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Let ‖A‖max := maxi,j |Ai,j | denote the maximum magnitude 
of entries of a given matrix A. In this paper we show that

max {‖Ur‖max, ‖Vr‖max} ≤ (Cr)6r

√
N

,

where Ur and Vr are the matrices whose columns are, 
respectively, the left and right singular vectors of the r-th 
order finite difference matrix Dr with r ≥ 2, and where 
D is the N × N finite difference matrix with 1 on the 
diagonal, −1 on the sub-diagonal, and 0 elsewhere. Here C
is a universal constant that is independent of both N and 
r. Among other things, this establishes that both the right 
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and left singular vectors of such finite difference matrices are 
Bounded Orthonormal Systems (BOSs) with known upper 
bounds on their BOS constants, objects of general interest 
in classical compressive sensing theory. Such finite difference 
matrices are also fundamental to standard rth order Sigma-
Delta quantization schemes more specifically, and as a result 
the new bounds provided herein on the maximum �∞-norms 
of their �2-normalized singular vectors allow for several 
previous Sigma-Delta quantization results to be generalized 
and improved.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

For a twice differentiable real valued function on Rd, the Laplace operator (or 
Laplacian) is a second-order differential operator given, in Cartesian coordinates, by 

Δf =
d∑

i=1

∂2f
∂x2

i
. Perhaps one of the simplest and most well known properties of the Laplace 

operator is that in the continuous setting of univariate functions on the unit interval, 
its eigenfunctions take the explicit form of sinusoidal functions. For example, with the 
homogeneous Dirichlet boundary condition{

Δun(x) = −λnun(x),
un(0) = un(1) = 0,

(1.1)

we have eigenvalues λn = n2π2, and eigenfunctions un = sin(nπx), n ∈ Z+. Similarly, 
replacing the above Dirichlet boundary condition with a homogeneous mixed boundary 
condition

u′
n(0) = un(1) = 0, (1.2)

we have λn = (2n−1)2π2

4 , and un =
√

2 cos
(

(2n−1)πx
2

)
. Higher order Laplace operators in 

the same setting have similar eigen-decompositions. Let Δr be the rth order Laplacian 
obtained via r successive applications of the Laplace operator, then with the homoge-
neous Dirichlet boundary condition{

Δrun(x) = (−1)rλnun(x),
un(0) = un(1) = 0 (1.3)

the eigenfunctions are identical to those for (1.1) while the eigenvalues are simply raised 
to the rth power, so that λn = nrπr.

These examples indicate that eigenfunctions of the continuous Laplacian operator, and 
its higher order counterparts, have well-spread energy. In other words, each eigenfunction 
is not sparse and its support is not concentrated in any region of the domain. Our main 
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interest in this paper is to explore whether, and to what extent, this property is preserved 
after discretization. Despite its apparent simplicity, this question turns out to be highly 
non-trivial. We answer this question affirmatively for a specific family of discretizations 
of Δr of use in signal processing applications. We believe the proof technique used in 
this paper can be generalized to show similar results for many other high-order finite 
difference matrices with various boundary conditions. The specific discretizations we shall 
focus on correspond to a robin-boundary condition, which naturally arises in at least two 
different scenarios that motivated this work. Both of these scenarios are related to the 
quantization and encoding of finite dimensional vectors, and are discussed in detail in 
Section 2 below. Given that discretizations of the Laplace transform are prevalent in 
many applications, we hope our basic approach will also be of broader interest.

Let us now consider the specific discrete problem we are interested in. To that end, 
define the (bi-diagonal) difference matrix, D ∈ RN×N , by its entries

Di,j :=

⎧⎪⎨⎪⎩
1 if i = j

−1 if i = j + 1
0 otherwise

, (1.4)

and note that DT D can be viewed as a discretized Laplacian, while for integers r ≥ 2
the matrices Dr are the building blocks of the higher order discretized Laplacians we 
are effectively interested in (see, e.g., Section 2). More specifically, for an integer r ≥ 1, 
consider the singular value decomposition of Dr = UΣV ∗ where U and V are orthogonal 
matrices and Σ is a non-negative diagonal matrix. Our goal, ultimately, is to control 
the �∞ norm of the singular vectors vj (resp. uj), which form the columns of V (resp. 
U). An equivalent version of the question, which we consider herein, is to bound the �∞

norm of the eigenvectors of (Dr)T Dr = V Σ2V T .
A few observations are in order to help illustrate the challenge at hand (see also 

Section 1.1 below). First, when r = 1, the problem is relatively easy and the singular 
values and vectors admit analytic expressions taking the form of simple trigonometric 
functions with ‖uj‖∞ ≈ ‖vj‖∞ ≈ N−1/2 (see, e.g., [32]). This suggests that a direct 
approach to the problem when r ≥ 2 might work out easily, but unfortunately that is 
not the case. The fundamental issue that arises is that, e.g.,

(DT D)r �= (Dr)T Dr, (1.5)

so that the matrices on either side of the inequality admit different eigen-decompositions. 
This is in contrast to the continuous case we saw earlier, where the eigenfunctions of 
higher order operators are preserved and the eigenvalues are simply those of the first 
order operator raised to the rth power.

While inequality (1.5) holds, it is also true that the difference (DT D)r − (Dr)T Dr

appears relatively well behaved in the sense that it is low-rank and sparse, which gives 
us hope that we may be able to appeal to matrix perturbation analysis to control the 
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eigen-decomposition of (Dr)T Dr in terms of that of (DT D)r. Indeed by appealing to 
Weyl’s inequalities, [20] (see Lemma 3.3) was thus able to control the eigenvalues of 
(Dr)T Dr. The eigenvectors turn out to be a different matter entirely. The standard 
approach to eigenvector perturbation is to appeal to some version of the Davis-Kahan 
sin(Θ) theorem [11] (see also [13]). In brief, such theorems state that if the (Hermitian) 
matrix M̃ = M + H is a perturbation of M by H, the subspace spanned by certain 
eigenvectors of M̃ is close to the analogous subspace spanned by eigenvectors of M , 
provided ‖H‖ is small compared to the gap between the eigenvalues of M and M̃ . 
Unfortunately, in our case, [20] (see Lemma 3.3) shows that the eigenvalues are quite 
close to each other, so appealing to Davis-Kahan theorems yields vacuous bounds. In 
recent years, similar problems in different settings have led to various results yielding 
eigenvector perturbation bounds, for example when the matrix H is random and the 
matrix M admits some structure (see, e.g., [15,33,25,14]).

In contrast with most such works, we must work with deterministic perturbations 
that are very large in norm compared to the minimal spectral gap herein, and thus 
our approach to obtaining eigenvector bounds is different. Indeed, applying preexisting 
results to our setting also yields vacuous bounds. Thus, most of the paper is dedicated 
to proving the following result via a more direct approach.

Theorem 1.1 (Main result). Suppose that r ≥ 2, and let σj := σj (Dr) have associated left 
and right singular vectors uj , vj ∈ RN for all j ∈ [N ]. There exists absolute constants 
C, C3 > 0 such that if N ≥ Cr

3 , we have maxj∈[N ] {‖uj‖∞, ‖vj‖∞} ≤ (Cr)6r

√
N

.

The proof of Theorem 1.1, while utilizing relatively elementary techniques, is highly 
nontrivial. In addition, we note here that while our analysis is specialized to the case of Dr

for the particular finite difference matrix D defined in (1.4), much of the proof technique 
can also be adapted to other higher order finite difference matrices that implicitly involve 
different boundary conditions. We refer the reader to the next section for a more detailed 
overview of the proof, and to Section 2 for a discussion regarding why these specific 
finite difference matrices are so important in some applications. The actual proof of 
Theorem 1.1 is then given in Section 3, with Section 4, Section 5, and the appendices 
devoted to the proofs of supporting lemmas.

1.1. Some comments on the proof of Theorem 1.1

As the reader may have already noticed, the proof of Theorem 1.1 is quite long. Given 
this preexisting condition we believe it is appropriate to extend the paper’s length just 
a bit more to try to explain why the proof is so lengthy, and why one can not prove 
the main result more quickly using, e.g., powerful general purpose perturbation results. 
In order to get some intuition for the difficulties involved in bounding the entries of the 
singular vectors of our difference matrices it is helpful to look at a small example. For 
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instance, if r = 2 and N = 7 the matrix (D2)T D2 whose eigenvectors we must consider 
becomes

(D2)T D2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 −4 1 0 0 0 0
−4 6 −4 1 0 0 0
1 −4 6 −4 1 0 0
0 1 −4 6 −4 1 0
0 0 1 −4 6 −4 1
0 0 0 1 −4 5 −2
0 0 0 0 1 −2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Though (D2)T D2 above clearly has a lot of nice structure, it is important to notice 
that it is not quite, e.g., Toeplitz. Furthermore, by appealing to interlacing results for 
the eigenvalues of (D2)T D2 one can see after some computation that the spectral gaps 
between neighboring eigenvalues of this matrix are small (on the order of N−4 for the 
smallest eigenvalues). As a result, the smaller spectral gaps between neighboring eigen-
values tend to go to 0 relatively rapidly as N grows, making them exceedingly small with 
respect to the size of the minimal perturbation needed to make (D2)T D2, e.g., circu-
lant, or Toeplitz. Similarly, the smallest eigenvalue gaps of the closest circulant/Toeplitz 
matrices to (D2)T D2 tend to be quite small as well, also going to 0 polynomially in 
1/N as N grows. The upshot is that standard eigenspace perturbation methods such as 
[11,13,15,14] do not appear to yield meaningful bounds on the �∞-norms of the eigen-
vectors in the setting of Theorem 1.1.

We find ourselves in a similar situation if we apply the singular vector perturbation 
theory to the asymmetric matrix D2. Note that D2 has a singular value gap on the 
order of O(N−2). If we denote this singular value gap by δ, then state of the art singular 
vector perturbation results (see e.g. [24]) would bound the distance between the singular 
vectors of D2 and those of its closest circulant matrices by O(N−1/2δ−1) ∼ O(N1.5)
if measured in the �2-norm, and by O(N−1δ−1) ∼ O(N) if measured in the �∞ norm. 
Crucially, both of these upper bounds blow up as N → ∞. Additionally, the situation 
only appears to get worse for Dr if r is chosen to be larger than 2.

Due to these complications, and inspired by the bravery of, e.g., Strang [30] and 
Böttcher et al. [4,3] in more directly assaulting similar eigenvector problems involving 
related matrices, we follow their example herein. More specifically, similar to, e.g., [4] we 
effectively treat (Dr)T Dr as a banded Hermitian Toeplitz matrix HToep with a structured 
perturbation in its lower right corner. In order to understand both the structure of 
the eigenvectors of HToep, as well as the general structure of the perturbation P :=
HToep − (Dr)T Dr, in Section 4 we embed each eigenvector of (Dr)T Dr into the solution 
of a simple difference equation with prescribed boundary conditions corresponding to P . 
We then solve this difference equation in order to obtain a formula for the entries of each 
eigenvector v of (Dr)T Dr of the form
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vi =
2r∑

k=1

c′
k · ρi

k, (1.6)

where the formula parameters c′
1, . . . , c′

2r, ρ1, . . . , ρ2r ∈ C all depend on the (unknown, 
but bounded) eigenvalue corresponding to v.

The desired �∞-bounds having already been obtained for all eigenvectors associated 
with eigenvalues below a prescribed cutoff in Section 3, the vast majority of the proof 
of Theorem 1.1 then involves using (1.6) to bound the �∞-norms of the eigenvectors 
associated with eigenvalues above the cutoff. This portion of the proof is carried out in 
several phases. First, the formula parameters ρ1, . . . , ρ2r in (1.6) are bounded (above, 
below, and away from one another) in Section 4.3. Next, in Section 5, the formula 
parameters c′

1, . . . , c′
2r are upper bounded both individually, and in combination with 

specific powers of their corresponding ρk parameters. These upper bounds are quite 
delicate and involve bounding the solutions to an O(r) × O(r) Vandermonde system 
coming from the boundary conditions corresponding to P . Finally, the bounds on each 
vi are then established using (1.6) in combination with the derived bounds on the c′

k

and ρk parameters. We refer the reader to Section 3 below for additional details and 
discussion.

2. Some applications of Theorem 1.1 in signal processing

Discretized versions of the Laplace operator play an important role in various appli-
cations. These applications include numerical analysis, where discrete Laplacians appear 
as finite-difference approximations of the (continuous) Laplacian operator, and image 
processing, where they are used, for example, in edge detection. Via discretizations of 
the Laplace-Beltrami operator, they are also important in various applications involving 
geometry, including mesh parametrization (see, e.g., [18]). Herein, we focus on two ap-
plications that are related to quantization schemes in signal processing, and that both 
specifically benefit from Theorem 1.1.

2.1. Error bounds for sigma-delta quantization

In various signal acquisition systems ranging from classical ones related to audio and 
image acquisition [29,28], to more recent ones like compressed sensing [7,12,9,6] (see also 
[5]), continuum valued samples of signals need to be converted to digital bits. In or-
der to reduce the quantization error, various quantization schemes have been developed 
including Memoryless Scalar Quantization (e.g., [17]), Sigma-Delta Quantization (e.g., 
[29,10,19,22,20]) and Beta Encoding [8], among others [26]. In particular, the Sigma-
Delta quantization family has received much attention from both engineers and applied 
mathematicians seeking to understand its performance as it generally enjoys both hard-
ware simplicity and favorable error bounds. Nevertheless, its induced error bounds under 
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certain signal types and measurement conditions are not entirely understood in part due 
to a lack of bounds on the singular vectors of Dr as considered herein.

Consider, for instance, the problem of measuring and digitizing a signal modeled as 
a finite dimensional vector x in Bd, the Euclidean unit ball of Rd, whose entries xi are 
infinite precision real numbers that are, e.g., potentially irrational (see, e.g., [1,2,27]). In 
various settings, one can model measurements of x as inner products with frame vectors 
fi ∈ Rd, i = 1, ..., N with N ≥ d. Thus, one has y = Fx ∈ RN , where the rows of 
the N × d matrix F are the vectors fi. Having obtained y, one must digitize it, i.e., 
replace its entries by elements of a finite alphabet A, e.g., A = {±1} in order to store it, 
transmit it, or process it on digital devices. To that end, consider a particular family of 
quantization schemes Q : RN → AN , known as Sigma-Delta (ΣΔ) quantization schemes. 
The simplest such scheme is the first order ΣΔ quantizer which works as follows.

Given y = Fx, one computes a vector q ∈ {−1, 1}N via the following recursion with 
initial condition u0 = 0:

qi = sign (yi + ui−1) , (2.1)

ui = yi + ui−1 − qi (2.2)

for i = 1, 2, . . . N . We may succinctly restate the relationships between the vectors x, u, 
and q as

Du = Fx − q,

where the matrix D is exactly the one defined in (1.4). In other words, typical hardware 
implementations of first order ΣΔ quantizers based on (2.1) and (2.2) implicitly utilize 
the matrix D.

Higher order versions of the above quantization scheme also exist, and in fact often 
yield better reconstruction errors. With stable higher order schemes, equations (2.1)
and (2.2) are modified so that now their hardware implementations implicitly generate 
matrix equations of the form

Dru = Fx − q, (2.3)

where ‖u‖∞ is bounded independently of N [1,2,22,27].
Note that the matrix Dr is both banded and lower triangular (i.e., not circulant) by 

necessity since digital quantizers are only able to base the ith quantized bit qi on the 
past quantization errors, where the limited band of the Toeplitz matrix Dr corresponds 
to the limited analog memory units allocated to the circuit (i.e., qi can only be based on 
uj with 0 ≤ i − j ≤ r, which needs to be stored in the circuit’s memory units).

With such an approach, one has represented the underlying vector x ∈ Bd by N bits 
(when A = {±1}). One way to compress (i.e., encode) this N -bit representation without 
compromising reconstruction accuracy is explored in [21]. The approach in [21] capitalizes 
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on the potential redundancy in the measurements that is due to having N ≥ d. To 
encode q, one simply applies the map q �→ RD−rq, where R ∈ {0, 1}m×N with m < N

is a random selector matrix with exactly one nonzero entry per row, which is selected 
uniformly at random. Observing that RD−rq can be represented by ∼ rm log(N) bits, 
we see that this representation can be quite parsimonious compared to storing all of 
q when m 
 N , provided we can still recover x faithfully using only m entries from 
D−rq. Towards such a reconstruction, rearranging (2.3) and applying R yields Ru =
RD−rFx − RD−rq, which upon further manipulation yields

‖(RD−rF )†Ru‖2 = ‖x − (RD−rF )†RD−rq‖2. (2.4)

That is, the reconstruction error associated with the above encoding and the de-
coding RD−rq �→ (RD−rF )†RD−rq can be controlled by ‖(RD−rF )†Ru‖2 ≤
‖(RD−rF )†‖‖Ru‖2. This bound is small provided the matrix RD−rF has large sin-
gular values.

When r = 1, [21] shows that when the columns of F are the d singular vectors 
of D associated with its smallest singular values, the reconstruction error (2.4) decays 
exponentially in the number of bits used for the encoding. Extending this to r > 1 was 
left as an open problem, with the stumbling block being the lack of a bound on the 
singular vectors of Dr of the form ‖vj‖∞ ≤ C(r)√

N
, which is Theorem 1.1 of this paper. 

Consequently, via minor modifications in the proof of Theorem 3 of [21] combined with 
Theorem 1.1 we obtain the following result.

Theorem 2.1. Let ε, p ∈ (0, 1), and R ∈ {0, 1}m×N be a random selector matrix. Then, 
there is a matrix F ∈ RN×d such that D :=

∥∥∥x − (RD−rF )†
RD−rq

∥∥∥
2

≤ C(ε, r, d)N−r

for all x ∈ Bd with probability at least 1 − p, when m ≥ C ′(r)ε−2d ln(2d/p). Here, q is 
the output of a stable rth order ΣΔ quantization scheme applied to Fx. Furthermore, 
RD−rq can be encoded using R ≤ m(r log2 N + 1) bits.

From the above theorem one obtains the relationship D(R) � exp
(

− R
C′′d log(d/p)

)
between the bit-rate R used to encode x and the associated error (or distortion) D, where 
C ′′ depends on ε, r, and d. Note that in the above application, it is entirely impossible to 
replace Dr, and hence (Dr)T Dr, by easier to analyze matrices (i.e., matrices with nicer 
boundary conditions) such as (DT D)r for two reasons. The first is that the algorithm 
naturally works with the matrix Dr, and more importantly, the boundary conditions 
associated with this choice are entirely imposed by the causal nature of the quantization 
algorithm. Quantizing the current measurement can only depend on past measurements, 
and not on future ones, so Dr in (2.3) (or any realistic substitute) simply must be a 
lower triangular matrix.

Theorem 2.1 above uses Theorem 1.1 to prove the existence of a matrix F which 
can be used to compactly and accurately quantize arbitrary vectors. However, in many 
applications the matrix F in (2.3) is determined by the application, and is not something 
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that the designer of the quantizer can choose however they like. Thankfully in such 
settings there are still general formulas that bound the quantization error for a large class 
of general matrices F (see, e.g., [34]), but their theoretical application again depends on 
understanding the structure of the singular vectors of Dr. For example, consider the 
following proposition.

Proposition 2.2. ([34] Proposition 2.3) Let F be an N × d matrix with normalized rows. 
Then, there exists a decoder such that for any x ∈ column-span(F ) ∩ Bd, the reconstruc-
tion x̂ from the r-th order Sigma-Delta quantization of x using this decoder obeys

‖x̂ − x‖2 �
(

N

�

)−r √
N

σmin(V T
r,N,�F )

for any � with d ≤ � ≤ N . Here Vr,N,� ∈ RN×� contains the � least significant left 
singular vectors of the N × N rth order difference matrix Dr. Here � hides a constant 
independent of N, l and r.

Note that the matrix Vr,N,� in Proposition 2.2 corresponds to the objects of interest 
in this paper. As a result, it should not be surprising that Theorem 1.1 can be used 
in combination with Proposition 2.2 in order to make its upper bound on the error 
‖x̂−x‖2 more explicit. For example, in the critically important case of bandlimited signal 
quantization via sampling, one can assume that F contains columns of an N × N DFT 
matrix. If we further assume that entries from the bandlimited signal x are subsampled 
randomly, then F becomes the composition of an N × N Discrete Fourier Transform 
(DFT) matrix with a random sampling matrix R ∈ Rm×N containing exactly one 1 in 
each row (in an i.i.d. uniformly random position). That is, F = RF̃ holds, where F̃

now denotes a full N × N DFT matrix. In this setting the following probabilistic lower 
bound is known for the smallest nonzero singular value σmin(V T

r,m,�F ) = σmin(V T
r,m,�RF̃ )

appearing in Proposition 2.2.

Theorem 2.3. ([34] Theorem 2.7 and Theorem 2.8) Let F̃ consist of d columns of the 
N ×N DFT matrix, and R be the operator that randomly samples m rows from a matrix. 
Suppose the � in Proposition 2.2 also satisfies m/π2 ≥ � ≥ cm‖Vr,m,�‖2

max
η2 d log3(m/p), then 

with probability at least 1 − p, it holds that

σmin(V T
r,m,�RF̃ ) ≥ (1 − η)

√
�,

where Vr,m,� are the � least significant left singular vectors of the m × m rth order dif-
ference matrix Dr for all � ≤ m. Here c is an absolute constant.

Combining Proposition 2.2 and Theorem 2.3 and setting � as its allowable lower bound 
implies the following quantization reconstruction error
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‖x̂ − x‖2 �
(
‖Vr,m,�‖2

maxd log3(m/ε)
)r− 1

2 .

This brings the need to control ‖Vr,m,�‖max well enough to guarantee that the bound 
decays for fixed r as m increases. Our Theorem 1.1 (stated as a conjecture in [34]) 
addresses this issue, and gives rise to the polynomially decaying bound in m

‖x̂ − x‖2 �
(

C(r)d log3(m/ε)
m

)r− 1
2

,

where C(r) is a constant that depends on r. This same type of improvement of related 
error bounds in, e.g., [34] can also be derived for other signal types (i.e., choices of F̃
above) by using our Theorem 1.1 together with other existing analogs of Proposition 2.2
and Theorem 2.3 proven therein.

3. Proof of the Main result (Theorem 1.1)

Below we will denote the set {1, 2, . . . , n} ⊂ N by [n]. For any matrix A ∈ Rm×N we 
will denote the jth column of A by aj ∈ Rm. The transpose of a matrix, A ∈ Rm×N , 
will be denoted by AT ∈ RN×m, and the singular values of any matrix A ∈ Rm×N will 
always be ordered as σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin(m,N)(A) ≥ 0. We will denote the 
standard indicator function by

δi,j :=
{

1 if i = j

0 if i �= j
,

for i, j ∈ N. Given a matrix A with a singular value decomposition A = UΣV ∗, we use 
uj (resp. vj) to denote the columns of U (resp. V ).

