
Durable Top-K Instant-Stamped Temporal Records

with User-Specified Scoring Functions

Junyang Gao§

Google Inc.

Stavros Sintos§

University of Chicago

Pankaj K. Agarwal

Duke University

Jun Yang

Duke University

Abstract—A way of finding interesting or exceptional records
from instant-stamped temporal data is to consider their “dura-
bility,” or, intuitively speaking, how well they compare with other
records that arrived earlier or later, and how long they retain
their supremacy. For example, people are naturally fascinated by
claims with long durability, such as: “On January 22, 2006, Kobe
Bryant dropped 81 points against Toronto Raptors. Since then, this
scoring record has yet to be broken.” In general, given a sequence
of instant-stamped records, suppose that we can rank them by
a user-specified scoring function f , which may consider multiple
attributes of a record to compute a single score for ranking.
This paper studies durable top-k queries, which find records
whose scores were within top-k among those records within
a “durability window” of given length, e.g., a 10-year window
starting/ending at the timestamp of the record. The parameter
k, the length of the durability window, and parameters of the
scoring function (which capture user preference) can all be given
at the query time. We illustrate why this problem formulation
yields more meaningful answers in some practical situations
than other similar types of queries considered previously. We
propose new algorithms for solving this problem, and provide
a comprehensive theoretical analysis on the complexities of the
problem itself and of our algorithms. Our algorithms vastly
outperform various baselines (by up to two orders of magnitude
on real and synthetic datasets).

I. INTRODUCTION

Instant-stamped temporal data consists of a sequence of

records, each timestamped by a time instant which we call

the arrival time, and ordered by the arrival time. Such data is

ubiquitous in a rich variety of domains; i.e., sports statistics,

weather measurement, network traffic logs and e-commerce

transactions. A way of finding interesting or unusual records

from such data is to consider their “durability,” or, intuitively

speaking, how well they compare with other records (i.e.,

records that arrive earlier or later) and how long they retain

the supremacy. For example, consider the performance record:

“On January 22, 2006, Kobe Bryant scored 81 points against

Toronto Raptors.” While impressive by itself, this statement

can be boosted by adding some temporal context: “At that

time, this record was the top-1 scoring performance in the

past 45 years of NBA history.” Naturally, the further back

we can extend the “durability” (while the record still remains

top), the more convincing the statement becomes. We can

extend durability forward in time as well: “Since 2006, Kobe’s

81 points scoring performance has yet to be broken as of

today.” The notion of durability is widely used in media

§Most of the work was conducted when authors were at Duke University.

and marketing, because people are naturally attracted by

those events that “stood the test of time.” Such analysis of

durability is a useful part of the toolbox for anybody who

works with historical data, and can be particularly helpful to

journalists and marketers in identifying newsworthy facts and

communicating their impressiveness to the public. Because

temporal data can accumulate to very large sizes (especially

for granular data such as weather or network statistics), and

because users often want to find durable records with respect

to different ranking criteria quickly, we need to answer durable

top-k queries efficiently.

In this paper, we consider durable top-k queries for finding

instant-stamped records that stand out in comparison to others

within a surrounding time window. In general, each record may

have multiple attributes (besides the timestamp) whose values

are relevant to ranking these records. We assume that there is a

user-specified scoring function f that takes a record as input,

potentially considers its multiple attributes, and computes a

single numeric score used for ranking. Intuitively, a durable

top-k query returns, given a time duration τ , records that

are within top k during a τ -length time window anchored

relative to the arrival time of the record. How the window

should be positioned relative to the arrival time depends on

the application; our solution only stipulates that the relative

positioning is done consistently across all records. In practice,

we observe most statements in media involving durability

either ends the window at the arrival time of the record

(i.e., looking back into the past) or begins the window at the

arrival time of the record (i.e., looking ahead into the future).

Generally speaking, each record returned by our durable top-k

corresponds to a statement about the record that highlights the

durability of its supremacy.

Note that there are different ways for capturing the notion

of durability in queries, including some types that have been

studied in the past. Different application scenarios may call

for different semantics. To understand why our definition of

durable top-k queries may be more appropriate than others

in some scenarios, we examine the alternatives with a simple

concrete example.

Example I.1. Suppose we are interested in finding exceptional

rebounds performances (by individual players in individual

games) in NBA history—particularly, those that stood out as

the top record (or tying for the top record) in a 5-year time

span. Figure 1.(1) plots all relevant records (i.e., no fewer than

✶�✁✁✂✄✂☎☎

✶��☎✂✆✂✄

✶��✄✂✶✂☎☎

✶��✝✂✆✂☎✝

☎✷✷✶✂✶✂✆✶

☎✷✷☎✂✆✂☎✄

☎✷✷✝✂✶☎✂✶✞

☎✷✶✷✂✶✶✂✶☎

☎✷✶✞✂✶✶✂✆

☎✷✶✁✂✆✂☎✶

✟✠

✟✡

✸☛

✸✟

✸☞

✸✠
❖✌✍✎✏✑

▼✒✓✔✕✖✔

❲✌✎✎✌✗✏

❉✒✘✗✌✘

❘✔✙✕✌✘

❘✔✙✕✌✘

▼✒✓✔✕✖✔ ▲✔✚✏

❇✑✘✒✕ ❍✔✛✌✜✙

(1) Rebound highlights

✢✣✤✤✥✦✥✧✧

✢✣✣✧✥★✥✦

✢✣✣✦✥✢✥✧✧

✢✣✣✩✥★✥✧✩

✧✪✪✢✥✢✥★✢

✧✪✪✧✥★✥✧✦

✧✪✪✩✥✢✧✥✢✫

✧✪✢✪✥✢✢✥✢✧

✧✪✢✫✥✢✢✥★

✧✪✢✤✥★✥✧✢

✬✭

✬✮

✯✰

✯✬

✯✱

✯✭
✲✳✴✵✹✺

✻✼✽✹

✾✼✿✳❀❁

❂❃❄❅✳❄

(2) durable top-k query

❆❈❊❊❋●❋■■

❆❈❈■❋❏❋●

❆❈❈●❋❆❋■■

❆❈❈❑❋❏❋■❑

■◆◆❆❋❆❋❏❆

■◆◆■❋❏❋■●

■◆◆❑❋❆■❋❆P

■◆❆◆❋❆❆❋❆■

■◆❆P❋❆❆❋❏

■◆❆❊❋❏❋■❆

◗❙

◗❚

❯❱

❯◗

❯❳

❯❙

❨❩❬❭❪❫❭

❴❵❛❜❝❞

❡❭❢❪❵❣

❤❩❣✐❵❣

❥❭❦❝

(3) Tumbling Window Top-k

❧♠♥♥♦♣♦qq

❧♠♠q♦r♦♣

❧♠♠♣♦❧♦qq

❧♠♠s♦r♦qs

qtt❧♦❧♦r❧

qttq♦r♦q♣

qtts♦❧q♦❧✉

qt❧t♦❧❧♦❧q

qt❧✉♦❧❧♦r

qt❧♥♦r♦q❧

✈✇

✈①

②③

②✈

②④

②✇

⑤⑥⑦⑧⑨⑩❶❷❸❹❺

❻⑨❹❺❺⑥❸⑩

(4) Sliding Window Top-k

Fig. 1: A case study on finding durable noteworthy rebound

performances in NBA history. Red squares highlight results

returned by different queries, and line segments represent the

durability time window.

