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ABSTRACT

We consider a class of queries called durability prediction queries

that arise commonly in predictive analytics, where we use a given

predictive model to answer questions about possible futures to

inform our decisions. Examples of durability prediction queries

include “what is the probability that this financial product will

keep losing money over the next 12 quarters before turning in any

profit?” and “what is the chance for our proposed server cluster

to fail the required service-level agreement before its term ends?”

We devise a general method called Multi-Level Splitting Sampling

(MLSS) that can efficiently handle complex queries and complex

models—including those involving black-box functions—as long

as the models allow us to simulate possible futures step by step.

Our method addresses the inefficiency of standard Monte Carlo

(MC) methods by applying the idea of importance splitting to let one

“promising” sample path prefix generate multiple “offspring” paths,

thereby directing simulation efforts toward more promising paths.

We propose practical techniques for designing splitting strategies,

freeing users from manual tuning. Experiments show that our ap-

proach is able to achieve unbiased estimates and the same error

guarantees as standard MC while offering an order-of-magnitude

cost reduction.
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1 INTRODUCTION

Increasingly, we rely on predictive analytics to inform decision

making. Typically, we build a model to predict the future, using his-

torical data and expert domain knowledge. Then, using this model,

we can ask questions about possible futures to inform our deci-

sions. A common type of such questions are what we call durability

prediction queries, which predict how likely is it that a condition

will remain over a given duration into the future. For example,

business analysts ask durability prediction queries for financial risk

assessments: “what is the probability that this financial product will
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keep losing money over the next 12 quarters before turning in any

profit?” or “how likely is it that our client will not have a default

on the mortgage loan in the next five years?” As another example,

engineers ask durability prediction queries about reliability: “what

is the probability that a self-driving car makes a serious misjudge-

ment within its warranty period?” or “what is the chance for our

proposed server cluster to fail the required service-level agreement

before its term ends?” In this paper, we consider the problem of

answering durability prediction queries given a predictive model

of the future.

Durability prediction queries are challenging for several reasons.

In contrast to queries over historical data, these queries must deal

with uncertainties about the possible futures. Moreover, temporal

dependence broadly exists in temporal data: across examples such

as financial markets, customer behaviors, or system workloads, the

state of the world at the present time often depends strongly on

the recent past. This observation renders inapplicable much of the

existing work on query processing over probabilistic databases [17,

26, 32, 33, 49, 55, 62], where uncertainty in data is assumed to be

independent across objects (e.g., attribute or tuple values).

A second challenge stems from the growing popularity of com-

plex predictive models. Oftentimes, due to cost and data privacy

considerations, we do not have the luxury of building a custom

model directly just to answer one specific durability prediction

query; instead, we would be given a general model with which we

can simulate possible future states of data and use them to answer

various queries. This paper does not prescribe how to come up with

such a model; we assume it is given to us and focus on how to use

it to answer durability prediction queries efficiently. However, we

do want to support a wide gamut of models—be it a traditional

stochastic processes with good analytical properties or a black-box

model that powers its predictions by deep neural networks. While

it is possible to derive analytical answers to durability prediction

queries for simple queries and simple models on a case-by-case

basis (e.g., when the value of an auto-regressive process [54] hits

a particular threshold), our goal is to derive a general-purpose

procedure that works for any query and for any model, provided

that the model allows us to simulate possible futures step by step.

For example, the simulation model can use a recurrent neural net-

work [31, 37, 52] to predict prices for a collection of stocks for the

next hour using their prices during the past 36 hours, and the query

can ask for the probability that a given stock’s P/E ratio will rank

among the top 10 by the end of the week. In general, we will need

to resort to Monte Carlo (MC) techniques [6] to generate multiple

“sample paths” (each corresponding to one possible sequence of

future states) and evaluate the query condition on them, in order

to derive an estimate to the query answer.

A third challenge, however, stems from the serious inefficiency

of the standard MC technique of simple random sampling. It suffers

greatly when the answer probability is small. In fact, as previous
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studies have pointed out [42, 46], the relative error of standard MC

increases to infinity as the underlying probability approaches 0,

therefore requiring a prohibitively expensive number of simulations

in order to achieve acceptable error. Unfortunately, in many practi-

cal use cases of durability prediction queries such as the examples

above, people are interested in looking for robust and consistent

behaviors over time, which naturally leads to small answer prob-

abilities. Hence, the drawbacks of simple random sampling are

further amplified by durability prediction queries.

