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An elemental computation in the brain is to identify the best
in a set of options and report its value. It is required for infer-
ence, decision-making, optimization, action selection, consensus,
and foraging. Neural computing is considered powerful because
of its parallelism; however, it is unclear whether neurons can per-
form this max-finding operation in a way that improves upon the
prohibitively slow optimal serial max-finding computation (which
takes ∼ N log(N) time for N noisy candidate options) by a fac-
tor of N, the benchmark for parallel computation. Biologically
plausible architectures for this task are winner-take-all (WTA) net-
works, where individual neurons inhibit each other so only those
with the largest input remain active. We show that conventional
WTA networks fail the parallelism benchmark and, worse, in the
presence of noise, altogether fail to produce a winner when N
is large. We introduce the nWTA network, in which neurons are
equipped with a second nonlinearity that prevents weakly active
neurons from contributing inhibition. Without parameter fine-
tuning or rescaling as N varies, the nWTA network achieves the
parallelism benchmark. The network reproduces experimentally
observed phenomena like Hick’s law without needing an addi-
tional readout stage or adaptive N-dependent thresholds. Our
work bridges scales by linking cellular nonlinearities to circuit-
level decision-making, establishes that distributed computation
saturating the parallelism benchmark is possible in networks of
noisy, finite-memory neurons, and shows that Hick’s law may be
a symptom of near-optimal parallel decision-making with noisy
input.

neural circuits | optimal decision-making | speed–accuracy trade-off |
noisy computation

F inding the best of N options is an elemental and ubiqui-
tous computation in many complex biological systems. It is

invoked in a wide range of tasks including inference, optimiza-
tion, decision-making, action selection, consensus, and foraging
(1–5). In inference and decoding, finding the best-supported
alternative involves identifying the largest likelihood (max), then
finding the model corresponding to that likelihood (argmax);
decision-making, action selection, and foraging involve deter-
mining and selecting the most desirable alternative (option,
move, or food source, respectively) according to some metric,
again requiring max, argmax operations. In all these cases, data
arrives over time and is noisy; thus, assessing the alternatives
involves integration of evidence over time.

In the brain, the max, argmax operations recur across a vari-
ety of organisms, systems, and scales. Here, we focus on two
distinct regimes in which it is interesting to consider how the
brain computes max, argmax. The first is finding the most acti-
vated neuron (or pool of neurons) across thousands of neurons
(pools). An example of this large-N max, argmax computation
is the dynamic that leads to the sparsification of Kenyon cell
activity within fly mushroom bodies (5), and, potentially, to the
sparse activation of hippocampal place cells (6–8). It is possi-
ble that many more areas with strong inhibition display similar

dynamics, including the vertebrate olfactory bulb (9, 10) and
basal ganglia (3, 11, 12). The same operation is needed in net-
work implementations of Bayesian inference, to find the best
supported hypothesis given noisy input, as well as in the deci-
sion layers of artificial neural networks that classify inputs. In
this large-N regime, the competition is between internal states
or representations, rather than between externally presented
options.

The second regime is encountered in explicit behavioral
decision-making scenarios that involve choosing between a small
number of externally presented alternatives. This regime is typ-
ically explored in multialternative psychophysical decision tasks
(2, 13).

In this study, we seek a unified understanding of how effi-
ciently neurons compute max, argmax across these disparate
regimes. That is, given a set of N noisy inputs, how rapidly could
a network of neurons correctly identify the input with the largest
value?

The conventional strategy to find the largest of N values (as
would be implemented on a computer) involves running through
the values sequentially, integrating each for some time T . The
time to carry out this procedure grows proportionally to NT ,
which is at least linear in N . We will refer to such a strategy as
serial since it processes values one at a time. An optimal parallel
strategy should run a factor of N times faster.

Significance

Animals frequently need to choose the best alternative from
a set of possibilities, whether it is which direction to swim
in or which food source to favor. How long should a net-
work of neurons take to choose the best of N options?
Theoretical results suggest that the optimal time grows as
log(N), if the values of each option are imperfectly perceived.
However, standard self-terminating neural network models
of decision-making cannot achieve this optimal behavior. We
show how using certain additional nonlinear response prop-
erties in neurons, which are ignored in standard models,
results in a decision-making architecture that both achieves
the optimal scaling of decision time and accounts for mul-
tiple experimentally observed features of neural decision-
making.
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Neural computation is thought to be highly efficient because of
the capacity for massive parallelism: The brain could distribute a
task across large populations of neurons that process informa-
tion simultaneously, dramatically increasing computation speed
by trading (serial) computation time for number of neurons.
However, neurons are hardly ideal processors: They are leaky
and noisy, and their nonlinear thresholds could discard rele-
vant information. Thus, it is unclear whether parallel processing
with neurons can find the best option with high accuracy in a
time comparable to an optimal parallel strategy. Because of the
importance of max, argmax operations, they are well-studied in
neuroscience in the guise of winner-take-all (WTA) neural cir-
cuit models and phenomenological accumulate-to-bound (AB)
models.

A WTA network consists of N pools of leaky neurons (with
one or more neurons per pool) representing N different alter-
natives. Pools amplify their own state and interact competitively
through inhibition. Self-amplification and lateral inhibition can
produce a final state in which only the pool with the largest inte-
grated input (argmax) remains active, while the rest are silenced
(14–16). If the activation of the winner is proportional to the size
of its input (17), the network also solves the max problem. The
final state of such a network serves as the completed output of
the computation.

AB models (3, 18–25) consist of individual integrators. They
have provided tremendous insight into the psychophysics of
decision-making (26) and are closely connected to models of
optimal decision-making (3, 24, 27). We focus on WTA net-
works rather than AB models for three reasons. First, AB
models, in contrast to WTA networks, are typically developed as
phenomenological descriptors without a mechanistic implemen-
tation [see Discussion and SI Appendix, section S1 for exceptions
and for an exploration of a biologically plausible AB model tied
to the structure of the basal ganglia (3)]. Second, unlike the self-
terminating WTA dynamics, most AB models do not themselves
directly answer the max, argmax questions, because they require
a separate readout that decides when to terminate the process
and identify the largest sum, typically done by applying a thresh-
old [that is itself modeled as a dynamical variable that could
change over time (19, 27, 28)]. Although movement initiation
might impose such a threshold in behavioral decision-making
tasks, there is no natural external threshold in computations
like activity sparsification. Third, the relationship between opti-
mal performance and AB models has been well characterized
(3, 22–24, 27, 29), but much less has been done for WTA
networks.

We seek to characterize the time complexity of WTA
networks—how long it takes a network to compute argmax and
max from a set of N inputs, as a function of N—and compare this
time complexity to normative bounds derived from theoretical
arguments and from AB models.

We begin by bounding the optimal scaling of decision time
with the number of inputs and introduce a parallelism bench-
mark, defined as a speedup of a factor of N over the serial
strategy. We show that, in the presence of noise, conventional
WTA models either have suboptimal scaling or, when N is large,
altogether fail to complete the WTA computation. We propose
the nWTA network, in which neurons are equipped with a sec-
ond nonlinearity so that weakly active neurons (pools) cannot
contribute inhibition to the circuit. The nWTA network accu-
rately identifies the largest input N times faster than the serial
strategy, achieving the parallelism benchmark. Unlike conven-
tional models, this performance requires no parameter fine-
tuning. Moreover, the nWTA network self-adjusts (without any
parameter change) its integration time as log(N ) with the num-
ber N of noisy inputs, matching both Hick’s law of behavioral
decision-making (30) and a normative scaling of fixed-accuracy
decision-making with noisy input options.