27 rebounds by a single player in a single game) in entire NBA

history. We consider the following three queries to accomplish

our task; the latter two have been widely studied in the stream

processing and top-k query processing literature. Note that in

this example k = 1.

• Durable top-k (our query): This is the query that we

propose. For each record, we look back in a 5-year window

ending at the timestamp of the record, and check whether

the record has the top score among all records within this

window. Figure 1.(2) highlights the records (red squares)

returned by our query; for each result record, we also show

its 5-year durability window as a line segment ending at the

record for which it remains on the top.

• Tumbling-window top-k: This query first partitions the

timeline into a series of non-overlapping, fixed-sized (5-

year) windows, and then returns the top record within each

time window. The placement of the windows is up to

the user and can affect results. Results for one particular

placement of the windows are shown in Figure 1.(3).

• Sliding-window top-k: This query slides a 5-year window

along the timeline, and returns the top record for each

position of the sliding window. Figure 1.(4) highlights a few

representative sliding windows, as well as the top records

during these windows.

All these queries are able to uncover some meaningful durable

top records; i.e., for any data record (X,Y, Z) marked as a

red square in Figure 1, we can claim “player X grabbed Y

rebounds in a game on date Z, which is the best in some 5-year

span.” First, the durability aspect adds to the impressiveness

of the statement. Second, the combination of durability and

ranking helps reveal interesting records that would otherwise

be ignored if we simply filter the records by a high absolute

value. For instance, all three queries find (Duncan, 27, 2009)

as a durable top-1 record. While this record may not seem

impressive by number alone, it was indeed the top-1 from

2002 to 2010. This is an interesting observation, as it reflects

a trend (relatively low rebounds of all players) during that era

of NBA. However, there are also notable differences.

• Tumbling-window vs. our query: The general observation

is that the results of tumbling-window are highly sensi-

tive to the choice of window placement. In Figure 1.(3),

tumbling-window picks (Mutombo, 29, 2001) and the other

two performances with 29 rebounds as they were the best

ones during 2000-2005, but there were more impressive

performances right before them, unfortunately leaving the

impression that they stood out only because the windows

were cherry-picked. Furthermore, if we choose to place all

windows slightly to the right such that the last window ends

with the most recent arrival time, (Rodman, 34, 1992) will

be eliminated by (Oakley, 35, 1988), and (Duncan, 27, 2009)

will be overlooked since it is shadowed by (Love, 31, 2010).

Overall, because of high sensitivity to window boundaries,

tumbling-window runs the risk of omitting important records

as they happen to be overshadowed by some other records

in the same window, and picking less interesting records as

they happen to be the top ones in that specific window.

• Sliding-window vs. our query: Sliding-window is not

susceptible to window placement, but it effectively considers

all possible window placements, and it returns the union

of all top records for each such placement. This approach

leads to possibly many records that are not as meaningful in

practice. In Figure 1.(4), sliding-window apparently returns

overwhelmingly more results compared to our query, which

makes it less applicable to mining most noteworthy records.

Even more unnatural is the fact that as we slide the window

along the timeline, a record can come in and out of the

result; i.e., there is no continuity. To illustrate, suppose we

are interested in durable top-2 records with 5-year windows,

and let us focus on Drummond’s 29 rebounds performance

on 2015.11.3 (highlighted in Figure 1.(4)). It is surrounded

by two top performance (Howard, 30, 2018) and (Bynum,

30, 2013). Sliding-window will return this record when the

window is positioned at 2014-2019, but not when positioned

at 2013-2018; however, the record will be returned again

when the window moves to 2012-2017. Such discontinuity

makes the results rather unnatural to interpret.

In comparison, our query does not have the issue of sensitivity

to window placement or that of difficulty of interpretation,

because we assess each record in a 5-year window that leads

up to its own timestamp. Thus, our query result records can

be consistently interpreted as having durability “within the

past 5 years” and clearly communicated to the audience. The

results from the other two queries would be qualified with

rather specific durability windows, which may be perceived

as cherry-picking.

Although the above example ranks records by a single

attribute, its argument can be extended to the general case

2

where records are ranked by a user-specified scoring function

that combines multiple attribute values into a single score.

Besides sports, durable top-k queries have applications

across many other domains. For instance, Wikipedia states

that “In late January 2019, an extreme cold wave hit the Mid-

western United States, and brought the coldest temperatures

in the past 20 years to most locations in the affected region,

including some all-time record lows.” This statement stems

from a simple durable top-k query over historical weather

data, and allows the Wikipedia article to convey the severity

of event effectively. As an example involving more complex

ranking, cybersecurity analysts rely on network traffic log to

identify unusual and potentially malicious intrusions. With a

appropriately defined scoring function that combines multiple

features of a session, such as duration, volume of data transfer,

number of login attempts, and number of servers accessed,

a durable top-k query can quickly help identify unusual

traffic (relative to others around the same time) for further

investigation. As another example, a financial broker may

accompany a recommendation with a statement “The price-to-

earnings ratio (P/E) of this stock last Friday was among the

top 5 P/E’s within its section for more than 30 days,” which is

also a durable top-k query. In sum, the efficiency of durable

top-k queries makes them suitable for using large volumes

of historical efficiently to drive insights or identify leads for

further investigation; the conceptual simplicity of these queries

also make them particular attractive for explaining insights and

communicating them effectively to the public.

Contributions. Our contributions are as follows:

• We propose to find “interesting” records from large instant-

stamped temporal datasets using durable top-k queries.

Compared with other query types related to durability, our

query produces results that are more robust (i.e., less sensi-

tive to window placement than tumbling-window) and more

meaningful (i.e., easier to interpret than sliding-window).

• We propose a suite of solutions based on two approaches

that process “promising” records in different prioritization

orders. We provide a comprehensive theoretical analysis on

complexities of the problem and of our proposed solutions1.