To address these challenges, we propose an alternative approach

to answer durability prediction queries that preserves the gener-

ality and simplicity of standard MC, but provides significant effi-

ciency improvement. The key insight is that not all sample paths are

equally promising. Instead of generating each sample path indepen-

dently from the very start (as in simple random sampling), we can

gauge, from where a path has been so far, how close it is to hitting

the condition of interest. We would then “split” a promising partial

path into multiple “offsprings,” by continuing multiple simulations

from this same partial path. With this approach, we effectively

direct more simulation efforts towards those more promising sim-

ulation paths. Note that we achieve this goal simply by choosing

when and where (during sampling) to invoke the given per-step

simulation procedure (which can be an arbitrarily complex black-

box) without changing its internals, which makes this approach

very general and practical.

Our main technical contributions are as follows:

• We formalize the notion of durability prediction queries given a

predictive model with a step-by-step simulation procedure. The

generality of our novel problem formulation and solutions means

that they are widely applicable, even for complex models and

complex queries that are increasingly common in practice.

• We propose Multi-Level Splitting Sampling (MLSS) as a general

method for answering durability prediction queries. This method

applies the idea of importance splitting [25], which has been well-

studied in statistic community [10, 42, 58]. However, the original

idea has limited applicability because of several strong assump-

tions on the underlying stochastic process, and it will produce

incorrect estimates when applied blindly to our problem. Our

approach drops many unrealistic assumptions and is generally ap-

plicable on a larger class of processes; it still provides significant

efficiency improvement with provably unbiased estimates.

• Practical application of MLSS requires designing “levels” that

correspond to “progress milestones” where we split a sample

path upon reaching them. We further propose an adaptive greedy

strategy that automatically and incrementally searches for a good

level design, thereby freeing users from manual tuning. The

strategy incurs low overhead and obtains good level design in

practice.

2 PRELIMINARIES

2.1 Problem Formulation

Stochastic Process and Simulation Model. Consider a dis-

crete time domain of interest T = {0, 1, 2, 3, . . . } and a discrete-time

stochastic process {-C }C ∈T with state space X, where -C ∈ X is a

random variable of state at time C . We are given an initial state G0
and a step-wise simulation procedure g that simulates the process

forward step by step: given previous states G<C = {G0, . . . , GC−1}

up to time C − 1, g(G<C , C) returns (randomly) the state GC at time C

(GC is the observed value of -C ). Starting from G0, we can generate

a sample path {G0, G1, G2, . . .} of arbitrary length for the process

by repeatedly invoking g. Multiple sample paths can be generated

simply by restarting the sequence of invocations.

This definition covers a wide range of generative models used

in practice for temporal data. It is worth noting that we place no

restriction on how complex the state space X and the step-wise

simulation procedure g are. We highlight some examples:

(1) Auto-regressive or AR(<) model: Here the simulation proce-

dure g draws the value EC at time C according to values of the last

< time steps, {EC−1, EC−2, . . . , EC−<}, by
∑<
8=1 q8EC−8 +nC , where q8 ’s

are model parameters and nC ’s are random errors.

(2) Time-homogeneous (discrete-time) Markov chains: Here g gen-

erates the state at time C according to a given probability distribution

Pr[-C | -C−1] independent of C and conditionally independent of

all states prior to the last.

(3) Black-box models: The popularity of deep learning in recent

years has given rise of highly complex models that are difficult

to reason with analytically. Consider, for example, a model that

captures the relationship between successive states using a recur-

rent neural network (RNN). Here, g generates the value EC for time

C according to EC ∼ > (6(ℎC−1, EC−1;\ );\ ), where ℎC−1 denotes the

state of the hidden layer(s) at time C − 1, > (·) and 6(·) are activation

functions, and \ denotes (time-invariant) model parameters; g fur-

ther updates ℎC−1 to ℎC . The state at time C hence includes both EC
and ℎC .