To begin the proof, it is straightforward to verify that with reversed row and column 
orders, Dr(Dr)T coincides with (Dr)T Dr. That is, the (i, j)th element of Dr(Dr)T is 
equal to the (N−i, N−j)th element of (Dr)T Dr for all r ≥ 1. Then, since the eigenvectors 
of Dr(Dr)T and (Dr)T Dr are the left and right singular vectors of Dr, respectively, this 
then implies that the left singular vectors of Dr are just the right singular vectors with 
reversed entries. As a result, we have the following lemma, which we prove in detail in 
Appendix A.1.

Lemma 3.1. Suppose that Dr has singular value decomposition Dr = UΣV ∗ for r ≥ 1. 
Then, ‖uj‖∞ = ‖vj‖∞ for all j ∈ [N ].

In light of Lemma 3.1 it suffices to prove the following result bounding just the �∞-
norms of the right singular vectors of Dr in order to obtain a proof of Theorem 1.1.
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Theorem 3.2. Suppose that r ≥ 2, and let σj := σj (Dr) have associated right singular 
vector vj ∈ RN for all j ∈ [N ]. There exists absolute constants C, C3 > 0 such that if 
N ≥ Cr

3 , we have ||vj ||∞ ≤ (Cr)6r

√
N

for all j ∈ [N ].

The proof of Theorem 3.2 will be broken up into cases depending on the size of σj, 
the jth singular value of Dr. Thus, we begin by providing bounds for each σj.

Lemma 3.3. Let σj := σj (Dr) be the jth singular value of Dr ∈ RN×N where j ∈ [N ], 
and σ1 ≥ σ2 ≥ · · · ≥ σN . Then,

0 < σj <

(
2 cos

(
π

2N + 1

))r

holds for all j ∈ [N ]. Moreover, there exist absolute constants c, C ∈ R+ such that

r−rc

(
j

N

)r

≤ σN−j+1 ≤ rrC

(
j

N

)r

also holds for all j ∈ [N ].

Proof. Since D is of full rank we have that σj > 0 for all j ∈ [N ]. In addition ‖Dv‖2 <

2cos
(

π
2N+1

)
‖v‖2 holds for all v ∈ CN (see, e.g., [21]), which implies that ‖Drv‖2 <(

2cos
(

π
2N+1

))r

‖v‖2 for all v ∈ CN , and hence that σ1 <
(

2cos
(

π
2N+1

))r

. The second 

item is a direct consequence of Proposition 2.2 in [23]. �
We see that this result implies that σj ∈ (0, 2r). Going forward we will prove The-

orem 3.2 by bounding ||vj ||∞ in two separate cases: the case where σj is “small” 
(namely 0 < σ

1/r
j < C2r6

N for a constant C2 > 0), and the case where σj is “large” 

(2 > σ
1/r
j ≥ C2r6

N ). In Section 3 below we prove the result for the case of “small” σj. 
This proof is a fairly straightforward application of results about D together with a sim-
ple lemma concerning discrete dynamical systems. We also state the result for “large” σj

and then formally prove Theorem 3.2 given that the stated result holds. The remainder 
of paper is then dedicated to proving that the stated result for the case of “large” σj

actually does indeed hold.
To begin the proof of the “large” σj case (i.e., Lemma 3.6 below), we first find a 

formula for the right singular vectors of Dr in Section 4. To achieve this goal, we extend 
each singular vector vj to an infinite sequence ṽj , and then use techniques from the 
solution of difference equations to find a formula for each entry of vj. In particular, we 
are able to write each vj in terms of the roots ρk,� of a characteristic polynomial p(x)
(which differs for each j) in the following way:

(vj)i =
1∑ r−1∑

ck,� · ρi
k,�. (3.1)
�=0 k=0
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The rest of the section is then devoted to proving results about the roots ρk,� which then 
ultimately allow us to bound ||vj ||∞.

Finally, in Section 5, we prove the main result in the case that σj is “large”, and so 
complete the proof of Theorem 3.2 as a result. To do this, we first seek to find a bound 
on the constants ck,� from the above expression (3.1) corresponding to roots ρk,� with 
|ρk,�| ≥ 1. This proof is rather involved, and so is contained in Appendix E. After this, 
we use this bound and the properties of the infinite sequence ṽj to bound ck,� in the 
case that |ρk,�| < 1, which gives us a bound on ck,� for all k, �. We then use those bounds 
together with the properties of each infinite sequence ṽj to bound ck,�ρ

N+1−r
k,� for all k, �. 

Combining these bounds, we are then able to prove the main result in the case that σj

is “large”, thereby completing the proof of Lemma 3.6 below (and, therefore, proving 
Theorem 3.2 as well).

We next begin by proving the result in the “small” σj case. To do this, we will utilize 
the following general result concerning the �∞-norms of the �2-normalized right singular 
vectors of an arbitrary matrix power Ar ∈ CN×N . More specifically, the following lemma 
can be used to show that the right singular vectors of Ar associated with its smallest 
singular values will always be “flat” (i.e., have �∞-norms on the order of ∼ 1√

N
) when 

the rows of A−1 are all sufficiently small in �2-norm.

Lemma 3.4. Let r ∈ Z+, A ∈ CN×N , and Ar have the singular value decomposition 
Ar = UΣV . If (σj (Ar))1/r ≤ α · σN (A) holds for some j ∈ [N ] and α ∈ R+, then

‖vj‖∞ ≤ αrσN (A) · max
k∈[N ]

‖(A−1)∗ek‖2.

Proof. Consider the discrete dynamical system defined by Φvj
(k +1) := (σj (Ar))−1/r ×

AΦvj
(k) for all k ∈ Z+ with Φvj

(0) := vj . It is not difficult to see that both

• ‖Φvj
(r)‖2 = ‖uj‖2 = 1, and

• ‖Φvj
(k)‖2 = ‖A−1 (σj (Ar))1/r Φvj

(k + 1)‖2

≤ (σj(Ar))1/r

σN (A) ‖Φvj
(k + 1)‖2

≤ α‖Φvj
(k + 1)‖2

hold for all k ∈ Z+ since (σj (Ar))1/r ≤ α · σN (A). As a consequence, ‖Φvj
(1)‖2 ≤ αr−1

must also hold.
Continuing, we can now see that

‖vj‖∞ = ‖A−1 (σj (Ar))1/r Φvj
(1)‖∞ = (σj (Ar))1/r max

k∈[N ]

∣∣〈A−1Φvj
(1), ek〉

∣∣
= (σj (Ar))1/r max

k∈[N ]

∣∣〈Φvj
(1), (A−1)∗ek〉

∣∣
≤ (σj (Ar))1/r max ‖Φvj

(1)‖2‖(A−1)∗ek‖2

k∈[N ]
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≤ αrσN (A) · max
k∈[N ]

‖(A−1)∗ek‖2,

where the last inequality uses both our assumed upper bound on (σj (Ar))1/r, and the 
fact that ‖Φvj

(1)‖2 ≤ αr−1. �
With Lemma 3.4 in hand we may immediately obtain the following result, which we 

will use to bound vj in the case that σj is “small”.

Corollary 3.5. Let σj := σj (Dr) have associated right singular vector vj ∈ RN for all 
j ∈ [N ]. If σ1/r

j ≤ α
N for some α ∈ R+, then there exists an absolute constant c2 ∈ R+

such that ‖vj‖∞ ≤ (c2α)r

√
N

.

Proof. We apply Lemma 3.4 with A = D. Note that

D−1
i,j :=

{
1 if i ≤ j

0 otherwise
.

Thus, maxk∈[N ] ‖(D−1)∗ek‖2 =
√

N . Furthermore, Lemma 3.3 (with r = 1) tells us that 
c
N ≤ σN (D) ≤ C

N so that σ1/r
j ≤ α

c · c
N ≤ α

c · σN (D). Thus, Lemma 3.4 allows us to 
conclude that

‖vj‖∞ ≤
(α

c

)r

σN (D)
√

N ≤
(α

c

)r C√
N

≤ (c2α)r

√
N

where c2 := max{1,C}
c ≥ C1/r

c for c, C ∈ R+ as in Lemma 3.3. �
We see from Corollary 3.5 that we can bound the �∞-norm of vj in the case that σj

is “small”. As discussed previously, the remaining sections of the paper will be devoted 
to proving the following main result, which bounds vj in the case that σj is “large”:

Lemma 3.6. Let σj := σj (Dr) have associated right singular vector vj ∈ RN for all 
j ∈ [N ]. There exist absolute universal constants C0, C2, C3 ∈ R+ such that for all r ≥ 2
and N ≥ Cr

3 , ‖vj‖∞ ≤ (C0r)4r−5
√

N
holds for all j ∈ [N ] with σ1/r

j ≥ C2r6

N .

Proof. This proof is quite involved. See Sections 4 and 5 below. �
Using Corollary 3.5 and Lemma 3.6 we can now prove Theorem 3.2, thereby estab-

lishing our main result.

Proof of Theorem 3.2. Suppose that N ≥ Cr
3 for C3 as in Lemma 3.6. Then, if σ1/r

j ≥
C2r6

N (for C2 as in Lemma 3.6), Lemma 3.6 implies ‖vj‖∞ ≤ (C0r)4r−5
√

N
. If σ1/r

j < C2r6

N , 
then by setting α = C2r6 in Corollary 3.5, we have
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‖vj‖∞ ≤ (C ′r)6r

√
N

.

where C ′ > 0 is an absolute constant chosen such that (c2C2r6)r ≤ (C ′r)6r for all r ≥ 2. 
Thus, choosing C > 0 an absolute constant such that (Cr)6r ≥ max{(C0r)4r−5, (C ′r)6r}
for all r ≥ 2, we have

‖vj‖∞ ≤ (Cr)6r

√
N

.

for all j ∈ [N ]. �
The remaining sections of the paper are dedicated to proving the result Lemma 3.6

which will allow us to complete the proof of Theorem 3.2 (and therefore, to complete 
the proof of our main result).

4. Toward the proof of Lemma 3.6: a formula for the right singular vectors of Dr

Before we can prove Lemma 3.6 we will need some basic facts about the structure 
of the right singular vectors of Dr ∈ ZN×N for any r ∈ Z+. Note that these singular 
vectors will be identical to the eigenvectors of the related symmetric matrix (Dr)T Dr. 
As a result, the remainder of this section will be devoted to studying the structure 
of (Dr)T Dr. The next lemma begins our study of (Dr)T Dr by establishing a general 
formula for its entries, which turn out to be closely related to the alternating binomial 
coefficients.

Lemma 4.1. Let r, N ∈ Z+ be such that r < N/2. All the entries of (Dr)T Dr ∈ ZN×N

are given by

((Dr)T Dr)j−m,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(−1)m

(
2r

r − m

)
if j − m ≤ N − r, m ∈ {0, 1, · · · , r}

(−1)m

N−j∑
l=0

(
r

l + m

)(
r

l

)
if j − m > N − r, m ∈ {0, 1, · · · , r}

0 if m > r

,

combined with the fact that (Dr)T Dr is symmetric.

Proof. See Appendix A.2. �
With Lemma 4.1 in hand we are now ready to study the eigenvectors of (Dr)T

Dr. Let 
λ ∈ R+ be an eigenvalue with associated eigenvector v. Note that we know λ ∈ (0, 4r)
from Lemma 3.3. Considering the equation (Dr)T

Drv = λv in light of Lemma 4.1, we 
can see that
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2r∑
k=0

(−1)k+r

(
2r

k

)
vi−r+k = λvi (4.1)

holds for all N − r ≥ i > r. Our strategy going forward will be to extend v to an infinite 
sequence ṽ which satisfies the simple recurrence (4.1) for all i ∈ Z, instead of just for 
i ∈ (r, N − r]. That is, we want to construct an infinite sequence ṽ such that both

ṽi = vi for all i ∈ [1, N ],

and

2r∑
k=0

(−1)k+r

(
2r

k

)
ṽi−r+k = λṽi for all i ∈ Z, (4.2)

hold. Once we have managed to complete this task we will then be able to use standard 
techniques for the solution of difference equations (see, e.g., [16]) in order to construct 
a simple formula for every entry of ṽ. This same formula will then also generate every 
entry of v. Finding such a formula is the ultimate goal of this section.

4.1. Extending v to a sequence ṽ that satisfies (4.2)

We will extend v to an infinite sequence ṽ as follows. Let ṽ be the sequence of real 
numbers whose entries i ∈ [1 − r, N + r] are given by

ṽi =

⎧⎪⎨⎪⎩
0 if 1 − r ≤ i ≤ 0
vi if 1 ≤ i ≤ N

v′
i if N + 1 ≤ i ≤ N + r

, (4.3)

where the v′
N+1, . . . , v′

N+r ∈ R above are chosen so that

r∑
k=0

(−1)k

(
r

k

)
ṽi−k = 0 (4.4)

holds for all i ∈ [N +1, N +r]. Note that these ṽi = v′
i are uniquely defined by v together 

with (4.4) for all i ∈ [N +1, N +r]. Having extended v to the larger index set [1 −r, N +r]
in this fashion, we may now finish extending v to all of Z by inductively setting

ṽi =
{

(−1)rλṽi+r −
∑2r

k=1(−1)k
(2r

k

)
ṽi+k if i ≤ −r

(−1)rλṽi−r −
∑2r−1

k=0 (−1)k
(2r

k

)
ṽi−2r+k if i > N + r

. (4.5)

Lemma 4.2. Equations (4.3) − (4.5) imply that (4.2) holds.

Proof. See Appendix B. �
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In the next subsection we will solve (4.2) via its characteristic polynomial. Note that 
real solutions are guaranteed to exist for (4.2) whenever λ is an eigenvalue of (Dr)T

Dr, 
and we can always find them via the approach below (see, e.g., [16]).

4.2. Solving the related recurrence relation for ṽ

Before we can write a formula for ṽ we must first find the roots of the characteristic 
polynomial of (4.2) (for simplicity, we multiply each side of (4.2) by (−1)r)

p(x) =
2r∑

k=0

(
2r

k

)
(−x)k − (−1)rλxr = (1 − x)2r − (−1)rλxr. (4.6)

By considering (4.6) when p(x) = 0 it is not difficult to see that

p(x) =
r−1∏
k=0

(
−(1 − x)2 − λ1/re2kπi/rx

)
. (4.7)

Examining (4.7), one can now easily deduce the following lemma concerning the roots 
of the characteristic polynomial p(x).

Lemma 4.3. The roots of p(x) are given by

ρk,0 := 2 − λ1/re2kπi/r +
√

λ2/re4kπi/r − 4λ1/re2kπi/r

2 (4.8)

and

ρk,1 := 2 − λ1/re2kπi/r −
√

λ2/re4kπi/r − 4λ1/re2kπi/r

2 (4.9)

for k ∈ {0, 1, . . . , r − 1}. Moreover, it is also not difficult to see that both

ρk,0 = ρ−1
k,1 for all k ∈ {0, 1, . . . , r − 1}

and

ρk,j = ρr−k,j for all k ∈ {1, . . . , r − 1}

are true. That is, both the multiplicative inverse and complex conjugate of every root are 
also a root.

Proof. The lemma can be directly verified by substitutions using (4.7) – (4.9), coupled 
with the fact that λ ∈ (0, 4r) by Lemma 3.3. �
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In the following lemmas we will establish several other important properties of the 
roots of p(x), including their uniqueness for all r ≥ 2. These properties will be useful 
later. In particular, the fact that each root of p(x) is unique (i.e., has multiplicity one) 
will be crucial to our ability to write down a simple formula for each entry of ṽ, and 
therefore, will also be crucial to our discovery of a compact formula for each eigenvector 
of (Dr)T

Dr.

Lemma 4.4. Let ρ be any root of p(x) as given in (4.8) and (4.9). Then, for r ≥ 2

(1 +
√

2)−2 ≤ |ρ| ≤ (1 +
√

2)2 (4.10)

and

(1 +
√

2)−1λ
1

2r ≤ |ρ − 1| ≤ (1 +
√

2)λ 1
2r . (4.11)

Furthermore, using (4.8) and (4.9) we see that ρ0,0 �= ρ0,1,

|ρ0,0| = |ρ0,1| = 1,

and

|ρk,j | �= 1 holds unless k = 0.

Proof. We will begin with (4.11) and (4.10). Examining (4.7), we have that

ck = ck(ρ) := √
ρ − 1

√
ρ

= ±iλ
1

2r ekπi/r. (4.12)

Recalling again that 0 < λ < 4r by Lemma 3.3, we have |ck| < 2. For each k ∈ {0, ..., r−1}
note that √ρk,0 = ck+

√
c2

k+4
2 , and 

√
ρk,1 = ck−

√
c2

k+4
2 are the two solutions of

z2 − ckz − 1 = 0,

where ck is defined in (4.12). Using that |ck| < 2 we can now see that |√ρ| ≤ 1 +
√

2
holds. As 1

ρ is also a root of (4.7) by Lemma 4.3, we also have |√ρ| ≥ 1/(1 +
√

2). This 
establishes (4.10). To obtain (4.11) note that since p(ρ) = 0, it follows by (4.7) that 
|ρ − 1| = λ

1
2r |√ρ|, and hence (4.10) implies the desired result.

The fact that ρ0,0 �= ρ0,1 and that |ρ0,0| = |ρ0,1| = 1 can be readily obtained by direct 
calculation using (4.8) and (4.9) together with Lemma 3.3 (to prove |ρ0,0| = |ρ0,1| = 1, 
we note that λ1/r ∈ (0, 4), and hence 

√
λ2/r − 4λ1/r = i

√
4λ1/r − λ2/r). To finish we 

may now use the calculations in the paragraph above to see that
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|ρk,0| + |ρk,1| =
ck +

√
c2

k + 4
2 · ck +

√
ck

2 + 4
2 +

ck −
√

c2
k + 4

2 · ck −
√

ck
2 + 4

2

=
|ck|2 +

√
|ck|4 + 4(c2

k + ck
2) + 16

2 . (4.13)

Then, we first observe that |ck|4 = (|c2
k|)2 ≥ (Re(c2

k))2 (since |c2
k| ≥ |Re(c2

k)|), and 
therefore we have

|ck|4 + 4(c2
k + ck

2) + 16 ≥ (Re(c2
k))2 + 8Re(c2

k) + 16 = (Re(c2
k) + 4)2 = (Re(c2

k + 4))2

= (4 − λ1/r cos(2kπ/r))2. (4.14)

Combining (4.13) and (4.14) and Lemma 4.3 we can now see that

|ρk,0| +
∣∣∣∣ 1
ρk,0

∣∣∣∣ =
|ck|2 +

√
|ck|4 + 4(c2

k + ck
2) + 16

2

=
λ1/r +

√
|ck|4 + 4(c2

k + ck
2) + 16

2

≥ λ1/r + 4 − λ1/r cos(2kπ/r)
2

= 2 + λ1/r(1 − cos(2kπ/r))
2 > 2, for all k ∈ {1, 2, · · · , r − 1}.

Thus, |ρk,0| �= 1, for all k ∈ {1, 2, · · · , r − 1}. The desired result follows. �
Lemma 4.4 above tells us that all of the roots of the characteristic polynomial p in 

(4.6) are contained in a disk of radius (1 +
√

2)λ 1
2r centered at 1. This information 

alone is enough for us to easily upper bound the distance between any two roots of p
by 2(1 +

√
2)λ 1

2r . Obtaining lower bounds between the distances of the roots of p from 
one another is a much more difficult task, however. We will now begin the process of 
computing such lower bounds with the following lemma. It establishes that all of the 
roots of the characteristic polynomial p are unique so that their pairwise distances are 
nonzero.

Lemma 4.5. The characteristic polynomial (4.7) always has 2r unique roots (with multi-
plicity one).

Proof. Suppose that ρ is root of p with multiplicity > 1. We will consider two cases 
based on (4.7). First, suppose that

−(1 − ρ)2 − λ1/re2kπi/rρ = −(1 − ρ)2 − λ1/re2lπi/rρ = 0
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for k �= l. This can only occur if ρ = 0 since λ > 0 by Lemma 3.3, which then implies 
that −(1 − 0)2 = 0 (a contradiction).

Thus, it must instead be the case that

−x2 + (2 − λ1/re2kπi/r)x − 1 = −(1 − x)2 − λ1/re2kπi/rx = c(x − ρ)2 = cx2 − 2cρx + cρ2

for some c ∈ C and k ∈ {0, . . . , r − 1}. This in turn implies that c = −1 and ρ2 = 1 must 
be true. However, this also can’t be the case since then we’d have

2 − λ1/re2kπi/r = ±2 =⇒ either λ1/re2kπi/r = 0 or λ1/re2kπi/r = 4,

both of which are impossible since λ ∈ (0, 4r) by Lemma 3.3. �
As a consequence of Lemma 4.5 together with the discussion above, we can see that 

all 2r roots provided by (4.8) and (4.9) above are unique (i.e., with multiplicity one). 
Therefore, the general solution to the recurrence relation (4.2) is

ṽi =
1∑

j=0

r−1∑
k=0

ck,j · ρi
k,j (4.15)

for all i ∈ Z, where the ck,j ∈ C are chosen so that that the first line of (4.3) together 
with (4.4) both hold.

4.3. Additional properties of the roots of the characteristic polynomial (4.6)

Unfortunately, the uniqueness of the roots of p alone will ultimately not be enough 
for our purposes below. We will also require lower bounds on their distances from one 
another. The following lemmas provide such estimates.

Lemma 4.6. For any two roots of p(x), ρ �= ρ̃, either ρ = ρ̃, ρ̄ = ρ̃, ρ−1 = ρ̃, ρ−1 = ρ̃, or

cr−2λ1/2r ≤ ||ρ̃| − |ρ|| ≤ Cλ1/2r, (4.16)

where c, C ∈ R+ are both absolute constants (i.e., universal constants independent of 
N, r, λ, etc.).

Proof. See Appendix C. �
Lemma 4.7. Let ρ, ρ′ ∈ C, ρ �= ρ′, be two roots of (4.6) with |ρ| �= 1. Then, there exist 
absolute constants C, c, c1, c2 ∈ R+, c1 > 1, such that

tr(ρ, ρ′)λ 1
2r ≤ |ρ − ρ′| ≤ Cλ

1
2r , (4.17)

where tr(ρ, ρ′) ≥ c2c−r
1 if either ρ̄ = ρ′ or ρ′ = ρ−1 holds, and tr(ρ, ρ′) ≥ cr−2 otherwise.
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Proof. See Appendix D. �
Lemmas 4.6 and 4.7 collectively bound the distances between all roots of p from below 

except for |ρ0,0 − ρ0,1|, the distance between the two unimodular roots of p. Thankfully, 
however, simply knowing that this single distance is nonzero will suffice below. Finally, 
we conclude this section with a corollary of Lemma 4.3. It characterizes when the roots 
of the characteristic polynomial p will be real.