• Our solutions are general and flexible. They do not dictate

any specific scoring function f , but instead assume a well-

defined building block for answering top-k queries using f ,

which can be “plugged into” our solutions and analysis. We

give some concrete example of f and the building block in

later sections. In particular, f can be further parameterized

according to user preference; these parameters, along with

k, τ and I (the overall temporal range of history of inter-

est), can be specified at query time, making our solutions

flexible and suitable for scenarios where users may explore

parameter setting at run-time, interactively or automatically.

1A related question is whether we can post-process the results of the sliding-
window query to obtain the results to our query; e.g., filtering those result
records in Figure 1.(4) to get those in Figure 1.(2). Unfortunately, such an
approach, which we consider as one of the baselines in our experiments, is
prohibitively slow on large datasets, as we shall show in later sections.

TABLE I: Table of notation
T Time domain

p.t Arrival time of p

f Scoring function

k Parameter of Top-k query

π≤k([t1, t2]) Top-k records in time interval [t1, t2]
I Query interval

τ Durability duration

u Query vector

s(n), q(n) Space, query time of top-k index

• We show that the query time complexity of our algorithms is

proportional to O(|S|+k
⌈ |I|

τ

⌉

) in the worst case, where |S|
is the answer size. Furthermore, we prove that the expected

answer size of a durable top-k query |S| is O(k
⌈ |I|

τ

⌉

) under

the random permutation model (where the data values can

be arbitrarily chosen by an adversary but arrival order is

random); this result implies that the expected query time

of our algorithms in practice is linear in the output size.

II. PROBLEM STATEMENT AND PRELIMINARIES

Problem Statement. Consider a dataset P with n records,

where each record p ∈ P has d real-valued attributes and

is represented as a point (p.x1, p.x2, . . . , p.xd) ∈ R
d. For

simplicity, we consider a discrete time domain of interest

T = {1, 2, . . . , n}, and let p.t ∈ T denote the arrival time of

p. All records in P are organized by increasing order of their

arrival time. Given a non-empty time window W : [t1, t2] ⊆ T,

let P (W) denote the set of records that arrive between t1 and

t2; i.e., P (W) = {p ∈ P | t1 ≤ p.t ≤ t2}.

Assume a user-specified scoring function maps each record

p to a real-valued score, f : R
d → R. Given a time

window W = [t1, t2], a top-k query Q(k,W) asks for the

k records from P (W) with the highest scores with respect to

f . Let π≤k([t1, t2]) denote the result of Q(k,W); i.e., for

∀p ∈ π≤k([t1, t2]), there are no more than k − 1 records

q ∈ P ([t1, t2]) with f(q) > f(p).
For simplicity of exposition, we consider durability win-

dows ending at the arrival time of each record (i.e., the

“looking-back” version), but our solution can be extended to

the general case where the windows are anchored consistently

relative to the arrival times (including the “looking-ahead” ver-

sion). We say a record p is τ -durable2 if p ∈ π≤k([p.t−τ, p.t]).
That is, p remains in the top-k for τ time during [p.t− τ, p.t].
Note that if a record p is τ -durable, then it is also τ ′-durable

for τ ′ ≤ τ . We are interested in finding records with “long

enough” durability, i.e., durability at least τ . Given a query

interval I and a durability threshold τ ∈ [1, |T|], a durable top-

k query, denoted DurTop(k, I, τ), returns the set of τ -durable

records that arrive during I; i.e., DurTop(k, I, τ) = {p ∈ P (I) |
p ∈ π≤k([p.t− τ, p.t])}. Table I summarized our notations.

Scoring Function and Top-k Query Building Block. As

discussed earlier, our proposed algorithms and complexity

analyses are applicable to any user-specified scoring function

f as long as there exists a “building block” that can answer

2If τ is obvious from the context, we drop τ from the definition, i.e., we
say that a record is durable.

3

basic (non-durable) top-k queries under f . This building block

can be a “black box”: the novelty and major contribution of

our algorithms come from its ability to reduce and bound the

number of invocations of the building block, totally indepen-

dent of how the building block operates itself. Of course, the

overall algorithm complexity still depends on the efficiency

of the building block. For a function f , we consider that an

index of size O(s(n)) can be constructed in O(u(n)) time that

answers top-k queries with respect to f in O(q(n) + k) time,

where n is the data size and s(·), u(·), q(·) are functions of n.

In this paper, we are more interested in top-k queries on a

subset of data specified by a time window W given at query

time; i,e., computing Q(k,W) that reports the k records in

P (W) with the highest scores with respect to f . With a slight

care, the top-k query building block can be used to solve

this problem by paying a logarithmic factor in index size,

query time and construction time. That is, for a function f we

can construct an index of size O(s(n) log n) in O(u(n) log n)
time so that for given k,W , Q(k,W) can be computed in

O((q(n)+k) log n) time. If the top-k building block supports

updates (insertion/deletion of an item) in O(α(n)) time, our

range top-k index also supports updates in O(α(n) log n) time.

Here, we give some concrete examples of f that are widely

used in real-life applications, for which efficient top-k query

building blocks exist. Consider the following class of scoring

functions parameterized by u, which captures user preference:

• linear: fu(p) =
∑d

i=1 ui · p.xi,

• linear combination of monotone scoring functions: fu(p) =
∑d

i=1 ui · h(p.xi), where h is a monotone function; i.e.,

h(·) = log(·),
• cosine: fu(p) =

1
|p||u|

∑d

i=1 ui · p.xi,

where u is a real-valued preference vector and fu denotes that

the scoring function f is parameterized by u. We refer to this

class of functions as preference functions. Top-k queries using

such class of scoring functions (preferably in the above three

forms) have been well studied over the past decades both in

computational geometry [1]–[6] and databases [7]–[10].

The above three forms of the preference functions are

particularly desirable because 1) they are widely used in real-

life applications that require ranking, and 2) they are both

linear and monotone, so preference top-k can be efficiently

answered. As mentioned earlier, users can replace the scor-

ing function with other functions (i.e., non-linear or non-

monotone). The centerpiece of our algorithm and analysis,

which bounds the number of invocations of the top-k query

building block, remains unchanged. But in that case, the com-

plexity of the building block will affect the overall complexity

bound, through the per-invocation complexity of the top-k

query building block.