In total, our results suggest that it is at least theoretically pos-
sible for neural circuits to optimally perform and exploit truly
parallel computation in a canonical task.

Results
The Problem. Consider finding the largest element in a set of N
options that are presented as N time series of values with con-
stant means b1 > b2≥ b3 . . .≥ bN , numbered in descending order
of strength. In the deterministic case, the options are presented
without noise. In the noisy case, the options fluctuate over time
as Bi(t) = bi + ηi(t), where bi is the fixed mean and ηi(t) are
zero-mean fluctuations (see Methods), and the task is to identify
the option with the largest fixed mean. We consider the compu-
tation to be completed accurately if the option with the largest
mean is correctly identified, and define the accuracy of a strategy
to be the probability that it identifies the correct item.

We assume that the top two options are separated by an N -
independent gap of size ∆, so that b1 = b2 + ∆. For simplicity,
we also assume that the remaining bi are equal to each other
(b = (b + ∆, b, . . . , b)> and b, ∆> 0). For a discussion of more
general distributions of the bi (including a fully uniform dis-
tribution, bi ∼U[0, 1], where the top gap shrinks with N ); see
SI Appendix, section S2.

Optimal Serial Strategy and Parallelism Benchmark. Consider the
time complexity of a serial procedure that examined each option
in turn, as would be carried out on a computer. In the absence of
noise, the options do not need to be integrated over time to esti-
mate the mean, and thus it suffices to examine each for a short
fixed time that does not depend on N . Thus, the time to choose
the largest of N nonnoisy options presented serially takes a time
T det

S ∼N .∗ We refer to this as the deterministic serial scaling of
max, argmax.

In the noisy case, obtaining a correct answer involves collect-
ing information for long enough to estimate the means bi of
the time series, then performing a max operation on the esti-
mates. Because of noisy fluctuations, any strategy with a finite
decision time will sometimes identify the wrong option as having
the largest mean, and thus have nonzero error probability. We
expect a speed–accuracy trade-off that involves setting an accept-
able error probability and finding the shortest time required to
reach this accuracy (one may also make a maximally accurate
decision within a set time; SI Appendix, section S1). If T is the
time for which each option is integrated, then the total time taken
to make a decision is NT ; as we show next, T depends on N .

How long should each option be integrated to maintain a
fixed high accuracy (or fixed low total error probability) as N
grows? Consider integrating each option for time T before mak-
ing a decision, and let BT

i =
∑T

t=1 Bi(t) be the integrated value
of the i th option. The decision will be an error if BT

1 ≤BT
i

(i > 1; recall that the first option has the largest mean). The total
error probability perr can be bounded by the sum of the prob-
abilities that any individual incorrect option is greater than the
correct option. Thus perr≤

∑N
i=2 P(BT

1 ≤BT
i ). To maintain perr

below some small fixed p̂ for any N , it is sufficient that each
P(BT

1 ≤BT
i )≤ p̂/N . For a large class of distributions, the inte-

grated values of the options concentrate around their true values,
with the probability of these error-inducing fluctuations falling
off exponentially as e−KT (for some constant K that depends
on the distribution of the fluctuations but not on T ) according
to very general concentration inequalities (Fig. 1A). Choosing
an integration time that grows as ∼ log(N ) is thus sufficient to

*We use the notation∼ f(N) to mean a time that grows proportionally to f(N) for large
N (i.e., Θ(f(N)) in complexity theoretic notation). In all of our theoretical bounds, we
ignore proportionality constants, as is common in deriving such scaling arguments.

25506 | www.pnas.org/cgi/doi/10.1073/pnas.1917551117 Kriener et al.
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Fig. 1. Parallelism benchmarks and setup of the WTA circuit. (A) Schematic
illustration of how log(N) integration time is sufficient to maintain fixed
accuracy (here measured as number of correct trials over total number of
trials). Thin lines denote sample time series from different trials for each
option (N options are in different colors; here N = 4). Thick curves denote
sample histograms (distributions) after integrating for time T . The tails of
the distribution shrink exponentially (shown by gray shading). Thus, inte-
grating for time log(N) means a per-option error probability of ∼ 1/N,
so that the total error probability, given by N times the per-option error
probability, is fixed. (B) The log(N) integration time is necessary to main-
tain fixed accuracy when estimating the means of noisy time series with
Gaussian fluctuations. Plot shows the integration time to fixed accuracy
(dashed and solid lines, 80% and 99% accuracy, respectively) in (nonneural)
simulations with Gaussian input fluctuations. Thin black lines are logarith-
mic fits. (C) WTA network architectures. (Top) The time series bi serve as
input to N = 4 neurons (or pools of neurons), ordered by the size of their
constant mean (with gap ∆≡ b1− b2 between the top two inputs). Each
neuron pool inhibits all others and excites itself. (Bottom) Mathematically
equivalent network with a global inhibitory neuron pool: All neuron pools
excite the inhibitory neuron pool, which inhibits them. This requires only
∼N synapses, compared to N2 for the mutual inhibition circuit (Top). (D)
Neural firing rates and synaptic activations (coloring as in C). Convergence
time TWTA is the time taken for the firing rate of the winner neuron pool to
reach a fraction c (usually chosen as 0.8; see Methods) of its expected asymp-
totic activity x∞ (black line). Dashed line denotes threshold for a neuron
pool to contribute inhibition in the nonlinear inhibition model (nWTA; see
Methods).

maintain a fixed total error probability (Fig. 1B; we make these
arguments precise in SI Appendix, section S1). Consequently, the
time for a serial strategy to achieve a constant decision accuracy
is bounded by T

noisy
S =NT ∼N log(N ). We refer to this as the

noisy serial scaling of max, argmax.
The scaling time above is an upper bound, both because we

bound the total error probability by the sum of the individual
error probabilities and because, for some real-world distribu-
tions, the probability of errors falls off faster than exponential.
For example, if the extent of the noise is smaller than the gap
between the largest and second-largest options, then no integra-
tion is needed, because fluctuations will never result in an error.
Indeed, our framework predicts that the log(N ) factor should
vanish for easy tasks.

For the case of Gaussian fluctuations, the ∼ log(N ) integra-
tion time bound per option is known to be tight (24) (see SI
Appendix, section S1 for a simple derivation of this scaling and
for more general arguments for the bound). Gaussian fluctu-
ations are natural both because many common noise sources
are Gaussian and because the results of an integration pro-
cess over non-Gaussian fluctuations are eventually Gaussian-
distributed by the central limit theorem. Thus, a total scaling
time of ∼N log(N ) will be characteristic of many max finding
processes.

A strategy that can process the N options in parallel (rather
than considering each in turn) should achieve a factor of N

speedup over the serial strategies (31), achieving times T det
P ∼

O(1) and T
noisy
P ∼O(log(N )). We will refer to these idealized

parallel computation times as parallelism benchmarks. Note
that these parallelism benchmarks are equivalent to perfectly
integrating N options in parallel to an externally determined
threshold selected for that choice of N to maintain high accuracy,
as performed by AB models.

Specific normative strategies for decision-making can be for-
mulated in a Bayesian framework for decision time minimization
at high accuracy (the multihypothesis sequential probability ratio
test [MSPRT]) (3, 24, 32, 33) or in a framework for maximiza-
tion of a total reward rate (27, 34). The MSPRT, which is known
to minimize decision time in the limit of vanishing error rate
(33) and thus achieves log(N ) scaling, tracks the log-likelihood
of each option. It makes a decision when either the largest log-
likelihood (“absolute MSPRT”) or the ratio between the largest
and second-largest log-likelihoods (“relative MSPRT”) crosses
a threshold. Both versions have similar asymptotic performance
and, with an appropriate choice of bound, are AB models
(3, 24).