Corollary 4.8. The roots ρk,j ∈ R if and only if r is even and k = r/2.

Proof. First, we see by Lemma 4.3 and (4.7) that ρk,0, ρk,1 are the roots of

qk(x) := −(1 − x)2 − λ1/re2kπi/rx.

It is clear that qk(0) = −1, so qk does not have a root at 0. We also note that if 
x ∈ R \ {0}, then qk(x) /∈ R if e2kπi/r /∈ R, so no such values of k will lead to real roots 
of qk. Therefore, it suffices to only consider values of k for which e2kπi/r ∈ R, namely 
k = 0 and k = r/2 for r even.

By (4.8) and (4.9), we can see that the roots of qk are

2 − λ1/re2kπi/r ±
√

λ2/re4kπi/r − 4λ1/re2kπi/r

2

and so it suffices to check the sign of λ2/re4kπi/r − 4λ1/re2kπi/r to determine whether or 
not these roots are real in this case. We note that x2 − 4x = x(x − 4) < 0 if and only if 
x ∈ (0, 4) and x2 − 4x > 0 if and only if x /∈ (0, 4). Let x := λ1/re2kπi/r and note that 
λ1/r ∈ (0, 4) by Lemma 3.3. When k = 0 we have x = λ1/r and x(x − 4) = λ2/r − 4λ1/r

which is negative since x = λ1/r ∈ (0, 4) when k = 0. On the other hand, when k = r/2
we have x = −λ1/r and x(x − 4) = λ2/r + 4λ1/r > 0 since x = −λ1/r /∈ (0, 4) in this 
case. Thus, ρk,j ∈ R if and only if r is even and k = r/2. �

We are now prepared to begin proving Lemma 3.6.

5. The proof of Lemma 3.6

Our main goal in this section is to prove Lemma 3.6 (here restated using notation 
from Section 4).

Lemma 3.6. There exist absolute universal constants C0, C2, C3 ∈ R+ (namely, for C2, C3

the same as in Lemma 5.4 below) such that for all r ≥ 2 and N ≥ Cr
3 , ‖vj‖∞ ≤ (C0r)4r−5

√
N

holds for all j ∈ [N ] with λ1/2r
j ≥ C2r6

.
N
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Proving this lemma will require recalling several results from Section 4. In particular, 
from (4.3) and (4.15) we know that the entries of each eigenvector vj satisfy

(vj)i =
1∑

�=0

r−1∑
k=0

ck,� · ρi
k,� (5.1)

for all i, j ∈ [N ], where the ρk,� above are the roots from Lemma 4.3 of the polynomial p
in (4.6) with λ = λj . To prove Lemma 3.6 we will use Lemmas 5.1 and 5.2 below about 
the coefficients ck,� and roots ρk,� in (5.1). These lemmas will then allow us to bound 
the magnitude of each entry of vj via (5.1).

Lemma 5.1. There exist absolute universal constants C ′
0, C2, C3 ∈ R+ (for C2, C3 the 

same as in Lemma 5.4 below) such that for all r ≥ 2, N ≥ Cr
3 , and λ1/2r

j ≥ C2r6

N ,

|ck,�| ≤ (C ′
0r)2r−3
√

N

for all (k, �) ∈ [r − 1] × {0, 1}.

Lemma 5.2. There exist absolute universal constants C ′′
0 , C2, C3 ∈ R+ (for C2, C3 the 

same as in Lemma 5.4 below) such that for all r ≥ 2, N ≥ Cr
3 , and λ1/2r

j ≥ C2r6

N ,

∣∣∣ρN+1−r
k,� ck,�

∣∣∣ ≤ (C ′′
0 r)4r−6
√

N
∀|ρk,�| > 1.

The proof of Lemma 3.6 is a fairly simple consequence of (5.1) given Lemmas 5.1
and 5.2.

Proof of Lemma 3.6. Let i, j ∈ [N ]. Below we will reorder the 2r roots {ρk,�}�,k in (5.1)
by magnitude so that the resulting reordered sequence ρl := ρkl,�l

satisfies

|ρ1| ≤ |ρ2| ≤ · · · < |ρr| = 1 = |ρr+1| < |ρr+2| ≤ · · · ≤ |ρ2r|. (5.2)

Note that Lemmas 4.3 and 4.4 guarantee that such an ordering of the roots exists. 
Similarly, we will also reorder the roots’ associated coefficients cl := ckl,�l

correspondingly 
so that the resulting reordered sum in (5.1) still satisfies

(vj)i =
2r∑

l=1

cl · ρi
l

for all i ∈ [N ].
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We can now see that

∣∣(vj)i

∣∣ =

∣∣∣∣∣
2r∑

l=1

cl · ρi
l

∣∣∣∣∣ ≤
2r∑

l=1

|clρ
i
l| ≤

r+1∑
l=1

|cl| +
2r∑

l=r+2

|clρ
N
l |

where our final inequality uses the properties of the ordering of the roots in (5.2). Rear-
ranging this last expression and using Lemma 4.4 now reveals that

∣∣(vj)i

∣∣ ≤
r+1∑
l=1

|cl|+ |ρl|r−1
2r∑

l=r+2

∣∣clρ
N+1−r
l

∣∣ ≤
r+1∑
j=1

|cl|+(1+
√

2)2r−2

( 2r∑
l=r+2

∣∣clρ
N+1−r
l

∣∣) .

Employing Lemmas 5.1 and 5.2 (since r ≥ 2, N ≥ Cr
3 , and λ1/2r

j ≥ C2r6

N by assumption, 
their conditions are met), we can now see that

∣∣(vj)i

∣∣ ≤ (r + 1)(C ′
0r)2r−3
√

N
+ (r − 1)(1 +

√
2)2r−2 (C ′′

0 r)4r−6
√

N

≤ (r + 1)(1 +
√

2)2r−2 (max (C ′
0, C ′′

0 , 1) r)4r−6
√

N

≤ (C0r)4r−5
√

N
,

where C0 is an absolute constant chosen such that C4r−5
0 ≥ (max (C ′

0, C ′′
0 , 1))4r−6(1 +√

2)2r−2 r+1
r for all r ≥ 2. �

We will devote the remainder of this section to proving Lemmas 5.1 and 5.2. In order 
to do so we will need several supporting results.

5.1. Supporting lemmas

First, we will require the following result about the inverse of a Vandermonde matrix 
in several places below.

Lemma 5.3. Suppose A is a Vandermonde matrix

A =

⎡⎢⎢⎢⎣
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
1 xn x2

n · · · xn−1
n

⎤⎥⎥⎥⎦ .

Then A−1 = U−1L−1 with
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(L−1)i,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, i < j

1, i = j = 1
i∏

k=1,k �=j

1
xj − xk

, otherwise

.

That is,

L−1 =

⎡⎢⎢⎢⎣
1 0 0 · · ·
1

x1−x2
1

x2−x1
0 · · ·

1
(x1−x2)(x1−x3)

1
(x2−x1)(x2−x3)

1
(x3−x1)(x3−x2) · · ·

...
...

...
...

⎤⎥⎥⎥⎦ .

Moreover,

(U−1)i,j =

⎧⎪⎪⎨⎪⎪⎩
1, i = j

0, j = 1, i �= j

(U−1)i−1,j−1 − (U−1)i,j−1xj−1 otherwise

where (U−1)0,j is considered to be 0 for the purposes of the recursion. That is,

U−1 =

⎡⎢⎢⎢⎢⎣
1 −x1 x1x2 −x1x2x3 · · ·
0 1 −(x1 + x2) x1x2 + x2x3 + x3x1 · · ·
0 0 1 −(x1 + x2 + x3) · · ·
0 0 0 1 · · ·
...

...
...

...
...

⎤⎥⎥⎥⎥⎦ .

This recurrence is equivalent to the following closed form expression for the entries of 
U−1:

(U−1)i,j = (−1)i+j
∑

1≤a1<···<aj−i≤j−1
xa1 · · · xaj−i

, (5.3)

for all i ≤ j, where the empty sum is defined to be equal to 1, and

(U−1)i,j = 0

otherwise.

Proof. The first two results concerning the entries of U−1 and L−1 are proven in [31]. 
We prove the third result concerning the closed form expression for the entries of U−1 by 
induction. We first show that for i > j, (U−1)i,j = 0. By our earlier result, (U−1)i,j = 0
for j = 1, i �= j, hence the result holds for our base case j = 1. Then, suppose the result 
holds for all such entries in columns 1, · · · , j, and suppose that i > j + 1. Then, we have 
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(U−1)i,j+1 = (U−1)i−1,j − (U−1)i,jxj = 0 − 0xj = 0, since (U−1)i−1,j = (U−1)i,j = 0 as 
i > j + 1 implies i − 1 > j, i > j. Thus, the desired result holds by induction.

Next, we show the result holds for i ≤ j by induction. We first see that the result 
holds for the base case (U−1)1,1 due to the empty sum being defined as 1. Now, suppose 
the result holds for all entries in columns 1, · · · , j. First, suppose that i < j + 1; we then 
have

(U−1)i,j+1 = (U−1)i−1,j − (U−1)i,jxj

= (−1)i+j−1
∑

1≤a1<···<aj−i+1≤j−1
xa1 · · · xaj−i+1

− xj

⎡⎣(−1)i+j
∑

1≤a1<···<aj−i≤j−1
xa1 · · · xaj−i

⎤⎦
= (−1)i+j+1

∑
1≤a1<···<aj−i+1≤j−1

xa1 · · · xaj−i+1

+ (−1)i+j+1
∑

1≤a1<···<aj−i≤j−1
xa1 · · · xaj−i

xj

= (−1)i+j+1
∑

1≤a1<···<aj−i+1≤j

xa1 · · · xaj−i+1

where the second equality holds since i < j + 1 implies i − 1 ≤ j, i ≤ j, and where the 
last equality holds since the first term consists of the sum of all products of j − i + 1
terms consisting of variables indexed in the range [j − 1] while the second term consists 
of the sum of all products of j − i +1 terms with variables indexed in the range [j] which 
contain xj .

Then, suppose that i = j + 1. We see that the sum in the right hand side of (5.3) is 
the empty sum, hence, it suffices to show that (U−1)i,j+1 = 1. We have (U−1)i,j+1 =
(U−1)i−1,j −(U−1)i,jxj = 1 −0xj = 1, where (U−1)i−1,j = 1 by our inductive hypothesis 
and the fact that the sum in the right hand side of (5.3) is empty, and where (U−1)i,j = 0
by our previous case, since i = j + 1 implies i > j. Thus, the desired result holds by 
induction. �

Next, the following result bounds the magnitudes of the coefficients ck,� in (5.1) asso-
ciated with the r + 1 largest-magnitude roots ρk,� of the polynomial p in (4.6) whenever 
λ = λj is sufficiently large. It is used to prove Lemma 5.1.

Lemma 5.4. There exist absolute uniform constants C1, C2, C3 ∈ R+ such that for all 
r ≥ 2, N ≥ Cr

3 , and λ1/2r
j ≥ C2r6

N ,

|ck,�| ≤ C1√ if |ρk,�| ≥ 1, (5.4)

N
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for all (k, �) ∈ [r − 1] × {0, 1}.

In particular, to prove this result, we will prove the following two lemmas, from which 
Lemma 5.4 immediately follows:

Lemma 5.5. There exists absolute uniform constant C2 ∈ R+ such that for all r ≥ 2 and 
1/4 ≥ λ

1/2r
j ≥ C2r6

N ,

|ck,�| ≤
(

24
min{|ρk,j |2N , 1}N

)1/2

,

for all (k, �) ∈ [r − 1] × {0, 1}.

Lemma 5.6. There exists absolute uniform constant C3 ∈ R+, such that for all r ≥ 2, 
N ≥ Cr

3 , and λ1/2r > 1/4,

|ck,�| ≤
(

48
min{|ρk,j |2N , 1}N

)1/2

,

for all (k, �) ∈ [r − 1] × {0, 1}.

The proofs of Lemmas 5.5 and 5.6 are rather involved, and so have been moved to 
Appendix E.

Using Lemmas 5.3 and 5.4, we now prove Lemmas 5.1 and 5.2, which completes the 
proof of our main lemma, Lemma 3.6. To prove Lemma 5.1 we use the bound on the 
coefficients ck,� corresponding to roots with |ρk,�| ≥ 1, and use the boundary conditions 
(4.3) to extend this bound to a bound which holds for all ck,�.

Proof of Lemma 5.1. As in (5.2) in the proof of Lemma 3.6, we reorder the roots ρk,� in 
the following way

|ρ1| ≤ |ρ2| ≤ · · · < |ρr| = 1 = |ρr+1| < |ρr+2| ≤ · · · ≤ |ρ2r|,

and similarly rearrange the associated coefficients ck,� such that

[ṽ(λj)]i =
2r∑

l=1

cl · ρi
l.

By Lemma 5.4, since r ≥ 2, N ≥ Cr
3 , and λ1/2r

j ≥ C2r6

N by assumption, the coefficients 
|cl| ≤ C1√

N
for l = r, · · · , 2r are bounded by C1√

N
, since |ρl| ≥ 1 for these roots.

To establish similar bounds for the remaining cl, we need to use the boundary condi-
tions of ṽ from (4.3), namely the fact that ṽi = 0 for 1 − r ≤ i ≤ 0. This is equivalent 
to
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[ṽ(λj)]i =
2r∑

l=1

cl · ρi
l = 0, for i = 1 − r, ..., 0. (5.5)

We can then rewrite this equation in terms of matrices in the following way:

⎡⎢⎢⎣
1 · · · 1
ρ1 · · · ρr−1
...

. . .
...

ρr−2
1 · · · ρr−2

r−1

⎤⎥⎥⎦
⎛⎜⎜⎜⎝

ρ1−r
1 c1

ρ1−r
2 c2

...
ρ1−r

r−1cr−1

⎞⎟⎟⎟⎠ = −

⎡⎢⎢⎣
1 · · · 1
ρr · · · ρ2r
...

. . .
...

ρr−2
r · · · ρr−2

2r

⎤⎥⎥⎦
⎛⎜⎜⎜⎝

ρ1−r
r cr

ρ1−r
r+1cr+1

...
ρ1−r

2r c2r

⎞⎟⎟⎟⎠ . (5.6)

By multiplying both sides of (5.6) with H ∈ R(r−1)×(r−1) defined as

Hi,j =
{

(−1)i−j
(

i−1
j−1

)
for i ≥ j

0 for i < j
,

we have

A1c1 = −A2c2 (5.7)

where A1 ∈ C(r−1)×(r−1), A2 ∈ C(r−1)×(r+1). In particular,

c1 =

⎛⎝ c1
...

cr−1

⎞⎠ ∈ Cr−1, c2 =

⎛⎝ cr

...
c2r

⎞⎠ ∈ Cr+1

A1 =

⎡⎢⎢⎣
1 · · · 1

ρ1 − 1 · · · ρr−1 − 1
...

. . .
...

(ρ1 − 1)r−2 · · · (ρr−1 − 1)r−2

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

ρ1−r
1 0 · · · 0

0 ρ1−r
2

. . .
...

...
. . . . . . 0

0 · · · 0 ρ1−r
r−1

⎤⎥⎥⎥⎥⎦ ,

and

A2 =

⎡⎢⎢⎣
1 · · · 1

ρr − 1 · · · ρ2r − 1
...

. . .
...

(ρr − 1)r−2 · · · (ρ2r − 1)r−2

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

ρ1−r
r 0 · · · 0

0 ρ1−r
r+1

. . .
...

...
. . . . . . 0

0 · · · 0 ρ1−r
2r

⎤⎥⎥⎥⎥⎦ ,

since the (i, j)th entry of

H

⎡⎢⎢⎣
1 · · · 1
ρ1 · · · ρr−1
...

. . .
...

r−2 r−2

⎤⎥⎥⎦

ρ1 · · · ρr−1
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is

r−1∑
l=1

Hi,lρ
l−1
j =

i∑
l=1

(−1)i−l

(
i − 1
l − 1

)
ρl−1

j =
i−1∑
l=0

(−1)i−l−1
(

i − 1
l

)
ρl

j = (ρj − 1)i−1,

and similarly for the right hand side of (5.6).
From (4.11) in Lemma 4.4, we know that |ρl − 1| ≤ (1 +

√
2)λ1/2r for all l and 

from (5.2) we have |ρl| ≥ 1, for any l ∈ {r, · · · , 2r}. These therefore imply that for 
i ∈ {1, · · · , r − 1}, j ∈ {1, · · · , r + 1},

|(A2)i,j | ≤ [(1 +
√

2)λ1/2r]i−1

≤ (1 +
√

2)r−2(λ1/2r)i−1

≤ Cr
11(λ1/2r)i−1, (5.8)

for C11 > 0 an absolute constant. Recall that our goal is to bound c1 = −A−1
1 A2c2, so 

we next seek to bound the operator norm of A−1
1 by bounding its entries.

We first note that by (5.2), |ρ1|, · · · , |ρr−1| < 1, and therefore |ρr−1
1 |, · · · |ρr−1

r−1| ≤ 1. 
Hence, to bound the entries of A−1

1 , it suffices to bound the entries of the inverse of the 
Vandermonde matrix

V :=

⎡⎢⎢⎣
1 · · · 1

ρ1 − 1 · · · ρr−1 − 1
...

. . .
...

(ρ1 − 1)r−2 · · · (ρr−1 − 1)r−2

⎤⎥⎥⎦
since the entries of A−1

1 will therefore not increase in norm if the inverse diagonal matrix 
is included. Let V T = LU be the LU decomposition of V T . By Lemma 5.3, we have

L−1 =

⎡⎢⎢⎢⎣
1 0 0 · · ·
1

ρ1−ρ2
1

ρ2−ρ1
0 · · ·

1
(ρ1−ρ2)(ρ1−ρ3)

1
(ρ2−ρ1)(ρ2−ρ3)

1
(ρ3−ρ1)(ρ3−ρ2) · · ·

...
...

...
...

⎤⎥⎥⎥⎦ .

To bound the entries of L−1, recall that from (4.17) of Lemma 4.7, we know that ∣∣∣ 1
ρi−ρj

∣∣∣ ≤ t−1(r)λ−1/2r for any i �= j and |ρi|, |ρj | �= 1, where t(r) = c2c−r
1 in the case of 

conjugate or inverse roots, and t(r) = cr−2 otherwise. As a result,

|(L−T )i,j | = |(L−1)j,i| =
j∏

k=1,k �=i

∣∣∣∣ 1
ρi − ρk

∣∣∣∣
≤

j∏
t−1(r)λ−1/2r
k=1,k �=i
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≤ cr
3(cr−2)2−j(λ−1/2r)j−1, (5.9)

where the last inequality holds because at most one of the pairs ρi, ρk can be conjugate 
(since ρi is held fixed in each term), and none of the pairs can be inverses or conjugate 
inverses of each other since |ρl| < 1 for l ∈ {1, · · · , r − 1}. Here c3 is chosen such that 
cr

3 ≥ c−1
2 cr

1, cr
3 ≥ (cr−2)−1 for all r ≥ 2. Similarly, we can compute the entrywise bound 

for U−T from its explicit expression derived in Lemma 5.3

|(U−T )i,j | = |(U−1)j,i| =

∣∣∣∣∣∣(−1)i+j
∑

1≤a1<···<ai−j≤i−1
(ρa1 − 1) · · · (ρai−j

− 1)

∣∣∣∣∣∣
≤
(

i − 1
i − j

)
[(1 +

√
2)λ1/2r]i−j

≤ 2r(C12λ1/2r)i−j , (5.10)

for C12 > 1 an absolute constant, i ≥ j (where the last inequality holds since 
(

i−1
i−j

)
≤ 2r

since i, j < r).
Since we defined V T = LU , we have that V −1 = L−T U−T . As a consequence

|(A−1
1 A2)i,j | ≤

r−1∑
k=1

r−1∑
l=1

|(L−T )i,k||(U−T )k,l||(A2)l,j |

≤
r−1∑
k=1

r−1∑
l=1

cr
3(cr−2)2−k(λ−1/2r)k−12r(C12λ1/2r)k−lCr

11(λ1/2r)l−1

≤ r2r−6 max(c, c3−r)(2c3C11C12)r
r−1∑
k=1

r−1∑
l=1

(λ−1/2r)k−1(λ1/2r)k−l(λ1/2r)l−1

= r2r−6 max(c, c3−r)(2c3C11C12)r
r−1∑
k=1

r−1∑
l=1

(λ1/2r)(1−k)+(k−l)+(l−1)

≤ r2r−4 max(c, c3−r)(2c3C11C12)r

≤ (C ′r)2r−4 (5.11)

where the first inequality holds because |(A−1
1 )ij | ≤ |(V −1)ij | for all i, j, the second 

inequality used (5.8), (5.9) and (5.10), the third inequality follows since (cr−2)2−k ≤
r2r−6 max(c, c3−r) since k ∈ {1, · · · , r − 1}, and similarly Ck−l

12 ≤ Cr
12 since k, l ∈

{1, · · · , r − 1} with k ≥ l and C12 > 1. The fourth inequality holds because ∑r−1
k=1

∑r−1
l=1 1 = (r − 1)2 ≤ r2, and in the last inequality, C ′ > 0 is an absolute constant 

chosen so that max(c, c3−r)(2c3C11C12)r ≤ C2r−4 for all r ≥ 2.
Thus, since c1 = −A−1

1 A2c2, (5.11) implies that

‖c1‖∞ ≤ (C ′r)2r−4(r + 1)‖c2‖∞ ≤ (C ′r)2r−4(r + 1) C1√ ≤ (C ′
0r)2r−3
√ ,
N N
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where we used ‖c2‖∞ ≤ C1√
N

(by Lemma 5.4, and since |ρl| ≥ 1 for l ∈ {r, · · · , 2r} by 

(5.2)). Here C ′
0 > 0 is an absolute constant chosen so that (C ′

0)2r−3 ≥ (C ′)2r−4C1
r+1

r

and (C ′
0)2r−3 ≥ C1 for all r ≥ 2 (this second condition is so that (C′

0r)2r−3
√

N
≥ C1√

N
; thus 

the desired bound will hold for all choices of (k, �)). �
We will now use the bound on |ck,�| just proven in Lemma 5.1 to prove Lemma 5.2. 

Similar to the proof of 5.1, we extend the bound on a subset of the roots to all of the 
roots by using the boundary conditions (4.4).

Proof of Lemma 5.2. As in (5.2) in Lemma 3.6, we reorder the roots ρk,� in the following 
way

|ρ1| ≤ |ρ2| ≤ · · · < |ρr| = 1 = |ρr+1| < |ρr+2| ≤ · · · ≤ |ρ2r|,

and similarly rearrange the associated coefficients ck,� such that

[ṽ(λj)]i =
2r∑

l=1

cl · ρi
l.