Sliding-Windows and Baseline Solution. Recall from the

discussion in Example I.1 (Figures 1-(2) and 1-(4)) that there

is a connection between our problem and the sliding-window

version, which has been well studied [11]–[13]. Indeed, one

of our baseline solution is adopted from [11] with incre-

t

τ

t1t2t3t4

τ

sc
o
re

Fig. 2: Data skipping in Time-Hop Algorithm.

mental top-k maintenance over sliding windows3. However,

the standard sliding-window technique is more suitable for

data streams, where incoming data must be scanned linearly

anyway. Instead, our query analyzes historical data. The linear

complexity of sliding windows becomes infeasible especially

when dealing with large datasets. The limitation hence mo-

tivates our solutions in later sections. Experimental results

demonstrate our algorithms’ significant efficiency gain (up to

2 orders of magnitude) over sliding-window baselines.

III. TIME-PRIORITIZED APPROACH

The time-prioritized approach is straightforward: we visit

records in time order and check their durability sequentially.

The standard sliding-window technique [11], which we refer

to as Time-Base or T-Base, is in this category. To beat the

linear complexity of T-Base, we propose a new algorithm (Sec-

tion III-A) using the observation that we can skip unpromising

records as we discover durable ones. What is surprising is how

this simple observation leads to provably substantial reduction

in complexity (Sections III-B and V).

A. Time-Hop Algorithm

It is not hard to see that the durable top-k query can

be viewed as an offline version of the top-k query in the

sliding-window streaming model. Hence, T-Base (and its many

related variants) does not best serve our needs. Since the entire

data is available in advance, continuously sliding the window

wastes too much time on those non-durable records. After all,

meaningful durable top-k queries tend to be selective.

Before describing the algorithm, we illustrate the main idea

using an example for k = 3, shown in Figure 2. By running

a top-3 query Q(3, [t1 − τ, t1]), consider the record p arriving

at t1 (black circle) is not τ -durable; i.e., p 6∈ π≤3([t1− τ, t1]).
We know the current top-3 set contains records (red squares)

that arrive at t4, t3 and t2. Then, no records arriving between

t2 and t1 would be τ -durable and we can safely hop from t1
to t2. This simple and useful observation simplifies the query

procedure, and allows larger strides for sliding windows.

Now, we present our algorithm Time-Hop (T-Hop); see

Algorithm 1 for pseudocode. For each record we visit with

timestamp ti, we run a top-k query in [ti − τ, ti] (Line 4). If

the record is not durable, we slide the window back to the

most recent arrival time of records, say tj , in the current top-

k set (Line 9), skipping the non-durable records between tj
and ti. Otherwise, if a durable record is found, we slide the

window backwards by 1 (Line 7) as usual.

3In particular, the idea of Skyband Maintanence Algorithm (SMA) to reduce
the number of top-k re-computations from scratches.

4

Algorithm 1: T-Hop (k, I, τ)

Input: P , k, τ , and I : [t1, t2].
Output: DurTop(k, I, τ)

1 Initialize answer set: S ← ∅, top-k set: π≤k ← ∅;
2 tcurr ← t2;
3 while tcurr >= t1 do

4 π≤k ← Q(k, [tcurr − τ, tcurr]);
5 if P [tcurr] ∈ π≤k then
6 S ← S ∪ P [tcurr]; tcurr ← tcurr − 1;
7 else tcurr ← most recent arrival time of records in π≤k;

8 return S;

t

p1
p2

p3

τ
τ

τ

1 2 3 2 1

sc
o
re

Fig. 3: Blocking mechanism in score-prioritized approach

B. Time Complexity Analysis of T-Hop

The time complexity of T-Hop purely depends on the

number of top-k queries called in the query procedure. We

provide a worst-case guarantee on the number of top-k queries

performed, as shown by the lemma below. Due to the space

limits we provide all proofs in the extended version of the

paper [14].

Lemma 1. The total number of top-k queries performed by

the Time-Hop algorithm is O
(

|S|+ k
⌈ |I|

τ

⌉)

.

Overall, with an efficient top-k module, T-Hop answers a

durable top-k query DurTop(k, I, τ) in O
(

(|S|+k
⌈ |I|

τ

⌉

)(q(n)+
k) log n

)

time. Compared to T-Base, T-Hop runs in sublinear

query time (assuming that the ratio
⌈ |I|

τ

⌉

is not arbitrarily

large), i.e., the running time does not have a linear dependency

on the number of records in I . Our experimental results

in Section VI suggests that T-Hop is one to two orders of

magnitude faster than T-Base in practice. Using the results

in [1]–[6], our index can be implemented with linear size and

polylogarithmic update time for preference queries.

Notice that the number of top-k queries performed by T-Hop

depends on |S| and k
⌈ |I|

τ

⌉

. In the worst case, the term k
⌈ |I|

τ

⌉

can be arbitrarily large compared to |S|. In Section V-A we

study the expected size of S in a random permutation model

where a set of n scores, chosen by an adversary, are assigned

randomly to the records. In such a case we show that the

expected size of S is O(k
⌈ |I|

τ

⌉

), meaning that the expected

number of top-k queries executed by the algorithm is O(|S|).

IV. SCORE-PRIORITIZED APPROACH

One potential weakness of time-prioritized approach is that

it does not pay much attention to scores and simply visit

records sequentially along the timeline (with hops). Though

Lemma 1 shows that T-Hop visits O(|S| + k
⌈ |I|

τ

⌉

) records

in the worst case, it still potentially visits many low-score

and non-durable records and ask more top-k queries. In

contrast, the score-prioritized approach visits candidate records

in descending order of their scores because records with

Algorithm 2: S-Band (k, I, τ)

Input: P , k, τ , and I .
Output: DurTop(k, I, τ)

1 S ← ∅, Γ← ∅;
2 Compute C ⊂ P by finding durable k-skyband set;
3 Sort C in descending order of scores;
4 for p ∈ C do

5 if p lies in < k blocking intervals in Γ then

6 π≤k ← Q(k, [p.t− τ, p.t]);
7 if p ∈ π≤k then S ← S ∪ {p};
8 else

9 for q ∈ π≤k ∧ q not visited before do

10 Γ← Γ ∪ {[q.t, q.t+ τ]};

11 Γ← Γ ∪ {[p.t, p.t+ τ]};

12 return S;

high scores have a higher chance of being durable top-k

records. Furthermore, these high-score records can also serve

as a benchmark for future records, enabling a “blocking

mechanism” to prune candidates.

Before describing the algorithms, we illustrate the main idea

using an example shown in Figure 3. Suppose we answer a

durable top-3 query with τ by visiting records in descending

order of their scores: p1, p2 and p3, and all three records

are durable ones. p1 has the highest score in the entire query

interval, any record that lies in the τ -length time interval

[p1.t, p1.t + τ] will be dominated by p1, which we refer to

as being “blocked” by p1. Similarly, p2 (the second highest

score) and p3 (the third highest score) also block a τ -length

interval starting from their arrival times. The time axis is

partitioned into intervals by endpoints of all blocking intervals.