Durability PredictionQueries.Given a stochastic process {-C }C ∈T
governed by g with initial state -0, let @ : X → {0, 1} be a user-

specified Boolean query function that returns 1 if a given state

satisfies a condition of interest (and 0 otherwise). A durability pre-

diction query (or durability query for short) & (@, B) returns the

probability that the process ever reaches any state for which @ re-

turns 1 by the end of the prescribed time horizon B ∈ T. Formally,

& (@, B) = Pr[
∨

1≤C ≤B@(-C ) = 1]. Alternatively, consider the time

) before the process first “hits” (meets) the condition of interest;

) is an random variable, and the durability query & (@, B) returns

Pr[) ≤ B], i.e., the probability that the hitting time is within the

prescribed threshold B . As mentioned above, & (@, B) tends to be

small probabilities in real-life applications.

To illustrate, suppose we use a RNN-based model described

earlier to predict the price and earning for = stocks. The state

at time C consists of ℎC (of the hidden layers) as well as a vector

EC = 〈?
(1)
C , 4

(1)
C , . . . ?

(=)
C , 4

(=)
C 〉, where ?

(8)
C and 4

(8)
C are the price and

earning for stock 8 at time C . For a durability query& (@, B) concern-

ing the probability that stock 8 can break into top 10 by time B in

terms of P/E ratio, the query function @ would access the vector of

prices and earnings in the state, compute all P/E ratios, and check if

8’s rank is within 10.& (@, B) is the probability that a random sample

path reaches a state for which @ evaluates to 1 within time B .

For simple models and simple query functions (e.g., the condition

of interest is whether an AR(<) process exceeds a given value), we

can in fact compute durability prediction queries analytically and

exactly. In general, with complex models or complex query func-

tions, computing durability prediction queries becomes exceedingly
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difficult. Especially when the model itself is complex, we have to

resort to Monte Carlo simulations using g. Let g = & (@, B) denote

the exact answer to the query. Instead of returning g , our goal is to

devise an algorithm that can produce an unbiased estimate ĝ of g

together with some statistical quality guarantee (e.g., confidence

interval or estimator variance). We measure the cost of the algo-

rithm by the total number of invocations of g. In practice, the user

can specify a cost budget, and our algorithm will produce a final

estimate with quality guarantee when the budget runs out. Alter-

natively, the user can specify a target level of quality guarantee,

and our algorithm will run until the target guarantee is reached. In

this paper, we are interested in achieving better guarantees given a

fixed budget, or achieving the target guarantee with lower costs.

2.2 Background and Other Approaches

Durability prediction queries are deeply connected to a classic

problem in statistics called first-hitting time or first-passage time

in stochastic system [16, 50, 60]. Similar problems related to first-

hitting time are also independently studied in very diverse fields,

from economics [53] to ecology [22]. We briefly introduce several

existing approaches for durability prediction queries (or the first-

hitting time problem) here, and lay the foundation for later sections.

Analytical Solution. As mentioned earlier, there exist analyti-

cal solutions for some simple stochastic processes [29], e.g., Random

Walks, AR(<) model, to name but a few. However, real applications

often require more complex structures. For instance, Compound-

Poisson process is a well-known stochastic model for risk theory

in financial worlds. In [61], authors derived an analytical solution

for such stochastic processes. However, the exact solution itself

is very complicated, involving multiple integrals that still require

numerical approximations. In general, the analytical solution to

first-hitting problem is model-specific, may not exist for most ap-

plications, and hence cannot be directly used for durability query

processing.

Simple Random Sampling (SRS). Monte Carlo simulations

is the most general approach for answering durability prediction

queries. SRS is the standard Monte Carlo technique. To answer

durability query & (@, B) with query function @ and prescribed time

threshold B , we randomly simulate = independent sample paths ac-

cording to the procedure g. For each sample path (%8 = {G0, G1, . . . },

we define a label function indicating whether the simulated path

satisfies the query condition:

; ((%8 ) =

{
1,

∨
1≤C ≤B @(GC ) = 1,

0, otherwise.