We first note that

|clρ
i
l| ≤ |cl| ≤ (C ′

0r)2r−3
√

N
(5.12)

for j = 1, ..., r + 1, by Lemma 5.1 and the fact that |ρl| ≤ 1 by (5.2). We then follow a 
similar argument as the one used in the proof of Lemma 5.1, to extend this upper bound 
of |clρ

i
l| to l = r + 2, ..., 2r by using the last r boundary conditions (4.4) and the general 

solution to the recurrence (4.15).
Using (4.4) we obtain

0 =
r∑

q=0

(
r

q

)
(−1)q[ṽ(λj)]k−q =

r∑
q=0

(
r

q

)
(−1)q

( 2r∑
l=1

clρ
k−q
l

)
, for k = N + 1, ..., N + r.

Factoring ρk−q
l = ρk−r

l ρr−q
l and exchanging the two summations above we obtain

0 =
2r∑

l=1

clρ
k−r
l

r∑
q=0

(−1)q

(
r

q

)
ρr−q

l .

This is equivalent to

2r∑
clρ

k−r
l (ρl − 1)r = 0, for k = N + 1, ..., N + r,
l=1
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or to

2r∑
l=r+2

clρ
k−r
l (ρl − 1)r = −

r+1∑
l=1

clρ
k−r
l (ρl − 1)r, for k = N + 1, ..., N + r.

As in the proof of Lemma 5.1, we write the first r − 1 of these equations in matrix 
form:

⎡⎢⎢⎣
1 · · · 1

ρr+2 · · · ρ2r

...
. . .

...
ρr−2

r+2 · · · ρr−2
2r

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

(ρr+2 − 1)r 0 · · · 0

0 (ρr+3 − 1)r . . .
...

...
. . . . . . 0

0 · · · 0 (ρ2r − 1)r

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

ρN+1−r
r+2 cr+2

ρN+1−r
r+3 cr+3

...
ρN+1−r

2r c2r

⎞⎟⎟⎟⎠

= −

⎡⎢⎢⎣
1 · · · 1
ρ1 · · · ρr+1
...

. . .
...

ρr−2
1 · · · ρr−2

r+1

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

(ρ1 − 1)r 0 · · · 0

0 (ρ2 − 1)r . . .
...

...
. . . . . . 0

0 · · · 0 (ρr+1 − 1)r

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

ρN+1−r
1 c1

ρN+1−r
2 c2

...
ρN+1−r

r+1 cr+1

⎞⎟⎟⎟⎠ .

Then, by the same argument as in the proof of Lemma 5.1, multiplying both sides of the 
resulting matrix equation by the (r − 1) × (r − 1) matrix

Hi,j =
{

(−1)i−j
(

i
j

)
for i ≥ j

0 for i < j
,

results in

A3︷ ︸︸ ︷⎡⎢⎢⎣
1 · · · 1

ρr+2 − 1 · · · ρ2r − 1
...

. . .
...

(ρr+2 − 1)r−2 · · · (ρ2r − 1)r−2

⎤⎥⎥⎦
B3︷ ︸︸ ︷⎡⎢⎢⎢⎣

(1 − ρr+2)r 0 · · · 0

0 (1 − ρr+3)r . . .
...

...
. . . . . . 0

0 · · · 0 (1 − ρ2r)r

⎤⎥⎥⎥⎦

×

⎛⎜⎜⎜⎝
ρN+1−r

r+2 cr+2
ρN+1−r

r+3 cr+3
...

ρN+1−r
2r c2r

⎞⎟⎟⎟⎠

= −

⎡⎢⎢⎣
1 · · · 1

ρ1 − 1 · · · ρr+1 − 1
...

. . .
...

(ρ1 − 1)r−2 · · · (ρr+1 − 1)r−2

⎤⎥⎥⎦
︸ ︷︷ ︸

A4

⎡⎢⎢⎢⎣
(1 − ρ1)r 0 · · · 0

0 (1 − ρ2)r . . .
...

...
. . . . . . 0

0 · · · 0 (1 − ρr+1)r

⎤⎥⎥⎥⎦
︸ ︷︷ ︸
B4
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×

⎛⎜⎜⎜⎝
ρN+1−r

1 c1
ρN+1−r

2 c2
...

ρN+1−r
r+1 cr+1

⎞⎟⎟⎟⎠ .

Since we have ⎛⎜⎝ρN+1−r
r+2 ar+2

...
ρN+1−r

2r a2r

⎞⎟⎠ = −B−1
3 A−1

3 A4B4

⎛⎜⎝ ρN+1−r
1 a1

...
ρN+1−r

r+1 ar+1

⎞⎟⎠
we begin by bounding the entries of A−1

3 A4.
First, we see that essentially identical arguments used to prove (5.9) and (5.10) and 

bound the entries of V −1 in the proof of Lemma 5.1 apply here, and result in the same 
bounds the on the entries of A−1

3 , since the indices of the roots are not considered in 
either argument. The only slight difference is that, in this case, when bounding the entries 
of L−T , all of the roots have norm strictly greater than 1 rather than strictly less than 
1, but the same argument still holds in this case. Also, by a similar argument to that 
used in showing (5.8) we see that

(A4)i,j ≤ [(1 +
√

2)λ1/2r]i−1 ≤ (1 +
√

2)r−2(λ1/2r)i−1 ≤ Cr
11(λ1/2r)i−1 (5.13)

for C11 the same constant in (5.8). Thus, by essentially the same argument as for (5.11), 
we have that

|(A−1
3 A4)i,j | =

r−1∑
k=1

r−1∑
l=1

|(L−T )i,k||(U−T )k,l||(A4)l,j |

≤
r−1∑
k=1

r−1∑
l=1

cr
3(cr−2)2−k(λ−1/2r)k−12r(C12λ1/2r)k−lCr

11(λ1/2r)l−1

≤ (C ′r)2r−4, (5.14)

for the same constant C ′.
Then, by Lemma 4.4 we have |1 − ρ�|/|1 − ρl| ≤ (1 +

√
2)2 for all �, l. Hence, we have

|(−B−1
3 A−1

3 A4B4)i,j | ≤ (1 +
√

2)2r(C ′r)2r−4.

Also, recall that from (5.12), we have

|ρN+1−r
l cl| ≤ (C ′

0r)2r−3
√

N

for l ∈ {1, · · · , r + 1}. Therefore,
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∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
⎛⎜⎜⎝

ρN+1−r
(r+2) c(r+2)

...
ρN+1−r

(2r) c(2r)

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣−B−1

3 A−1
3 A4B4

⎛⎜⎜⎝
ρN+1−r

(1) c(1)
...

ρN+1−r
(r+1) c(r+1)

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∞

≤ (1 +
√

2)2r(C ′r)2r−4(r + 1)(C ′
0r)2r−3
√

N

≤ (C ′′
0 r)4r−6
√

N
(5.15)

for C ′′
0 an absolute constant chosen such that (C ′′

0 )4r−6 ≥ (1 +
√

2)2r(C ′)2r−4(C ′
0)2r−3 r+1

r

for all r ≥ 2. �
Having established both Lemma 5.1 and Lemma 5.2 now finishes our proof of 

Lemma 3.6.
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Appendix A. Proving the basic results: Lemmas 3.1 and 4.1

We will begin with the proof of Lemma 3.1.

A.1. Proof of Lemma 3.1

To begin the proof that ‖uj‖∞ = ‖vj‖∞ for all j ∈ [N ], we first observe that by 
Definition 1.4, Di,j = DN−j,N−i. We now prove by induction that

(Dr)i,j = (Dr)N−j,N−i (A.1)

for any r ∈ N. Suppose that (Dr)i,j = (Dr)N−j,N−i. Then we have

(Dr+1)i,j =
N∑

k=1

(Dr)i,k(D)k,j

=
N∑

k=1

(Dr)N−k,N−i(D)N−j,N−k, (A.2)
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where in the last equality we used the inductive hypothesis (Dr)i,j = (Dr)N−j,N−i and 
the fact that Di,j = DN−j,N−i. Then making the change of variables k′ = N − k, we 
have

N∑
k=1

(Dr)N−k,N−i(D)N−j,N−k =
N∑

k′=1

(Dr)k′,N−i(D)N−j,k′

=
N∑

k′=1

(D)N−j,k′(Dr)k′,N−i

= (Dr+1)N−j,N−i, (A.3)

and hence combining (A.2) and (A.3) we have (Dr+1)i,j = (Dr+1)N−j,N−i, completing 
the proof by induction.

Next, we claim that

(Dr(Dr)T )i,j = ((Dr)T Dr)N−i,N−j . (A.4)

We have

(Dr(Dr)T )i,j =
N∑

k=1

(Dr)i,k(Dr)j,k

=
N∑

k=1

(Dr)N−k,N−i(Dr)N−k,N−j (A.5)

where the last equality holds by (A.1). Now, making the change of variables k′ = N − k, 
we have

N∑
k=1

(Dr)N−k,N−i(Dr)N−k,N−j =
N∑

k′=1

(Dr)k′,N−i(Dr)k′,N−j

= ((Dr)T Dr)N−i,N−j , (A.6)

so combining (A.5) and (A.6), we see that (Dr(Dr)T )i,j = ((Dr)T Dr)N−i,N−j , verifying 
(A.4).

Finally, for ease of notation, we let ṽ be the vector v written in reverse order, i.e.

(ṽ)i := vN−i.

Observe that (A.4) implies that Dr(Dr)T and (Dr)T Dr have reversed row and column 
orders. Hence, if v is an eigenvector of Dr(Dr)T with eigenvalue λ, then ṽ is an eigen-
vector of (Dr)T Dr with eigenvalue λ. In other words, the eigenvectors of (Dr)T Dr can 
be obtained by reversing the order of each eigenvector of Dr(Dr)T , and vice versa. Since 
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the eigenvectors of Dr(Dr)T and (Dr)T Dr correspond to the left and right singular vec-
tors of Dr, respectively, the same relationship holds between the left and right singular 
vectors of Dr. In particular, the left singular vectors can be obtained by reversing the 
order of each right singular vector, and vice versa. Thus, since reversing the order of a 
vector does not change its �∞-norm, we have

‖vj‖∞ = ‖uj‖∞

for all j ∈ [N ], the desired result.

A.2. Proof of Lemma 4.1

Recall that we are seeking to prove the following lemma:

Lemma 4.1. Let r, N ∈ Z+ be such that r < N/2. All the entries of (Dr)T Dr ∈ ZN×N

are given by

((Dr)T Dr)j−m,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(−1)m

(
2r

r − m

)
if j − m ≤ N − r, m ∈ {0, 1, · · · , r}

(−1)m

N−j∑
l=0

(
r

l + m

)(
r

l

)
if j − m > N − r, m ∈ {0, 1, · · · , r}

0 if m > r

,

combined with the fact that (Dr)T Dr is symmetric.

Define the upper and lower triangular nilpotent shift matrices U ∈ RN×N and L ∈
RN×N as

Ui,j :=
{

1 if i = j − 1
0 otherwise

and

Li,j :=
{

1 if i = j + 1
0 otherwise

.

Note that D = I − L so that

Dr =
r∑

k=0

(
r

k

)
(−1)kLk.

Similarly, DT = I − U so that



T. Faust et al. / Linear Algebra and its Applications 626 (2021) 79–151 113
(Dr)T =
r∑

k=0

(
r

k

)
(−1)kUk.

Since we are interested in the right singular vectors of Dr we will consider the symmetric 
matrix

(Dr)T
Dr =

(
r∑

k=0

(
r

k

)
(−1)kUk

)(
r∑

k=0

(
r

k

)
(−1)kLk

)
=

r∑
k,l=0

(
r

k

)(
r

l

)
(−1)k+lUkLl.

(A.7)
Note that UkLl = Xk,l, where

(Xk,l)i,j =
{

1 if j ≤ N − l and i = j − k + l > 0
0 otherwise

. (A.8)

Thus, if j ≤ N − r and i = j − m, m ∈ {0, 1, . . . , r}, we will have

(
(Dr)T

Dr
)

i,j
=

⎛⎝ r∑
k,l=0

(
r

k

)(
r

l

)
(−1)k+lXk,l

⎞⎠
i,j

= (−1)m
r−m∑
l=0

(
r

l + m

)(
r

l

)

= (−1)m
r−m∑
l=0

(
r

(r − m) − l

)(
r

l

)
.

Simplifying the expression above using Vandermonde’s identity we can now see that

(
(Dr)T

Dr
)

j−m,j
= (−1)m

r−m∑
l=0

(
r

(r − m) − l

)(
r

l

)
= (−1)m

(
2r

r − m

)

for all j ≤ N − r, m ∈ {0, 1, . . . , r}. By inspecting (A.7) and (A.8) it is not difficult to 
see that, more generally, we will have

(
(Dr)T

Dr
)

j−m,j
=
{

(−1)m
( 2r

r−m

)
if 0 ≤ m ≤ r

0 if m > r
(A.9)

for all j ≤ N − r. In fact, (A.9) gives 
(

(Dr)T
Dr
)

i,j
for all i, j ∈ [N ] with max{i, j} ≤

N − r by symmetry. If j > N − r and i = j − m for m ∈ {0, 1, · · · , r}, then

(
(Dr)T

Dr
)

i,j
=

⎛⎝ r∑
k,l=0

(
r

k

)(
r

l

)
(−1)k+lXk,l

⎞⎠
i,j

=
r∑

k,l=0

(
r

k

)(
r

l

)
(−1)k+l(Xk,l)i,j

= (−1)m

min{N−j,r−m}∑
l=0

(
r

l + m

)(
r

l

)
= (−1)m

(
2r

r − m

)
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whenever r − m ≤ N − j, or equivalently, whenever i ≤ N − r. Otherwise, when j >

N − r + m, or equivalently, when i > N − r, this last equation becomes

(
(Dr)T

Dr
)

j−m,j
= (−1)m

N−j∑
l=0

(
r

l + m

)(
r

l

)
.

Also note that, by the same argument that was used in (A.9), we will have(
(Dr)T

Dr
)

j−m,j
= 0 for m > r in the case that j > N − r. Utilizing symmetry 

now allows us to determine all the entries of (Dr)T
Dr, and completes the proof of 

Lemma 4.1.

Appendix B. Proof of Lemma 4.2

We need to show that under the condition (Dr)T Drv = λv, the infinite sequence ṽ
defined by (4.3) − (4.5) satisfies (4.2) for each i ∈ Z. We will divide i ∈ Z into five 
regimes: i ≤ 0, 0 < i ≤ r, r < i ≤ N − r, N − r + 1 ≤ i ≤ N, i > N . In the first and last 
regimes, (4.2) trivially holds because of the way the sequence ṽ is extended in (4.5). For 
the second and third regimes, it is easy to verify using Lemma 4.1 and (4.3) that (4.2) is 
exactly the ith row of (Dr)T Drv = λv, and hence holds true. It only remains to prove 
(4.2) for i ∈ {N − r + 1, . . . , N}. In this case, we will show that (4.2) is implied by the 
ith equation in the system (Dr)T Drv = λv and (4.4).

Let x = i − N + r. Lemma 4.1 then tells us that the ith equation in (Dr)T Drv = λv
is

λṽi =
r−x∑
k=0

(−1)r−k

(
2r

k

)
ṽk+i−r +

r∑
k=r−x+1

(−1)r−k
r−x∑
l=0

(
r

l + r − k

)(
r

l

)
ṽk+i−r (B.1)

+
2r−x∑

k=r+1

(−1)k−r
2r−x−k∑

l=0

(
r

l + k − r

)(
r

l

)
ṽk+i−r

for all i ∈ {N − r, ..., N} (so that x = i − N + r ∈ {0, . . . , r}).
Note that the righthand side of equation (B.1) has three terms in accordance with 

Lemma 4.1. The first term involves entries ṽk+i−r with k + i − r ≤ N − r (i.e., before the 
entires associated with the irregular lower-right r×r submatrix of (Dr)T

Dr), the second 
term involves entries ṽk+i−r with i ≥ k + i − r > N − r (left up to the diagonal), and the 
third involves entries ṽk+i−r with k + i − r > i (right of the diagonal). Furthermore, the 
lefthand side of (B.1) matches the righthand side of (4.2). Hence, if we can show that 
the righthand side of (B.1) matches the lefthand side of (4.2) we will be finished with 
our proof. We will accomplish this task below by showing that the difference between 
the lefthand side of (4.2) and the righthand side of (B.1) is always zero.

Let the function f : {0, 1, · · · , r} × {N − r + 1, · · · , N} → C be defined to be the 
related difference
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f(x, i) :=
r∑

k=r−x+1

(−1)r−k
r−x∑
l=0

(
r

l + r − k

)(
r

l

)
ṽk+i−r (B.2)

+
2r−x∑

k=r+1

(−1)k−r
2r−x−k∑

l=0

(
r

l + k − r

)(
r

l

)
ṽk+i−r −

2r∑
k=r−x+1

(−1)r−k

(
2r

k

)
ṽk+i−r

where the first vacuous term is ignored when x = 0. As per the preceding discussion, the 
lemma will be proven if we can show that f(i −N +r, i) = 0 for all i ∈ {N −r+1, · · · , N}. 
To show this, we will now prove that both

(a) f(0, i) = 0, and
(b) f(x, i) − f(x − 1, i) = 0 for all x ∈ {1, . . . , i − N + r}

hold for all i ∈ {N − r + 1, N}. As long as (a) and (b) above both hold, we can then 
deduce for any given i ∈ {N − r + 1, . . . , N} that

f(i − N + r, i) = f(0, i) +
i−N+r∑

x=1
f(x, i) − f(x − 1, i) = 0

as desired. Thus, it suffices to prove both (a) and (b) in order to finish our proof of 
Lemma 4.2.

Both (a) and (b) can be verified by direct calculation. For (a), we can see from (B.2)
that

f(0, i) =
2r∑

k=r+1

(−1)k−r
2r−k∑
l=0

(
r

l + k − r

)(
r

l

)
ṽk+i−r −

2r∑
k=r+1

(−1)r−k

(
2r

k

)
ṽk+i−r

=
2r∑

k=r+1

(−1)k−r

(2r−k∑
l=0

(
r

l + k − r

)(
r

l

)
−
(

2r

k

))
ṽk+i−r = 0.

Here the last equality is obtained by observing that all the coefficients of ṽk+i−r are 0 
via Vandermonde’s identity. Thus, it suffices to prove (b) in order to finish our proof of 
Lemma 4.2.

To verify (b) we can now use (B.2) to see that

f(x, i) − f(x − 1, i) =(−1)x−1
r−x∑
l=0

(
r

l + x − 1

)(
r

l

)
ṽi−x+1

−
r∑

k=r−x+2

(−1)r−k

(
r

2r − x − k + 1

)(
r

x − 1

)
ṽk+i−r

− (−1)r−x+1
(

r
)

ṽr−x+1+i

x − 1
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−
2r−x∑

k=r+1

(−1)k−r

(
r

r − x + 1

)(
r

2r − x − k + 1

)
ṽk+i−r

− (−1)x−1
(

2r

r − x + 1

)
ṽi−x+1

where the first, second, and third lines of the righthand side above result form the 
differences between the first, second, and third terms in (B.2) for f(x, i) and f(x − 1, i), 
respectively.

Simplifying the equation directly above we get that

f(x, i) − f(x − 1, i) =(−1)x−1
r−x∑
l=0

(
r

l + x − 1

)(
r

l

)
ṽi−x+1

−
2r−x∑

k=r−x+2

(−1)r−k

(
r

2r − x − k + 1

)(
r

x − 1

)
ṽk+i−r

− (−1)r−x+1
(

r

x − 1

)
ṽr−x+1+i − (−1)x−1

(
2r

r − x + 1

)
ṽi−x+1

=(−1)x−1
r−x∑
l=0

(
r

l + x − 1

)(
r

l

)
ṽi−x+1

−
2r−x+1∑

k=r−x+2

(−1)r−k

(
r

2r − x − k + 1

)(
r

x − 1

)
ṽk+i−r

− (−1)x−1
(

2r

r − x + 1

)
ṽi−x+1

=(−1)x−1
r−x∑
l=0

(
r

l + x − 1

)(
r

l

)
ṽi−x+1

−
2r−x+1∑

k=r−x+2

(−1)r−k

(
r

2r − x − k + 1

)(
r

x − 1

)
ṽk+i−r

− (−1)x−1
(

2r

r − x + 1

)
ṽi−x+1 + (−1)x−1

(
r

x − 1

)
ṽi−x+1

− (−1)x−1
(

r

x − 1

)
ṽi−x+1

=(−1)x−1
r−x+1∑

l=0

(
r

l + x − 1

)(
r

l

)
ṽi−x+1

−
2r−x+1∑

(−1)r−k

(
r

2r − x − k + 1

)(
r

x − 1

)
ṽk+i−r
k=r−x+1
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− (−1)x−1
(

2r

r − x + 1

)
ṽi−x+1.

Using Vandermonde’s identity we can now see that the first and third terms cancel. Thus 
we have that

f(x, i) − f(x − 1, i) = −
2r−x+1∑

k=r−x+1

(−1)r−k

(
r

2r − x − k + 1

)(
r

x − 1

)
ṽk+i−r

=
(

r

x − 1

)
(−1)x+r

r∑
j=0

(−1)j

(
r

j

)
ṽi−x+r−j+1.

Note that i − x + r + 1 ∈ {N + 1, . . . , N + r} whenever i ∈ {N − r + 1, . . . , N} and 
x ∈ {1, . . . , i − N + r}. Thus, (b) will hold by (4.4). This finishes the proof.

Appendix C. Proof of Lemma 4.6

We begin with some facts from the proof of Lemma 4.4. For each k ∈ {0, ..., r − 1}
recall that √ρk,0 = ck+

√
c2

k+4
2 , and 

√
ρk,1 = ck−

√
c2

k+4
2 are the two solutions to

z2 − ckz − 1 = 0,

where ck is defined in (4.12). Hence, by Vieta’s formulas, we observe that √ρk,0
√

ρk,1 =
−1, i.e. √ρk,0 = − 1√

ρk,1
. Let ρ̃k be either one of the roots ρk,0 or ρk,1. To bound |ρ̃k| −|ρ̃l|

we will make use of the equality

||ρ̃k| + |1/ρ̃k| − (|ρ̃l| + |1/ρ̃l|)| =
∣∣∣∣(|ρ̃k| − |ρ̃l|)

|ρ̃k||ρ̃l| − 1
|ρ̃k||ρ̃l|

∣∣∣∣ . (C.1)

In particular, our strategy is to bound both the left hand side, and the term on the right 
hand side of (C.1) that multiplies (|ρ̃k| − |ρ̃l|), from both above and below.