In Figure 3, the number under each interval shows how many

records block this interval. Notice the bold red interval, where

any record in this interval lies in three blocking intervals

after processing p1, p2 and p3. Since there are already three

records with higher score than any record in this interval, it

can not have any τ -durable top-3 record, and we can safely

remove this time interval from consideration. As we continue

adding blocking intervals, eventually every remaining record

in the query interval will be blocked by at least three blocking

intervals. The algorithm can now stop because no more durable

top records can be found. The procedure is straightforwardly

applicable to look-ahead version of durability, by simply

reversing the direction of blocking intervals.

A straightforward score-prioritized approach, which we

refer to as Score-Base (or, S-Base), is to first sort all records

in the query interval according to the scoring function f and

then traverse records in descending order of scores together

with blocking mechanism. But the sorting overhead would

become the bottleneck of query efficiency, incurring cost

super-linear (i.e., n log n) in the data size. We describe two

better algorithms to alleviate the expensive sorting component

in the following sections. They differ on how high-score

records are found and how blocking intervals are maintained.

5

A. Score-Band Algorithm (Monotone fff Only)

If we could quickly find a small set of candidate records

C, which is guaranteed to be a superset of the answers; i.e.,

S ⊆ C, then we could get a faster algorithm by only sorting

C, instead of all records in the query interval. It is well-known

that the k records with the highest score, with respect to any

monotone scoring functions, belong to the k-skyband.4 Hence,

if a record p is τ -durable for a top-k query (with respect to a

monotone f), then p must also be τ -durable for the k-skyband;

i.e., p is in the k-skyband for the time interval [p.t−τ, p.t]. This

observation enables us to construct an offline index about each

record’s duration of belonging to the k-skyband, and efficiently

produce a superset C of answers to durable top-k queries. Note

that the score-band algorithm has its limitation, since the k-

skyband technique only applies to monotone scoring functions.

Index. Score-Band algorithm needs additional index for

finding candidate set C, which we refer to as durable k-

skyband. Suppose the value of k is known. For each record

p, we compute the longest duration τp that p belongs to the

k-skyband. Then we map each record p into the “arrival time

- duration” plane as a two-dimensional point, p̃ = (p.t, τp).
We then index all such points in the 2D plane using a priority

search tree [15] (or kd-tree, R-tree in practice). To answer

DurTop(k, I, τ), we first ask a range query with the 3-sided

rectangle I×[τ,+∞]. The set of points that fall into the search

region is the superset to actual answers of durable records. This

index can be constructed in O(n log n) time, has O(n) space

and the query time is O(|C|+ log n) in order to get the set C.

In general case, notice that we do not know the value of

k upfront, i.e., a query has k as a parameter, so we cannot

construct only one such index. There are two ways to handle

it. If we have the guarantee that k ≤ κ0 for a small number

κ0 then we can construct κ0 such indexes with total space

O(nκ0). Otherwise, if k can be any integer in [1, n], we can

construct O(log n) such indexes (priority search trees), one

for each k = 20, 21, . . . , 2logn, so the space is O(n log n).
Given a durable top-k query we first find the number k̄ with

k ≤ k̄ ≤ 2k, and then we use the corresponding index to get

the superset C. In this case, C contains the records that are

τ -durable to the k̄-skyband, so S ⊆ C.

Query Algorithm. We refer to this score-prioritized ap-

proach using durable k-skyband candidates as Score-Band

algorithm, or S-Band. Full algorithm is sketched in Algo-

rithm 2 and described below. Given k, I, τ , we first retrieve the

candidate set C using the durable k-skyband index as shown

above. Then we sort C and visit records in descending order

of their scores. For each record p we visit, we first check the

number of blocking intervals that p lies. If p lies in less than

k blocking intervals, it is a promising candidate and we run a

top-k query on time interval [p.t− τ, p.t] for durability check.

If p is indeed τ -durable, we add p to answer set. Otherwise,

4For ∀p, q,∈ P , p dominates q if p is no worse than q in all dimensions,
and p is better than q in at least one dimension. k-skyband contains all the
points that are dominated by no more than k − 1 other points. Skyline is a
special case of k-skyband when k = 1.

we need to add a blocking interval for each record returned

by the top-k query (if we have not done so yet), since they

all have higher scores than p. On the other hand, if p already

lies in at least k blocking intervals, we can simply skip it. In

the end, we add the blocking interval [p.t, p.t+ τ] for p.

We can see that S-Band works similarly to S-Base. The only

difference is that for a record that is blocked less than k times,

we still have to execute a top-k query to check whether the

record is τ -durable (Line 6). This durability check is necessary.

Though some records are guaranteed to be non-durable (i.e.,

not captured by C with durable k-skyband), they can still block

other records (with lower scores) to be durable ones.

Query Time Complexity. The query time complexity of

S-Band can be decomposed into three parts: 1) a range search

query to find candidate set C; 2) sort C according to their

scores; 3) find durable records from sorted C sequentially.

Summing up the above, the overall query time complexity

of S-Band is O
(

|C|(q(n) + k) log n
)

, assuming that a top-k

query can be answered in O(q(n) + k) time. In the worst

case |C| = O(n) since all points can lie in the k-skyband. In

Section V we show that using the probabilistic model in [16]

(where the coordinates of records are randomly assigned) the

expected size of C is O(k
⌈ |I|

τ

⌉

logd−1 τ). Due to the blocking

mechanism, in practice we expect that the number of top-k

queries will be smaller. However, notice that we need to sort

all records in C; this might make S-Band much slower due to

the size of C that increases (in expectation) exponentially on

the dimension d.

B. Score-Hop Algorithm

The data reduction strategy of S-Band offers adequate

benefits for improving the overall running time on datasets

in low dimensions (≤ 5). However, the query overhead

on searching and sorting candidate records becomes a huge

burden on high-dimensional data, as it is well-known that the

size of k-skyband tends to explode (or equivalently, records

in high-dimensional space tends to stay in k-skyband for a

longer duration) in high-dimensional space. Furthermore, S-

Band requires additional index and only applies to monotone

scoring functions. To overcome the drawbacks of S-Base and

S-Band, we propose another approach that does not require

sorting and has better worst case guarantee. The main idea is

that there is no need to sort records in advance; we can find

the record with the next highest score one by one as we find

durable records. With the help of blocking mechanism, we can

skip certain time intervals when we find the next highest score

record, despite the fact that there might be some high-score

records in such intervals. This procedure has an analogy to the

Time-Hop algorithm, since we effectively skip certain records

while we traverse records in descending order of their scores,

as we taking a hop in the score-domain.

