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Abstract—A way of finding interesting or exceptional records
from instant-stamped temporal data is to consider their “dura-
bility,” or, intuitively speaking, how well they compare with other
records that arrived earlier or later, and how long they retain
their supremacy. For example, people are naturally fascinated by
claims with long durability, such as: “On January 22, 2006, Kobe
Bryant dropped 81 points against Toronto Raptors. Since then, this
scoring record has yet to be broken.” In general, given a sequence
of instant-stamped records, suppose that we can rank them by
a user-specified scoring function f, which may consider multiple
attributes of a record to compute a single score for ranking.
This paper studies durable top-k queries, which find records
whose scores were within top-k among those records within
a “durability window” of given length, e.g., a 10-year window
starting/ending at the timestamp of the record. The parameter
k, the length of the durability window, and parameters of the
scoring function (which capture user preference) can all be given
at the query time. We illustrate why this problem formulation
yields more meaningful answers in some practical situations
than other similar types of queries considered previously. We
propose new algorithms for solving this problem, and provide
a comprehensive theoretical analysis on the complexities of the
problem itself and of our algorithms. Our algorithms vastly
outperform various baselines (by up to two orders of magnitude
on real and synthetic datasets).

I. INTRODUCTION

Instant-stamped temporal data consists of a sequence of
records, each timestamped by a time instant which we call
the arrival time, and ordered by the arrival time. Such data is
ubiquitous in a rich variety of domains; i.e., sports statistics,
weather measurement, network traffic logs and e-commerce
transactions. A way of finding interesting or unusual records
from such data is to consider their “durability,” or, intuitively
speaking, how well they compare with other records (i.e.,
records that arrive earlier or later) and how long they retain
the supremacy. For example, consider the performance record:
“On January 22, 2006, Kobe Bryant scored 81 points against
Toronto Raptors.” While impressive by itself, this statement
can be boosted by adding some temporal context: “At that
time, this record was the top-1 scoring performance in the
past 45 years of NBA history.” Naturally, the further back
we can extend the “durability” (while the record still remains
top), the more convincing the statement becomes. We can
extend durability forward in time as well: “Since 2006, Kobe’s
81 points scoring performance has yet to be broken as of
today.” The notion of durability is widely used in media
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and marketing, because people are naturally attracted by
those events that “stood the test of time.” Such analysis of
durability is a useful part of the toolbox for anybody who
works with historical data, and can be particularly helpful to
journalists and marketers in identifying newsworthy facts and
communicating their impressiveness to the public. Because
temporal data can accumulate to very large sizes (especially
for granular data such as weather or network statistics), and
because users often want to find durable records with respect
to different ranking criteria quickly, we need to answer durable
top-k queries efficiently.

In this paper, we consider durable top-k queries for finding
instant-stamped records that stand out in comparison to others
within a surrounding time window. In general, each record may
have multiple attributes (besides the timestamp) whose values
are relevant to ranking these records. We assume that there is a
user-specified scoring function f that takes a record as input,
potentially considers its multiple attributes, and computes a
single numeric score used for ranking. Intuitively, a durable
top-k query returns, given a time duration 7, records that
are within top k£ during a 7-length time window anchored
relative to the arrival time of the record. How the window
should be positioned relative to the arrival time depends on
the application; our solution only stipulates that the relative
positioning is done consistently across all records. In practice,
we observe most statements in media involving durability
either ends the window at the arrival time of the record
(i.e., looking back into the past) or begins the window at the
arrival time of the record (i.e., looking ahead into the future).
Generally speaking, each record returned by our durable top-%
corresponds to a statement about the record that highlights the
durability of its supremacy.

Note that there are different ways for capturing the notion
of durability in queries, including some types that have been
studied in the past. Different application scenarios may call
for different semantics. To understand why our definition of
durable top-k queries may be more appropriate than others
in some scenarios, we examine the alternatives with a simple
concrete example.

Example I.1. Suppose we are interested in finding exceptional
rebounds performances (by individual players in individual
games) in NBA history—particularly, those that stood out as
the top record (or tying for the top record) in a 5-year time
span. Figure 1.(1) plots all relevant records (i.e., no fewer than
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Fig. 1: A case study on finding durable noteworthy rebound
performances in NBA history. Red squares highlight results
returned by different queries, and line segments represent the
durability time window.
27 rebounds by a single player in a single game) in entire NBA
history. We consider the following three queries to accomplish
our task; the latter two have been widely studied in the stream
processing and top-k query processing literature. Note that in
this example k = 1.

o Durable top-k (our query): This is the query that we
propose. For each record, we look back in a 5-year window
ending at the timestamp of the record, and check whether
the record has the top score among all records within this
window. Figure 1.(2) highlights the records (red squares)
returned by our query; for each result record, we also show
its 5-year durability window as a line segment ending at the
record for which it remains on the top.

o Tumbling-window top-%k: This query first partitions the
timeline into a series of non-overlapping, fixed-sized (5-
year) windows, and then returns the top record within each
time window. The placement of the windows is up to
the user and can affect results. Results for one particular
placement of the windows are shown in Figure 1.(3).

« Sliding-window top-k: This query slides a 5-year window
along the timeline, and returns the top record for each
position of the sliding window. Figure 1.(4) highlights a few
representative sliding windows, as well as the top records
during these windows.

All these queries are able to uncover some meaningful durable
top records; i.e., for any data record (X,Y, Z) marked as a
red square in Figure 1, we can claim “player X grabbed Y
rebounds in a game on date Z, which is the best in some 5-year
span.” First, the durability aspect adds to the impressiveness
of the statement. Second, the combination of durability and
ranking helps reveal interesting records that would otherwise
be ignored if we simply filter the records by a high absolute

value. For instance, all three queries find (Duncan, 27, 2009)
as a durable top-1 record. While this record may not seem
impressive by number alone, it was indeed the top-1 from
2002 to 2010. This is an interesting observation, as it reflects
a trend (relatively low rebounds of all players) during that era
of NBA. However, there are also notable differences.

o Tumbling-window vs. our query: The general observation
is that the results of tumbling-window are highly sensi-
tive to the choice of window placement. In Figure 1.(3),
tumbling-window picks (Mutombo, 29, 2001) and the other
two performances with 29 rebounds as they were the best
ones during 2000-2005, but there were more impressive
performances right before them, unfortunately leaving the
impression that they stood out only because the windows
were cherry-picked. Furthermore, if we choose to place all
windows slightly to the right such that the last window ends
with the most recent arrival time, (Rodman, 34, 1992) will
be eliminated by (Oakley, 35, 1988), and (Duncan, 27, 2009)
will be overlooked since it is shadowed by (Love, 31, 2010).
Overall, because of high sensitivity to window boundaries,
tumbling-window runs the risk of omitting important records
as they happen to be overshadowed by some other records
in the same window, and picking less interesting records as
they happen to be the top ones in that specific window.

o Sliding-window vs. our query: Sliding-window is not
susceptible to window placement, but it effectively considers
all possible window placements, and it returns the union
of all top records for each such placement. This approach
leads to possibly many records that are not as meaningful in
practice. In Figure 1.(4), sliding-window apparently returns
overwhelmingly more results compared to our query, which
makes it less applicable to mining most noteworthy records.
Even more unnatural is the fact that as we slide the window
along the timeline, a record can come in and out of the
result; i.e., there is no continuity. To illustrate, suppose we
are interested in durable top-2 records with 5-year windows,
and let us focus on Drummond’s 29 rebounds performance
on 2015.11.3 (highlighted in Figure 1.(4)). It is surrounded
by two top performance (Howard, 30, 2018) and (Bynum,
30, 2013). Sliding-window will return this record when the
window is positioned at 2014-2019, but not when positioned
at 2013-2018; however, the record will be returned again
when the window moves to 2012-2017. Such discontinuity
makes the results rather unnatural to interpret.