We begin with the left hand side, and recall using (4.13) that

|ρ̃k| + |1/ρ̃k| = |ρk,0| + |ρk,1| =
|ck|2 +

√
|ck|4 + 4(c2

k + ck
2) + 16

2 .

Consequently,

|ρ̃k| + |1/ρ̃k| − (|ρ̃l| + |1/ρ̃l|) =
|ck|2 +

√
|ck|4 + 4(c2

k + ck
2) + 16

2

−
|cl|2 +

√
|cl|4 + 4(c2

l + cl
2) + 16
2
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= 4(Re(c2
k − c2

l ))√
|ck|4 + 4(c2

k + ck
2) + 16 +

√
|cl|4 + 4(c2

l + cl
2) + 16

,

(C.2)

where the last equality holds since |ck| = |cl| by (4.12).
We now observe that a lower bound for the left hand side of (C.1) holds because the 

denominator in (C.2) satisfies

0 <
√

|ck|4 + 4(c2
k + ck

2) + 16 +
√

|cl|4 + 4(c2
l + cl

2) + 16 ≤ 16

while the numerator, provided that ck �= cl and ck �= cl s.t. k + l �= r and k �= l, satisfies

|Re(c2
k − c2

l )| = λ1/r| cos(2πk/r) − cos(2πl/r)| = λ1/r|2 sin(π(k − l)/r) sin(π(k + l)/r)|

≥ 2 sin2(π/2r)λ1/r.

This implies that

d1(r)λ1/r ≤ ||ρ̃k| + |1/ρ̃k| − (|ρ̃l| + |1/ρ̃l|)| , (C.3)

where d1(r) := c′/r2 for c′ > 0 such that c′/r2 ≤ sin2(π/2r)
8 for all r ≥ 2. Now that we 

have established (C.3) we are almost done with proving (4.16).
To finish the argument establishing (4.16) note that at most one of ρ =: ρ̃l and ρ̃ =: ρ̃k

can be unimodular by Lemma 4.4. Thus, we only need consider two cases: First, assume 
without loss of generality that |ρ̃l| = 1 and |ρ̃k| �= 1. Then k �= l, k + l �= r, and

||ρ̃k| + |1/ρ̃k| − (|ρ̃l| + |1/ρ̃l|)| =
∣∣∣∣ (|ρ̃k| − 1)2

|ρ̃k|

∣∣∣∣ .
Plugging the above into (C.3) and noting that (4.10) guarantees |ρ̃k| ≥ (1 +

√
2)−2, we 

obtain

(1 +
√

2)λ1/2r ≥ |ρ̃k − 1| ≥ ||ρ̃k| − 1| ≥ (1 +
√

2)−1
√

d1(r)λ1/2r, (C.4)

which uses (4.11) for the upper bound.
Second, assume that both |ρ̃k| �= 1 and |ρ̃l| �= 1. Then

||ρ̃k| + |1/ρ̃k| − (|ρ̃l| + |1/ρ̃l|)| =
∣∣∣∣(|ρ̃k| − |ρ̃l|)

(|ρ̃k| − 1)|ρ̃l| + (|ρ̃l| − 1)
|ρ̃k||ρ̃l|

∣∣∣∣ .
If ρ �= ρ̃, ρ̄ �= ρ̃, ρ−1 �= ρ̃, and ρ−1 �= ρ̃ all hold then we have k �= l, k + l �= r by 
Lemmas 4.3 and 4.4. Thus, we may use (C.3), along with the bounds on ρ̃k and ρ̃l from 
(4.10) and (4.11), to see that
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||ρ̃k| − |ρ̃l|| ≥
∣∣∣∣ (|ρ̃k| − 1)|ρ̃l| + (|ρ̃l| − 1)

|ρ̃k||ρ̃l|

∣∣∣∣−1

d1(r)λ1/r

≥ |ρ̃k||ρ̃l|
(1 +

√
2)λ1/2r|ρ̃l| + (1 +

√
2)λ1/2r

d1(r)λ1/r

≥ d1(r)(1 +
√

2)−1 |ρ̃kρ̃l|
|ρ̃l| + 1λ1/2r

≥ e(r)λ1/2r, (C.5)

where e(r) := c/r2 is such that e(r) ≤ d1(r)(1 +
√

2)−1 (1+
√

2)−4

1+(1+
√

2)2 . On the other hand, 
from (C.4), we have

||ρ̃k| − |ρ̃l|| ≤ |ρ̃k − 1| + |ρ̃l − 1| ≤ 2(1 +
√

2)λ1/2r.

This finishes the proof.

Appendix D. Proof of Lemma 4.7

The upper bound of (4.17) follows directly from Lemma 4.4 as |ρ − ρ′| ≤ |ρ − 1| +
|ρ′ − 1| ≤ 2(1 +

√
2)λ1/2r. As for the lower bound of (4.17), if ρ̄ �= ρ′, ρ−1 �= ρ′, ρ̄−1 �= ρ′, 

then Lemma 4.6 gives that |ρ − ρ′| ≥ ||ρ| − |ρ′|| ≥ cr−2λ1/2r. Thus, it only remains to 
lower bound |ρ − ρ′| in the case where one of ρ̄ = ρ′, ρ−1 = ρ′, or ρ̄−1 = ρ′ holds. We 
will do this by producing a new (weaker) lower bound for |ρ − ρ′| which does not assume 
anything other than that |ρ| �= 1.

Let Λ := {ρ1, ..., ρ2r} be the set of roots of p(x) in (4.6), and note that

|ρ − ρ′| =

∣∣∣∣∣ ∏
ρt∈Λ\{ρ}

(ρ − ρt)

∣∣∣∣∣∣∣∣∣∣ ∏
ρt∈Λ\{ρ,ρ′}

(ρ − ρt)

∣∣∣∣∣
, (D.1)

where both the denominator and numerator are strictly positive by Lemma 4.5. Conse-
quently, we can bound |ρ −ρ′| by appropriately bounding the numerator and denominator 
in (D.1).

To deal with the numerator in (D.1), note that (4.6) implies that the leading coefficient 
of p(x) is 1, and hence

1
2r

∏
ρt∈Λ\{ρ}

(ρ − ρt) = 1
2r

dp(z)
dz

∣∣∣∣
z=ρ

= (ρ − 1)2r−1 − (−1)r 1
λρr−1
2
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= (−1)rλρr

ρ − 1 − (−1)r 1
2λρr−1

= (−1)r

2 λρr−1 ρ + 1
ρ − 1 .

where the third equality uses the fact that p(ρ) = 0 and that ρ �= 1, i.e., that

(ρ − 1)2r−1 = (−1)rλρr

ρ − 1 .

Consequently, ∣∣∣∣∣∣
∏

ρt∈Λ\{ρ}
(ρ − ρt)

∣∣∣∣∣∣ = rλ

∣∣∣∣ρr−1 ρ + 1
ρ − 1

∣∣∣∣ > 0. (D.2)

For the denominator of (D.1), recall that for each ρt ∈ Λ, ρt �= ρ, we have by Lemma 4.4
that

|ρ − ρt| ≤ |ρ − 1| + |ρt − 1| ≤ 2(1 +
√

2)λ1/2r.

As a result, we can recombine the numerator and denominator of (D.1) and then invoke 
(4.11) of Lemma 4.4 once more to obtain

|ρ − ρ′| ≥
rλ
∣∣∣ρr−1 ρ+1

ρ−1

∣∣∣
22r−2(1 +

√
2)2r−2λ(r−1)/r

≥
r
∣∣ρr−1(ρ + 1)

∣∣
22r−2(1 +

√
2)2r−1

λ1/2r.

Appealing one additional time to Lemma 4.4 we now get that

|ρ − ρ′| ≥ r |(ρ + 1)|
22r−2(1 +

√
2)4r−3

λ1/2r. (D.3)

Continuing with our bound, we will now finishing controlling the numerator on the 
right hand side of (D.3). For any ρ ∈ Λ and its associated ck (defined in (4.12)) we have

|ρ + 1| = |(√ρ + i)(√ρ − i)| =

∣∣∣∣∣ck + 2i ±
√

c2
k + 4

2 · ck − 2i ±
√

c2
k + 4

2

∣∣∣∣∣
=

∣∣∣∣∣ −4 + 2cki

ck + 2i ∓
√

c2
k + 4

∣∣∣∣∣
∣∣∣∣∣ −4 − 2cki

ck − 2i ∓
√

c2
k + 4

∣∣∣∣∣ ≥ 4|4 + c2
k|

64 , (D.4)

where in the inequality we used the fact that |ck| < 2. It remains to obtain a lower bound 
on the magnitude of |c2

k + 4| above. We have that
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|4 + c2
k| =

√
(4 − λ1/r cos(2kπ/r))2 + (λ1/r sin(2kπ/r))2

=
√

16 + λ2/r − 8λ1/r cos(2kπ/r)

=
√

16 − 16 cos2(2kπ/r) + (λ1/r − 4 cos(2kπ/r))2

≥
√

16 − 16 cos2(2kπ/r)

= 4 |sin(2kπ/r)| . (D.5)

Here we note that |ρ| �= 1 implies that k = 1, . . . , r − 1 by Lemma 4.4. Furthermore, if 
k = r/2 then c2

k = λ1/r so that |4 + c2
k| > 4 in that case. Hence, we may combine (D.4)

and (D.5) to see that

|ρ + 1| ≥ 1
4 sin(π/r) (D.6)

holds for all r ≥ 2. Combining (D.6) with (D.3) now yields the desired result where here 
c1 ≥ 4(1 +

√
2)4 and c2 ≥ 1

4r sin(π/r) for all r ≥ 2 (note that since π ≥ 1
4r sin(π/r) for 

all r ≥ 2, we can choose c2 = π/4, for example).

Appendix E. Proof of Lemma 5.4

In this appendix, we seek to prove Lemma 5.4, here restated below for clarity.

Lemma 5.4. There exist absolute uniform constants C1, C2, C3 ∈ R+ such that for all 
r ≥ 2, N ≥ Cr

3 , and λ1/2r
j ≥ C2r6

N ,

|ck,�| ≤ C1√
N

if |ρk,�| ≥ 1, (E.1)

for all (k, �) ∈ [r − 1] × {0, 1}.

As mentioned in the discussion after its statement, to prove this result, we will prove 
separate results for λ1/2r ≤ 1/4 and for λ1/2r > 1/4, namely Lemmas 5.5 and 5.6, again 
restated below.

Lemma 5.5. There exists an absolute uniform constant C2 ∈ R+ such that for all r ≥ 2
and 1/4 ≥ λ

1/2r
j ≥ C2r6

N ,

|ck,�| ≤
(

24
min{|ρk,j |2N , 1}N

)1/2

,

for all (k, �) ∈ [r − 1] × {0, 1}.
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Lemma 5.6. There exists an absolute uniform constant C3 ∈ R+, such that for all r ≥ 2, 
N ≥ Cr

3 , and λ1/2r
j > 1/4,

|ck,�| ≤
(

48
min{|ρk,j |2N , 1}N

)1/2

,

for all (k, �) ∈ [r − 1] × {0, 1}.

The first subsection of this appendix is dedicated to the λ1/2r
j ≤ 1/4 case, and the 

second to the λ1/2r
j > 1/4 case.

We begin with a toy example that demonstrates our approach for proving Lemma 5.4, 
namely the case of two real roots ρ1, ρ2. Although this case does not occur in practice, 
it motivates the main ideas used in proving Lemma 5.4.

Example 1. [Toy example: two real roots] Suppose v ∈ RN is a normalized vector ‖v‖2 =
1 with the following element-wise representation

vi = β1ρi
1 + β2ρi

2,

where βj , ρj , j = 1, 2 are real numbers. Assuming α := |ρ1|
|ρ2| > 1, then it holds that

|βj | ≤ 2√
N − 2 log−1

2 α − 1
, if ρj ≥ 1.

To prove this result, we will first prove the following result which bounds the number 
of indices for which two sequences bounded by geometric progressions will have terms 
sufficiently far apart.

Lemma E.1. Let ρ1, ρ2, β1, β2 be positive numbers with α = ρ1
ρ2

> 1. Let {Bi}i∈[N ],

{B′
i}i∈[N ], be sequences of positive numbers such that Bi+1

Bi
≥ ρ1, B′

i+1
B′

i
≤ ρ2 for any 

i ∈ [N ]. Then, for any q ∈ N, the set of indices K ⊂ [N ] for which

K =
{

i : Bi

B′
i

≤ 2− q
2 log2 α or Bi

B′
i

≥ 2
q
2 log2 α

}
is of cardinality

|K| ≥ N − q − 1.

Proof. Let Γi = Bi

B′
i
, and note that since α > 1 we have Γi+1 = Bi+1

B′
i+1

≥ p1Bi

p2B′
i

≥ αΓi > Γi, 
and so Γi is strictly increasing in i. We have
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Γi

Γi+q
=

i+q−1∏
j=i

Γi

Γi+1
=

i+q−1∏
j=i

(
Bi

Bi+1

)(
B′

i+1
B′

i

)
≤
(

ρ2

ρ1

)q

= 1
αq

= 1
2q log2 α

. (E.2)

Thus, if Γi ∈ I := [2− q
2 log2 α, 2 q

2 log2 α], then Γi+q+1 must be outside the interval I. Define 
i0 := min{i, Γi ∈ I}. Then for any i ≥ i0 + q + 1, we have Γi > Γi0+q = 2q log2 αΓi0 ≥
2q/2 log2 α, which implies [N ]\K ⊂ {i0, ..., i0 + q}. �

Using this result, we can now prove the result in the example by using Lemma E.1 to 
show that for any element in K, β1ρi

1 and β2ρi
2 differ sufficiently, and using this result 

to bound the |βj |.

Proof of Example 1. Let K = {i : |β1ρi
1|

|β2ρi
2| ≥ 2 or |β1ρi

1|
|β2ρi

2| ≤ 1/2} be the set of indices 
at which the two components in the expression of v are sufficiently different (differ 
by a factor of 2). From Lemma E.1 above, with Bi = β1ρi

1, B′
i = β2ρi

2, and hence 
Bi+1

Bi
= |β1ρi+1

1 |
|β1ρi

1| = |ρ1|, and similarly 
B′

i+1
B′

i
= |β2ρi+1

2 |
|β2ρi

2| = |ρ2| (and thus α = |ρ1|
|ρ2| , which we 

assumed was greater than 1), the cardinality of K is of the same order as N , in particular, 
we have |K| ≥ N − 2

log2 α − 1. For each of those indices i ∈ K, we have by the definition 
of K that

|vi| = |β1ρi
1 + β2ρi

2| ≥ 1
2 max{|β1ρi

1|, |β2ρi
2|} ≥ 1

2 |βjρi
j |, for j = 1, 2.

Summing up the squares of all entries of vi whose indices are in K, we have

1 ≥
∑
i∈K

v2
i ≥

∑
i∈K

1
4β2

j ρ2i
j . (E.3)

If |ρj | ≥ 1, (E.3) can be used to show that

∑
i∈K

1
4β2

j ρ2i
j ≥

|K|∑
i=1

1
4β2

j ρ2i
j ≥

|K|∑
i=1

1
4β2

j = 1
4 |K|β2

j .

Together with (E.3), it yields

|βj | ≤ 2√
|K|

≤ 2√
N − 2

log2 α − 1
. �

In this example, we were able to directly apply Lemma E.1 since the roots were real. 
In reality, however, it will not be the case that the roots will be real. In order to resolve 
this issue, we prove the following lemmas to resolve the issue of complex roots by writing 
the singular vector as a sum of real-valued terms. First, we prove the following result 
about the coefficients ck,� in the expansion (4.15).
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Lemma E.2. For

[ṽ(λj)]i =
1∑

�=0

r−1∑
k=0

ck,� · ρi
k,� (E.4)

as in (4.15), c0,1 = c0,0, and ck,� = cr−k,� for all k ∈ {1, · · · , r − 1}.

Proof. Since the singular vector ṽ(λj) is chosen to be real (note that such a choice is 
always possible because (Dr)T (Dr) is symmetric), we have

1∑
�=0

r−1∑
k=0

ck,� · ρi
k,� =

1∑
�=0

r−1∑
k=0

ck,� · ρi
k,� =

1∑
�=0

r−1∑
k=0

ck,� · ρk,�
i

for all i ∈ Z. Then, using the results in Lemmas 4.3 and 4.4, we first note that ρ0,0 = ρ−1
0,1

and |ρ0,0| = |ρ0,1| = 1, hence ρ0,1 = ρ0,0. Then, again by Lemma 4.3 we also have 
ρk,� = ρr−k,� for all k ∈ {1, · · · , r − 1}. Hence, the above equation is equivalent to

c0,0ρi
0,0 + c0,1ρi

0,1 +
1∑

�=0

r−1∑
k=1

ck,�ρ
i
k,� = c0,0ρi

0,1 + c0,1ρi
0,0 +

1∑
�=0

r−1∑
k=1

ck,�ρ
i
r−k,�

= c0,0ρi
0,1 + c0,1ρi

0,0 +
1∑

�=0

r−1∑
k=1

cr−k,�ρ
i
r,�

where the last equality in the sequence holds by a change of variables.
Then, since the equality holds for all i ∈ Z, we thus have

⎡⎢⎢⎣
1 1 1 · · · 1

ρ0,0 ρ0,1 ρ1,0 · · · ρr−1,1
...

...
...

. . .
...

ρ2r−1
0,0 ρ2r−1

0,1 ρ2r−1
1,0 · · · ρ2r−1

r−1,1

⎤⎥⎥⎦
⎛⎜⎜⎜⎜⎝

c0,0
c0,1
c1,0

...
cr−1,1

⎞⎟⎟⎟⎟⎠

=

⎡⎢⎢⎣
1 1 1 · · · 1

ρ0,0 ρ0,1 ρ1,0 · · · ρr−1,1
...

...
...

. . .
...

ρ2r−1
0,0 ρ2r−1

0,1 ρ2r−1
1,0 · · · ρ2r−1

r−1,1

⎤⎥⎥⎦
⎛⎜⎜⎜⎜⎝

c0,1
c0,0

cr−1,0
...

c1,1

⎞⎟⎟⎟⎟⎠ .

Since

V =

⎡⎢⎢⎣
1 1 1 · · · 1

ρ0,0 ρ0,1 ρ1,0 · · · ρr−1,1
...

...
...

. . .
...

ρ2r−1 ρ2r−1 ρ2r−1 · · · ρ2r−1

⎤⎥⎥⎦ ∈ C2r×2r
0,0 0,1 1,0 r−1,1
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is a Vandermonde matrix, we hence have det V =
∏

(j,�) �=(j′,�′)

(
1

ρj,�−ρj′,�′

)
. By 

Lemma 4.5, the roots ρ are distinct, and thus V is invertible. Hence⎛⎜⎜⎜⎜⎝
c0,0
c0,1
c1,0

...
cr−1,1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
c0,1
c0,0

cr−1,0
...

c1,1

⎞⎟⎟⎟⎟⎠
and therefore c0,1 = c0,0 and ck,� = cr−k,� for all k ∈ {1, · · · , r − 1}, as desired. �

Using this result, we can now prove the following lemma, which allows us to write 
[ṽ(λj)]i (the ith entry of ṽ corresponding to λ = λj) in terms of real-valued terms.

Lemma E.3. Let ρk,� = |ρk,�|eθk,�i, ck,� = |ck,�|eγk,�i, for ρk,� and ck,� as in (E.4), and 
let

c̃k,� :=
{

|ck,�| if r ∈ 2Z and � = r/2
2|ck,�| otherwise.

Then

[ṽ(λj)]i = c̃0,0|ρ0,0|i cos(iθ0,0γ0,0) +
1∑

�=0


r/2�∑
k=1

c̃k,�|ρk,�|i cos(iθk,� + γk,�). (E.5)

Proof. From the results in Lemmas 4.3, 4.4, and E.2 we have ρ0,1 = ρ0,0 and c0,1 = c0,0; 
we also have ρk,� = ρr−k,� and ck,� = cr−k,� for all k ∈ {1, · · · , r − 1}. Hence, we see that 
c0,1ρi

0,1 = c0,0ρi
0,0, and ck,�ρ

i
k,� = cr−k,�ρi

r−k,� for all k ∈ {1, · · · , r − 1}. We also note 
that ck,� = cr−k,� implies that if r is even, cr/2,� is real, and since by Corollary 4.8, ρr/2,�

is also real, we can see that cr/2,�ρ
i
r/2,� is real as well.

Then, (for k �= r/2) since ck,�ρ
i
k,� = cr−k,�ρi

r−k,�, we have

ck,�ρ
i
k,� + cr−k,�ρ

i
r−k,� = 2Re(ck,�ρ

i
k,�) = 2Re(|ck,�||ρk,�|ie(iθk,�+γk,�)i)

= 2|ck,�||ρk,�|i cos(iθk,� + γk,�),

where the second equality holds since we have assumed that ρk,� = |ρk,�|eθk,�i, ck,� =
|ck,�|eγk,�i. Similarly, since c0,1ρi

0,1 = c0,0ρi
0,0, we have

c0,0ρi
0,0 + c0,1ρi

0,1 = Re(c0,0ρi
0,0) + Re(c0,1ρi

0,1) = 2|c0,0||ρ0,0| cos(iθ0,0 + γ0,0)

Finally, if r is even, and hence cr/2,�ρ
i
r/2,� is real, we thus have

1∑
cr/2,�ρ

i
r/2,� =

1∑
Re(cr/2,�ρ

i
r/2,�) =

1∑
|cr/2,�||ρr/2,�|i cos(iθr/2,� + γr/2,�).
�=0 �=0 �=0
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We then see that we can break the expansion (4.15) into parts as follows:

[ṽ(λj)]i =
1∑

�=0

r−1∑
k=0

ck,� · ρi
k,� =

1∑
�=0


(r−1)/2�∑
k=1

ck,�ρ
i
k,� + cr−k,�ρ

i
r−k,� + c0,0ρi

0,0 + c0,1ρi
0,1+

1∑
�=0


r/2�∑
k=�r/2


ck,�ρ
i
k,�.

Here, the last term in the sum will be empty if r is odd, and cr/2,�ρ
i
r/2,� if r is even. 

Thus, combining the three equations above, we have

[ṽ(λj)]i =
1∑

�=0


(r−1)/2�∑
k=1

2|ck,�||ρk,�|i cos(iθk,� + γk,�) + 2|c0,0||ρ0,0| cos(iθ0,0 + γ0,0)+

1∑
�=0


r/2�∑
k=�r/2


|ck,�||ρk,�|i cos(iθk,� + γk,�).