Query Algorithm. We refer to this solution as Score-Hop

algorithm, or S-Hop. The main idea of the algorithm is

straightforward. In each iteration, we find the record with

the maximum score among the records that lie in less than

6

Algorithm 3: S-Hop (k, I, τ)

Input: P , k, τ , and I : [a, b].
Output: DurTop(k, I, τ)

1 H ← ∅, S ← ∅, Γ← ∅;
2 for [li, ri] : disjoint τ -length intervals in I do
3 Mi ← Q(u, k, [lr, ri]);
4 H.push(Mi.pop());

5 while H 6= ∅ do

6 p← H.pop(), and let p ∈Mj ;
7 if p lies in < k blocking intervals in Γ then

8 π≤k ← Q(u, k, [p.t− τ, p.t]);
9 if p ∈ π≤k then

10 S ← S ∪ {p};
11 else

12 for q ∈ π≤k ∧ q not visited before do
13 Γ← Γ ∪ {[q.t, q.t+ τ]};

14 M−
j ← Q(k, [lj , p.t− 1]);

15 M+

j ← Q(k, [p.t+ 1, rj]);

16 H.push(M−
j .top()), H.push(M+

j .top());

17 else if Mj 6= ∅ then

18 H.push(Mj .pop());

19 if p not visited before then

20 Γ← Γ ∪ {[p.t, p.t+ τ]};

21 return S;

k blocking intervals. Let p be such a record. We run a durable

top-k query so if p is a τ -durable record we add it in S.

If p is not a τ -durable record, we add a blocking interval

for each record returned by the durable top-k query (if they

have not been added before). In the end, we add the blocking

interval [p.t, p.t+τ] and we continue with the next record with

the highest score. The actual implementation of the algorithm

is more subtle, to guarantee a fast query time as described

below; pseudo-code is provided in Algorithm 3. Given a query

interval I = [a, b], we partition it into a set of τ -length sub-

intervals: [a, a + τ), [a + τ, a + 2τ), . . . , [a +
⌊ |I|

τ

⌋

τ, b]. Let

[li, ri] be the i-th sub-interval, and in each interval we find the

k records with the highest score, denoted Mi. We construct a

max-heap H over all the top-1 records from all sub-intervals.

Besides that, each node in H also keeps the original interval

[li, ri] and the set Mi associated with the record. We repeat the

following until H is empty. We take and pop the top record

from H . Let p be that record originated from Mj . Then p

will be processed in the following two cases: 1) If p lies in

at least k blocking intervals, we update H by pushing the

next top record in Mj (if there is any). 2) If p lies in less

than k blocking intervals, we update H as follows. Assume

that [lj , rj] is the corresponding sub-interval of Mj (or p).

We first split [lj , rj] into two non-empty intervals [lj , p.t− 1]
and [p.t + 1, rj]. Then, run a top-k query on [lj , p.t − 1] to

get a new top-k set M−
j . Similarly, get another new set M+

j

from [p.t + 1, rj]. We replace the old set Mj with M−
j and

M+
j , along with its corresponding interval [lj , p.t − 1] and

[p.t + 1, rj], respectively. Finally, we update H by pushing

the current top records from M−
j and M+

j into the heap. In

the end, we add the blocking interval from record p (if it is

the first time we visited p). It is worth mentioning that the

hopping movement happens at Line 18: we effectively skip

certain intervals by not updating the max-heap and stop asking

top-k queries on its sub-intervals.

Compared to S-Band, S-Hop does not have a strong depen-

dency on the dimension of the data (only the running time

of the top-k queries depends on the dimension) and makes

better use of the blocking mechanism. In the end, we only

find and process high-score records as we need instead of

acquiring a full sorted order of records in advance, which leads

to better worst case theoretical guarantees and faster query

time. Experimental results in Section VI demonstrate that S-

Hop can be 1 to 2 orders of magnitude faster than S-Band on

high-dimensional (≥ 10) datasets.

We prove the correctness of Score-Hop algorithm in the

extended version of the paper [14].

C. Time Complexity Analysis of S-Hop

The time complexity analysis of the S-Hop query procedure

is non-trivial and needs more care. There are three main

sub-procedures in S-Hop: find next highest score record,

top-k queries for durability check and blocking mechanism.

As presented above, the first two components both rely on

multiple top-k queries. We first show a worst-case guarantee

on the total number of top-k queries called in the algorithm.

Lemma 2. The total number of top-k queries performed by

the Score-Hop algorithm is O(|S|+ k
⌈ |I|

τ

⌉

).

Using Lemma 2, it can be shown that S-Hop answers a

durable top-k query in O
(

(|S|+k
⌈ |I|

τ

⌉

)(q(n)+k) log n
)

time

(with an efficient top-k query procedure in O(q(n) + k)).
Similarly to T-Hop our index for S-Hop has near linear space

and supports updates in polylogarithmic time [1]–[6].

As it turns out, hopping in time-domain (T-Hop) and in

score-domain (S-Hop) gives us the same complexity bound.

But in practice, S-Hop is more conservative in asking top-

k queries compared to T-Hop, due to the candidate pruning

brought by blocking mechanism. This makes S-Hop run faster

than T-Hop when the top-k query itself is expensive; i.e., a

larger k or on high-dimensional datasets.

V. EXPECTED COMPLEXITY

In the previous sections we presented two types of al-

gorithms (time-prioritized and score-prioritized) to answer

durable top-k queries, and our best solutions, T-Hop and S-

Hop, share the same worst-case guarantee on their query time.

In particular we showed that their query times depend on

k
⌈ |I|

τ

⌉

and |S|. In this section, we go beyond the worst-case

analysis and analyze their performance in a more “expected”

sense. Most importantly, we show in Section V-A that the

expected size of |S| is roughly k
⌈ |I|

τ

⌉

if the scores of data

records are chosen arbitrarily (possibly by a powerful adver-

sary with the advance knowledge of the query parameters) but

their arrival order is random. This result essentially establishes

that, under this model, the expected running time of T-Hop and

S-Hop is linear in the output size. Secondly, in Section V-B,

we study the expected complexity of Score-Band algorithm by

bounding the expected size of τ -durable k-skyband candidate

set C using the same probabilistic model used in [16].

7

A. Expected Answer Size

Consider a set of n records P with pi.t = i, for pi ∈ P .

