds [(E.23) and (E.32) respectively], we may now

derive a bound on %, in particular,

0i,0.7) _, , 2AAN) sin?(6)

AN R P <24 2(AN)? < 3AN?3,
Si+1,0,7) =2 a4 1,0,) S2TAANTS

where the last inequality used the fact that (AN)3 > 2. Then, noting that

op(i+1,0,v) = Z cos?(nf + v + ANG)

nel;

= Z (cos(nf + ) cos(ANG) — sin(ANB) sin(nf + v))?

neli1

and following the same arguments used to prove (E.30), and (E.31), we also have

(i +1,0,7) < 2¢(i,0,7) + 2(AN)?sin?(0)
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and hence (using the same lower bound (E.23)) we see that

L 90,60,7)

< 3AN3. E.
BANT S G+ 1,69 = ° (£.33)

Case 2: mi; |0 — jm| > /AN
Jje
Recall from (E.13) in the proof of Lemma E.8 that

AN n sin((2A4;41 — 1)0 + 2v) — sin((24; — 1)0 + 27)

8i.0.7) = 5 ) £
and so, using sum-to-product identities (namely sin(f;) — sin(62) = 2 sin(@) X
cos(—é’l'ge2 )), we see that
AN  sin((24;41 — 1)0 + 2v) —sin((24; — 1)0 + 2v)
—+ .
2 4sin 6
AN  sin(AN6)cos((Ai41+ 4; —1)0 +2)
==+ .
2 2sin 6
AN Sin(ANG) cos((A;+1 + A4; — 1)0 + 2v)
T2 (1 + AN siné ’ (E-35)

We assume in this case that miél\ﬁ — jm| > w/AN, which implies |sin(d)] >
Je
|sin(m/AN)| = sin(n/AN) (where the last equality holds because AN > 10). Therefore,

we have

sin(AN@) COS((AH_l + Ai — 1)0 + 2"}/) < 1
AN sin 6 ~ ANsin(n/AN)’

Continuing, we see that since % > % for |z| <1, and since AN > 10, we thus have

1 2
- <z
ANsin(r/AN) — «

Combining this result with our earlier results (E.34) and (E.35), we see that

AN 2
j >—(1—= E.
o0 = 5 (1-2) (8.36)
We also note that clearly
¢(i,0,7) = _ cos’(nf +) < AN. (E.37)
nel;

Hence, by a similar argument to that used in the proof of Lemma E.8, since our bounds
(E.36) and (E.37) on ¢(i,0,~) are independent of 4, they also hold for ¢(i + 1,6,~), and
hence the bound for the ratio in this case is
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1 72/7(_ < (ZS(Z,@,’)/) < 2
2 T ei+1,0,y) T 1-2/1

(E.38)

Note that # < 6 < 3AN?3 since AN > 10, and hence, we have (E.33) in all cases,
which is our desired result. O

Using Lemma .13, we now prove the following lemma (which is similar to Lemma E.8)

1—‘1 !’ U . . . .
that bounds Ffﬁ"' £ This lemma will then be used to bound | Dy, 4.5 ¢ |, which ultimately
k, 4k 0!

allow us to prove our second main result, the bound on |C| (Lemma E.16).

Lemma E.14. Suppose )\;/QT > 1/4. There is a absolute constant Cyo such that if AN >
Cior?log AN, for all (k,0) # (K',0) with (k,£), (K, ¢") € {(0,0)} U ({1,---,|r/2]} x
{0,1}) either

Uy e o , D .
I”T >4/3 for alli € [m — 1], or —=5—— < 3/4 for alli € [m — 1],
ki k5

(for m = |[N/AN| as defined in Definition E./).

Proof. As in Lemma E.8, by the definition (E.9) of Fz’g;k,’@, we have

; AN . .
Lo o0 _ ( 121 ) (i, O 0, Vo) A+ 1,0k 0, Vi o)
| 7 Pk 0| (i + 1,0k 0, vk,0) D1, Ok 0 Var )

AN
S0, to bound this quantity, we need to consider bounds on (M) I pre| > ok e

o3 et
recall from (E.15) in Lemma E.8 that

AN 1/2r\ AN
|pk,¢ 04/\3‘/ '
—\,0 | > |1+ 2 )
K0

for Cy an absolute constant. Using the assumption A;/ > /4, and the fact that log(1+
x) > 1+Lm for ¢ > —1, we have

AN AN

Cy/4 _Ca

(%) 2 (1 + :2/ ) Z 604+ir AN. (E.gg)
k0

We now choose the absolute constant Cqg to be such that

Cy + 472

Cior?log AN > max{
4

(6log AN +1log9 — log(3/4)), 10} )

and suppose that AN > C1or2 log AN. We therefore have AN > 10, so, by Lemma E.13,
we have
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1 _¢i,0,9)

< 3AN3.
3AN3_¢@+LOW)_3

Combining the above bound with (E.39), we have

i A . .
Uyonr o ( |k ) N 00, Ok e ie) D+ 1,00 0 er)
Tt o Lok | (i + 1,0k 0, vk,0) D3, Ok 0 Vir 0r)
C
< 9(AN)Se @it < 34,

where the last inequality used the fact that AN > Cigr?log AN > C%r—frz(fi log AN +

Cy+ar? c
log9 — log(3/4)), which is equivalent to eV > [2(9(AN)Y)] G e eCarZ AN 5

3[(9(AN)®)]. As in the proof of Lemma E.8, in the case that |pg,¢| < |pw,¢'|, we can apply

AN -A
the same arguments to (‘Ip/];;’j/l‘) to find a lower bound for (%) ; combining

d(0,0k,0,76,0)  PUEHLO04 o1 Vir o7)
d(i+1,0k,0,Vk,) " D(8,0k7 o1 Vit 0r)

in this case, and the desired result therefore holds. O

this with the lower bounds on

k k!, 0!
, we find that -5 > 4/3

k0K 0!