Interestingly, the ∼ log(N ) theoretical benchmark on paral-
lel max with noisy options matches the empirical Hick’s law (3,
22, 24, 30, 35–38), an influential result in the psychophysics of
human decision-making used as far afield as commercial mar-
keting and design to improve the presentation of choices (39).
Hick’s law states that, when choosing between a small number
of externally presented alternatives, the time to reach an accu-
rate decision increases with the number of alternatives, N , as
log(N + 1). While Hick’s law is usually studied in the small-
N psychophysical decision-making regime, the parallel with our
derived parallelism benchmark for max finding suggests that the
phenomenology of Hick’s law might apply beyond the small-N
case and reflect a general process of efficient decision-making
when options are noisy.

The natural question, which we address in the rest of this study,
is, what type of neural circuit can perform such efficient parallel
decision-making between noisy options?

Neural Decision-Making Circuits. The parallelism benchmarks
derived above are idealizations without a neural implementa-
tion. The benchmarks require perfect integration of time series
without leak, assume no loss of information from internal noise
and nonlinear processing, and are also not self-terminating: They
require an external observer to apply a threshold to terminate the
operation and select the option on top at that time as the winner.

The natural way to model a self-terminating max, argmax
computation in the brain is through the WTA circuit, with a
variety of circuits in the brain exhibiting WTA-like architectures.
Here, we focus on a basic and canonical WTA architecture (14,
15, 17) (Fig. 1C; see SI Appendix, section S2 for a discussion of
the WTA circuit in Fig. 1 C, Bottom with an additional nonzero
inhibitory time constant, and see Discussion for alternative WTA
circuits).

Consider N neurons or neuron pools, interacting through
self-excitation (strength α) and mutual inhibition (strength β)

Kriener et al. PNAS | October 13, 2020 | vol. 117 | no. 41 | 25507
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(Fig. 1C). The neural states are described by synaptic activations
xi(t) or firing rates ri(t), i ∈{1, . . . ,N },

τ
dxi
dt

+ xi =

αxi −β ∑
j(j 6=i)

xj + bi + ηi


+

≡ ri . [1]

Here, [·]+ = max[0, ·] is a rectifying nonlinearity which ensures
nonnegative rates. The inputs are the noisy time series Bi(t)
with means bi and fluctuations ηi(t). The ηi(t) are modeled
as Ornstein–Uhlenbeck processes; see Methods and Eq. 6. The
fluctuation model is quite general, and could represent random-
ness in the options presented by the external world, noise in
perceiving the option values, variable activity within each neu-
ron pool (reflecting synaptic failures, stochastic spiking, etc.), or
any combination of these factors. In our simulations, we con-
sider a wide spread of noise magnitudes, from approximately
the gap between the largest two options to 20 times larger, thus
accounting both for tasks with low signal-to-noise ratio and for
stochastic Poisson-like or overdispersed neural spiking. Note
that any internally contributed noise from variable neural activity
should decrease with the size of the pool. When making compar-
isons across values of N , we assume that the magnitude of the
noise per neuron pool (and hence the size of the neuron pools)
remains fixed, but performance will be better if the pool size
can grow with N . We assume initial conditions xi(0) = 0 for all
i ∈{1, . . . ,N } (see Methods for discussion of initial conditions).
For appropriate parameter values (β > (1−α),α< 1), and in
the absence of noise, the network exhibits stable WTA dynamics
with a unique winner with asymptotic activity x∞= bw/(1−α),
where bw is the input of the winning neuron (17) (Fig. 1D; see
also Methods and SI Appendix, section S2). All key quantities are
summarized in Table 1. These dynamics can be understood as
movement downhill on an energy landscape, which drives the
network to one of N possible stable states, each correspond-
ing to solo activation of a different neuron or pool (SI Appendix,
Fig. S2).

We wish to understand how WTA dynamics behave as a
function of the number of competing alternatives N and, in par-
ticular, how long it takes to arrive at an accurate single estimate
of a winner (TWTA).

Conventional WTA Networks Do Not Show Efficient Parallel
Decision-Making
Weak Inhibition: Accurate but Slow WTA. Total inhibition in Eq.
1 grows as βN . A reasonable possibility is to scale inhibitory
strengths as β=β0/N , where β0 is some constant. This choice
ensures that the total inhibition seen by each pool does not
depend on N . We call this “weak” inhibition (Fig. 2A).

Table 1. Overview of key quantities of WTA network dynamics

Name Definition

N Number of options and neurons (pools)
xi(t) Activation of ith node; see Eq. 1
0≤α< 1 Coupling strength of self-excitation
0<β< (1−α) Coupling strength of lateral inhibition
bi Expectation value of ith option
ηi(t) OU noise in the ith option; Eq. 6
∀i : xi(0) = 0 Initial condition for all nodes
x∞ = bw/(1−α) Deterministic asymptotic activity of winner

with input bw

TWTA Time t at which any xi(t) reaches cx∞ from
below, c = 0.8

θ Threshold on inhibitory input, Eq. 4

Self-excitation α must be set to both maintain stability
and assure a WTA state, requiring 1−β0/N <α< 1 (17) (SI
Appendix, section S2). The two-sided constraint is a fine-tuning
condition: For large N , the allowed range of self-excitation is
very small and shrinks toward zero.

In the deterministic case (η≡ 0), the network always converges
to the correct solution where the neuron with input b + ∆ is the
winner. The equations can be analytically solved to obtain the
convergence time (SI Appendix, section S2),

TWTA
N�1∼ 2N log

[
1 +

b

2∆

]
. [2]

The linear growth of TWTA is the same as the serial strategy
(Fig. 2B), and thus offers no parallel speedup.

Above a certain critical value of noise (predicted analytically;
SI Appendix, section S2), the weak-inhibition network, moreover,
fails to exhibit WTA dynamics (Fig. 2 C, Top). This failure is
to be distinguished from an error: The network does not select
the wrong winner, it simply fails to arrive at a winner, and mul-
tiple neurons remain active. Below the critical noise threshold,
WTA dynamics persists even for N →∞ (Fig. 2 C, Top). The
critical noise threshold is substantially larger than ∆, and the net-
work exhibits WTA even when ∆ = 0 (lightest line in Fig. 2C),
selecting a random neuron as the winner. The decision time with
fluctuating inputs (Fig. 2B) grows linearly as for deterministic
inputs (see SI Appendix, section S2 for an explanation of the
linear scaling). Although this time scaling is much slower than
the parallelism benchmark, it asymptotically (large N ) exhibits
perfect computation accuracy, given finite ∆ (Fig. 2 C, Bottom)
(the N above which perfect accuracy is obtained depends on
∆ and ση).

In summary, the existence of WTA in a weak-inhibition circuit
requires exquisite fine-tuning of excitation, which is biologi-
cally unrealistic. Moreover, the weak-inhibition circuit cannot be
adjusted to provide a speed–accuracy trade-off: It favors accu-
racy over speed, always achieving perfect accuracy for large
enough N . Convergence time grows as ∼N , a modest speedup
of log(N ) relative to T

noisy
S that does not approach the factor of

N speedup of an efficient parallel strategy.