Then, an unbiased estimator of SRS is ĝBAB =
∑

=

8=1 ; ((%8 )
= , with esti-

mated variance V̂ar(ĝBAB ) =
ĝBAB (1−ĝBAB )

= .

We use SRS as the main baseline solution throughout the paper.

The major drawback of SRS is its “blind search” nature—it randomly

simulates sample paths and just hopes that they could reach the

target. For durability prediction queries with small ground truth

answer g , SRS would waste significantly much simulation effort on

those sample paths that do not ever satisfy the query condition.

Importance Sampling (IS). Importance sampling is one of the

most popular variance reduction techniques for Monte Carlo sim-

ulations. It is a special case of biased sampling, where sampling

distribution systematically differs from the underlying distribu-

tion in order to obtain more precise estimate using fewer samples.

Let us use the following concrete example for illustration. Con-

sider an AR(1) model, where simulation procedure g draws the

value EC according to q1EC−1 + nC . Here, q1 is a constant param-

eter and nC is independent Gaussian noise; i.e., nC ∼ # (0, f) for

C ∈ T. Given time threshold B , the random variable of interest ; ((%)

has probability density 6(;) ∼
∏B

8=1 # (0, f). IS draws samples

from an instrumental distribution l , and an unbiased estimator is

ĝ8B =
1

=

=∑

8=1

6(; ((%8 ))

l (; ((%8 ))
; ((%8 ). Choosing a good instrumental distri-

butionl is critical for the success of IS. An iterative approach called

Cross-Entropy (CE) [18, 51] is widely used for importance sampling

optimization. However, IS typically requires a priori knowledge

about the model, e.g., model parameters or state transition prob-

abilities. This requirement can be impractical for some complex

temporal processes, not to mention black-box models that we con-

sider in this paper.

Learning Durability Directly. Instead of answering durability

prediction queries from using a simulation model, one could also

learn predictive models that directly answer durability prediction

queries. However, a general simulation model as we considered in

this paper is often preferred based on the following considerations:

(1) In some cases, we do not always have the luxury of training

custom models from real data points just to answer queries. It

is costly or even unethical to collect training data for such pur-

poses, e.g., autonomous driving car testing. (2) Building an one-off

model to answer durability prediction queries (with different query

conditions and different parameters) would quickly become infea-

sible because each type of durability prediction implies a different

modeling exercise. In contrast, a general simulation model can be

conveniently reused for answering a variety of queries using our

technique without requiring extra data collections or modeling ex-

pertise. Moreover, a nice byproduct of utilizing simulation models

is that we also produce a set of concrete sample paths alongside the

point estimate and confidence interval. Users can look into these

“possible worlds” to get a better understanding of query answers.

Compared to the relatively opaque direct models that output only

the final durability prediction, this approach provides more inter-

pretability and credibility. We acknowledge the difficulty of having

good simulation functions, but we note that for many domains,

e.g., finances, autonomous vehicles, etc., the use of such general

simulation models are well-established and common.

Remarks. All solutions reviewed above have limitations: ana-

lytical solutions and IS are not generally applicable to durability

prediction queries; SRS can be very inefficient; and the alternative of

learning custom models to predict durability directly may be infea-

sible for practical (ethical or cost) reasons. In the ensuing sections,

we introduce a novel approach for answering durability prediction

queries from simulation models that achieves the generality of SRS

as well as the efficiency of IS.
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Table 1: Notations
B Prescribed time horizon of the durability query.

A Splitting ratio (or branching factor).

< Number of levels.

V8/V The partition boundary for the 8-th level / target value.

!8 The 8-th level. !< is the target level.

#8

Number of first-time entrance state into !8 .

#0 is the number of root paths;

#< is the number of hits to the target.

?8 (conditional) Level advancement probability from level !8−1 to !8 .

3 SIMPLE MLSS

Since generating too many paths that do not meet the query con-

dition can be a waste of simulation cost, it is natural to design a

sampling procedure that more frequently produces paths that reach

the target. To this end we apply the idea of splitting [25]. The in-

tuition is to encourage further explorations of paths that are more

likely to hit the condition of interest by splitting them into multiple

offsprings when they reach particular “milestones” (see Figure 1 for

illustration). Such treatment is analogous to the notion of sample

weight/importance in importance sampling, but without explicitly

tweaking the underlying step-wise simulation procedure g.