Thus, by our definition of c̃k,�, we have

[ṽ(λj)]i = c̃0,0|ρ0,0|i cos(iθ0,0γ0,0) +
1∑

�=0


r/2�∑
k=1

c̃k,�|ρk,�|i cos(iθk,� + γk,�),

as desired. �
E.1. The λ1/2r

j ≤ 1/4 case: proof of Lemma 5.5

The proof of Lemma 5.5 follows the same idea as in our toy example, Example 1. Our 
goal is still to find the set of indices for which the components in the expansion of ṽ are 
well separated, and to show that this set has a large enough cardinality. These were easy 
to prove in the toy example because each time the index increases by 1, the increments 
of the two components in the expression of v has a ratio that is lower bounded by some 
positive number independent of N , which fulfills the assumptions of Lemma E.1, leading 
to the desired coefficient bound.

In the general scenario, however, the presence of complex roots and the cosine func-
tions in the expansion (E.5) of ṽ prevent such lower bounds from existing. Indeed, we 
observe that it is the large oscillation of the components from index to index that de-
stroys the lower bound, but at the same time, we observe that the average oscillation 
over an interval of indices is much smaller. This motivates us to look at the increments of 
components of ṽ from interval to interval instead of from index to index, with the hope 
of finding a positive lower bound that is sufficiently large. We first establish the intervals 
in the following definition by dividing [N ] into a number of subsets of equal length ΔN .
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Definition E.4. Given ΔN > 0 and m := �N/ΔN�, let I0, ..., Im−1 be intervals with 
Ii = {Ai, ..., Ai+1 − 1}, where Ai = iΔN + 1 for all i ∈ {0, · · · , m}.

As described before, in a similar fashion to Example 1, we seek to show the summands 
in the expansion (E.5) differ sufficiently from each other. However, because of the pres-
ence of cos(iθk,� + γk,�) in the summands, we must consider sets of summands rather 
than individual summands. We begin by defining the following terminology to discuss 
sets of summands.

Definition E.5. In (E.5), we call each summand a component of ṽ(λj), we call the squared 
summand at index i, i.e., c̃2

k,�|ρk,�|2i cos2(iθk,�+γk,�) the energy of the (k, �)’th component 
at i, and the sum 

∑
i∈In

c̃2
k,�|ρk,�|2i cos2(iθk,� +γk,�) the energy of the (k, �)’th component 

over interval In.

We then define the following sets which make precise the comparison of the increments 
of components of ṽ.

Definition E.6. For some fixed (k, �) �= (k′, �′) with (k, �), (k′, �′) ∈ {(0, 0)} ∪ ({1, · · · ,

�r/2�} × {0, 1}), we define the index set Ck,�;k′,�′ where for each i ∈ Ck,�;k′,�′ the energy 
of the (k, �)th component on Ii is comparable to the (k′, �′)th component on Ii, i.e.,

Ck,�;k′,�′ =

⎧⎪⎨⎪⎩i : 1
4r2 ≤

c̃2
k,�

∑
n∈Ii

|ρk,�|2n cos2(nθk,� + γk′,�′)

c̃2
k′,�′

∑
n∈Ii

|ρk′,�′ |2n cos2(nθk′,�′ + γk′,�′) ≤ 4r2

⎫⎪⎬⎪⎭ .

Also, we define

C =
⋂

(k,�) �=(k′,�′)

Cc
k,�;k′,�′ , (E.6)

where (k, �), (k′, �′) again run over {(0, 0)} ∪ ({1, · · · , �r/2�} × {0, 1}).

In the previous definition, the bound 4r2 is chosen out of consideration for a later 
argument. Also, on the complement set of Ck,�;k′,�′ , the (k, �)th and (k′, �′)th components 
are sufficiently different, more specifically, one component will be 4r2 times larger than 
the other. The idea is that we compute Ck,�;k′,�′ for all (k, �) and (k′, �′), so that on C, all 
components will be sufficiently different from each other, and therefore there must exist 
a dominant component that behaves similarly to their sum over all of the components, 
which is the square of the �2 norm of the singular vector of Dr we are considering. The 
coefficient of this dominant component can in turn be bounded by the energy of the 
singular vector on the corresponding interval. The claim is, if we have enough intervals 
in C, then we can expect a small bound for the coefficient (Lemma 5.5). To compute |C|
we first find a lower bound for |Cc

k,�;k′,�′ |, for each k, �; k′, �′ quadruple.
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We begin by supposing that |ρk,�|, |ρk′,�′ | > 1. In this case, define

Dk,�;k′,�′ =

⎧⎪⎨⎪⎩i :
c̃2

k,�|ρk,�|2Ai+1
∑

n∈Ii

cos2(nθk,� + γk,�)

c̃2
k′,�′ |ρk′,�′ |2Ai

∑
n∈Ii

cos2(nθk′,�′ + γk′,�′) ≤ 1
4r2 , or

c̃2
k,�|ρk,�|2Ai

∑
n∈Ii

cos2(nθk,� + γk,�)

c̃2
k′,�′ |ρk′,�′ |2Ai+1

∑
n∈Ii

cos2(nθk′,�′ + γk′,�′) ≥ 4r2

⎫⎪⎬⎪⎭
(E.7)

Then, since we assumed |ρk,�|, |ρk′,�′ | > 1, for l ∈ Ai we have |ρk,�|2Ai ≤ |ρk,�|2l ≤
|ρk,�|2Ai+1 (and likewise for ρk′,�′), by the definitions of Ii and Ai in Definition E.4. 
Therefore any i ∈ Dk,�;k′,�′ must be in Cc

k,�;k′,�′ , and hence |Cc
k,�;k′,�′ | ≥ |Dk,�;k′,�′ |, and 

|Dk,�;k′,�′ | is easier to compute as |ρk,�| is pulled out of the sum.
In the other cases, for example for |ρk,�| ≤ 1, |ρk′,�′ | > 1, we will have analogous 

expressions for Dk,�;k′,�′ such as

Dk,�;k′,�′ =

⎧⎪⎨⎪⎩i :
c̃2

k,�|ρk,�|2Ai
∑

n∈Ii

cos2(nθk,� + γk,�)

c̃2
k′,�′ |ρk′,�′ |2Ai

∑
n∈Ii

cos2(nθk′,�′ + γk′,�′) ≤ 1
4r2 , or

c̃2
k,�|ρk,�|2Ai+1

∑
n∈Ii

cos2(nθk,� + γk,�)

c̃2
k′,�′ |ρk′,�′ |2Ai+1

∑
n∈Ii

cos2(nθk′,�′ + γk′,�′) ≥ 4r2

⎫⎪⎬⎪⎭
As a result, the proof of Lemma E.9 will differ slightly depending on the case we are 
considering, and these differences will be briefly mentioned in its proof.

To simplify the notation, we denote the accumulated sums of the angles in the i’th 
interval Ii by φ(i, θ, γ), i.e.,

φ(i, θ, γ) :=
∑
n∈Ii

cos2(nθ + γ). (E.8)

and define a close approximation Γi
k,�;k′,�′ to the complex ratio in the definition (E.7) of 

Dk,�;k′,�′

Γi
k,�;k′,�′ =

c̃2
k,�|ρk,�|2Ai

∑
n∈Ii

cos2(nθk,� + γk,�)

c̃2
k′,�′ |ρk′,�′ |2Ai

∑
n∈Ii

cos2(nθk′,�′ + γk′,�′) =
c̃2

k,�|ρk,�|2Aiφ(i, θk,�, γk,�)
c̃2

k′,�′ |ρk′,�′ |2Aiφ(i, θk′,�′ , γk′,�′)

(E.9)
Note that in Γi

k,�;k′,�′ , |ρk,�| and |ρk′,�′ | have the same power while they do not in the 
definition (E.7) of Dk,�;k′,�′ . We will need to take this difference into account when using 
Γi

k,�;k′,�′ to bound |Dk,�;k′,�′ |.
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Using these definitions, we will now prove Lemma 5.4 for λ1/2r
j ≤ 1/4. Explicitly, we 

shall prove the following main lemma.

Lemma 5.5. There exists absolute uniform constant C2 ∈ R+ such that for all r ≥ 2 and 
1/4 ≥ λ

1/2r
j ≥ C2r6

N ,

|ck,�| ≤
(

24
min{|ρk,j |2N , 1}N

)1/2

,

for all (k, �) ∈ [r − 1] × {0, 1}.

In order to prove this result, we will show the following two intermediate results. The 
first result is used to bound φ(i, θ, γ). The second result is the key result that allows us 
to prove the main lemma; it allows us to ensure that |C| is sufficiently large, i.e. that 
there is a sufficiently large set of intervals such that the energy of every component is 
sufficiently different from the energy of every other component.

Lemma E.8. Suppose λ1/2r
j ≤ 1/4. For all (k, �) �= (k′, �′) with (k, �), (k′, �′) ∈ {(0, 0)} ∪

({1, · · · , �r/2�} × {0, 1}), there exists absolute universal constant C4 ∈ R+ such that if 
ΔN ≥ max

{
75

sin(π/2r)λ1/2r , r2+C4λ1/2r

C4λ1/2r log 12
}

=: E(r)λ−1/2r, either

Γi
k,�;k′,�′

Γi+1
k,�;k′,�′

≥ 4/3 for all i ∈ [m − 1], or
Γi

k,�;k′,�′

Γi+1
k,�;k′,�′

≤ 3/4 for all i ∈ [m − 1],

(for m = �N/ΔN� as defined in Definition E.4). Additionally,

φ(i, θk,�, γk,�) ≥ ΔN/3.

for all i ∈ [m], (k, �) ∈ {(0, 0)} ∪ ({1, · · · , �r/2�} × {0, 1}).

Corollary E.11. Suppose that the assumptions of both Lemmas E.10 and E.9 hold. Then, 
there exists an absolute universal constant C2 such that if N ≥ C2r6λ

−1/2r
j , then |C| ≥

m/2, where m = �N/ΔN� ≥ 2 is the total number of intervals.

Using these results, we have the following proof of Lemma 5.5.

Proof of Lemma 5.5. For (k, �) ∈ {(0, 0)} ∪ ({1, · · · , �r/2�} × {0, 1}), we have |ck,�| ≤
|c̃k,�| by its definition in Lemma E.3. Additionally, for (k, �) /∈ {(0, 0)} ∪({1, · · · , �r/2�} ×
{0, 1}), then we have c0,1 = c0,0, and ck,� = cr−k,�, by Lemma E.2. Therefore it suffices to 

show that |c̃k,�| ≤
(

48
min{|ρk,�|2N ,1}N

)1/2
for all (k, �) ∈ {(0, 0)} ∪({1, · · · , �r/2�} ×{0, 1}). 

On each It with t ∈ C, by the definition of C (Definition E.6), all of the components 
are sufficiently different from each other. Hence we can reorder them according to their 
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energy on It. For simplicity of notation, we denote the component (corresponding to 
index (k, �)) which has the qth largest energy over It as ãk,� · |ρk,�|i cos(iθk,� + γk,�) =:
ã

(q)
t |ρ(q)

t |i cos(iθ(q)
t +γ

(q)
t ) =: P

(q)
t (i). We also denote [ṽ(λj)]i as ṽ(i). Using this notation, 

(E.5) becomes

ṽ(i) =
2
r/2�+1∑

q=1
ã

(q)
t · |ρ(q)

t |i cos(iθ(q)
t + γ

(q)
t ) =

2
r/2�+1∑
q=1

P
(q)
t (i), i ∈ It.

We can now see that

∑
i∈It

ṽ2(i) =
∑
i∈It

⎛⎝2
r/2�+1∑
q=1

P
(q)
t (i)

⎞⎠2

=
∑
i∈It

⎡⎢⎣(P (1)
t (i))2 + 2P

(1)
t (i)

2
r/2�+1∑
q=2

P
(q)
t (i) +

⎛⎝2
r/2�+1∑
q=2

P
(q)
t (i)

⎞⎠2
⎤⎥⎦

≥
∑
i∈It

⎡⎢⎣1
2(P (1)

t (i))2 −

⎛⎝2
r/2�+1∑
q=2

P
(q)
t (i)

⎞⎠2
⎤⎥⎦

≥ 1
2
∑
i∈It

(P (1)
t (i))2 − (2�r/2�)

2
r/2�+1∑
q=2

∑
i∈It

(P (q)
t (i))2

where the first inequality is obtained by applying 2|ab| ≤ 1
2a2 + 2b2 (derived from the 

Arithmetic Mean/Geometric Mean Inequality) to the cross term followed by a direct 
simplification, and the second inequality uses the Cauchy-Schwarz inequality on the 
second term.

Now, suppose that t ∈ C. By the definition of C in Definition E.6, the energy of 
the qth component over It is at least (4r2) times larger than the energy of the (q + 1)th 
component over It, and hence 

∑
i∈It

(P (q)
t (i))2 ≤ 1

4r2

∑
i∈It

(P (1)
t (i))2. Therefore, we have

1
2
∑
i∈It

(P (1)
t (i))2 − (2�r/2�)

2
r/2�+1∑
q=2

∑
i∈It

(P (q)
t (i))2 ≥ 1

4
∑
i∈It

(P (1)
t (i))2.

Furthermore, since P
(q)
t (i) is the component with lth largest energy over It,∑

i∈It
(P (1)

t (i))2 ≥
∑

i∈It
(P (q)

t (i))2 for all q ∈ {1, ..., 2�r/2� + 1}. Hence, we have

∑
ṽ2(i) ≥ 1

2
∑

(P (1)
t (i))2 − (2�r/2�)

2
r/2�+1∑ ∑
((P (q)

t (i))2
i∈It i∈It q=2 i∈It
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≥ 1
4
∑
i∈It

(P (1)
t (i))2

≥ 1
4
∑
i∈It

(P (q)
t (i))2, for any q ∈ {1, ..., 2�r/2� + 1}

= 1
4
∑
i∈It

c̃2
k,�|ρk,�|2i cos2(iθk,� + γk,�),

for all (k, �) ∈ {(0, 0)} ∪ ({1, · · · , �r/2�} × {0, 1}). (E.10)

Now we can see that, since the above calculation holds for any It with t ∈ C, we can 
sum over all such It and use the fact that |vj | = 1 and the above result (E.10) to get

1 ≥
∑
t∈C

∑
i∈It

ṽ2(i) ≥ 1
4
∑
t∈C

c̃2
k,�

∑
i∈It

(|ρk,�|2i cos2(iθk,� + γk,�)).

Then, since i ≤ N , we must have |ρk,�|2i ≥ min{|ρk,�|2N , 1}, and by Lemma E.8, we have 
φ(t, θk,�, γk,�) =

∑
i∈It

cos2(iθk,� + γk,�) ≥ ΔN/3, hence

1
4
∑
t∈C

c̃2
k,�

∑
i∈It

(|ρk,�|2i cos2(iθk,� + γk,�)) ≥ 1
4

ΔN

3
∑
t∈C

c̃2
k,� min{|ρk,�|2N , 1}.

Finally, Corollary E.11 implies that |C| ≥ m/2 for m = �N/ΔN�, and it also implies 
that m ≥ 2. Since m ≥ 2, we also have 
N/ΔN�

2 ≥ N/ΔN
4 . Hence,

1
4

ΔN

3
∑
t∈C

c̃2
k,� min{|ρk,�|2N , 1} ≥ 1

4
ΔN

3
�N/ΔN�

2 c̃2
k,� min{|ρk,�|2N , 1}

≥ 1
4

ΔN

3
N/ΔN

4 c̃2
k,� min{|ρk,�|2N , 1}

≥ N

48 c̃2
k,� min{|ρk,�|2N , 1}.

Combining these results, we therefore see that

1 ≥ 1
4
∑
t∈C

c̃2
k,�

∑
i∈It

(|ρk,�|2i cos2(iθk,� + γk,�))

≥ 1
4

ΔN

3
∑
t∈C

c̃2
k,� min{|ρk,�|2N , 1}

≥ N

48 c̃2
k,� min{|ρk,�|2N , 1}

and rearranging this inequality produces the desired result. �
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Therefore, to complete the proof of Lemma 5.5 it suffices to prove our two intermediate 
results. We begin by proving the first result, Lemma E.8. In order to prove this result, 
we first prove the following lemma, which will in turn allow us to bound sin(θk,�), which 
will allow us to bound φ(i, θk,�, γk,�) using trigonometric identities.

Lemma E.7. Assume λ
1/2r
j ≤ 1/4, then one of the following two cases holds for any 

k = 0, .., r − 1 and � = 0, 1:

• if r is even and k = r/2, sin(θk,�) = 0,

• otherwise, sin(θk,�) ≥
λ

1/2r
j sin(π/2r)

25 .

Proof. Recall that θk,� is defined in Lemma E.3 such that ρk,� = |ρk,�|eθk,�i. Thus, if 
ρk,� is a real root (which by Corollary 4.8 happens iff r is even and k = r/2) then 

sin(θk,�) = 0. Otherwise, as discussed in the proof of Lemma 4.4, √ρk,� = ck±
√

c2
k+4

2 with 
ck complex, where we recall that

ck = ±iλ
1/2r
j ekπi/r.

Hence

|Im(√ρk,�)| = 1
2

∣∣∣∣∣∣ck − ck

2 ∓
√

c2
k + 4 −

√
c2

k + 4
2

∣∣∣∣∣∣
=

∣∣∣∣∣ck − ck

4

(
1 ∓ ck + ck√

c2
k + 4 +

√
ck

2 + 4

)∣∣∣∣∣ ≥ |ck − ck|
8 , (E.11)

where the last inequality follows since |ck| = λ
1/2r
j ≤ 1/4, by our assumption on λj, and 

therefore |ck + ck| ≤ 1
2 and |

√
c2

k + 4 +
√

ck
2 + 4| = 2|Re(

√
c2

k + 4)| ≥ 3
2 ≥ 1.

Using a similar argument to bound 1 ∓ ck+ck√
c2

k+4+
√

ck
2+4 from above, we see that

|Im(√ρk,�)| =

∣∣∣∣∣ck − ck

4

(
1 ∓ ck + ck√

c2
k + 4 +

√
ck

2 + 4

)∣∣∣∣∣ ≤ |ck − ck|
3 . (E.12)

This implies

∣∣∣∣sin(θk,�

2

)∣∣∣∣ =
|Im(√ρk,�)|

|√ρk,�|
≥ |ck − ck|

24 =
|Im(±iλ

1/2r
j ekπi/r)|
12 =

|Re(±λ
1/2r
j ekπi/r)|
12 ,

where the second inequality follows from (E.11) plus the fact that |√ρk,�| ≤ 1 +
√

2 ≤ 3
from (4.10). First, since we are assuming that ρk,� is not real, by Corollary 4.8 we 
must have k �= r/2, and hence ekπi/r must have a nonzero real part. We then see that 
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the smallest nonzero value of |Re(±λ
1/2r
j ekπi/r)| is greater than or equal to the smallest 

nonzero value of |Re(±λ
1/2r
j ekπi/2r)|, which is clearly λ1/2r

j cos( π
2 − π

2r ) = λ
1/2r
j sin(π/2r)

since ekπi/2r lies on the imaginary axis for k = r (hence, setting k = r − 1 gives the 
desired result).

This bound therefore implies

∣∣∣∣sin(θk,�

2

)∣∣∣∣ ≥
|Re(±λ

1/2r
j ekπi/r)|
12 ≥ λ

1/2r
j

sin(π/2r)
12 .

We also have ∣∣∣∣sin(θk,�

2

)∣∣∣∣ =
|Im(√ρk,�|)

|√ρk,�|
≤ |ck − ck| ≤ 1/2,

where the first inequality follows from (E.12) and since |√ρk,�| ≥ (1 +
√

2)−1 ≥ 1
3 from 

(4.10). The second inequality follows since |ck| ≤ 1/4. Thus,

| sin(θk,�)| = 2
∣∣∣∣sin(θk,�

2

)∣∣∣∣
∣∣∣∣∣
√

1 − sin2
(

θk,�

2

)∣∣∣∣∣ ≥ 2
(

λ
1/2r
j

sin(π/2r)
12

)(√
3/4

)
≥ λ

1/2r
j

sin(π/2r)
25 . �

Using this bound, we can now prove Lemma E.8, one of the two lemmas needed to 
prove the main result.

Lemma E.8. Suppose λ
1/2r
j ≤ 1/4. There exists absolute universal constant C4 ∈ R+

such that if ΔN ≥ max
{

75
sin(π/2r)λ

1/2r
j

,
r2+C4λ

1/2r
j

C4λ
1/2r
j

log 12
}

=: E(r)λ−1/2r
j , for all (k, �) �=

(k′, �′) with (k, �), (k′, �′) ∈ {(0, 0)} ∪ ({1, · · · , �r/2�} × {0, 1}) either

Γi
k,�;k′,�′

Γi+1
k,�;k′,�′

≥ 4/3 for all i ∈ [m − 1], or
Γi

k,�;k′,�′

Γi+1
k,�;k′,�′

≤ 3/4 for all i ∈ [m − 1],

(for m = �N/ΔN� as defined in Definition E.4). Additionally,

φ(i, θk,�, γk,�) ≥ ΔN/3.

for all i ∈ [m], (k, �) ∈ {(0, 0)} ∪ ({1, · · · , �r/2�} × {0, 1}).

Proof. Recall that in (E.8), φ(i, θ, γ) is defined as accumulated sums of the angles in the 
i’th interval Ii, i.e.,

φ(i, θ, γ) =
∑

cos2(nθ + γ).

n∈Ii
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We first derive bounds on φ(i, θk,�, γk,�). As λ1/2r
j ≤ 1/4 by assumption, from Lemma E.7

we know that either | sin(θk,�)| = 0 (if r is even with k = r/2) or | sin(θk,�)| ≥
sin(π/2r)

25 λ
1/2r
j . First, we consider the case | sin(θk,�)| = 0. Since r is even, with k = r/2, 

by the proof of Lemma E.3, we also have ak,� real, and hence, by the definitions of θk,�, 
γk,� in Lemma E.3, θk,�, γk,� ∈ πZ. Hence, cos2(tθk,� +γk,�) = 1 for all t ∈ Z. As a result,

φ(i, θk,�, γk,�) =
Ai+1−1∑

t=Ai

cos2(tθk,� + γk,�) =
Ai+2−1∑
t=Ai+1

1 = ΔN.

Next, we consider the case where | sin(θk,�)| ≥
λ

1/2r
j sin(π/2r)

25 . Since ΔN ≥ 75
sin(π/2r)λ

1/2r
j

, 

we have that 1
ΔN ≤ sin(π/2r)λ

1/2r
j

75 ≤ | sin(θk,�)|
3 , and hence | sin(θk,�)| ≥ 3

ΔN . As a result,

φ(i, θk,�, γk,�) =
Ai+1−1∑

t=Ai

cos2(tθk,� + γk,�)

= ΔN

2 +
Ai+1−1∑

t=Ai

1
2 cos(2tθk,� + 2γk,�)

= ΔN

2 + sin((2Ai+1 − 1)θk,� + 2γk,�) − sin((2Ai − 1)θk,� + 2γk,�)
4 sin θk,�

≥ ΔN

2 − 1
2| sin(θk,�)|

≥ ΔN

2 − ΔN

6
≥ ΔN/3. (E.13)

where the second-to-last inequality follows since | sin(θk,�)| ≥ 3
ΔN .