In comparison, our query does not have the issue of sensitivity
to window placement or that of difficulty of interpretation,
because we assess each record in a 5-year window that leads
up to its own timestamp. Thus, our query result records can
be consistently interpreted as having durability “within the
past 5 years” and clearly communicated to the audience. The
results from the other two queries would be qualified with
rather specific durability windows, which may be perceived
as cherry-picking.

Although the above example ranks records by a single
attribute, its argument can be extended to the general case



where records are ranked by a user-specified scoring function
that combines multiple attribute values into a single score.
Besides sports, durable top-k queries have applications
across many other domains. For instance, Wikipedia states
that “In late January 2019, an extreme cold wave hit the Mid-
western United States, and brought the coldest temperatures
in the past 20 years to most locations in the affected region,
including some all-time record lows.” This statement stems
from a simple durable top-k query over historical weather
data, and allows the Wikipedia article to convey the severity
of event effectively. As an example involving more complex
ranking, cybersecurity analysts rely on network traffic log to
identify unusual and potentially malicious intrusions. With a
appropriately defined scoring function that combines multiple
features of a session, such as duration, volume of data transfer,
number of login attempts, and number of servers accessed,
a durable top-k query can quickly help identify unusual
traffic (relative to others around the same time) for further
investigation. As another example, a financial broker may
accompany a recommendation with a statement “The price-to-
earnings ratio (P/E) of this stock last Friday was among the
top 5 P/E’s within its section for more than 30 days,” which is
also a durable top-k query. In sum, the efficiency of durable
top-k queries makes them suitable for using large volumes
of historical efficiently to drive insights or identify leads for
further investigation; the conceptual simplicity of these queries
also make them particular attractive for explaining insights and
communicating them effectively to the public.

Contributions. Our contributions are as follows:

o We propose to find “interesting” records from large instant-
stamped temporal datasets using durable top-k queries.
Compared with other query types related to durability, our
query produces results that are more robust (i.e., less sensi-
tive to window placement than tumbling-window) and more
meaningful (i.e., easier to interpret than sliding-window).

« We propose a suite of solutions based on two approaches
that process “promising” records in different prioritization
orders. We provide a comprehensive theoretical analysis on
complexities of the problem and of our proposed solutions'.

¢ Our solutions are general and flexible. They do not dictate
any specific scoring function f, but instead assume a well-
defined building block for answering top-k queries using f,
which can be “plugged into” our solutions and analysis. We
give some concrete example of f and the building block in
later sections. In particular, f can be further parameterized
according to user preference; these parameters, along with
k, 7 and I (the overall temporal range of history of inter-
est), can be specified at query time, making our solutions
flexible and suitable for scenarios where users may explore
parameter setting at run-time, interactively or automatically.

'A related question is whether we can post-process the results of the sliding-
window query to obtain the results to our query; e.g., filtering those result
records in Figure 1.(4) to get those in Figure 1.(2). Unfortunately, such an
approach, which we consider as one of the baselines in our experiments, is
prohibitively slow on large datasets, as we shall show in later sections.

TABLE I: Table of notation

T Time domain
p.t Arrival time of p

f Scoring function

k Parameter of Top-k query

Top-k records in time interval [t1, to]
Query interval
T Durability duration
U Query vector
s(n), q(n) Space, query time of top-k index

m<w([t1,t2])
I

o We show that the query time complexity of our algorithms is
proportional to O(|S|+ & (@]) in the worst case, where |S]|
is the answer size. Furthermore, we prove that the expected
answer size of a durable top-k query |S| is O(k [@]) under
the random permutation model (where the data values can
be arbitrarily chosen by an adversary but arrival order is
random); this result implies that the expected query time

of our algorithms in practice is linear in the output size.

II. PROBLEM STATEMENT AND PRELIMINARIES

Problem Statement. Consider a dataset P with n records,
where each record p € P has d real-valued attributes and
is represented as a point (p.zy,p.x9,...,p.xq) € R For
simplicity, we consider a discrete time domain of interest
T ={1,2,...,n}, and let p.t € T denote the arrival time of
p. All records in P are organized by increasing order of their
arrival time. Given a non-empty time window W : [t1,t2] C T,
let P(WW) denote the set of records that arrive between t; and
to; 1.€., P(W) = {p epP | t1 <pit< tg}.

Assume a user-specified scoring function maps each record
p to a real-valued score, f : R? — R. Given a time
window W = [t1,ts], a top-k query Q(k,W) asks for the
k records from P(W') with the highest scores with respect to
f. Let m<g([t1,t2]) denote the result of Q(k,W); i.e., for
Vp € m<i([t1,t2]), there are no more than k£ — 1 records
q € P([t1,t2]) with f(q) > f(p).

For simplicity of exposition, we consider durability win-
dows ending at the arrival time of each record (i.e., the
“looking-back” version), but our solution can be extended to
the general case where the windows are anchored consistently
relative to the arrival times (including the “looking-ahead” ver-
sion). We say a record p is 7-durable® if p € m<j([p.t—7, p.t]).
That is, p remains in the top-k for 7 time during [p.t — 7, p.t].
Note that if a record p is 7-durable, then it is also 7'-durable
for 7/ < 7. We are interested in finding records with “long
enough” durability, i.e., durability at least 7. Given a query
interval I and a durability threshold 7 € [1, |T|], a durable top-
k query, denoted DurTop(k, I, 7), returns the set of 7-durable
records that arrive during I; i.e., DurTop(k, I, 7) = {p € P(I) |
p € m<g([p.t — 7,p.t])}. Table I summarized our notations.

Scoring Function and Top-kt Query Building Block. As
discussed earlier, our proposed algorithms and complexity
analyses are applicable to any user-specified scoring function
f as long as there exists a “building block™ that can answer

21f 7 is obvious from the context, we drop 7 from the definition, i.e., we
say that a record is durable.



basic (non-durable) top-k queries under f. This building block
can be a “black box”: the novelty and major contribution of
our algorithms come from its ability to reduce and bound the
number of invocations of the building block, totally indepen-
dent of how the building block operates itself. Of course, the
overall algorithm complexity still depends on the efficiency
of the building block. For a function f, we consider that an
index of size O(s(n)) can be constructed in O(u(n)) time that
answers top-k queries with respect to f in O(q(n) + k) time,
where n is the data size and s(-),u(-), ¢(+) are functions of n.