Strong Inhibition: Optimal Parallel Speedup without Noise, but WTA
Breakdown with Noise. An alternative choice is to hold β fixed
as N is varied. We call this “strong” inhibition (Fig. 2D). The
total inhibition in the circuit then grows with N . A unique WTA
solution exists for any choice of α in the N -independent interval
(1−β, 1] (no fine-tuning required, unlike weak inhibition). For
noiseless inputs, we analytically obtain (SI Appendix, section S2)

TWTA
N�1∼ log

[
1− const× b

∆

]
. [3]

As with the weak-inhibition case, TWTA depends on ∆. Notably,
however, TWTA is independent of N (Fig. 2E, solid gray),
matching the parallelism benchmark T det

P ∼O(1).
In the noisy case, for a given N , the network can perform WTA

if the noise amplitude is smaller than a threshold that depends on
∆. If N grows (while holding ∆ and noise amplitude fixed), how-
ever, the network entirely fails to reach a WTA state (Fig. 2F).
Unlike with weak inhibition, strong-inhibition networks appear
to fail to asymptotically exhibit WTA behavior for any nonzero
noise level.

We can understand the failure as follows. Unbiased (zero
mean) noise in the inputs, when thresholded, produces a biased
effect: Neurons receiving below-zero mean input will neverthe-
less exhibit positive mean activity because of input fluctuations.
Thus, even neurons with input smaller than their deterministic
thresholds continue to inhibit others. Total inhibition remains
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Fig. 2. Conventional WTA networks fail the parallelism benchmark. (A–C)
Results for weak inhibition. (A) Activity dynamics of the most active neuron
(pool) for networks of size N = 10, 20, 40 (light to dark red), respectively,
with noisy input; α= 0.6, β= 1, ∆ = 0.1, ση = 0.35, τη = 0.05τ . The asymp-
totic activity level grows with N. (B) WTA simulation results on decision time
without (solid gray) and with (dashed gray) noise. Also shown are noisy
serial strategy (green) and noisy parallelism benchmark (purple). Note that
benchmarks are shown up to an overall constant. Error bars are smaller than
the line width. Deterministic serial strategy (i.e., O(N)) is not shown, for
simplicity. (C) (Top) Critical noise amplitude versus N: WTA dynamics exists
below a given curve and fails above it (dashed curve, numerical simulation;
solid curve, analytical). Darker curves correspond to a larger gap between
the top two inputs (∆ = {0.01, 0.06, . . . , 0.26}, α= 1− 1/2N, τη = 0.005τ ).
(Bottom) Average accuracy, that is, fraction of correct trials, as a function
of N (simulations averaged over 150 trials). (D–F) Results for strong inhi-
bition. (D) As in A but for strong inhibition. WTA breaks down rapidly
(note absence of WTA for N = 40, dark curve). (E) WTA decision time in the
absence of noise (gray) along with the deterministic serial strategy (green).

∼N over time and, for sufficiently large N , prevents any neu-
ron pool from breaking away from the rest to become a winner.
We note that giving up the stability constraint by allowing α> 1
(using the decision threshold for α= 0.9) does not qualitatively
change the result (Fig. 2F), but can produce other problems
(SI Appendix, section S2). As with weak inhibition, we can ana-
lytically predict the breakdown of strong-inhibition WTA (SI
Appendix, section S2). The resulting predictions can be used to
determine the feasibility of WTA computation in large networks
in the presence of noise.

Thus, although networks with strong inhibition can meet the
parallelism benchmark when the inputs are deterministic, they
are not capable of finding a winner in large networks with even
slightly noisy inputs (and when they do perform WTA for suffi-
ciently small N , the scaling is suboptimal; see, e.g., SI Appendix,
section S3 and Fig. S8K, where we find log (N ) scaling only for a
subset of parameters). These pessimistic results raise the ques-
tion of whether neural networks can ever implement parallel
computation that is efficient, fully trading serial time for space.

The nWTA Network: Fast, Robust WTA with Noisy Inputs and an
Inhibitory Threshold. We introduce a model motivated by the suc-
cesses and failings of the existing models. A network with weak
inhibition and fine-tuning is accurate, but too slow, because inhi-
bition is too weak to drive a rapid separation between winner and
losers. A network with strong inhibition achieves WTA with a
full parallelism speedup for deterministic inputs, but entirely fails
to perform WTA for large N , because the nearly losing neuron
pools prevent any pool from breaking away. (Simply increas-
ing the activation threshold does not fix the failure of WTA; SI
Appendix, Fig. S5E.) In addition, the residual noise-driven inhibi-
tion decreases the average asymptotic activity of the near-winner
so that the true value of max will be underestimated.

We hence consider a circuit with strong inhibition, in which
individual neuron pools can only contribute inhibition when their
activations exceed a threshold θ (see Methods; see Discussion for
biological candidates),

τ
dxi
dt

+ xi =

αxi −β∑
j 6=i

[xj ]θ + bi + ηi


+

. [4]

We set 0<θ< b1/(1−α) (no fine-tuning) and self-excitation in
the range 1−β <α< 1.

In this nonlinear-inhibition WTA (nWTA) network, if the i th
neuron pool wins, its expected asymptotic state is bi/(1−α),
so the direct proportionality to max is recovered. Every neuron
pool contributes an inhibition of strength ∼ 1 when highly active
(>θ), ensuring robust early competition. However, the inhibitory
threshold will cause neuron pools with decreasing activations to
effectively drop out of the circuit, allowing the top pool to take
off unimpeded later in the dynamics.

When presented with deterministic inputs, the nWTA network
matches the conventional strong-inhibition network and the par-
allelism benchmark by converging in a time independent of N
(Fig. 3A).

Moreover, and unlike the conventional WTA network, the
diminishing inhibition in the nWTA circuit over time permits the
leading neuron pool to break away and win even in the pres-
ence of noise. The losing pools continue to receive inhibitory
drive from the remaining highly active pool(s), becoming less
active over time (here, α> 1 can increase the noise-robustness
[Fig. 3B], but would necessitate some kind of saturating

(F) As in C, showing critical noise amplitude versus N. Darker curves denote
stronger self-excitation (Top; α= {0.1, 0.6, 0.9, 1.1}; ∆ = 0.1) or a widening
gap (Bottom; ∆ = {0.01, 0.06, . . . , 0.26}; α= 0.6). β= 1, in all curves.
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Fig. 3. The nWTA is robust to noise and achieves the parallelism benchmark. (A) The nWTA decision time without noise (gray) and the deter-
ministic serial strategy (green). (B) Critical noise amplitude ση* as a function of N for varying α= {0.5, 0.7, 0.9, 1.1}, ∆ = 0.075 (Left) and ∆ =

{0, 0.0125, 0.025, 0.05, 0.075, 0.1, 0.15}, α= 0.5, β= 0.51 (Right). Below each curve, WTA behavior exists, while, above, it does not. (C) Heat maps showing
fraction of trials with a WTA solution (single winner; Left), accuracy of the WTA solution (Middle), and convergence time TWTA/τ (Right) as function of net-
work size N and noise amplitude ση . ∆ = 0.05, α= 0.5, and β= 0.6, averaged over 1,500 trials each. (D) Speed–accuracy curves for ∆ = 0.075, ση = 0.12,
and α= 0.5 for varying N = {23, 24, . . . , 215} (light to dark red) and β= {0.51, 0.52, . . . , 0.6, 0.65, 0.7, 0.8, 0.9} (light to dark gray circles): 1,500 trials, of
which only trials that produced a WTA solution were included. Curves are nonmonotonic, so that certain parameters are strictly better than others for both
speed and accuracy. (E) N scaling of decision time to achieve fixed accuracy of 0.99 for nWTA (gray) and the parallelism benchmark (purple). Thin black
line shows logarithmic fit. ∆ = 0.075; τη = 0.05τ ; θ= 0.2; ση = 0.12; see SI Appendix, section S2 and Fig. S6 for similar results with different parameters
and noise levels. (F) N scaling of accuracy at fixed decision time. Gray denotes nWTA for integration time 12.5τ ; purple denotes parallelism benchmark for
integration time 2τ .

nonlinearity for stability; SI Appendix, section S2). The network
exhibits WTA behavior well into the noisy regime, even with
asymptotically many neuron pools (Fig. 3 B and C) without
fine-tuning (see SI Appendix, section S2 and Fig. S5F for more
discussion).