We analyze the expected size of a query output when the

scores of records are assigned in a semi-random manner,

where the data values can be arbitrarily chosen and then

they are assigned in a random order to the records. More

formally, we consider a random permutation model (RPM).

Let X = x1 < x2 < . . . < xn be a sequence of n arbitrary

non-negative numbers chosen by an adversary, and let σ be

a permutation of {1, . . . , n}. We set f(pi) = xσ(i), i.e., the

score of record pi is xσ(i), where σ(i) is the image of i

under σ. As argued in [17], the random permutation model

is more general than the model in which all scores are drawn

from an arbitrary unknown distribution, so our result holds for

this model as well. The random permutation model has been

widely used in a rich variety of domains and considered as a

standard for complexity analysis; i.e., online algorithms [18]–

[20], discrete geometry [21]–[23], and query processing [17].

Our main result is the following.

Lemma 3. In the random permutation model, given k, τ and

I , we have E [|S|] = k
|I|
τ+1 .

Proof. For a record pi ∈ P (I), let Xi be the random variable,

which is 1 if pi is a τ -durable record, and 0 otherwise.

Thus, E [|S|] = E [
∑

i Xi] . Using the linearity of expectation,

E [
∑

i Xi] =
∑

i E [Xi] =
∑

i Pr [Xi = 1] .
Thus our goal is to compute Pr [Xi = 1] : the probability

that there are less than k records in [pi.t− τ, pi.t) with score

larger than f(pi). Let P τ
i = {pi−τ , . . . , pi−1}. For a subset

Q ⊂ P τ
i , let AQ be the binary random variable, which is 1 if

all records in Q have score greater than f(pi) and all records

in Q = P τ
i \Q have score less than f(pi). We have

Pr [Xi = 1] =

k−1
∑

l=0

∑

Q⊂P τ

i
,|Q|=l

Pr [AQ] . (1)

We estimate Pr [AQ] as follows. Let V ⊂ X with |V | =
τ+1. We first bound the conditional probability Pr [AQ | V]
such that the records in P τ

i ∪ {pi} are assigned scores from

V . We consider all possible permutations of V and count only

those cases where the records in Q have larger value than

f(pi), and the records in Q have values less than the value of

f(pi). Notice that the permutations that satisfy this property

must assign the first l largest values of V to Q, then the (l+1)-
th largest value to pi and the rest τ−l smaller values of V to Q.

Under such assignment, any permutations of values in Q and

Q are valid cases. Hence, the number of valid permutations

are l!(τ − l)!, while the number of all possible permutations

of V are (τ + 1)!. We have

Pr [AQ | V] =
l!(τ − l)!

(τ + 1)!
=

1

τ + 1

1
(

τ
l

) . (2)

Since (2) holds for all V , Pr [AQ] = 1
τ+1

1

(τl)
. Substituting

this in (1), we obtain

Pr [Xi = 1] =
∑k−1

l=0

(

τ
l

)

1
τ+1

1

(τl)
=

∑k−1
l=0

1
τ+1 = k

τ+1 , (3)

TABLE II: Dataset summary
Dataset Dimensionality Size (# records)

NBA-X 1,2,3,5 1M

Network-X 2,3,5,10,20,30,37 5M

Syn-X 2 1M,2M,5M,10M,20M,50M,500M

and finally, E [|S|] =
∑

i

Pr [Xi = 1] = k
|I|

τ + 1
.

Combining Lemma 3 with the analysis of Sections III-B

and IV-C, we conclude that in a random permutation model the

expected query time complexity of both Time-Hop and Score-

Hop algorithms is O(|S|(q(n) + k) log n), or equivalently

O
(

k
⌈ |I|

τ

⌉

(q(n) + k) log n
)

, where O(q(n) + k) reflects the

time complexity of answering a top-k query.

B. Expected size of durable k-skyband

In this subsection we bound the expected size of τ -durable

k-skyband records, denoted by C, from Section IV-A in a

probabilistic model similar to the previous case. Recall that

the size of C affects the running time of the S-Band algorithm.

Let P = {p1, . . . , pn} with pi.t = i. We use the same

random model as in [16] where (the attributes of) records are

randomly generated.

Lemma 4. If the attributes of records are generated randomly,

then given k, τ and I , we have E [|C|] = O(k |I|
τ
logd−1 τ).

Combining Lemma 4 with the analysis of Section IV-A, we

get that the expected query time complexity of the Score-Band

algorithm is O
(

k
⌈ |I|

τ

⌉

(q(n) + k) log n logd−1 τ
)

. It shows

that the expected complexity of Score-Band algorithm can be

higher than Time-Hop or Score-Hop algorithm by a factor

of at most logd−1 τ . Experimental results in Section VI also

confirm this finding as we vary the data dimensionalities.

The curse of dimensionality makes Score-Band perform worse

even compared to other simple baselines. Again, Time-Hop

and Score-Hop are both generally applicable to arbitrary user-

specified scoring functions, while Score-Band only works for

monotone functions.

VI. EXPERIMENTS

Datasets. We use two real-life datasets and some synthetic

ones, as summarized in Table II and described below:

NBA5 contains the performance of each NBA player in each

game from 1983 to 2019, totaling ∼ 1 million performance

records on 15 numeric attributes. Records are naturally orga-

nized by date and time, and we break ties (e.g., performances

of different players in the same game) arbitrarily. We choose

some subsets of 15 attributes to create datasets with different

dimensions collectively referred to as NBA-X.

Network6 is the dataset from KDD Cup 1999, containing

∼ 5 million records with 37 numeric attributes that describe

network connections to a machine, including connection du-

ration, packet size, etc. The query in this case utilizes a

scoring function that weighs a variety of numerical attributes

5NBA datasets were collected from https://www.basketball-reference.com/
6https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

8

be efficiently implemented inside a DBMS; for large datasets

(tens of Gigabytes), it brings down the query time to just

a couple of seconds, from more than 10 minutes required

without our solution.

VII. RELATED WORK

The notion of “durability” on temporal data has been studied

by previous works, but they consider different definitions of

durability and/or different data models from ours. In [26]

and [27], authors implicitly considered “durability” in the

form of prominent streaks in sequence data, and devised

efficient algorithms for discovering such streaks. Given a

sequence of values, a prominent streak is a long consecutive

subsequence consisting of only large (small) values. Their

algorithms can also be extended to find general top-k, multi-

sequence and multi-dimensional prominent streaks. Jiang and

Pei [28] studied Interval Skyline Queries on time series, which

can be viewed as another type of “durability” when segments

of time series dominate others.