In this paper, we are more interested in top-k queries on a
subset of data specified by a time window W given at query
time; i,e., computing Q(k, W) that reports the k records in
P(W) with the highest scores with respect to f. With a slight
care, the top-k query building block can be used to solve
this problem by paying a logarithmic factor in index size,
query time and construction time. That is, for a function f we
can construct an index of size O(s(n)logn) in O(u(n)logn)
time so that for given k, W, Q(k,W) can be computed in
O((q(n) 4+ k) logn) time. If the top-k building block supports
updates (insertion/deletion of an item) in O(a(n)) time, our
range top-k index also supports updates in O(«(n)logn) time.

Here, we give some concrete examples of f that are widely
used in real-life applications, for which efficient top-k query
building blocks exist. Consider the following class of scoring
functions parameterized by u, which captures user preference:

o linear: fy(p) = Zle u; - p.a;,

o linear combination of monotone scoring functions: fu(p) =
Z?:l u; - h(p.z;), where h is a monotone function; i.e.,
h(-) = log(-),

e cosine: fy(p) = m Z?zl u; - p.x;,

where u is a real-valued preference vector and f, denotes that

the scoring function f is parameterized by u. We refer to this

class of functions as preference functions. Top-k queries using
such class of scoring functions (preferably in the above three
forms) have been well studied over the past decades both in

computational geometry [1]-[6] and databases [7]-[10].

The above three forms of the preference functions are
particularly desirable because 1) they are widely used in real-
life applications that require ranking, and 2) they are both
linear and monotone, so preference top-k can be efficiently
answered. As mentioned earlier, users can replace the scor-
ing function with other functions (i.e., non-linear or non-
monotone). The centerpiece of our algorithm and analysis,
which bounds the number of invocations of the top-k query
building block, remains unchanged. But in that case, the com-
plexity of the building block will affect the overall complexity
bound, through the per-invocation complexity of the top-k
query building block.

Sliding-Windows and Baseline Solution. Recall from the
discussion in Example 1.1 (Figures 1-(2) and 1-(4)) that there
is a connection between our problem and the sliding-window
version, which has been well studied [11]-[13]. Indeed, one
of our baseline solution is adopted from [11] with incre-
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Fig. 2: Data skipping in Time-Hop Algorithm.
mental top-k maintenance over sliding windows?. However,
the standard sliding-window technique is more suitable for
data streams, where incoming data must be scanned linearly
anyway. Instead, our query analyzes historical data. The linear
complexity of sliding windows becomes infeasible especially
when dealing with large datasets. The limitation hence mo-
tivates our solutions in later sections. Experimental results
demonstrate our algorithms’ significant efficiency gain (up to
2 orders of magnitude) over sliding-window baselines.

III. TIME-PRIORITIZED APPROACH

The time-prioritized approach is straightforward: we visit
records in time order and check their durability sequentially.
The standard sliding-window technique [11], which we refer
to as Time-Base or T-Base, is in this category. To beat the
linear complexity of T-Base, we propose a new algorithm (Sec-
tion III-A) using the observation that we can skip unpromising
records as we discover durable ones. What is surprising is how
this simple observation leads to provably substantial reduction
in complexity (Sections III-B and V).

A. Time-Hop Algorithm

It is not hard to see that the durable top-k query can
be viewed as an offline version of the top-k query in the
sliding-window streaming model. Hence, T-Base (and its many
related variants) does not best serve our needs. Since the entire
data is available in advance, continuously sliding the window
wastes too much time on those non-durable records. After all,
meaningful durable top-k queries tend to be selective.

Before describing the algorithm, we illustrate the main idea
using an example for £ = 3, shown in Figure 2. By running
a top-3 query Q(3, [t1 — 7,t1]), consider the record p arriving
at t1 (black circle) is not 7-durable; i.e., p & m<3([t1 — T, t1]).
We know the current top-3 set contains records (red squares)
that arrive at t4,ts and to. Then, no records arriving between
to and t; would be 7-durable and we can safely hop from ¢;
to t. This simple and useful observation simplifies the query
procedure, and allows larger strides for sliding windows.

Now, we present our algorithm Time-Hop (T-Hop); see
Algorithm 1 for pseudocode. For each record we visit with
timestamp ¢;, we run a top-k query in [¢; — 7, ¢;] (Line 4). If
the record is not durable, we slide the window back to the
most recent arrival time of records, say ¢;, in the current top-
k set (Line 9), skipping the non-durable records between %;
and ¢;. Otherwise, if a durable record is found, we slide the
window backwards by 1 (Line 7) as usual.

3In particular, the idea of Skyband Maintanence Algorithm (SMA) to reduce
the number of top-k re-computations from scratches.



Algorithm 1: T-Hop (k,1I,7)

Algorithm 2: S-Band (k, I, 7)

Input: P, k, 7, and I : [t1, t2].

Output: DurTop(k, I, 7)
1 Initialize answer set: S < &, top-k set: m< < &;
2 teurr < t2;
3 while teyrr >=t1 do

4 T<k < Q(k» [tcurr -7, tcurr]);

5 if Pltcurr] € m<j then

6 ‘ S+ SuU P[tcur'r] teurr < teurr — 15

7 else tcyurr < most recent arrival time of records in T<k;
8 return S;

score

Fig. 3: Blocking mechanism in score-prioritized approach
B. Time Complexity Analysis of T-Hop

The time complexity of T-Hop purely depends on the
number of top-k queries called in the query procedure. We
provide a worst-case guarantee on the number of top-k queries
performed, as shown by the lemma below. Due to the space
limits we provide all proofs in the extended version of the
paper [14].

Lemma 1. The total number of top-k queries performed by
the Time-Hop algorithm is O(|S| + k{lIW)

Overall, with an efficient top-k module, T- HOF answers a
durable top-k query DurTop(k, I,7) in O((|S|+ k| IW)( (n)+
k) log n) time. Compared to T-Base, T-Hop runs in sublinear
query time (assuming that the ratio {@] is not arbitrarily
large), i.e., the running time does not have a linear dependency
on the number of records in /. Our experimental results
in Section VI suggests that T-Hop is one to two orders of
magnitude faster than T-Base in practice. Using the results
in [1]-[6], our index can be implemented with linear size and
polylogarithmic update time for preference queries.

Notice that the number of top-k queries performed by T-Hop
depends on |S]| and k [l |] In the worst case, the term k (@]
can be arbitrarily large compared to |S|. In Section V-A we
study the expected size of S in a random permutation model
where a set of n scores, chosen by an adversary, are assigned
randomly to the records. In such a case we show that the
expected size of S is O(k[mb, meaning that the expected
number of top-k queries executed by the algorithm is O(]S|).