The network can also trade off speed and accuracy over
a broad range. Starting at high accuracy and holding noise
fixed, the accuracy of computation can be decreased, and speed
increased, by increasing β (Fig. 3D, for fixed α, i.e., fixed
expected asymptotic activity x∞; darker gray circles along a curve
correspond to increasing β) or α (SI Appendix, Fig. S6 A–F).
The overall integration time is generally set by the combina-
tion of α and β, with high accuracy and low speed achieved
as α+β approaches 1. When α+β is increased away from 1,
the overall trend is that speed increases and accuracy decreases.
Note, however, that the nWTA network exhibits an interesting
nonmonotonic dependence of accuracy on both noise level and
network size (as can be seen in the heat map of Fig. 3C). This
improvement in performance at some intermediate noise level is
a form of stochastic resonance (40) (see SI Appendix, section S2
for discussion).

Conveniently, a top-down neuromodulatory or synaptic drive
can regulate where the network lies on the speed–accuracy
curves, with many mechanistic knobs for control, including
synaptic gain control of all (excitatory and inhibitory) synapses
together (resulting in covariation of α,β), neural gain control of
principal cells (also effective covariation of α,β), or a threshold
control of inhibitory cells (effective modulation of β).

For fixed noise at each input or WTA circuit neuron, the deci-
sion time for the network to reach a fixed accuracy scales as
TWTA∼ log(N ) (Fig. 3E; also see SI Appendix, Fig. S6 E and K).
Compared to the serial time complexity of T noisy

S ∼N log(N ) for
fixed accuracy with noisy inputs, the nWTA network therefore
achieves a fully efficient trade-off of space for time, matching the
parallelism benchmark of T

noisy
S /N .

Not only does the scaling of decision time with N in the nWTA
network match the functional form of the parallelism bench-

mark, the prefactor is not far from unity: It takes only a factor of
approximately three more time steps (in units of the biophysical
time constant of single neuron pools) to converge than the num-
ber of discrete time steps of the parallelism benchmark (Fig. 3E,
gray vs. purple curves).

Similarly, if we compare accuracy at fixed TWTA in Fig. 3F
(here at TWTA = 12.5τ ) to the parallelism benchmark at some
fixed TS/N = kTWTA (here, k = 0.16), we see that accuracy at
large N is similar to that of the parallelism benchmark, again
with a near-unity prefactor (Fig. 3F; note that, in order to make a
direct comparison with perfect integration, we assume here that
noise is coming only from the inputs and not from stochastic neu-
ral activity). Further, as we show in the following sections, for
small N , even the prefactor can be almost optimal.

In summary, the nWTA network can identify the input with
the largest mean (i.e., perform the max, argmax operations)
from noisy inputs, with accuracy comparable to the optimal
serial strategy, but with a full factor-N parallelism speedup, even
though the constituent neuron pools are leaky. It does so with
network-level integration and competition, but does not require
fine-tuning of network parameters.

Self-Adjusting Dynamics: High Accuracy and Hick’s Law with-
out Parameter Tuning. The results above, on efficient parallel
decision-making by nWTA across a wide range of N , assumed
that network parameters could be changed to optimize the deci-
sion time for the given value of noise or N . As previously
mentioned, there are many biologically plausible mechanistic
ways to change effective excitation, inhibition, and thresholds in
the network. Nevertheless, the assumption that the network can
retune parameters for each new set of inputs may not hold in
all cases. The retuning assumption may be especially unrealis-
tic for psychophysical decision-making among small numbers of
alternatives, where the number and noisiness of inputs are con-
trolled by the external world and may change from trial to trial
and without prior warning. We thus investigate the performance
of nWTA when parameters do not change with N .
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Fig. 4. The nWTA network self-adjusts to maintain accuracy and exhibits
Hick’s law without any parameter change. (A) Accuracy for fixed param-
eter values as a function of N for large N. Dark and light blue show
(α, β) = (0.5, 0.51), (0.6, 0.41), respectively (one accuracy trace not visible).
Input parameters are as in Fig. 3 D–F, 5,000 trials per data point. (B) Deci-
sion time for the parameter values shown in A, along with logarithmic fits
(thin black). (C) Accuracy for fixed parameter values for small N. Blue sym-
bols show nWTA network (light, dark show (α, β) = (0.3, 0.71), (0.6, 0.41),
respectively), while purple squares show AB model with perfect integration.
∆ = 0.05,σ= 0.2, τη = 0.05τ . Inset shows selected parameter values as well
as average accuracy for all parameter combinations (averaged across N = 2
to 10). (D) Decision time for nWTA networks and AB model shown in C. Thin
black lines show logarithmic fits for nWTA and constant fit for AB.

Remarkably, nWTA networks can self-adjust to maintain high
accuracy, even if N increases up into the thousands, with an
appropriate fixed initial parameter choice (Fig. 4A). The amount
of recurrent inhibition in the network depends on the num-
ber of active options and automatically increases when the task
gets harder, either because of an increase in noise, a smaller
gap between the correct and incorrect input, or more options
to choose from. This increase in inhibition slows network con-
vergence, causing the network to integrate for longer when the
task is harder and thus compensating for the increased difficulty.
Consequently, the network is able to maintain high accuracy
as N increases by automatically extending its decision time
(Fig. 4B). The automatic increase in TWTA is logarithmic in N ,
thus matching the parallelism benchmark.

For small N ≤ 10, as is the case in psychophysical decision-
making tasks, a logarithmic scaling of decision time with N
while maintaining high, fixed accuracy is known as Hick’s law,
specifically, T ∼ log(N + 1) (30). The nWTA networks robustly
reproduce Hick’s law across a range of (fixed) possible parame-
ter settings (Fig. 4 C and D, blue symbols). Moreover, for every
parameter combination we examined, the increase of TWTA with
N was better described as logarithmic than linear, regardless
of whether high accuracy was maintained, unlike conventional
WTA networks; see SI Appendix, Fig. S8K. Thus, Hick’s law
is a generic dynamical consequence of decision-making by self-

terminating WTA networks with noisy input and thresholded
recurrent inhibition.

The observed increase in decision time with N can be repro-
duced by leaky or idealized AB models of decision-making.
However, the threshold applied to the integrated inputs must be
hand designed and vary with N (increasing as log(N )) to pro-
duce a Hick’s law-like log(N ) decision time (22, 24). When the
parameters and thresholds of these models are kept fixed with
N , the behavior is qualitatively different from WTA networks:
The decision time remains fixed with N (instead of increasing
logarithmically), and accuracy decreases (Fig. 4 C and D, purple
squares). Thus, if N is not known ahead of time and the model
threshold is not appropriately retuned, typical AB models show
behavior very different from Hick’s law.