Another line of durability-related work on temporal data

is represented by [29]–[31] and [32]. Consider a time-series

dataset with a set of objects, where the data values of each

object are measured at regular time intervals; i.e., stock

markets. At each time t, objects are ranked according to their

values at t. The definition of “durability” therein is the fraction

of time during a given time window when an object ranks

k or above. This line of work mainly focused on how to

efficiently aggregate rankings (rank ≤ k or not) over time. [32]

applied durable top-k searches in document archives, finding

documents that are consistently among the most relevant to

query keywords throughout a given time interval. In that

setting, the challenge is how to merge multiple per-keyword

relevance scores over time efficiently into a single rank.

Durable queries also arise in dynamic or temporal graphs,

typically represented as sequences of graph snapshots. For

example, in [33] and [34], authors considered the problem

of finding the (top-k) most durable matches of an input graph

pattern query; that is, the matches that exist for the longest

period of time. The main focus is on the representations and

indexes of the sequence of graph snapshots, and how to adapt

classic graph algorithms in this setting.

Besides durability, Mouratidis et al. [11] studied how to

continuously monitor top-k results over the most recent data

in a streaming setting. Our baseline solution used in Section VI

shares the same spirit as algorithms in [11] for incrementally

maintaining top-k results over consecutive sliding windows.

Acknowledgements. This work was supported by NSF

grants IIS-1718398, IIS-1814493, CCF-2007556, and a grant

from the Knight Foundation. Any opinions, findings, and

conclusions or recommendations expressed in this publication

are those of the author(s) and do not necessarily reflect the

views of the funding agencies.

REFERENCES

[1] P. Afshani and T. M. Chan, “Optimal halfspace range reporting in
three dimensions,” in Proceedings of the twentieth annual ACM-SIAM

symposium on Discrete algorithms, 2009.

[2] B. Chazelle, L. J. Guibas, and D.-T. Lee, “The power of geometric
duality,” BIT Numerical Mathematics, vol. 25, 1985.

[3] J. Matousek, “Reporting points in halfspaces,” Computational Geometry,
vol. 2, 1992.

[4] P. K. Agarwal et al., “Efficient searching with linear constraints,” J.

Comp. and System Sciences, vol. 61, 2000.
[5] P. K. Agarwal and J. Matoušek, “Dynamic half-space range reporting

and its applications,” Algorithmica, vol. 13, 1995.
[6] T. M. Chan, “Three problems about dynamic convex hulls,” International

Journal of Computational Geometry & Applications, vol. 22, 2012.
[7] Y.-C. Chang et al., “The onion technique: indexing for linear optimiza-

tion queries,” in SIGMOD, vol. 29, 2000.
[8] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen, “Efficient maintenance of

materialized top-k views,” in ICDE, 2003.
[9] V. Hristidis and Y. Papakonstantinou, “Algorithms and applications for

answering ranked queries using ranked views,” VLDB J., vol. 13, 2004.
[10] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k query

processing techniques in relational database systems,” CSUR, 2008.
[11] K. Mouratidis, S. Bakiras, and D. Papadias, “Continuous monitoring of

top-k queries over sliding windows,” in SIGMOD, 2006.
[12] C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin, “Sliding-window top-k

queries on uncertain streams,” VLDB, vol. 1, 2008.
[13] G. Das, D. Gunopulos, N. Koudas, and N. Sarkas, “Ad-hoc top-k query

answering for data streams,” in VLDB, 2007.
[14] J. Gao et al., “Durable top-k instant-stamped temporal records with user-

specified scoring functions,” Duke Univ., Tech. Rep., 2020, https://arxiv.
org/abs/2102.12072.

[15] M. De Berg, M. Van Kreveld, M. Overmars, and O. Schwarzkopf,
“Computational geometry,” in Computational geometry, 1997.

[16] J. L. Bentley, H.-T. Kung, M. Schkolnick, and C. D. Thompson, “On
the average number of maxima in a set of vectors and applications.”
CARNEGIE-MELLON UNIV, Tech. Rep., 1977.

[17] P. K. Agarwal et al., “Range-max queries on uncertain data,” Journal

of Computer and System Sciences, vol. 94, 2018.
[18] G. Goel and A. Mehta, “Online budgeted matching in random input

models with applications to adwords,” in Proc. 19th Annual ACM-SIAM

Symp. on Discrete algorithms, 2008.
[19] M. Mahdian and Q. Yan, “Online bipartite matching with random

arrivals: an approach based on strongly factor-revealing lps,” in Proc.

43rd Annual ACM Symp. on Theory of computing, 2011.
[20] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani, “Adwords and

generalized on-line matching,” in FOCS, 2005.
[21] P. K. Agarwal, H. Kaplan, and M. Sharir, “Union of hypercubes and 3d

minkowski sums with random sizes,” in ICALP, 2018.
[22] P. K. Agarwal, S. Har-Peled, H. Kaplan, and M. Sharir, “Union of

random minkowski sums and network vulnerability analysis,” Discrete

& Computational Geometry, vol. 52, 2014.
[23] S. Har-Peled and B. Raichel, “On the complexity of randomly weighted

multiplicative voronoi diagrams,” Discrete & Computational Geometry,
vol. 53, 2015.

[24] Codes Repository, https://anonymous.4open.science/r/
57bd8e0e-9ba2-4e21-95c8-3750007e708e.

[25] PostgreSQL, 2019, https://www.postgresql.org/.
[26] X. Jiang, C. Li, P. Luo, M. Wang, and Y. Yu, “Prominent streak discovery

in sequence data,” in SIGKDD, 2011.
[27] G. Zhang, X. Jiang, P. Luo, M. Wang, and C. Li, “Discovering general

prominent streaks in sequence data,” TKDD, vol. 8, 2014.
[28] B. Jiang and J. Pei, “Online interval skyline queries on time series,” in

ICDE, 2009.
[29] M. L. Lee, W. Hsu, L. Li, and W. H. Tok, “Consistent top-k queries

over time,” in DASFAA, 2009.
[30] H. Wang, Y. Cai, Y. Yang, S. Zhang, and N. Mamoulis, “Durable queries

over historical time series,” TKDE, vol. 26, 2014.
[31] J. Gao, P. K. Agarwal, and J. Yang, “Durable top-k queries on temporal

data,” VLDB, vol. 11, 2018.
[32] N. Mamoulis, K. Berberich, S. Bedathur et al., “Durable top-k search

in document archives,” in SIGMOD, 2010.
[33] K. Semertzidis and E. Pitoura, “Durable graph pattern queries on

historical graphs,” in ICDE, 2016.
[34] K. Semertzidis et al., “Top-k durable graph pattern queries on temporal

graphs,” TKDE, vol. 31, 2018.

12