IV. SCORE-PRIORITIZED APPROACH

One potential weakness of time-prioritized approach is that
it does not pay much attention to scores and simply visit
records sequentially along the timeline (with hops). Though
Lemma 1 shows that T-Hop visits O(|S| + k[ul]) records
in the worst case, it still potentially visits many low-score
and non-durable records and ask more top-k queries. In
contrast, the score-prioritized approach visits candidate records
in descending order of their scores because records with

Input: P, k, 7, and I.
Output: DurTop(k, I, 7)
1 S« o, '« &
2 Compute C C P by finding durable k-skyband set;
3 Sort C in descending order of scores;
4 for pe Cdo
5 if p lies in < k blocking intervals in I" then
6 mer, — QUk, [p-t — 7, p.t)):
7 if p € m<y then S <« SU({p};
8 else
9 for ¢ € m<j, A q not visited before do
| T+« TuU{lgtqgt+]}

u | T«Tu{ptpt+7lh

12 return S;

high scores have a higher chance of being durable top-k
records. Furthermore, these high-score records can also serve
as a benchmark for future records, enabling a “blocking
mechanism” to prune candidates.

Before describing the algorithms, we illustrate the main idea
using an example shown in Figure 3. Suppose we answer a
durable top-3 query with 7 by visiting records in descending
order of their scores: pi, po and ps3, and all three records
are durable ones. p; has the highest score in the entire query
interval, any record that lies in the 7-length time interval
[p1.t,p1.t + 7] will be dominated by p;, which we refer to
as being “blocked” by p;. Similarly, po (the second highest
score) and ps (the third highest score) also block a 7-length
interval starting from their arrival times. The time axis is
partitioned into intervals by endpoints of all blocking intervals.
In Figure 3, the number under each interval shows how many
records block this interval. Notice the bold red interval, where
any record in this interval lies in three blocking intervals
after processing p;, p2 and ps. Since there are already three
records with higher score than any record in this interval, it
can not have any 7-durable top-3 record, and we can safely
remove this time interval from consideration. As we continue
adding blocking intervals, eventually every remaining record
in the query interval will be blocked by at least three blocking
intervals. The algorithm can now stop because no more durable
top records can be found. The procedure is straightforwardly
applicable to look-ahead version of durability, by simply
reversing the direction of blocking intervals.

A straightforward score-prioritized approach, which we
refer to as Score-Base (or, S-Base), is to first sort all records
in the query interval according to the scoring function f and
then traverse records in descending order of scores together
with blocking mechanism. But the sorting overhead would
become the bottleneck of query efficiency, incurring cost
super-linear (i.e., nlogn) in the data size. We describe two
better algorithms to alleviate the expensive sorting component
in the following sections. They differ on how high-score
records are found and how blocking intervals are maintained.



A. Score-Band Algorithm (Monotone f Only)

If we could quickly find a small set of candidate records
C, which is guaranteed to be a superset of the answers; i.e.,
S C C, then we could get a faster algorithm by only sorting
C, instead of all records in the query interval. It is well-known
that the k£ records with the highest score, with respect to any
monotone scoring functions, belong to the k-skyband.* Hence,
if a record p is 7-durable for a top-k query (with respect to a
monotone f), then p must also be 7-durable for the k-skyband;
i.e., pis in the k-skyband for the time interval [p.t—7, p.t]. This
observation enables us to construct an offline index about each
record’s duration of belonging to the k-skyband, and efficiently
produce a superset C of answers to durable top-k queries. Note
that the score-band algorithm has its limitation, since the k-
skyband technique only applies to monotone scoring functions.

Index. Score-Band algorithm needs additional index for
finding candidate set C, which we refer to as durable k-
skyband. Suppose the value of k is known. For each record
p, we compute the longest duration 7, that p belongs to the
k-skyband. Then we map each record p into the “arrival time
- duration” plane as a two-dimensional point, p = (p.t, 7).
We then index all such points in the 2D plane using a priority
search tree [15] (or kd-tree, R-tree in practice). To answer
DurTop(k, I, 7), we first ask a range query with the 3-sided
rectangle I x [7, +0o0]. The set of points that fall into the search
region is the superset to actual answers of durable records. This
index can be constructed in O(nlogn) time, has O(n) space
and the query time is O(|C| 4 logn) in order to get the set C.

In general case, notice that we do not know the value of
k upfront, i.e., a query has k as a parameter, so we cannot
construct only one such index. There are two ways to handle
it. If we have the guarantee that k < k for a small number
Ko then we can construct kg such indexes with total space
O(nko). Otherwise, if k can be any integer in [1,n], we can
construct O(logn) such indexes (priority search trees), one
for each k = 20,21 ... 21°8" 5o the space is O(nlogn).
Given a durable top-k query we first find the number k with
k < k < 2k, and then we use the corresponding index to get
the superset C. In this case, C contains the records that are
7-durable to the k-skyband, so S C C.

Query Algorithm. We refer to this score-prioritized ap-
proach using durable k-skyband candidates as Score-Band
algorithm, or S-Band. Full algorithm is sketched in Algo-
rithm 2 and described below. Given k, I, T, we first retrieve the
candidate set C using the durable k-skyband index as shown
above. Then we sort C and visit records in descending order
of their scores. For each record p we visit, we first check the
number of blocking intervals that p lies. If p lies in less than
k blocking intervals, it is a promising candidate and we run a
top-k query on time interval [p.t — 7, p.t] for durability check.
If p is indeed 7-durable, we add p to answer set. Otherwise,

4For Vp, q, € P, p dominates q if p is no worse than q in all dimensions,
and p is better than g in at least one dimension. k-skyband contains all the
points that are dominated by no more than k£ — 1 other points. Skyline is a
special case of k-skyband when k = 1.

we need to add a blocking interval for each record returned
by the top-k query (if we have not done so yet), since they
all have higher scores than p. On the other hand, if p already
lies in at least k£ blocking intervals, we can simply skip it. In
the end, we add the blocking interval [p.t, p.t + 7] for p.

We can see that S-Band works similarly to S-Base. The only
difference is that for a record that is blocked less than k times,
we still have to execute a top-k query to check whether the
record is 7-durable (Line 6). This durability check is necessary.
Though some records are guaranteed to be non-durable (i.e.,
not captured by C with durable k-skyband), they can still block
other records (with lower scores) to be durable ones.

Query Time Complexity. The query time complexity of
S-Band can be decomposed into three parts: 1) a range search
query to find candidate set C; 2) sort C according to their
scores; 3) find durable records from sorted C sequentially.
Summing up the above, the overall query time complexity
of S-Band is O(|C|(g(n) + k)logn), assuming that a top-k
query can be answered in O(g(n) + k) time. In the worst
case |C| = O(n) since all points can lie in the k-skyband. In
Section V we show that using the probabilistic model in [16]
(where the coordinates of records are randomly assigned) the
expected size of C is O(k (@w log?~! 7). Due to the blocking
mechanism, in practice we expect that the number of top-k
queries will be smaller. However, notice that we need to sort
all records in C; this might make S-Band much slower due to
the size of C that increases (in expectation) exponentially on
the dimension d.