We show that one AB framework, which implements the
absolute form of the MSPRT in a biological circuit model (3)
(henceforth, the Bogacz–Gurney model), can achieve the opti-
mal log(N ) scaling of decision time without parameter tuning
as N is varied across both small and large N , like the nWTA
(SI Appendix, Fig. S1 and section S1). Moreover, for a given
level of accuracy, the Bogacz–Gurney model is slightly quicker
to make a decision (nWTA is a factor of ∼ 2 to 2.5 slower [SI
Appendix, Fig. S1D; also see Fig. 5B]). The optimal decision
time scaling of the Bogacz–Gurney model is due to a nonlin-
ear (softmax) inhibition term: If yi(t) is the integrated evidence
with the largest value, then Bogacz–Gurney terminates when
yi(t)− log(

∑
j e

yj (t)) crosses a threshold, where the log term is
contributed by feedforward nonlinear inhibition. This term scales
as log(N ) when all yis are similar in size, and, in the limit of
one large entry, approaches the value of that entry. Thus, when
many competitors are active, this feedforward nonlinear inhibi-
tion automatically raises the effective threshold by a factor of
log(N ) as required by AB models, thus providing the optimal
log(N ) scaling with fixed parameters in this setting.

WTA as a Minimal, Flexible Model for Multialternative Forced-Choice
Decision-Making. Results thus far were primarily focused on the
scaling and robustness of nWTA in the large N limit, which might
apply in contexts like the input sparsification by Kenyon cells in
the mushroom body (5) and the readout of grid cell activity by
hippocampal place cells (8). We now discuss the performance of
WTA networks in the context of multialternative forced-choice
(multi-AFC) decision-making behavioral tasks (2, 13), when the
number of alternatives is small (N ≤ 10).

Despite its simplicity, the nWTA model not only maintains
performance comparable to idealized, perfect integrator AB
models, as shown above and elaborated next, but can also repro-
duce a number of behavioral and physiological observations from
multi-AFC studies. These include the existence of step- and
ramp-like responses of individual neurons, convergence to the
same activity level at decision time even though N is varied,
partial self-adjustment to the statistics of the input, faster deci-
sion times on correct compared to error trials (SI Appendix, Fig.
S8E), and the flexibility to preferentially weight early evidence
(SI Appendix, section S2 and Fig. S2C). Throughout this section,
the parameters used are comparable to those that achieve high
performance in the large-N regime, suggesting that the same
basic circuit can be reused across a variety of scales.

The nWTA circuit can achieve a broad range of speeds and
accuracies by varying self-excitation and recurrent inhibition.
This translates to a broad range of reward rates, that is, the
product of speed and accuracy, a key quantity for psychophysics
experiments (Fig. 5 A and B). Note that, for closer corre-
spondence with psychophysical literature, we here assume an
additional nondecision time T0 = 300 ms (SI Appendix, section
S3). The reward rates achieved by the self-adjusting dynamics of
nWTA networks when parameters are held fixed as N is varied
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Fig. 5. Self-terminating WTA dynamics as a minimal-parameter, neural model of multi-AFC decision-making. (A) Reward rate for the fixed parameters
chosen to maximize reward rate (dark blue circles, α= 0.41, β= 0.7) along with reward rate when parameters are individually optimized for each N (light
blue). Thin black lines show fit to (T0 + log(N + 1))−1. Inset shows accuracy for fixed parameters chosen to maximize reward rate. Accuracy at highest
reward rate is high but not constant, reflecting a speed–accuracy trade-off. (B) Reward rate vs. accuracy for N = {2, 10}. Gray, nWTA (using best α, β for
given accuracy); dark purple: AB model; light purple: AB implementation of relative (max-vs-next) form of MSPRT. Inset for N = 10 panel shows speed–
accuracy curves for α, β that yield optimal reward rate for N = 10; see SI Appendix, Fig. S8F [speed (100/τ ) includes T0 = 300 ms; dark blue: α= 0.46
fixed, β ∈{0.55, 0.6, . . . , 1}; light blue: β= 0.6 fixed, α∈{0.41, 0.46, . . . , 0.96} varied; other parameters are as follows: ∆ = 0.05, ση = 0.2, τη = 0.05τ ].
(C) Example activation trajectories xi(t) for nWTA networks with different (α, β) but with α+ β (i.e., integration time constant) held fixed. (Left) Lower
self-excitation and higher inhibition; (Right) vice versa. (D) Example activation trajectories for network with same inhibition as C, Right, but stronger
self-excitation. Trials are faster, but final activation of winner is higher. (E) Example activation trajectories for N = 2, 6, 10 (light to dark red) with fixed
parameters. Activity at the time of convergence remains constant. (F) (Top) Decision time for fixed parameters as a function of gap between largest and
second largest input (related to task difficulty), showing that network self-adjusts to integrate longer for difficult tasks. Colors as in E. (Bottom) As in Top
but for noise in input. Note that, in the small-N regime, conventional WTA models show similar performance to nWTA for many of these results, although
less robustly; see SI Appendix, section S3 and Fig. S8.

are comparable to when they are separately optimized for each
N (Fig. 5A, dark versus light symbols). The self-adjustment pro-
cess is thus near optimal, at least over the range of number of
options considered here (2≤N ≤ 10).

Moreover, the reward rate achieved by nWTA networks, both
when parameters are held fixed and when they are individually
optimized for each N , is competitive both with a perfect inte-
grator AB model (outperforming it in the high-accuracy regime
at small N [Fig. 5B; see gray for network and dark purple for
AB model]) and with an AB model that implements the MSPRT
(Fig. 5B, light purple; see also Discussion and SI Appendix, sec-
tion S1 and Fig. S8B), and is thus optimal in the limit of vanishing
error rate (3, 24).

During integration, neurons vary enough from trial to trial for
fixed parameter settings and across parameter settings to look
variously more step-like or ramp-like (compare curves within and
across Fig. 5 C–E). Different choices of α,β modulate the neural
response curves, producing diverse responses even as the net-
work integration time (τ/(1− (α+β)) and mean inputs are held
fixed (Fig. 5C).

In WTA networks, the asymptotic activity x∞ of the winning
neuron is proportional to 1/(1−α), while speed increases with
α+β. Starting from parameters consistent with a high reward
rate, a speedup can be achieved by increasing α or β or both
(Fig. 5 C, Right vs. Fig. 5D; see SI Appendix, Fig. S8A for a com-
plete overview). Note that increasing α will also increase the
asymptotic threshold, while increasing β will not.

On the other hand, if parameters are held fixed, but N
increases, the decision threshold remains fixed in the strong-
inhibition WTA models (Fig. 5E), as seen in experiments (41).

Finally, TWTA increases when the signal-to-noise ratio of the
input decreases, for example, due to a smaller gap ∆ between
correct and incorrect options, or an increased input noise ampli-
tude ση (Fig. 5F). The bulk of this additional time is spent on
averaging the inputs (SI Appendix, Fig. S7G). As with the results
shown in Fig. 4, this compensatory capability is the result of
recurrent inhibition, which may offer powerful computational
flexibility to a decision-making circuit.

It has recently been shown, in experiment, that decision cir-
cuits can be trained to adapt their integration time to the
time-varying statistics of the input (42). The present result shows
how such neural circuits, if similar to the nWTA network, may
be able to automatically and instantly, without plasticity, adjust
to the input statistics.

Discussion
Identifying the largest option among several possibilities, or,
formally, performing max, argmax operations, is pivotal in infer-
ence, optimization, decision-making, action selection, consensus,
error correction, and foraging computations. We have examined
the efficacy of parallel computation for finding the best option,
both in the abstract and in neural circuit models with leaky neu-
rons. We show that the nWTA neural network can accurately
determine and report max, argmax in the noiseless and noisy
input cases, with a computation time that meets the benchmarks
of optimal parallelization: constant decision time in the noise-
less case and a time that grows as O(log(N )) in the presence
of noise.