Traditional applications of the splitting idea are mostly con-

cernedwithmuch simpler settings (e.g., process with strongMarkov

properties). To apply splitting to our setting of durability prediction

queries, we need to introduce the concept of value functions.

Value Functions. We first capture how promising a path prefix

is using a heuristic value function 5 (GC ) : X×T→ (0, 1]. The closer

5 (GC ) is to 1, the more likely that the process will reach the query

condition given the current state. We further require that 5 (GC ) = 1

if and only if @(GC ) = 1.

As outlined in the definition of levels below, 5 guides when

to split a path, thus a properly defined 5 leads to more efficient

simulation efforts. It is worth noting that the unbiasedness of our

estimator in this section does not depend on 5 ; only its efficiency

does.

The best choice of 5 is problem-specific as it depends on both

the simulation model and the query. In practical applications, the

query condition often takes the form I (GC ) ≥ V , where I : X → R

is a real-valued evaluation of a state and V is a user-specified value

threshold, and I (GC ) has a higher chance to hit the boundary when

GC is closer to it. Thus a reasonable value function would be 5 (GC ) =

min{I (GC )/V, 1}. More sophisticated designs of value functions are

certainly possible, but are beyond the scope of this paper.

Levels. With the help of the value function 5 , we can now in-

troduce the notion of levels to capture multiple intermediate “mile-

stones” a sample path can reach before meeting the query condition.

We partition [0, 1], the range of value function 5 , into< + 1 disjoint

levels (intervals) with boundaries 0 = V0 < V1 < · · · < V< = 1,

where !8 = [V8 , V8+1) for 0 ≤ 8 ≤ < − 1 are the first < levels,

and the degenerated interval !< = [1, 1] is the last level. Let

)8 ((%) = inf{C ≥ 0 | 5 (GC ) ∈ !8 } be the first time that a sam-

ple path (% : {GC }C ≥1 enters level !8 . Let Ξ8 = {(% | )8 ((%) ≤ B}

denote the event that the process enters !8 before time threshold B ;

i.e., the set of all possible simulated paths that enter !8 before B .

3.1 s-MLSS Sampler and Estimator

We are now ready to describe a simple version of Multi-Level Split-

ting Sampling, s-MLSS. Frequently used notations are summarized

in Table 1. As noted earlier, the idea of splitting can be traced back

to 1951 [38] and has been used by several authors in statistic com-

munity [25]. The interested readers can refer to [25] for a more

comprehensive introduction. However, prior studies mostly fo-

cused on stochastic processes with strong Markov property. Here

we introduce s-MLSS for more general simulation models in the

context of durability prediction queries. Nonetheless, s-MLSS still

inherits a critical assumption from existing literature:

(No Level-Skipping) Any sample path generated from the sto-

chastic procedure g has to enter !8 before it enters !8+1, for every

8 ≤ <.

This assumption is rather restrictive and does not hold in general.

It is possible (especially in practice with discrete time) for a sample

path’s value to jump, between two consecutive time instants, from

a level to a higher one, crossing multiple levels in between. We

show with experiments in Section 6 that ignoring this assumption

and blindly applying s-MLSS will in practice lead to incorrect an-

swers. In Section 4, we instead see how g-MLSS, our general version

of MLSS, lifts this assumption and correctly handles the general

case. Nonetheless, s-MLSS serves as a good starting point for our

exposition.

As a result of the no-level skipping assumption, we have the

following containment relation:

Ξ< ⊂ Ξ<−1 ⊂ · · · ⊂ Ξ1 ⊂ Ξ0 . (1)

With (1) and the chain rule for probability we decompose the target

probability g as

g = Pr[Ξ<] = Pr[Ξ< | Ξ<−1] · · · Pr[Ξ1 | Ξ0] Pr[Ξ0] =
∏<

8=1 ?8 , (2)

where ?8 = Pr[Ξ8 | Ξ8−1] is referred to as the level advancement

probability. Next we show the s-MLSS sampling approach that

estimates ?8 ’s and in turn g .

s-MLSS Sampler. In a nutshell, s-MLSS works in rounds of

stages, estimating the decomposed probability ?8 separately be-

tween consecutive levels. For each level !8 , we maintain a counter

#8 denoting the number of sample paths that enter !8 for the first

time. In the first stage, we start the simulation of a path from the

initial level !0, which we refer to as the root path, and increment

the counter #0 by 1. We continue the simulation up to time B:

(1) If the sample path does not enter the next level !1, we stop and

start a new round of simulation for the next root path.