B. Score-Hop Algorithm

The data reduction strategy of S-Band offers adequate
benefits for improving the overall running time on datasets
in low dimensions (< 5). However, the query overhead
on searching and sorting candidate records becomes a huge
burden on high-dimensional data, as it is well-known that the
size of k-skyband tends to explode (or equivalently, records
in high-dimensional space tends to stay in k-skyband for a
longer duration) in high-dimensional space. Furthermore, S-
Band requires additional index and only applies to monotone
scoring functions. To overcome the drawbacks of S-Base and
S-Band, we propose another approach that does not require
sorting and has better worst case guarantee. The main idea is
that there is no need to sort records in advance; we can find
the record with the next highest score one by one as we find
durable records. With the help of blocking mechanism, we can
skip certain time intervals when we find the next highest score
record, despite the fact that there might be some high-score
records in such intervals. This procedure has an analogy to the
Time-Hop algorithm, since we effectively skip certain records
while we traverse records in descending order of their scores,
as we taking a hop in the score-domain.

Query Algorithm. We refer to this solution as Score-Hop
algorithm, or S-Hop. The main idea of the algorithm is
straightforward. In each iteration, we find the record with
the maximum score among the records that lie in less than



Algorithm 3: S-Hop (k, I, 1)

Input: P, k, 7, and [ : [a, b].
Output: DurTop(k, I, 7)
1 H+— 2, S+ 2, T« &,
2 for [l;,7;] : disjoint T-length intervals in I do
3 M’L <_Q(u7k7 [lT7Ti]);
4 | H.push(M;.pop();
s while H # & do

6 p < H.pop(), and let p € Mj;
7 if p lies in < k blocking intervals in T" then

8 m<i — Q(u, k, [p.t — 7, p.t]);

9 if p € m<, then

10 | S+ Su{ph

11 else

12 for ¢ € <y, A q not visited before do
13 L | T+ Tu{lgtqt+l}

1 M7 < Q(k, [lj,pt —1]);

15 M;r — Q(k,[pt +1,74]);

16 H.push(Mj_.top()), H.push(M]*.top());
17 else if M; # < then

18 | H.push(M;.pop());

19 if p not visited before then

20 L« Tu{pt,pt+7]}

21 return S;

k blocking intervals. Let p be such a record. We run a durable
top-k query so if p is a 7-durable record we add it in S.
If p is not a 7-durable record, we add a blocking interval
for each record returned by the durable top-k query (if they
have not been added before). In the end, we add the blocking
interval [p.t, p.t+7] and we continue with the next record with
the highest score. The actual implementation of the algorithm
is more subtle, to guarantee a fast query time as described
below; pseudo-code is provided in Algorithm 3. Given a query
interval I = [a,b], we partition it into a set of T-length sub-
intervals: [a,a + 7),[a + T,a + 27),...,[a + L‘TAJ 7,b]. Let
[l;, ;] be the i-th sub-interval, and in each interval we find the
k records with the highest score, denoted M;. We construct a
max-heap H over all the top-1 records from all sub-intervals.
Besides that, each node in H also keeps the original interval
[l;, ;] and the set M; associated with the record. We repeat the
following until H is empty. We take and pop the top record
from H. Let p be that record originated from M;. Then p
will be processed in the following two cases: 1) If p lies in
at least k£ blocking intervals, we update H by pushing the
next top record in M (if there is any). 2) If p lies in less
than %k blocking intervals, we update H as follows. Assume
that [I;,r;] is the corresponding sub-interval of Mj; (or p).
We first split [I;, ;] into two non-empty intervals [I;,p.t — 1]
and [p.t + 1,7;]. Then, run a top-k query on [l;,p.t — 1] to
get a new top-k set M ; - Similarly, get another new set M. j+
from [p.t + 1,7;]. We replace the old set M; with M, and
Mj+, along with its corresponding interval [I;,p.t — 1] and
[p.t + 1,7;], respectively. Finally, we update H by pushing
the current top records from A~ and M ;L into the heap. In
the end, we add the blocking interval from record p (if it is
the first time we visited p). It is worth mentioning that the
hopping movement happens at Line 18: we effectively skip

certain intervals by not updating the max-heap and stop asking
top-k queries on its sub-intervals.

Compared to S-Band, S-Hop does not have a strong depen-
dency on the dimension of the data (only the running time
of the top-k queries depends on the dimension) and makes
better use of the blocking mechanism. In the end, we only
find and process high-score records as we need instead of
acquiring a full sorted order of records in advance, which leads
to better worst case theoretical guarantees and faster query
time. Experimental results in Section VI demonstrate that S-
Hop can be 1 to 2 orders of magnitude faster than S-Band on
high-dimensional (> 10) datasets.

We prove the correctness of Score-Hop algorithm in the
extended version of the paper [14].

C. Time Complexity Analysis of S-Hop

The time complexity analysis of the S-Hop query procedure
is non-trivial and needs more care. There are three main
sub-procedures in S-Hop: find next highest score record,
top-k queries for durability check and blocking mechanism.
As presented above, the first two components both rely on
multiple top-k queries. We first show a worst-case guarantee
on the total number of top-k queries called in the algorithm.

Lemma 2. The total number of top-k queries performed by
the Score-Hop algorithm is O(|S| + k[‘%w ).

Using Lemma 2, it can be shown that S-Hop answers a
durable top-k query in O((|S|+k[E])(g(n) + k) logn) time
(with an efficient top-k query procedure in O(q(n) + k)).
Similarly to T-Hop our index for S-Hop has near linear space
and supports updates in polylogarithmic time [1]-[6].

As it turns out, hopping in time-domain (T-Hop) and in
score-domain (S-Hop) gives us the same complexity bound.
But in practice, S-Hop is more conservative in asking top-
k queries compared to T-Hop, due to the candidate pruning
brought by blocking mechanism. This makes S-Hop run faster
than T-Hop when the top-k query itself is expensive; i.e., a
larger k or on high-dimensional datasets.

V. EXPECTED COMPLEXITY

In the previous sections we presented two types of al-
gorithms (time-prioritized and score-prioritized) to answer
durable top-k queries, and our best solutions, T-Hop and S-
Hop, share the same worst-case guarantee on their query time.
In particular we showed that their query times depend on
k[%w and |S|. In this section, we go beyond the worst-case
analysis and analyze their performance in a more “expected”
sense. Most importantly, we show in Section V-A that the
expected size of |S| is roughly k{lTLl] if the scores of data
records are chosen arbitrarily (possibly by a powerful adver-
sary with the advance knowledge of the query parameters) but
their arrival order is random. This result essentially establishes
that, under this model, the expected running time of T-Hop and
S-Hop is linear in the output size. Secondly, in Section V-B,
we study the expected complexity of Score-Band algorithm by
bounding the expected size of 7-durable k-skyband candidate

set C using the same probabilistic model used in [16].



A. Expected Answer Size

Consider a set of n records P with p;.t = ¢, for p; € P.
We analyze the expected size of a query output when the
scores of records are assigned in a semi-random manner,
where the data values can be arbitrarily chosen and then
they are assigned in a random order to the records. More
formally, we consider a random permutation model (RPM).
Let X =21 < 3 < ... < x, be a sequence of n arbitrary
non-negative numbers chosen by an adversary, and let o be
a permutation of {1,...,n}. We set f(p;) = To(;, i.e., the
score of record p; is x,(;), where o(i) is the image of i
under o. As argued in [17], the random permutation model
is more general than the model in which all scores are drawn
from an arbitrary unknown distribution, so our result holds for
this model as well. The random permutation model has been
widely used in a rich variety of domains and considered as a
standard for complexity analysis; i.e., online algorithms [18]—
[20], discrete geometry [21]-[23], and query processing [17].
Our main result is the following.