Then, as in the previous section, it is sufficient to bound |Dy ¢.5 ¢/| and use the fact
that |Cf p.p ol > |Di,er o] to bound |Cf 40 | and then bound [C|. Thus, just as we
used Lemma E.8 to prove Lemma E.9, we use Lemma FE.14 to prove the following bound
on | Dy g.ir o]

Lemma E.15. For any (k,¢) # (K',0'), if

K0k’ 0 K0k 0 )
41“”'1 >4/3 for all i, or [ < 3/4 for alli
KOk 0 K0k 0

then |Dk7g;k/7g/| Z LN/ANJ — 32AN — 810g 167”2 — 2.

- . .
Proof. Without loss of generality, assume Ffflk £ > 4/3 (just as in Lemma E.9,

kek’z/

Lemma E.1 will imply the same result if Ff‘fl”“""ﬂ < 3/4). Also, as in the proof
k0K 0!
of Lemma E.9, there are slightly different arguments depending on whether or not

|ok,el, |pis 07| are greater than 1 or not.

Let S = %, so that 29 > 472¢*AN | As in Lemma E.9, by Lemma E.1 (with

the same choices of B;, B}, p1, p2, and «, since the assumptions are the same), we know
that except for [25/1og,(4/3)] +1 > 25/ log,(4/3) + 2 consecutive subsets, it holds that

FZ,E;k’,E/ <2 % or F?c,é;k/,é/ > 25, (E.40)

Analogously to Lemma E.9, if |pr¢| < 1,|perer| > 1 or |pre|l > 1, |pw | < 1, the
expressions in Dy, g, ¢ are Fk ket 07 OF I‘k Ok 0 As a result, since 25 > 4r2e4AN > 4y,
we have the desired conclusion for all but 25/ 1og,(4/3) + 2 consecutive subsets.



T. Faust et al. / Linear Algebra and its Applications 626 (2021) 79-151 149

Next, we note that in the case that |pg |, |prr.e/| > 1, we see that
ok, P2 < (1+ V218N < AN (E.41)

where the first inequality follows by Lemma 4.4 and the second inequality follows since
1+ /2 < e. Now suppose that Fi,e;k/,e/ < 275 If this is the case, then we have

ool ow 0PN 00, Orr e 1) > 25 gl ok o B, O Vi)
2N (4, On 0, Vi )
> 25 ANE ok o P4 G4, O, Vi)

> 417 | pree P O (i, O, Vise) (E.42)

= 2% ol pk,e[ P Pyt

where the first inequality is from the definition (E.9) of F}‘c’&k,,e,, and where the last
equality is due to the definition of S. A similar argument using (E.41) on |ps | shows
that

& oo (i, O e, Vi) = 472 g |pir o P G4, O, i )

. ; S
if F;ﬂ,e;k/yw Z 27,
Also, an analogous argument implies the same result if |pg ¢|, |oxr o] < 1, since

|pk7£‘72AN S (1 + \/5)4AN S 64AN7

where the first inequality follows by Lemma 4.4 and the second inequality follows since
1+vV2<e.
Finally, the number of the excluded intervals

S8AN + 2log 1612
log 2log,(4/3)
_ 8AN + 2log 1612

T log(4/3)
< 32AN + 8log 1672 4 2

+ 2

25/log,(4/3) +2 =

+2

which implies the conclusion of this lemma. 0O

Finally, we now use this bound on |Dy ¢/ ¢| to prove our second main result, which
provides a bound on |C| (note the similarities with Lemma E.10).

Lemma E.16. Let AN = [C?)r*] where Cyq is the same as in Lemma E.1/, then

|C| > |[N/AN| —2r(2r — 1)(32AN 4 8log 1672 + 2).
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Proof. Since AN = [C%,r1], it can be verified that this AN satisfies the assumption
of Lemma E.14, since AN > C3yr* > Cior?log(C3yr* + 1) > C1or?log AN where the
second inequality follows since x > log(22+1) for all positive 2. Thus Lemma .14 implies

the bounds on W used in the assumption of Lemma E.15. Then, by Lemma E.15

k, 0k 0!

we have a lower bound on the cardinality of Dy ¢4/ ¢/, |D ek 0| > | N/AN] — 32AN —
8log 1612 — 2. Thus, using this bound we can proceed to compute,

|ICl =1NCf ppr ol > [N/AN] = [U C o, 00

> |[N/AN] - Z |Cl 51|
k, 0k 0, (k0)F# (K0
> [N/AN]| - > (LN/AN| = |Dyesnr )

ke,k? 0 (k,0)# (k' 0)

|N/AN| —2r(2r — 1)(32AN + 8log 16r* +2). O

Y
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