Thus, since it holds in all cases, φ(i, θk,�, γk,�) ≥ ΔN/3 for all i ∈ [m], (k, �) �= (k′, �′)
with (k, �), (k′, �′) ∈ {(0, 0)} ∪ ({1, · · · , �r/2�} ×{0, 1}). Also noting that φ(i, θk,�, γk,�) ≤
ΔN holds for all i ∈ [m], we have

1/3 ≤ φ(i, θk,�, γk,�)
φ(i + 1, θk,�, γk,�)

≤ 3 (E.14)

for all i ∈ [m − 1].
Suppose that |ρk,�| > |ρk′,�′ |, with (k, �), (k′, �′) ∈ {(0, 0)} ∪ ({1, · · · , �r/2�} × {0, 1}). 

We first note that the our choices of (k, �), (k′, �′) do not allow ρk,�, ρk′,�′ to be conjugates, 
since they are paired in (E.5). Lemma 4.6, which states that there exists c, C absolute 
positive constants such that for any two roots ρ, ρ̃, if ρ and ρ̃ are not conjugates, inverses 
or conjugate inverses, then cr−2λ

1/2r
j ≤ ||ρ̃| − |ρ|| ≤ Cλ

1/2r
j and (4.10), which states that 

any root ρ has (1 +
√

2)−2 ≤ |ρ| ≤ (1 +
√

2)2, imply that there exists an absolute constant 
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C4 such that |ρk,�|−|ρk′,�′ |
|ρk′,�′ | ≥ C4λ

1/2r
j

r2 . Note that we can apply Lemma 4.6 because the 
two roots cannot be conjugates, and if the roots are inverses or conjugate inverses, their 
magnitudes must be separated by 1, hence ||ρk,�| −|ρ−1

k,�|| ≤ ||ρk,�| −1|, ||ρk,�| −|ρk,�
−1|| ≤

||ρk,�| − 1| and since there must be a root (namely ρ0,0) with magnitude 1, we can 
apply Lemma 4.6 to ||ρk,�| − |ρ0,0||. (Note that we cannot have |ρk,�| = |ρ−1

k,�| = 1 or 
|ρk,�| = |ρk,�

−1| = 1, since such roots would be conjugate or equal, respectively.)
We then see that

(
|ρk,�|
|ρk′,�′ |

)ΔN

=
(

1 + |ρk,�| − |ρk′,�′ |
|ρk′,�′ |

)ΔN

≥
(

1 +
C4λ

1/2r
j

r2

)ΔN

≥ e

C4λ
1/2r
j

r2+C4λ
1/2r
j

·ΔN

≥ 12

(E.15)
where we also used the fact that ΔN ≥ r2+C4λ

1/2r
j

C4λ
1/2r
j

log 12 and the fact that log(1 + x) ≥

x
1+x for x ≥ −1. If |ρk,�| < |ρk′,�′ |, we apply the same argument to 

(
|ρk′,�′ |
|ρk,�|

)ΔN

to find 

that 
(

|ρk′,�′ |
|ρk,�|

)ΔN

≥ 12 and hence that 
(

|ρk,�|
|ρk′,�′ |

)ΔN

≤ 1
12 .

To complete the proof, we again assume first that |ρk,�| > |ρk′,�′ |. Then, by the 
definition (E.9) of Γi

k,�;k′,�′ we have

Γi
k,�;k′,�′

Γi+1
k,�;k′,�′

=
(

|ρk,�|
|ρk′,�′ |

)−ΔN
φ(i, θk,�, γk,�)

φ(i + 1, θk,�, γk,�)
φ(i + 1, θk′,�′ , γk′,�′)

φ(i, θk′,�′ , γk′,�′) ≤
(

1
12

)
(3)(3) = 3

4

for all i ∈ [m − 1]. In the case where |ρk,�| < |ρk′,�′ |, we will instead get

Γi
k,�;k′,�′

Γi+1
k,�;k′,�′

≥ (12)
(

1
3

)(
1
3

)
= 4

3

for all i ∈ [m − 1]. �
Next, we will prove the second main result, Lemma E.11. In order to prove this bound, 

we recall from (E.7) that we can bound |Dk,�;k′,�′ | and use the fact that |Cc
k,�;k′,�′ | ≥

|Dk,�;k′,�′ | to bound |Cc
k,�;k′,�′ | and ultimately bound |C| in Lemma E.10. We therefore 

prove the following lemma which uses the result in Lemma E.8 to bound |Dk,�;k′,�′ |.

Lemma E.9. For any (k, �) �= (k′, �′) with (k, �), (k′, �′) ∈ {(0, 0)} ∪ ({1, · · · , �r/2�} ×
{0, 1}), if either

Γi
k,�;k′,�′

Γi+1
k,�;k′,�′

≥ 4/3 for all i ∈ [m − 1], or
Γi

k,�;k′,�′

Γi+1
k,�;k′,�′

≤ 3/4 for all i ∈ [m − 1]

then |Dk,�;k′,�′ | ≥ �N/ΔN� − 16(1 +
√

2)λ1/2r
j ΔN − log(410r16).
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Proof. As mentioned in the discussion following Definition E.6, this proof will have 
slightly different arguments depending whether |ρk,�|, |ρk′,�′ | are greater than or less 
than 1.

Without loss of generality, assume 
Γi

k,�;k′,�′

Γi+1
k,�;k′,�′

≥ 4/3 (As mentioned in a later note, the 

same argument holds if Γi
k,�;k′,�′

Γi+1
k,�;k′,�′

≤ 3/4). Let S = 2(1+
√

2)λ
1/2r
j ΔN+log 4r2

log 2 , then 2S =

4r2e2(1+
√

2)λ
1/2r
j ΔN . By Lemma E.1 with Bi = 1, B′

i = Γi
k,�;k′,�′ (for all i) and hence 

ρ1 = 1, ρ2 = 3/4, and α = 4/3 (note that the hypotheses of the lemma are fulfilled since 
Γi

k,�;k′,�′

Γi+1
k,�;k′,�′

≥ 4/3 for all i), setting S = q
2 log2(4/3) and solving for q, we see that except for 

�2S/ log2(4/3)� + 1 ≥ 2S/ log2(4/3) + 2 consecutive subsets, it holds

Γi
k,�;k′,�′ ≤ 2−S or Γi

k,�;k′,�′ ≥ 2S . (E.16)

Note that Lemma E.1 can also be used (with Bi = Γi
k,�;k′,�′ , B′

i = 1, ρ1 = 4/3, ρ2 = 1, 

and α = 4/3) to derive the same result in the case of Γi
k,�;k′,�′

Γi+1
k,�;k′,�′

≤ 3/4.
If |ρk,�| ≤ 1, |ρk′,�′ | > 1 or |ρk,�| > 1, |ρk′,�′ | ≤ 1, then the expressions in Dk,�;k′,�′ will 

be either Γi
k,�;k′,�′ or Γi+1

k,�;k′,�′ . As a result, since 2S = 4r2e2(1+
√

2)λ
1/2r
j ΔN ≥ 4r2, we have 

the desired conclusion in all but 2S/ log2(4/3) + 2 consecutive subsets.
Next we note that in the case that |ρk,�|, |ρk′,�′ | > 1, we then note that

|ρk,�|2ΔN = (1 + |ρk,�| − 1)2ΔN ≤ (1 + (1 +
√

2)λ1/2r
j )2ΔN ≤ e2(1+

√
2)λ

1/2r
j ΔN , (E.17)

where the first inequality follows by Lemma 4.4 and the second inequality follows since 
1 + x ≤ ex for all x. Now suppose that Γi

k,�;k′,�′ ≤ 2−S . If this is the case, then we have

c̃2
k′,�′ |ρk′,�′ |2Aiφ(i, θk′,�′ , γk′,�′) ≥ 2S c̃2

k,�|ρk,�|2Aiφ(i, θk,�, γk,�)

= 2S c̃2
k,�|ρk,�|2Ai+1 |ρk,�|−2ΔN φ(i, θk,�, γk,�)

≥ 2Se−2(1+
√

2)λ
1/2r
j ΔN c̃2

k,�|ρk,�|2Ai+1φ(i, θk,�, γk,�)

= 4r2c̃2
k,�|ρk,�|2Ai+1φ(i, θk,�, γk,�), (E.18)

where the first inequality is from the definition (E.9) of Γi
k,�;k′,�′ , and where the last 

equality is due to the definition of S. A similar argument using (E.17) on |ρk′,�′ | shows 
that

c̃2
k,�|ρk,�|2Aiφ(i, θk,�, γk,�) ≥ 4r2c̃2

k′,�′ |ρk′,�′ |2Ai+1φ(i, θk′,�′ , γk′,�′)

if Γi
k,�;k′,�′ ≥ 2S .

Also, an analogous argument implies the same result if |ρk,�|, |ρk′,�′ | ≤ 1, since using 
Lemma 4.3 to note that ρk,0 = ρ−1

k,1, we can apply the previous result (E.17) to ρk,�′ = ρ−1
k,�

and therefore we see that
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|ρk,�|−2ΔN ≤ e2(1+
√

2)λ
1/2r
j ΔN .

Finally, the bound on the number of the excluded intervals

2S/ log2(4/3) + 2 =
4(1 +

√
2)λ1/2r

j ΔN + 2 log 4r2

log 2 log2(4/3) + 2

≤
4(1 +

√
2)λ1/2r

j ΔN + 2 log 4r2

log(4/3) + 2 log(4)

≤ 16(1 +
√

2)λ1/2r
j ΔN + 8 log 4r2 + log(42)

≤ 16(1 +
√

2)λ1/2r
j ΔN + log(410r16)

now implies the conclusion of this lemma. �
Given this bound on |Dk,�;k′,�′ |, and hence on |Cc

k,�;k′,�′ |, we can now prove a lemma 
which produces the desired bound |C| for sufficiently large N . We note that we need the 
conditions of Lemma E.8 to be satisfied (i.e., we need to choose ΔN to be large enough), 
since the conclusions of Lemma E.8 are the assumptions of Lemma E.9.

Lemma E.10. Suppose ΔN = �E(r)λ−1/2r
j � + 1, where E(r) is defined as in Lemma E.8. 

Then for N ≥ max(ν1(r)λ−1/2r
j , 2ΔN), |C| ≥ m/2, where m = �N/ΔN� ≥ 2 is the 

total number of intervals, and ν1(r) := 4r(2r − 1)(log(410r16)(E(r) + 1/2) + 16(1 +√
2)((E(r))(E(r) + 1/2) + 1

2(E(r) + 1/2))) + 2(E(r) + 1/2).

Proof. First, we clearly note that if N ≥ 2ΔN , then m = �N/ΔN� ≥ �2ΔN/ΔN� ≥ 2. 
Hence, it suffices to show that if N ≥ ν1(r)λ−1/2r

j , then |C| ≥ m/2.

Set ΔN = �E(r)λ−1/2r
j � + 1, where E(r) = max{ 75

sin(π/2r) , 
r2+C4λ

1/2r
j

C4
log 12} as per 

Lemma E.8. We then note that

(E(r) + 1/2)λ−1/2r
j = E(r)λ−1/2r

j + (1/2)λ−1/2r
j ≥ (ΔN − 2) + 2 = ΔN,

since λ1/2r
j ≤ 1/4 by assumption. By Lemmas E.9 and E.8, we now have that

|Dk,�;k′,�′ | ≥ �N/ΔN� − 16(1 +
√

2)λ1/2r
j ΔN − log(410r16).

Recall from (E.6) in Definition E.6 that C =
⋂

(k,�) �=(k′,�′) Cc
k,�;k′,�′ (where (k, �), (k′, �′)

run over {(0, 0)} ∪ ({1, · · · , �r/2�} ×{0, 1})), and that |Cc
k,�;k′,�′ | ≥ |Dk,�;k′,�′ |. Therefore, 

using the above bound on |Dk,�;k′,�′ |, the desired result follows since

|C| = | ∩ Cc
k,�;k′,�′ | ≥ �N/ΔN� − | ∪ Ck,�;k′,�′ |

≥ �N/ΔN� −
∑

′ ′ ′ ′

|Ck,�;k′,�′ |

k,�,k ,� ,(k,�) �=(k ,� )
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≥ �N/ΔN� −
∑

k,�,k′,�′,(k,�) �=(k′,�′)

(�N/ΔN� − |Dk,�;k′,�′ |)

≥ �N/ΔN� − 2r(2r − 1)(16(1 +
√

2)λ1/2r
j ΔN + log(410r16))

≥ �N/ΔN�
2 = m/2.

In particular, the last inequality holds by substituting ν1(r) = 4r(2r−1)(log(410r16) ×
(E(r) + 1/2) + 16(1 +

√
2)((E(r))(E(r) + 1/2) + 1

2 (E(r) + 1/2))) + 2(E(r) + 1/2) and 
noting that

�N/ΔN� ≥ 1
ΔN

[ν1(r)λ−1/2r
j ] − 1

= 1
ΔN

[
4r(2r − 1)

(
log(410r16)λ−1/2r

j (E(r) + 1/2) + 16(1 +
√

2)λ−1/2r
j ((E(r))

× (E(r) + 1/2) + 1
2(E(r) + 1/2))

)
+ 2λ

−1/2r
j (E(r) + 1/2)

]
− 1

≥ 1
ΔN

[
4r(2r − 1)

(
log(410r16)ΔN + 16(1 +

√
2)
(

E(r)ΔN + 1
2ΔN

))
+ 2ΔN

]
− 1

= 4r(2r − 1)
(

log(410r16) + 16(1 +
√

2)
(

E(r) + 1
2

))
+ 1

≥ 4r(2r − 1)
(

log(410r16) + 16(1 +
√

2)(λ1/2r
j ΔN)

)
+ 1

where the second and last inequalities follow from the result shown earlier: (E(r) +
1/2)λ−1/2r

j ≥ ΔN (and hence λ1/2r
j ΔN ≤ E(r) + 1

2 ). �
Finally, using this lemma, we can now show the desired result, Corollary E.11, by 

simplifying the bound for ΔN in Lemma E.10.

Corollary E.11. Suppose that the assumptions of both Lemmas E.10 and E.9 hold. Then, 
there exists an absolute universal constant C2 such that if N ≥ C2r6λ

−1/2r
j , then |C| ≥

m/2, where m = �N/ΔN� ≥ 2 is the total number of intervals.

Proof. By Lemma E.10, it suffices to show that there exists some C2 such that C2r6 ≥
ν1(r) = 4r(2r − 1)

[
log(410r16)(E(r) + 1/2) + 16(1 +

√
2)((E(r))(E(r) + 1/2) + 1

2 (E(r) +
1/2))

]
+ 2(E(r) + 1/2), and C2r6λ

−1/2r
j ≥ 2(�E(r)λ−1/2r

j � + 1) for all positive integers 
r. We then see that there exists some absolute universal constant C5 such that C5r2 ≥
E(r) = max{ 75

sin(π/2r) , 
r2+C4λ

1/2r
j

C4
log 12} for all positive integers r, since x − sin(x) ≤

1 x2 ≤ π x (by Taylor’s Remainder Theorem) for any 0 ≤ x ≤ π/2, so sin(π/2r) ≥
2 4
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π(1−π/4)
2r for any r ≥ 1 (and hence there exists constant C6 such that C6r ≥ 75

sin(π/2r) for 
all positive integers r), and since λ1/2r

j ≤ 1
4 (so there exists constant C7 such that C7r2 ≥

r2+C4λ
1/2r
j

C4
log 12 for all positive integers r). Also, by a similar argument we see that 

there exists constant C8 such that C8r2 ≥ 2E(r) +1 ≥ 2E(r) +4λ
1/2r
j ≥ 2(E(r)λ−1/2r

j +
2)λ1/2r

j ≥ 2(�E(r)λ−1/2r
j � + 1)λ1/2r

j . Hence, substituting into the expression for ν1(r), 
and combining the two bounds, the desired C2 must indeed exist. �
E.2. The λ1/2r

j > 1/4 case: proof of Lemma 5.6

In a similar fashion to the previous section, we will seek to prove Lemma 5.4 in the 
case that λ1/2r

j > 1/4. In particular, our main result is as follows:

Lemma 5.6. There exists absolute uniform constant C3 ∈ R+, such that for all r ≥ 2, 
N ≥ Cr

3 , and λ1/2r
j > 1/4,

|ck,�| ≤
(

48
min{|ρk,j |2N , 1}N

)1/2

,

for all (k, �) ∈ [r − 1] × {0, 1}.

To prove this result, we will use similar reasoning to the argument in the previous 
section. As before, we will prove two intermediate results, which we can use to prove the 
main result. In particular, we use the following two results, one which bounds | sin(θk,�)|
and one which bounds |C| (as defined in (E.6) in Definition E.6):

Lemma E.12. Assume λ1/2r
j > 1/4. There exists absolute constant C9 > 0 such that one 

of the following two cases holds for k = 1, ..., r − 1, � = 0, 1:

• if r is even and k = r/2, sin(θk,�) = 0;
• otherwise, sin(θk,�) ≥ C−r

9 λ
1/2r
j .

Moreover, | sin(θ0,0)| = | sin(θ0,1)| ≥ min
{∣∣∣sin( 2π

2N+1

)∣∣∣ , 3
√

7
32

}
.

Lemma E.16. Let ΔN = �C2
10r4� where C10 > 0 is an absolute constant that is the same 

as in Lemma E.14 below, then

|C| ≥ �N/ΔN� − 2r(2r − 1)(32ΔN + 8 log 16r2 + 2).

Note the similarity between Lemma E.12 and Lemma E.7 from the previous section, 
as well as between Lemma E.16 and Corollary E.11. In particular, the reasoning used in 
this section is very similar to the reasoning used in the previous case. The main difference 
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is that when λ1/2r
j > 1/4, Lemma E.7 no longer holds, so we have to use a weaker result, 

namely Lemma E.12. This weakness is later compensated for with a larger value of |C|, 
and ultimately, by a larger bound on N .

Using these two main results, the proof of Lemma 5.6 is fairly straightforward.

Proof of Lemma 5.6. First, we note that by the same reasoning as in Lemma 5.5, it suf-

fices to show that |c̃k,�| ≤
(

48
min{|ρk,�|2N ,1}N

)1/2
for all (k, �) ∈ {(0, 0)} ∪({1, · · · , �r/2�} ×

{0, 1}).
We take ΔN = �C2

10r4�, for C10 as in Lemma E.14 below. Therefore there exists an 
absolute universal constant C3 such that

Cr
3 ≥ max

{
6Cr

9 , 12(ΔN + 2r(2r − 1)(ΔN)(32ΔN + 8 log 16r2 + 2)), 16√
7

}
, (E.19)

for all r > 1, and let N ≥ Cr
3 .

The proof of this theorem follows the same line of reasoning as the proof of Lemma 5.5, 
until the end of (E.10), which reads

∑
i∈It

ṽ2(i) ≥ 1
4
∑
i∈It

c̃2
k,�|ρk,�|2i cos2(iθk,� + γk,�),

for all (k, �) ∈ {(0, 0)} ∪ ({1, · · · , �r/2�} × {0, 1})

and for all t ∈ C where

|C| ≥ �N/ΔN� − 2r(2r − 1)(32ΔN + 8 log 16r2 + 2),

since the assumption of Lemma E.16 is fulfilled for the given choice of ΔN . Therefore, 
analogously to Lemma 5.5, we see that

1 ≥
∑
t∈C

∑
i∈It

ṽ2(i)

≥ 1
4
∑
t∈C

c̃2
k,�

∑
i∈It

(|ρk,�|2i cos2(iθk,� + γk,�))

≥ 1
4
∑
t∈C

c̃2
k,� min{|ρk,�|2N , 1}

∑
i∈It

cos2(iθk,� + γk,�)

≥ 1
4 c̃2

k,� min{|ρk,�|2N , 1}

⎛⎝∑
i∈[N ]

cos2(iθk,�+γk,�) − |{i : i ∈ It, t ∈ Cc}|

⎞⎠, (E.20)

where the last inequality holds since cos2(iθk,� + γk,�) ≤ 1 and by rearranging the sums.
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If | sin(θk,�)| = 0, ρk,� is therefore real, and hence as discussed in Lemma E.8, we thus 
have cos2(tθk,� + γk,�) = 1 for all t, and hence 

∑
i∈[N ]

cos2(iθk,� + γk,�) = N ≥ N
6 , and if 

| sin(θk,�)| �= 0, we then have

∑
i∈[N ]

cos2(iθk,� + γk,�) = N

2 + 1
2
∑

i∈[N ]

cos(2iθk,� + 2γk,�)

= N

2 + sin(Nθk,�) cos((N + 1)θk,� + 2γk,�)
2 sin θk,�

≥ N

2 − 1
2| sin θk,�|

≥ N

2 − max
{

2Cr
9 ,

1
2

∣∣∣∣sin( 2π

2N + 1

)∣∣∣∣−1

,
16

3
√

7

}

≥ N

2 − max
{

2Cr
9 ,

5N

24 ,
16

3
√

7

}
≥ N

6 , (E.21)

where the third to last inequality in (E.21) used Lemma E.12, namely that | sin(θk,�)| ≥
min

{
1
4C−r

9 ,
∣∣∣sin( 2π

2N+1

)∣∣∣ , 3
√

7
32

}
, while the second to last inequality used the fact that 

| sin(x)| ≥ 3
π |x| for |x| ≤ π

6 and the fact that N ≥ 6 implies that 2π
2N+1 ≤ π

6 , so 

therefore 
∣∣∣sin( 2π

2N+1

)∣∣∣−1
≤ π

3
2N+1

2π = 2N+1
6 ≤ 5N

12 (where the last inequality holds since 

N ≥ 2) and the last inequality used the assumption (E.19) on N . Hence, we see that ∑
i∈[N ]

cos2(iθk,� + γk,�) ≥ N
6 in all cases.

In addition, we have

|{i : i ∈ It, t ∈ Cc}| ≤ N − ΔN |C|
≤ (N − �N/ΔN�ΔN) + 2r(2r − 1)(32ΔN + 8 log 16r2 + 2)

≤ ΔN + 2r(2r − 1)(ΔN)(32ΔN + 8 log 16r2 + 2),

since, as discussed earlier, we have

|C| ≥ �N/ΔN� − 2r(2r − 1)(32ΔN + 8 log 16r2 + 2).