Lemma 3. In the random permutation model, given k, T and

I
I, we have E[|S|] = k7‘+|1

Proof. For a record p; € P(I), let X; be the random variable,
which is 1 if p; is a 7-durable record, and 0 otherwise.
Thus, E[|S|] = E[)_, X;] . Using the linearity of expectation,
EC Xi] =2 E[Xi] =3 Pr(X; =1].

Thus our goal is to compute Pr[X; = 1] : the probability
that there are less than k records in [p;.t — 7, p;.t) with score
larger than f(p;). Let P = {pi—r,...,pi—1}. For a subset
Q C P7, let Ag be the binary random variable, which is 1 if
all records in () have score greater than f(p;) and all records
in @ = P7 \ Q have score less than f(p;). We have

k—1
PriX;=1]=> Y

=0 QCP],|Q|=!

We estimate Pr[Ag] as follows. Let V' C X with |V| =
7+ 1. We first bound the conditional probability Pr[Ag | V']
such that the records in P U {p;} are assigned scores from
V. We consider all possible permutations of V' and count only
those cases where the records in ) have larger value than
f(pi), and the records in Q have values less than the value of
f(p;). Notice that the permutations that satisfy this property
must assign the first / largest values of V' to @, then the (I+1)-
th largest value to p; and the rest 7—( smaller values of V to Q.
Under such assignment, any permutations of values in () and
@ are valid cases. Hence, the number of valid permutations
are !(t — 1)!, while the number of all possible permutations
of V are (7 + 1)!I. We have

N =10 1 1
Pride IVI=r =410y @
Since (2) holds for all V, Pr[Ag] =
this in (1), we obtain

k—1 11 k-1 1 k
=0 (?)ﬁ@ =20 71 = 410 3

Pr[Aq]. (1)

41-1 o Substituting

TABLE II: Dataset summary

Dataset Dimensionality Size (# records)
NBA-X 1,2,3,5 IM
Network-X | 2,3,5,10,20,30,37 SM
Syn-X 2 1M,2M,5M,10M,20M,50M,500M
and finally, E[|S|] = ZPI’ e g
T+1

Combining Lemma 3 with the analysis of Sections III-B
and IV-C, we conclude that in a random permutation model the
expected query time complexity of both Time-Hop and Score-
Hop algorithms is O(|S|(g(n) + k)logn), or equivalently
O(k[léw (g(n) + k)logn), where O(q(n) + k) reflects the
time complexity of answering a top-k query.

B. Expected size of durable k-skyband

In this subsection we bound the expected size of 7-durable
k-skyband records, denoted by C, from Section IV-A in a
probabilistic model similar to the previous case. Recall that
the size of C affects the running time of the S-Band algorithm.

Let P = {p1,...,pn} with p;.t = i. We use the same
random model as in [16] where (the attributes of) records are
randomly generated.

Lemma 4. [f the attributes of records are generated randomly,
then given k,T and I, we have E[|C|] = O(k‘@ log® ! 7).

Combining Lemma 4 with the analysis of Section IV-A, we
get that the expected ?uery time complexity of the Score-Band
algorithm is O ) + k) lognlogd ! ) It shows
that the expected complex1ty of Score Band algorithm can be
higher than Time-Hop or Score-Hop algorithm by a factor
of at most logdf1 7. Experimental results in Section VI also
confirm this finding as we vary the data dimensionalities.
The curse of dimensionality makes Score-Band perform worse
even compared to other simple baselines. Again, Time-Hop
and Score-Hop are both generally applicable to arbitrary user-
specified scoring functions, while Score-Band only works for
monotone functions.

VI. EXPERIMENTS

Datasets. We use two real-life datasets and some synthetic
ones, as summarized in Table II and described below:

NBAS contains the performance of each NBA player in each
game from 1983 to 2019, totaling ~ 1 million performance
records on 15 numeric attributes. Records are naturally orga-
nized by date and time, and we break ties (e.g., performances
of different players in the same game) arbitrarily. We choose
some subsets of 15 attributes to create datasets with different
dimensions collectively referred to as NBA-X.

Network® is the dataset from KDD Cup 1999, containing
~ 5 million records with 37 numeric attributes that describe
network connections to a machine, including connection du-
ration, packet size, etc. The query in this case utilizes a
scoring function that weighs a variety of numerical attributes

SNBA datasets were collected from https://www.basketball-reference.com/
Shttps://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html



TABLE III: Query Parameters (default value in bold)

Parameter Range
k 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
T 1%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%
|1] 10%, 20%, 30%, 40%, 50%, 60%, 70% 80%
d 1,2, 3,5, 10, 20, 30, 37
~B-T-Hop -f#-T-Base ~{-s-Band S-Hop EmmS-Band  EEET-Hop
S-Hop —#—S-Base B S-Hop (Top-1)-6-S-Band(|C|)

-
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Fig. 4: Performance on NBA-2 as 7 varies.

to rank connections in order to identify unusual and potentially
malicious ones. Records have unique timestamps and are
ordered by these timestamps. Since the attributes have different
measurement units, we scale the value of each dimension
using MinMax normalization. To study the impact of data
dimensionalities on query efficiency, we choose the first 2,
3, 5, 10, 20, 30 and 37 attributes from the full dimensions to
create 7 different datasets collectively referred to as Network-
X, where X represents the dimensionality of the dataset.

Syn is a synthetic two-dimensional dataset that is used for
scalability test on proposed solutions. We generate Syn with
independent (IND) and anti-correlated (ANTI) data distributed
in a 2D unit square. For IND data, the attribute values of
each tuple are generated independently, following a uniform
distribution. ANTI data are drawn from the portion inside the
positive orthant of an annulus centered at the origin with outer
radius 1 and inner radius 0.8, representing an environment
that most of the records gather in k-skyband. The full size of
Syn is 500 million (take nearly 30 Gigabytes disk space) and
each data point has an unique arriving time. We further choose
several subsets of Syn with 1, 2, 5, 10, 20 and 50 millions of
records. The set of synthetic datasets are collectively referred
to as Syn-X, where X represents data size.

Query Parameters. Table III summaries the query param-
eters under investigation, along with their ranges and default
values. Among these, the query interval length |I| and the
durability 7 is measured as percentage of dataset size n. When
varying query interval length, we always fix the right endpoint
of the interval to be the most recent timestamp in dataset and
only move the left endpoint.