When applied to psychophysical decision-making tasks (N ≤
10) (30, 35, 41, 43, 44), the model provides an explanation
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for Hick’s law (22–24, 30, 35), a canonical result in the psy-
chophysics of human decision-making. This demonstrates Hick’s
law within a leaky neural network decision-making model with
self-terminating dynamics. Moreover, the nWTA model repro-
duces Hick’s law without the need to tune or change any param-
eters as the number of options changes. Thus we have found
both a computational (efficient normative computation that sat-
urates the parallelism benchmark) and dynamical explanation
(self-adjustment of decision time with number of options without
parameter change) of Hick’s law, both based on computation in
the presence of noise.

We find that recurrent inhibition enables nWTA networks
to flexibly adjust computation time as the number of options
is increased, noise is increased, or the gap between options is
decreased, while the additional threshold on inhibition in the
nWTA circuit ensures that the WTA state exists in the presence
of noise, even in large networks.

Our work additionally reproduces a number of (some-
times counterintuitive) psychophysical and neural observations,
including faster performance on correct than on error trials and a
natural tendency to weight early information over late (however,
the extent of this tendency to impulsivity is tunable; SI Appendix,
section S2 and Fig. S2C).

The efficiency of accurate parallel computation by the nWTA
network holds not only in the regime of psychophysical decision-
making but also when the number of options ranges in the thou-
sands, corresponding, possibly, to a microscopic circuit inference
operation of finding the maximally active neuron in a large set of
neurons or neuron groups that competitively interact. In this way,
our work provides a single umbrella under which systems neuro-
science questions about parallel computation distributed across
large numbers of individual neurons, as well as psychophysics
questions about explicit decision-making, can be answered.

Relationship to Past Work. In both the normative derivation of the
optimal integration time and the nWTA model, we found that
the necessity to average out noise underlies a log(N ) scaling of
decision time. This necessity also underlies the log(N ) scaling of
decision time in AB models, where the threshold is increased to
allow longer integration with more options (3, 24, 38). This origin
of log(N ) scaling is in contrast to classical explanations of Hick’s
law, which attribute the scaling to the number of progressive
binary classification steps needed to winnow N (deterministic)
options down to one, or, equivalently, to the number of bits
required to specify one out of N options (30, 45). These alter-
native explanations would predict Hick’s law-like log(N ) scaling
also for deterministic options, while a noise-averaging theory
such as ours predicts a crossover from logarithmic scaling of
decision time with number of options N to a time that is inde-
pendent of N , once the task is sufficiently noiseless or noise
is reduced through practice. This crossover prediction is con-
sistent with some studies (36, 45), and could provide a good
test of whether Hick’s law is fundamentally due to noise in the
alternatives during decision-making.

Leaky competing accumulator models (22, 24, 29, 46) are
more biologically plausible variants of AB in that they incor-
porate leak in the integration process and inhibition between
alternatives. However, like classical AB models, these mod-
els use the crossing of a predetermined threshold not tied
explicitly to the asymptotic states as the decision criterion. If
the strength of inhibition is increased to put these networks
(22) in the self-amplifying regime, and if τη = τ (47), they
become mathematically equivalent to the conventional WTA
models.

We reimplemented an AB neural circuit model of MSPRT
decision-making (3), and showed that it exhibits optimal scal-
ing of decision time across N with fixed parameters, enabled
by a feedforward nonlinear inhibition. The fundamental sim-

ilarity in performance between the nWTA and the Bogacz–
Gurney MSPRT models is underpinned by the presence of
nonlinear inhibition that discounts the contribution of weakly
active neurons in decision-making when there are multiple
alternatives.

A different framework for decision-making is to optimize the
total reward obtained over the course of multiple trials; reward
rate optimization can involve making faster but inaccurate deci-
sions on hard or low-reward trials to move to the next, easier
or high-reward trial. Tajima et al. (27) formalize the multialter-
native decision-making problem under this framework to derive
symmetries of the optimal stopping rule, and implement it in an
AB model with interacting accumulators. It will be interesting to
explore the behavior of nWTA compared to this stopping rule
and to examine the scaling of decision time in Tajima et al. in the
large-N regime.

The nWTA model is an attractor network for decision-making.
WTA attractor models (14, 17, 48–55) are self-terminating (at
least for small N or deterministic dynamics), and, in the context
of behavioral decision-making, have been shown to match mul-
tiple neural and behavioral phenomena (56, 57). However, they
have typically focused on the dynamics of only a few options and
not the large-N regime with noise.

Biological Mechanisms for Thresholding Inhibitory Contributions. In
circuits with separate excitatory and inhibitory neurons (58),
there are multiple candidate mechanisms for the inhibitory
nonlinearity required by nWTA. These can be categorized by
whether inhibitory interneurons are selectively tuned to par-
ticular principal cell inputs, or are nonselective because they
pool inputs from many principal cells. If inhibitory neurons are
selective, then a simple threshold nonlinearity in the input–
output transfer function, like the type-II firing rate responses in
inhibitory neurons (59), is sufficient. A similar effect could be
achieved by fast-spiking inhibitory interneurons that act as coin-
cidence detectors rather than integrators (60): These cells would
respond weakly to low firing-rate inputs and reliably for high-rate
inputs, thus effectively thresholding activity. Finally, if interneu-
rons target pyramidal cell dendrites, then dendritic nonlinearities
(61) could threshold inhibitory input.

If inhibitory neurons are nonselective, then the nonlinearity
must be present in the excitatory-to-inhibitory synapse so that
the drive from the low-activity input principal cells is specifi-
cally ignored. If the excitatory to inhibitory synapses have low
release probability and are strongly facilitating, only high firing
rate inputs would make it through (62).

Finally, while we have considered one particular form of the
second nonlinearity (i.e., an activation threshold), it may be pos-
sible to replace the activation threshold with other nonlinearities
in either the excitatory or inhibitory units.

Spatial Organization of WTA Circuit. Neural WTA models can be
viewed as N principal cells or groups inhibiting each other (e.g.,
via interneurons private to each cell or group), which requires ∼
N 2 synapses. This connectivity is both dense and global (Fig. 1C).
Alternatively, all cells can drive a common inhibitory neuron
(pool) which inhibits them all, an architecture that requires only
∼N synapses, a much sparser connectivity (only O(1) synapse
per neuron) that is still global (Fig. 1C). It may be possible to
replace the global inhibitory neuron by local inhibitory neurons
that pool smaller excitatory groups. However, local inhibition
generically produces pattern formation (63), and consensus for-
mation with local connections can be unstable (64); thus it is
an interesting open question whether WTA can be implemented
with purely local connectivity.

Extensions, Generalizations, and Limitations. Our results, including
the need for an inhibitory nonlinearity, apply broadly to a range
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of WTA and WTA-like architectures. First, our results hold for
architectures with separate excitatory and inhibitory populations,
for a wide range of inhibitory time constants (SI Appendix, sec-
tion S2). Second, they extend to spiking neuron architectures,
where each option is represented by a small pool of neurons (SI
Appendix, section S4). Third, modifying the shape of the output
nonlinearity in conventional WTA (rather than adding a sec-
ond inhibitory nonlinearity) is unlikely to produce a scaling that
matches the parallelism benchmark as long as losing neurons can
contribute inhibition, because even a small contribution from los-
ing neurons will become overwhelming for large N . Fourth, with
the exception of the unrealistic weak-inhibition case, both con-
ventional and nonlinear WTA results hold for a range of synaptic
coupling strengths (α, β), and thus will be robust to variability
in the synaptic strengths. And, finally, while we have considered
competing neuron pools, the framework should naturally extend
to competing patterns that are distributed across neurons, as
long as there is a mechanism that prevents losing patterns from
contributing inhibition (17).