Thus, combining these two results, and the earlier result (E.20), we have

1 ≥ 1
4 c̃2

k,� min{|ρk,�|2N , 1}(
∑

i∈[N ]

cos2(iθk,� + γk,�) − |{i : i ∈ It, t ∈ Cc}|)

≥ 1
c̃2

k,� min{|ρk,�|2N , 1}
(

N − (ΔN + 2r(2r − 1)(ΔN)(32ΔN + 8 log 16r2 + 2))
)

4 6
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≥ N

48 c̃2
k,� min{|ρk,�|2N , 1}, (E.22)

where the last inequality follows from the assumption (E.19) on N . Rearranging (E.22)
thus completes the proof. �

Thus, to complete this proof, it suffices to prove the intermediate results Lemmas E.12
and E.16. We first prove Lemma E.12, which we use to bound | sin(θk,�)|.

Lemma E.12. Assume λ1/2r
j > 1/4. There exists absolute constant c > 0 such one of the 

following two cases holds for k = 1, ..., r − 1, � = 0, 1:

• if r is even and k = r/2, sin(θk,�) = 0;
• otherwise, sin(θk,�) ≥ C−r

9 λ
1/2r
j .

Moreover, | sin(θ0,0)| = | sin(θ0,1)| ≥ min
{∣∣∣sin( 2π

2N+1

)∣∣∣ , 3
√

7
32

}
Proof. From Lemma 3.3, we know that λ1/2r

j ≤ 2 cos
(

π
2N+1

)
. Also, by our assumption, 

we have λ1/2r
j > 1/4. Hence, we have 1

42r < λj ≤ 4r cos2r
(

π
2N+1

)
. From Lemmas 4.3 and 

4.4, we know that ρ0,0 =
2−λ

1/r
j +

√
λ

2/r
j −4λ

1/r
j

2 and ρ0,1 =
2−λ

1/r
j −

√
λ

2/r
j −4λ

1/r
j

2 , ρ0,0 = ρ0,1, 
and |ρ0,0| = |ρ0,1| = 1. Hence

| sin(θ0,0)| = | sin(θ0,1)| =
∣∣∣∣ρ0,0 − ρ0,1

2

∣∣∣∣ =

√
4λ

1/r
j − λ

2/r
j

2 ,

where the expression inside the square root was changed to 4λ
1/r
j − λ

2/r
j since λj ∈

(0, 4r) implies λ2/r
j − 4λ

1/r
j < 0. Now, note that 

√
4λ

1/r
j − λ

2/r
j has one critical point 

in (0, 4r) at λj = 2r (a maximum), so 
√

4λ
1/r
j − λ

2/r
j takes on its minimum value in [

1
42r , 4r cos2r

(
π

2N+1

)]
⊂ (0, 4r) at one of the endpoints. Hence, since

√
4λ

1/r
j − λ

2/r
j

∣∣∣
λj=4r cos2r

(
π

2N+1

) =

√
16 cos2

(
π

2N + 1

)
− 16 cos4

(
π

2N + 1

)

= 4

√
cos2

(
π

2N + 1

)
sin2

(
π

2N + 1

)
= 4

∣∣∣∣cos
(

π

2N + 1

)
sin

(
π

2N + 1

)∣∣∣∣
= 2

∣∣∣∣sin( 2π

2N + 1

)∣∣∣∣ ,
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we thus have

| sin(θ0,0)| = | sin(θ0,1)| ≥ min
{∣∣∣∣sin( 2π

2N + 1

)∣∣∣∣ , 3
√

7
32

}
.

Then, for k = 1, ..., r − 1, � = 0, 1, if ρk,� ∈ R (which by Corollary 4.8 happens iff r is 
even and k = r/2) then sin(θk,�) = 0. Otherwise, if ρk,� /∈ R, Lemmas 4.7 and 4.4 (which 
guarantee, respectively, that there exist constants c1, c2 such that for any conjugate roots 
ρk,�, ρk,� whose norms are not 1, |ρk,� − ρk,�| ≥ c2c−r

1 λ
1/2r
j , and that |ρk,�| ≤ (1 +

√
2)2) 

imply that there exists an absolute constant C9 > 0 such that

| sin(θk,�)| = |ρk,� − ρk,�|
2|ρk,�|

≥ C−r
9 λ

1/2r
j . �

Next, we seek to prove Lemma E.16. In the same vein as Lemma E.8 in the previous 
section, we will first bound the quotient Γi

k,�;k′,�′

Γi+1
k,�;k′,�′

. To this end, we will prove the following 

lemma which bounds φ(i,θ,γ)
φ(i+1,θ,γ) , which will, in turn, allow us to prove bounds on 

Γi
k,�;k′,�′

Γi+1
k,�;k′,�′

.

Lemma E.13. If ΔN ≥ 10, then for all i ∈ [m − 1], where m = �N/ΔN� as defined in 
Definition E.4), we have

1
3ΔN3 ≤ φ(i, θ, γ)

φ(i + 1, θ, γ) ≤ 3ΔN3,

where φ is as defined in (E.8).

Proof. Let ΔN ≥ 10. We first recall from (E.8) that

φ(i, θ, γ) :=
∑
n∈Ii

cos2(nθ + γ).

We then break the argument into cases, depending on the distance from θ to an integer 
multiple of π, since the process for bounding φ(i, θ, γ) will be different in each case.

Case 1: min
j∈Z

|θ − jπ| < π/ΔN . Suppose first that min
j∈Z

|θ − jπ| < π/ΔN . We will begin 

by proving by contradiction that

φ(i, θ, γ) =
∑
n∈Ii

cos2(nθ + γ) ≥ sin2(θ). (E.23)

First, since ΔN ≥ 10, note that it suffices to show that the first three terms of (E.23)
satisfy

cos2(Aiθ + γ) + cos2((Ai + 1)θ + γ) + cos2((Ai + 2)θ + γ) ≥ sin2(θ). (E.24)
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Let θ = θ0 + kθπ where kθ ∈ Z, θ0 ∈ [−π/ΔN, π/ΔN ] (since min
j∈Z

|θ − jπ| < π/ΔN). 

Thus, since each of our functions of interest (cos2, sin2, · · · ) is π-periodic, it suffices to 
prove the result with θ replaced by θ0. Now, assume the inequality (E.24) (where θ0 is 
substituted for θ) does not hold. Then it must be the case that cos2(Aiθ0 +γ), cos2((Ai +
2)θ0 + γ) < sin2(θ0), and thus we have

| sin(Aiθ0 + γ + π/2)| = | cos(Aiθ0 + γ)| < | sin(θ0)|, (E.25)

and

| sin((Ai + 2)θ0 + γ + π/2)| = | cos((Ai + 2)θ0 + γ)| < | sin(θ0)|. (E.26)

From (E.25) we deduce that

Aiθ0 + γ + π/2 ∈
⋃
j∈Z

(jπ − θ0, jπ + θ0). (E.27)

Similarly, (E.26) implies that

(Ai + 2)θ0 + γ + π/2 ∈
⋃
j∈Z

(jπ − θ0, jπ + θ0),

or equivalently

Aiθ0 + γ + π/2 ∈
⋃
j∈Z

(jπ − 3θ0, jπ − θ0). (E.28)

which contradicts (E.27), since θ0 ∈ [−π/ΔN, π/ΔN ] and ΔN ≥ 10 ensures that |4θ0| <
π, and hence none of the intervals in (E.27) and (E.28) overlap.

Now that we have proved (E.23) which shows φ has a lower bound, we now seek to 
find an upper bound for φ. We first observe that

φ(i, θ, γ) =
∑

n∈Ii+1

cos2(nθ + γ − ΔNθ)

=
∑

n∈Ii+1

(cos(nθ + γ) cos(ΔNθ) + sin(ΔNθ) sin(nθ + γ))2. (E.29)

Then, we note that

(cos(nθ + γ) cos(ΔNθ) + sin(ΔNθ) sin(nθ + γ))2

≤ cos2(nθ + γ) + |2 cos(nθ + γ) cos(ΔNθ) sin(ΔNθ) sin(nθ + γ)| + sin2(ΔNθ),

and since
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|2 cos(nθ + γ) cos(ΔNθ) sin(ΔNθ) sin(nθ + γ)| ≤ 2| cos(nθ + γ) sin(ΔNθ)|
≤ cos(nθ + γ)2 + sin2(ΔNθ)

by the AM-GM Inequality, we thus have

(cos(nθ + γ) cos(ΔNθ) + sin(ΔNθ) sin(nθ + γ))2 ≤ 2 cos2(nθ + γ) + 2 sin2(ΔNθ),

and so ∑
n∈Ii+1

(cos(nθ + γ) cos(ΔNθ) + sin(ΔNθ) sin(nθ + γ))2

≤
∑

n∈Ii+1

2 cos2(nθ + γ) + 2 sin2(ΔNθ). (E.30)

Then, by the definition of φ, the fact that |Ii+1| = ΔN , and the fact that sin2(ΔNθ) ≤
(ΔN)2 sin2(θ) (which follows from repeated use of the identity | sin(a + b)| ≤ | sin(a)| +
| sin(b)|, which in turn holds since | sin(a + b)| ≤ | sin(a) cos(b)| + | sin(b) cos(a)| ≤
| sin(a)| + | sin(b)|),∑

n∈Ii+1

2 cos2(nθ + γ) + 2 sin2(ΔNθ) ≤ 2(ΔN) sin2(ΔNθ) +
∑

n∈Ii+1

2 cos2(nθ + γ)

≤ 2φ(i + 1, θ, γ) + 2(ΔN)3 sin2(θ) (E.31)

Finally, combining (E.29), (E.30), and (E.31), we see that

φ(i, θ, γ) ≤ 2φ(i + 1, θ, γ) + 2(ΔN)3 sin2(θ) (E.32)

By combining the lower and upper bounds [(E.23) and (E.32) respectively], we may now 
derive a bound on φ(i,θ,γ)

φ(i+1,θ,γ) , in particular,

φ(i, θ, γ)
φ(i + 1, θ, γ) ≤ 2 + 2(ΔN)3 sin2(θ)

φ(i + 1, θ, γ) ≤ 2 + 2(ΔN)3 ≤ 3ΔN3,

where the last inequality used the fact that (ΔN)3 ≥ 2. Then, noting that

φ(i + 1, θ, γ) =
∑
n∈Ii

cos2(nθ + γ + ΔNθ)

=
∑

n∈Ii+1

(cos(nθ + γ) cos(ΔNθ) − sin(ΔNθ) sin(nθ + γ))2

and following the same arguments used to prove (E.30), and (E.31), we also have

φ(i + 1, θ, γ) ≤ 2φ(i, θ, γ) + 2(ΔN)3 sin2(θ)
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and hence (using the same lower bound (E.23)) we see that

1
3ΔN3 ≤ φ(i, θ, γ)

φ(i + 1, θ, γ) ≤ 3ΔN3. (E.33)

Case 2: min
j∈Z

|θ − jπ| ≥ π/ΔN

Recall from (E.13) in the proof of Lemma E.8 that

φ(i, θ, γ) = ΔN

2 + sin((2Ai+1 − 1)θ + 2γ) − sin((2Ai − 1)θ + 2γ)
4 sin θ

, (E.34)

and so, using sum-to-product identities (namely sin(θ1) − sin(θ2) = 2 sin( θ1−θ2
2 ) ×

cos( θ1+θ2
2 )), we see that

ΔN

2 + sin((2Ai+1 − 1)θ + 2γ) − sin((2Ai − 1)θ + 2γ)
4 sin θ

= ΔN

2 + sin(ΔNθ) cos((Ai+1 + Ai − 1)θ + 2γ)
2 sin θ

= ΔN

2

(
1 + sin(ΔNθ) cos((Ai+1 + Ai − 1)θ + 2γ)

ΔN sin θ

)
. (E.35)

We assume in this case that min
j∈Z

|θ − jπ| ≥ π/ΔN , which implies | sin(θ)| ≥
| sin(π/ΔN)| = sin(π/ΔN) (where the last equality holds because ΔN ≥ 10). Therefore, 
we have ∣∣∣∣ sin(ΔNθ) cos((Ai+1 + Ai − 1)θ + 2γ)

ΔN sin θ

∣∣∣∣ ≤ 1
ΔN sin(π/ΔN) .

Continuing, we see that since sin x
x ≥ 1

2 for |x| ≤ 1, and since ΔN ≥ 10, we thus have

1
ΔN sin(π/ΔN) ≤ 2

π
.

Combining this result with our earlier results (E.34) and (E.35), we see that

φ(i, θ, γ) ≥ ΔN

2

(
1 − 2

π

)
(E.36)

We also note that clearly

φ(i, θ, γ) =
∑
n∈Ii

cos2(nθ + γ) ≤ ΔN. (E.37)

Hence, by a similar argument to that used in the proof of Lemma E.8, since our bounds 
(E.36) and (E.37) on φ(i, θ, γ) are independent of i, they also hold for φ(i + 1, θ, γ), and 
hence the bound for the ratio in this case is
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1 − 2/π

2 ≤ φ(i, θ, γ)
φ(i + 1, θ, γ) ≤ 2

1 − 2/π
. (E.38)

Note that 2
1−2/π < 6 < 3ΔN3 since ΔN ≥ 10, and hence, we have (E.33) in all cases, 

which is our desired result. �
Using Lemma E.13, we now prove the following lemma (which is similar to Lemma E.8) 

that bounds Γi
k,�;k′,�′

Γi+1
k,�;k′,�′

. This lemma will then be used to bound |Dk,�;k′,�′ |, which ultimately 

allow us to prove our second main result, the bound on |C| (Lemma E.16).

Lemma E.14. Suppose λ1/2r
j > 1/4. There is a absolute constant C10 such that if ΔN ≥

C10r2 log ΔN , for all (k, �) �= (k′, �′) with (k, �), (k′, �′) ∈ {(0, 0)} ∪ ({1, · · · , �r/2�} ×
{0, 1}) either

Γi
k,�;k′,�′

Γi+1
k,�;k′,�′

≥ 4/3 for all i ∈ [m − 1], or
Γi

k,�;k′,�′

Γi+1
k,�;k′,�′

≤ 3/4 for all i ∈ [m − 1],

(for m = �N/ΔN� as defined in Definition E.4).

Proof. As in Lemma E.8, by the definition (E.9) of Γi
k,�;k′,�′ , we have

Γi
k,�;k′,�′

Γi+1
k,�;k′,�′

=
(

|ρk,�|
|ρk′,�′ |

)−ΔN
φ(i, θk,�, γk,�)

φ(i + 1, θk,�, γk,�)
φ(i + 1, θk′,�′ , γk′,�′)

φ(i, θk′,�′ , γk′,�′)

so, to bound this quantity, we need to consider bounds on 
(

|ρk,�|
|ρk′,�′ |

)ΔN

. If |ρk,�| > |ρk′,�′ |, 
recall from (E.15) in Lemma E.8 that

(
|ρk,�|
|ρk′,�′ |

)ΔN

≥
(

1 +
C4λ

1/2r
j

r2

)ΔN

,

for C4 an absolute constant. Using the assumption λ1/2r
j ≥ 1/4, and the fact that log(1 +

x) ≥ x
1+x for x ≥ −1, we have

(
|ρk,�|
|ρk′,�′ |

)ΔN

≥
(

1 + C4/4
r2

)ΔN

≥ e
C4

C4+4r2 ΔN
. (E.39)

We now choose the absolute constant C10 to be such that

C10r2 log ΔN ≥ max
{

C4 + 4r2

C4
(6 log ΔN + log 9 − log(3/4)), 10

}
,

and suppose that ΔN ≥ C10r2 log ΔN . We therefore have ΔN ≥ 10, so, by Lemma E.13, 
we have
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1
3ΔN3 ≤ φ(i, θ, γ)

φ(i + 1, θ, γ) ≤ 3ΔN3.

Combining the above bound with (E.39), we have

Γi
k,�;k′,�′

Γi+1
k,�;k′,�′

=
(

|ρk,�|
|ρk′,�′ |

)−ΔN
φ(i, θk,�, γk,�)

φ(i + 1, θk,�, γk,�)
φ(i + 1, θk′,�′ , γk′,�′)

φ(i, θk′,�′ , γk′,�′)

≤ 9(ΔN)6e
− C4

C4+4r2 ΔN ≤ 3/4,

where the last inequality used the fact that ΔN ≥ C10r2 log ΔN ≥ C4+4r2

C4
(6 log ΔN +

log 9 − log(3/4)), which is equivalent to eΔN ≥ [ 4
3 (9(ΔN)6)]

C4+4r2
C4 , i.e. e

C4
C4+4r2 ΔN ≥

4
3 [(9(ΔN)6)]. As in the proof of Lemma E.8, in the case that |ρk,�| < |ρk′,�′ |, we can apply 

the same arguments to 
(

|ρk′,�′ |
|ρk,�|

)ΔN

to find a lower bound for 
(

|ρk,�|
|ρk′,�′ |

)−ΔN

; combining 

this with the lower bounds on φ(i,θk,�,γk,�)
φ(i+1,θk,�,γk,�) , 

φ(i+1,θk′,�′ ,γk′,�′ )
φ(i,θk′,�′ ,γk′,�′ ) , we find that Γi

k,�;k′,�′

Γi+1
k,�;k′,�′

≥ 4/3
in this case, and the desired result therefore holds. �

Then, as in the previous section, it is sufficient to bound |Dk,�;k′,�′ | and use the fact 
that |Cc

k,�;k′,�′ | ≥ |Dk,�;k′,�′ | to bound |Cc
k,�;k′,�′ | and then bound |C|. Thus, just as we 

used Lemma E.8 to prove Lemma E.9, we use Lemma E.14 to prove the following bound 
on |Dk,�;k′,�′ |.

Lemma E.15. For any (k, �) �= (k′, �′), if

Γi
k,�;k′,�′

Γi+1
k,�;k′,�′

≥ 4/3 for all i, or
Γi

k,�;k′,�′

Γi+1
k,�;k′,�′

≤ 3/4 for all i

then |Dk,�;k′,�′ | ≥ �N/ΔN� − 32ΔN − 8 log 16r2 − 2.

Proof. Without loss of generality, assume 
Γi

k,�;k′,�′

Γi+1
k,�;k′,�′

≥ 4/3 (just as in Lemma E.9, 

Lemma E.1 will imply the same result if Γi
k,�;k′,�′

Γi+1
k,�;k′,�′

≤ 3/4). Also, as in the proof 
of Lemma E.9, there are slightly different arguments depending on whether or not 
|ρk,�|, |ρk′,�′ | are greater than 1 or not.

Let S = 4ΔN+log 16r2

log 2 , so that 2S ≥ 4r2e4ΔN . As in Lemma E.9, by Lemma E.1 (with 
the same choices of Bi, B′

i, ρ1, ρ2, and α, since the assumptions are the same), we know 
that except for �2S/ log2(4/3)� + 1 ≥ 2S/ log2(4/3) + 2 consecutive subsets, it holds that

Γi
k,�;k′,�′ < 2−S or Γi

k,�;k′,�′ > 2S . (E.40)

Analogously to Lemma E.9, if |ρk,�| ≤ 1, |ρk′,�′ | > 1 or |ρk,�| > 1, |ρk′,�′ | ≤ 1, the 
expressions in Dk,�;k′,�′ are Γi

k,�;k′,�′ or Γi+1
k,�;k′,�′ . As a result, since 2S ≥ 4r2e4ΔN ≥ 4r2, 

we have the desired conclusion for all but 2S/ log2(4/3) + 2 consecutive subsets.
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Next, we note that in the case that |ρk,�|, |ρk′,�′ | > 1, we see that

|ρk,�|2ΔN ≤ (1 +
√

2)4ΔN ≤ e4ΔN , (E.41)

where the first inequality follows by Lemma 4.4 and the second inequality follows since 
1 +

√
2 < e. Now suppose that Γi

k,�;k′,�′ ≤ 2−S . If this is the case, then we have

c̃2
k′,�′ |ρk′,�′ |2Aiφ(i, θk′,�′ , γk′,�′) ≥ 2S c̃2

k,�|ρk,�|2Aiφ(i, θk,�, γk,�)

= 2S c̃2
k,�|ρk,�|2Ai+1 |ρk,�|−2ΔN φ(i, θk,�, γk,�)

≥ 2Se−4ΔN c̃2
k,�|ρk,�|2Ai+1φ(i, θk,�, γk,�)

≥ 4r2c̃2
k,�|ρk,�|2Ai+1φ(i, θk,�, γk,�), (E.42)

where the first inequality is from the definition (E.9) of Γi
k,�;k′,�′ , and where the last 

equality is due to the definition of S. A similar argument using (E.41) on |ρk′,�′ | shows 
that

c̃2
k,�|ρk,�|2Aiφ(i, θk,�, γk,�) ≥ 4r2c̃2

k′,�′ |ρk′,�′ |2Ai+1φ(i, θk′,�′ , γk′,�′)

if Γi
k,�;k′,�′ ≥ 2S .

Also, an analogous argument implies the same result if |ρk,�|, |ρk′,�′ | ≤ 1, since

|ρk,�|−2ΔN ≤ (1 +
√

2)4ΔN ≤ e4ΔN ,

where the first inequality follows by Lemma 4.4 and the second inequality follows since 
1 +

√
2 < e.

Finally, the number of the excluded intervals

2S/ log2(4/3) + 2 = 8ΔN + 2 log 16r2

log 2 log2(4/3) + 2

= 8ΔN + 2 log 16r2

log(4/3) + 2

≤ 32ΔN + 8 log 16r2 + 2

which implies the conclusion of this lemma. �
Finally, we now use this bound on |Dk,�;k′,�′ | to prove our second main result, which 

provides a bound on |C| (note the similarities with Lemma E.10).

Lemma E.16. Let ΔN = �C2
10r4� where C10 is the same as in Lemma E.14, then

|C| ≥ �N/ΔN� − 2r(2r − 1)(32ΔN + 8 log 16r2 + 2).
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Proof. Since ΔN = �C2
10r4�, it can be verified that this ΔN satisfies the assumption 

of Lemma E.14, since ΔN ≥ C2
10r4 ≥ C10r2 log(C2

10r4 + 1) ≥ C10r2 log ΔN where the 
second inequality follows since x ≥ log(x2+1) for all positive x. Thus Lemma E.14 implies 
the bounds on 

Γi
k,�;k′,�′

Γi+1
k,�;k′,�′

used in the assumption of Lemma E.15. Then, by Lemma E.15
we have a lower bound on the cardinality of Dk,�;k′,�′ , |Dk,�;k′,�′ | ≥ �N/ΔN� − 32ΔN −
8 log 16r2 − 2. Thus, using this bound we can proceed to compute,

|C| = | ∩ Cc
k,�;k′,�′ | ≥ �N/ΔN� − | ∪ Ck,�;k′,�′ |

≥ �N/ΔN� −
∑

k,�,k′,�′,(k,�) �=(k′,�′)

|Ck,�;k′,�′ |

≥ �N/ΔN� −
∑

k,�,k′,�′,(k,�) �=(k′,�′)

(�N/ΔN� − |Dk,�;k′,�′ |)

≥ �N/ΔN� − 2r(2r − 1)(32ΔN + 8 log 16r2 + 2). �
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