Implementations & Evaluation Metric. To make the dis-
cussions concrete and concise, we choose a linear and mono-
tone preference scoring function throughout the experimental
section in the simple form: fy(p) = Z?zl u; - p.x;, where
u is a user-specified preference vector and u; is the (non-
negative) weight for i-th attribute of a record. At query time,
user need to specify u as one of the input parameters. Since
the focus of this paper is not to develop the best possible index
for top-k queries Qu(k, W), our implementation of the top-k
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Fig. 5: Performance on NBA-2 as k varies.
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Fig. 6: Performance on NBA-2 as |I| varies.

building block simply adopts a tree index (on the time domain
of P), and answer Qu(k, W) in a straightforward top-down
manner with a branch-and-bound method. Full description
of the index construction and top-k query procedure can be
found in the extended version of this paper [14]. Our code is
also available at [24]. This index offers adequate performance
in our experiments, but it can certainly be replaced by more
sophisticated index with better worst-case guarantees, without
affecting the rest of our proposed solution.

Using the building block of top-k queries described above,
we further implement T-Base (Section III), T-Hop (Sec-
tion III-A), S-Base (Section IV), S-Band (Section IV-A) and
S-Hop (Section IV-B). Performance of various methods are
evaluated using the following two metrics: number of top-
k queries and overall query time (in millisecond). For each
query parameter setting, we run the query 100 times with 100
different randomly generated preference vectors, and report
the average with standard deviation.

All methods were implemented in C++, and all experiments
were performed on a Linux machine with two Intel Xeon ES5-
2640 v4 2.4GHz processor with 256GB of memory.

A. Algorithm Evaluations

According to the theoretical analysis of our algorithms in
previous sections, the query efficiency depends on the length
of durability window 7, the value of £, the length of query
interval I, the data dimensionality d and the data size n. For
fair evaluation and comparison of algorithm efficiency, we
designed a set of variable-controlling experiments such that
each time we only vary one query parameter of interest and
fix the others to default values.

Comparison of Algorithms when Varying 7. In Figure 4,
we investigate the performance of all durable top-k solutions,
as we vary durability 7. Figure 4a shows the query efficiency
comparison on NBA-2. The sorting based solution S-Base is
the slowest, as it requires fully sorting all records in the time



interval of length |I| 4+ 7. T-Base is faster than S-Base and
mostly independent of 7. All the rest solutions, T-Hop, S-
Hop and S-Band, become more efficient as we increase T,
or equivalently, when query is more selective. This finding
confirms our analysis in Section V that the query efficiency
bounds of Hop-based solutions and S-Band both depend on
the answer size, which is O(k@) T-Hop and S-Hop nearly
perform the same, while S-Band can be slightly faster. When
the query is highly selective (7 is half of the length of
entire time domain), they are 1-2 orders of magnitude faster
compared to T-Base and S-Base, respectively. Similar results
can be found on Network-2 dataset. Due to space limit, please
refer to the extended version of this paper [14] for more
experiments.

Next, we take a closer look at T-Hop, S-Hop and S-Band
in Figure 4b, which compares the number of top-k queries
needed for these three advanced algorithms. For S-Hop, the
total number of top-k queries is decomposed into two parts:
top-k queries for durability check (unshaded region of a green
bar) and top-k queries for finding the next highest score record
(shaded region). For S-Band, we also plot the size of durable
k-skyband candidate set C' on top the figure as red circled line,
reflecting the overhead cost of sorting C' for S-Band. Now it is
clear that the main reason why T-Hop/S-Hop/S-Band becomes
faster when 7 is large is that fewer top-k queries are needed.
A more selective query with larger 7 also makes the candidate
set C' of S-Band smaller, demonstrating the effectiveness of
using durable k-skyband to identify promising candidates. On
the other hand, we can see that S-Hop and S-Band ask fewer
top-k queries than T-Hop, demonstrating the pruning power of
blocking mechanism in score-prioritized solutions. This figure
also explains why S-Band runs slightly faster than S-Hop and
T-Hop on NBA-2 in this case, as S-Band requires the least
number of top-k queries and the overhead cost on sorting
candidate set C' is relatively small on two-dimensional data.
Again, similar trends can be found in the Network-2 dataset.

Comparison of Algorithms when Varying k. Next, we
study the effect of £ on efficiency. Results are shown in
Figure 5. When we increase k, not only need we ask more
top-k queries (see Figure 5b), but a top-k query itself also
becomes more expensive. Thus in Figure 5a, we can see that
all algorithms (except S-Base) are slower when k is larger.
Especially when k reaches 50, top-k computations become
the dominant factor on overall efficiency, and the differences
among the various algorithms diminish. Still, S-Band and S-
Hop have slight advantages over T-Hop on larger k, as they
use blocking mechanism to prune candidate records and are
more conservative in asking expensive top-k queries.

Comparison of Algorithms when Varying |I|. In Figure 6,
we compare the performance of proposed algorithms as we
vary query interval length |I|. In terms of efficiency, Figure 6a
shows T-Hop/S-Hop/S-Band is much faster than baseline so-
lutions T-Base and S-Base. On the other hand, we also find
that our proposed algorithms scale better with |I| than with k
(recall Figure 5). The reason is that the time complexities of
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Fig. 7: Performance comparison on Network-X as d varies.
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T-Hop/S-Hop and S-Band are quadratic in k but only linear
on |I| (recall Lemma 3 and Lemma 4). In terms of number
of top-k queries, in Figure 6b, it is not surprising to see that
all proposed solutions ask more top-k queries as |/| increases.
The relative performance of various algorithms is consistent
with previous experiments where we varied 7 or k.

Comparison of Algorithms when Varying d. In this
section, we study the effect of data dimensionality d on
algorithm performances. Since the sorting-based S-Base is
clearly inferior to other algorithms, here we only test T-
Base, T-Hop, S-Band and S-Hop on Network-X with varying
dimensions. Results are shown in Figure 7. Let us first take
a look on Figure 7b. We can see that the number of top-k
queries for all proposed algorithms stays stable as we increase
dimensionality. This finding again confirms our theoretical
analysis that the number of top-£ queries (or, answer size)
depends only on k@ and is independent of dimensionality d.
On the other hand, we can see that the size of candidate set
C for S-Band rockets in high dimensions, and can be up to 4
orders of magnitude larger than the size of actual promising
records. The sorting overhead on such huge candidate sets is
already too big. Then, let us go back to Figure 7a. The query
time of T-Base, T-Hop and S-Hop slowly increases as dimen-
sionality increases, because top-k queries in high dimensions
become more expensive, yet they ask roughly the same number
of top-k queries regardless of dimensionality. While S-Band
still performs well on low-dimensional (< 5) data, in higher
dimensions S-Band becomes dramatically worse, even taking
as much time as T-Base on Network-37.

Scalability. Finally, we use the two-dimensional synthetic
dataset Syn-X to test the scalability of the proposed algorithms
as we vary the input size from 1 million to 50 million. Figure 8
summarizes the results. As the input size increases, we also
increase the query interval length proportionally (so it remains
at a fixed percentage of the data size). As shown in Figure 8-1,
we can see that T-Hop, S-Hop and S-Band scale well on large
IND datasets, and S-Band again performs slightly better than
T-Hop and S-Hop. The running time of S-Base increases on
larger datasets simply because we are also making the query
interval longer. Figure 8-1b further illustrates that the total
number of top-k queries asked by different algorithms is also
independent from the data size. A larger dataset only makes
top-k queries more expensive. Although the size of candidate
set |C| increases on larger IND datasets, its growth rate here is
much lower than its growth rate when varying dimensionality
d in Figure 7. Overall, on IND data, |C| is only about 4-5
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Fig. 8: Scalability test on IND and ANTI Syn-X.
TABLE IV: Query time (in seconds) comparison on NBA-2
when varying 7. PostgreSQL backend.