In neural data obtained during small-N psychophysical
decision-making, varying the speed versus accuracy demands can
affect baseline firing rates, which are lower for trials cued to
be accurate rather than fast. However, this effect varies across
subjects and neurons. The dominant modulation for speed ver-
sus accuracy appears in the gain or slope of neural responses
rather than baseline activity (65–68). The WTA model we con-
sider reproduces the slope effect, but cannot reproduce the
baseline modulation effect: Starting the network closer to thresh-
old results in higher recurrent inhibition, which counteracts the
smaller distance the network needs to travel to convergence; thus
higher baseline activity does not result in faster convergence. It
may be possible to incorporate baseline modulation in the model
by considering multiple computational stages or gated input (69),
and it remains to be seen, empirically, whether baseline firing
rate modulation is a robust strategy used by neural systems when
making decisions across large numbers of options.

Distributed decision-making is a feature of many collective
systems, including bacterial quorum sensing (70), foraging and
house-hunting in ants and bees (1, 71), social and political con-
sensus formation (72), and economic choice behaviors. The
present work may also have a broader relevance to the ques-
tion of efficient parallel algorithms for max, argmax (73–76).
While our model is based on neural dynamics, the ingredients
(self-amplification; recurrent nonlinear inhibition) are simple
and should have analogues in other distributed decision-making
systems. When conditions are noisy, our results suggest a scal-
ing of O(log(N )) with the number of options, and the exis-
tence of a thresholded or otherwise nonlinear inhibition if N is
large.

Real-world systems are also often bandwidth limited: Neu-
rons communicate with spikes; scout insects achieve consensus
through brief interactions with subsets of others (1, 77). Here
we have assumed high bandwidth communication: neurons or
pools of neurons exchanging analog signals in continuous time
(although see SI Appendix, section S4). Nevertheless, the prin-
cipal cells in our model do not communicate their individual
activation levels to all other cells; other principal cells receive
information only about global activity in the network in the form
of a single inhibitory signal, and there is noise, both forms of
limited communication. In this sense, our results should gen-
eralize to the lower-bandwidth case. Studying the impact of
low-bandwidth communication on WTA and parallel decision-
making in more detail is an interesting direction for future
work.

Methods
Network Model and Dynamics. We consider N coupled neurons with
activations xi , i∈{1, . . . , N}, and dynamics given by

τ
dxi

dt
+ xi =

bi + ηi +αxi − β
∑
j 6=i

g
(
xj
)

+

=: ri(t). [5]

The neural nonlinearity is set to be the threshold-linear function: [x]+ =

max[0, x]; τ is the neural time constant, α is the strength of self-excitation,
and β is the strength of global inhibition. Here, g(x) is the inhibitory acti-
vation function: If g≡ 1, the activation is fully linear, and conventional
WTA dynamics, as previously studied (17), is recovered. We also consider
an alternative, threshold-linear activation function with threshold θ, that is,
g(x) = [x]θ = x if x≥ θ, and, otherwise, zero. We call the respective dynam-
ical system nWTA-dynamics. The right-hand side of Eq. 5 may be viewed as
the instantaneous firing rate ri(t) of neuron i.

Each neuron receives a constant external drive bi . Neurons are ordered
such that b1 > b2≥ . . .≥ bN, and it is assumed that each input drives exactly
one neuron; see Fig. 1C. In addition, each neuron receives a private zero-
mean fluctuation term ηi(t), which is modeled by statistically identical
Ornstein–Uhlenbeck processes, that is,

τη
dηi(t)

dt
+ ηi(t) =ση

√
2τη ξi(t), [6]

with Gaussian white noise ξi(t), such that, 〈ξi(t)〉= 0, 〈ξi(t)ξj(t
′)〉=

δijδ(t− t′). It follows that 〈ηi(t)〉= 0 and 〈ηi(t)ηj(t
′)〉=σ2

ηe
− |t−t′|

τη δij .
A network that converges to a unique WTA state with nonnoisy inputs

and internal dynamics need not do the same when driven by noise. Noise
kicks the state around, and the system generally cannot remain at a
single point. Nevertheless, the network state can still flow toward and
remain near a fixed point of the corresponding deterministic system (SI
Appendix, section S2 and Fig. S5 A–D). We will refer to such behavior in
the noise-driven WTA networks as successful WTA dynamics, defined in
terms of one neuron reaching a criterion distance (defined below) from
the deterministic WTA high-activity attractor, while the rest are strongly
suppressed.

Conditions for WTA Dynamics. Analysis of the linear stability of the noise-
free conventional dynamical system Eq. 5 with g≡ 1 (see SI Appendix,
section S2 and ref. 17) reveals one eigenvalue λW,hom =α− (N− 1)β with
uniform eigenvector 1 = (1, . . . , 1)>, and an (N− 1)-fold degenerate eigen-
value λW,diff = (α+ β) whose eigenvectors are difference modes with entries
that sum to zero. If α+ β > 1, the difference modes grow through a linear
instability, and the eventual (nontrivial) steady states involve only one active
neuron. If α< 1 and β > 1−α, the network will always select a unique win-
ner for each b and initial condition (17). For a discussion of more general
constraints on α, β, see SI Appendix, section S2.

After meeting the conditions for stability and uniqueness (α< 1, β >
(1−α)), there is freedom in the choice of how the strength of global
inhibition β scales with N: We may choose β∼O(1), which we call the
strong-inhibition condition, or β∼ β0/N, the weak-inhibition condition. In
the weak-inhibition regime, we set α= 1− β0/kN (with k> 1; specifically,
we choose β0 = 1, k = 2 throughout the paper) for stability.

For simplicity, throughout the paper, we consider the case where all neu-
rons start at the same resting activity level x(0) = (x0, . . . , x0)>. In this case,
the winner is the neuron with the largest input. (For heterogeneous ini-
tial conditions, the situation is more complex, since the wrong neuron can
be pushed to be the winner just by starting at large enough activity to sup-
press all other neurons; see also the discussion in ref. 17.) We further assume
x0 = 0 (if x0 > 0, there is an initial transient that scales logarithmically with
N but is unrelated to the actual WTA computation; SI Appendix, section S2).

In the case of noisy conventional WTA dynamics (but not for the non-
linear WTA model), the asymptotic activation of the winner x∞w depends
on the number of neurons and the noise amplitude in a nontrivial man-
ner (SI Appendix, section S2). For convenience, we thus define TWTA as the
time some neuron reaches an activation level greater than or equal to
cb1/(1−α) with c . b2/b1 (we use c = 0.8) in all simulations (noisy or deter-
ministic). We emphasize that this convergence criterion is nonetheless set by
the dynamics, and hence is inherently different from an external arbitrary
threshold, and does not change the scaling of either the deterministic or
noisy dynamics; see SI Appendix, section S2.

Simulations and Analysis. All simulations and analyses were carried out using
standard Python packages (Python 2.7.12, NumPy 1.11.0, SciPy 0.17.0). The
dynamics Eq. 5 was solved by simple forward-Euler integration with integra-
tion time step ∆t∈ [10−5τ , 0.2τ ] depending on numerical requirements.
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For the simulation of Ornstein–Uhlenbeck noise, we made use of exact
integration on a time grid with increment ∆t (78), that is,

η(t + ∆t) = η(t) e−∆t/τη +ση

√
1− e−2∆t/τη ξ(t). [7]

Data Availability. Study contains only numerical experiments. Simulation
code is available in Github (https://github.com/BKriener/nWTA).
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