T(@s %of [T)) | 10% | 20% | 30% | 40% | 50%
T-Hop 046 | 028 | 0.18 | 0.12 0.1
T-Base 2.2 19 1.8 1.7 1.7

times bigger than the actual answer size, which will not incur
a big sorting overhead for S-Band. However, the situation is
different for ANTI Syn-X. in terms of query efficiency, T-
Hop and S-Hop still scale well, but S-Band becomes much
more expensive. Most records in ANTI data would gather in
k-skyband, resulting in C' up to 3 orders of magnitude larger
than the actual answer size, which hurts the performance of
S-Band. The efficiency of S-Band has a strong dependency on
the candidate set C, or more generally, the data distribution.
In contrast, the performance of T-Hop and S-Hop in this case
is nearly independent of both size and distribution of data; it
is only linear to the answer size.

B. DBMS-Based Implementations

To demonstrate the generality of proposed solutions and its
possibility of integrating into a DBMS, we further test the
algorithms utilizing PostgreSQL [25] as the backend DBMS.
More specially, we load the datasets NBA-2, Syn-500M (IND)
and Syn-500M (ANTI) into PostgreSQL tables. The table
schema consist of numeric attributes of the records and an

TABLE V: Query time (in seconds) comparison on NBA-2
when varying |I|. PostgreSQL backend.

[T] Gas % of [T]) | 10% | 20% | 30% | 40% | 50%
T-Hop 01 | 0.16 | 0.17 | 02 | 026
T-Base 046 | 093 | 13 | 16 | 2

TABLE VI: Query time (in seconds) comparison on different
datasets. Dataset size (measured by DBMS storage size) is
shown in parentheses. PostgreSQL backend.

Dataset | NBA-2 (0.05 G) | Syn-IND (30 G) | Syn-ANTI (30 G)
T-Hop 0.28 1.9 2.3
T-Base 1.9 773 787
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additional column representing arriving time instant. For algo-
rithm implementations, we code T-Hop and T-Base as stored
procedures using PL/Python with PostgreSQL’s native support
operators.’Besides data tables, we also create corresponding
index tables to support efficient top-k records retrieval. The
index table is similar to the tree-based index as we used
for previous experiments, providing sufficient data reduction
for answering range top-k queries. Again, the top-k module
can be replaced by more sophisticated indexes with better
performance, without affecting the rest of our solution.

Tables IV and V show the results of testing T-Hop and
T-Base on the smaller NBA-2 dataset with the same query
setting as before, varying durability 7 and query interval length
|I| to compare query efficiencies. Similar conclusions can be
drawn here. T-Base always pays linear cost (continuous sliding
windows) to visit all records in the query interval. Thus, the
running time is linear to |I| (Table V), and nearly independent
of 7 (Table IV). In comparison, T-Hop’s complexity is linear
to the answer size, which makes it run faster as query becomes
more selective (smaller |I] or larger 7). Overall, T-Hop is at
least 10x faster than T-Base.

In Table VI, we increase the dataset size up to 500M
records, which takes around 30 Gigabytes of disk space in
PostgreSQL. Running default queries in such cases, we can
see that T-Hop is more than 100X faster than T-Base, bringing
down the query time from nearly 12 minutes to just 2 seconds.
T-Hop also apparently scales well on large datasets, since the
complexity is mostly linear to the answer size. The query
time increase solely comes from the more expensive top-k
module. On the contrary, the continuous sliding-window nature
of T-Base makes it prohibitively slow when dealing with large
amounts of temporal data.

C. Summary of Experiments

In sum, we conclude that the Hop-based algorithms, T-Hop
and S-Hop, are the best solutions for answering durable pref-
erence top-k queries. They scale well on large datasets as well
as to high dimensions, and most importantly, their query time
complexity is proportional to the answer size. This property
makes T-Hop and S-Hop run even faster when the query is
highly selective; i.e., smaller k£ or larger 7, which tend to be
the more practical and meaningful query settings that people
would use in real-life applications. While S-Band is also a
reasonable approach, its performance depends highly on the
data characteristics (faring poorly in high dimensions and for
certain distributions). S-Band also requires additional offline
indexing for finding durable k-skyband candidates. Overall,
as demonstrated by experiments on both real and synthetic
data, efficiency and robustness of Hop-based solutions make
them more attractive solutions. Even on very large and high-
dimensional datasets, T-Hop/S-Hop only need less than a
second to return durable top records for any given preference,
which enables interactive data exploration. Finally, T-Hop can

"The other proposed solution, S-Hop, requires a more delicate query
procedure and data structures (recall Algorithm 3). Hence it is more suitable
to implement S-Hop as a wrapper function outside the DBMS.



be efficiently implemented inside a DBMS; for large datasets
(tens of Gigabytes), it brings down the query time to just
a couple of seconds, from more than 10 minutes required
without our solution.

VII. RELATED WORK

The notion of “durability” on temporal data has been studied
by previous works, but they consider different definitions of
durability and/or different data models from ours. In [26]
and [27], authors implicitly considered ‘“durability” in the
form of prominent streaks in sequence data, and devised
efficient algorithms for discovering such streaks. Given a
sequence of values, a prominent streak is a long consecutive
subsequence consisting of only large (small) values. Their
algorithms can also be extended to find general top-k, multi-
sequence and multi-dimensional prominent streaks. Jiang and
Pei [28] studied Interval Skyline Queries on time series, which
can be viewed as another type of “durability” when segments
of time series dominate others.

Another line of durability-related work on temporal data
is represented by [29]-[31] and [32]. Consider a time-series
dataset with a set of objects, where the data values of each
object are measured at regular time intervals; i.e., stock
markets. At each time ¢, objects are ranked according to their
values at ¢t. The definition of “durability” therein is the fraction
of time during a given time window when an object ranks
k or above. This line of work mainly focused on how to
efficiently aggregate rankings (rank < & or not) over time. [32]
applied durable top-k searches in document archives, finding
documents that are consistently among the most relevant to
query keywords throughout a given time interval. In that
setting, the challenge is how to merge multiple per-keyword
relevance scores over time efficiently into a single rank.

Durable queries also arise in dynamic or temporal graphs,
typically represented as sequences of graph snapshots. For
example, in [33] and [34], authors considered the problem
of finding the (top-k) most durable matches of an input graph
pattern query; that is, the matches that exist for the longest
period of time. The main focus is on the representations and
indexes of the sequence of graph snapshots, and how to adapt
classic graph algorithms in this setting.

Besides durability, Mouratidis et al. [11] studied how to
continuously monitor top-k results over the most recent data
in a streaming setting. Our baseline solution used in Section VI
shares the same spirit as algorithms in [11] for incrementally
maintaining top-k results over consecutive sliding windows.
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