(2) Otherwise, we increment the counter #1 by 1 and split the root

path into A independent copies at the first time it enters !1,

where A is a constant called splitting ratio. Assume the hitting

time is C , we define the state XC of sample path as the entrance

state to !1. All splitting copies from the original path will use the

same entrance state XC as starting point for future simulations.

Then in the next stage, for each of the splitting offspring of the

root path, we recursively follow the similar procedure as described

above: simulate the path up to time B; if it reaches the next level,

increment the counter of that level, split and repeat; If not, finish

the simulation at time B . The simulation of a root path stops when
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General Level-skipping and Bootstrapping Evaluation. In

the general case, the standard technique of bootstrap sampling

can be used in practice to provide a good estimation for variance

of g-MLSS estimator. This approach is widely used to empirically

estimate the variance or the distribution of sample mean when the

population variance is complex and or not accessible.

More specifically, in our setting, assume we have already sim-

ulated #0 root paths and obtained an estimate ĝ0 of the hitting

probability. In one bootstrap run, we randomly draw = root paths,

with replacement, from the existing root paths, from which we cal-

culate a g-MLSS estimate, called a bootstrap estimate. We perform

# such independent bootstrap runs to obtain # bootstrap estimates

ĝ8 , 8 = 1, ..., # . From the empirical distribution of ĝ8 , 8 = 1, ..., # , we

calculate the (bootstrapped) variance for g-MLSS, i.e., +̂ 0A (ĝ0) =∑#
8=1 (ĝ8 − ḡ)2/# , where ḡ is the mean of bootstrap estimates from

# bootstrap runs.

Despite the simplicity and effectiveness of bootstrap sampling, it

may incur considerable evaluation cost, as bootstrapping essentially

replays the history multiple times, and may become increasingly

expensive as we expand the sample pool. Compared to the case

of s-MLSS or g-MLSS with the two-level setting where variance

can be directly calculated, applying g-MLSS with bootstrap eval-

uation requires more care to achieve good overall performance.

There are several techniques for speeding up bootstrap sampling,

ranging from more advanced subsampling procedures [4, 40] to

parallel computation. A practical rule of thumb that we found in

practice is to run bootstrap evaluation conservatively—compared

with frequent bootstrapping to ensure that we never overshoot the

given quality target, sometimes overrunning the simulation a little

would be overall more efficient. As we will see in Section 6, applying

this rule, even with an unoptimized bootstraping implementation,

g-MLSS can still provide up to 5x overall speedup over SRS.

5 OPTIMIZING MLSS DESIGN

There is still one missing piece in applyingMLSS: how dowe choose

its parameters? Specifically, howmany levels do we need, and given

the number of levels, how do we properly partition the value func-

tion range into levels? In Section 4, we saw that g-MLSS also allows

variable splitting ratios—how do we additionally choose these?

Manually tuning all these parameters is clearly impractical. On the

other hand, automatic optimization is also challenging because of

the vast space of possibilities as well as the difficulty of not knowing

the effectiveness of our choices a priori.

We make some simplifying assumptions to make the optimiza-

tion problem tractable. 1) We focus only on choosing level partition

plans; we forgo the freedom of setting variable splitting ratios and

instead choose a small, fixed splitting ratio A . As validated in exper-

iments in Section 6, large ratios tend to be suboptimal because they

dramatically increase the number of paths at higher levels. Fur-

thermore, variable splitting ratios can be effectively approximated

by replacing a level having a large ratio with multiple levels, each

having the same small fixed ratio. 2) We derive an empirical mea-

sure for evaluating different MLSS parameter settings (Section 5.1).

For ease of derivation and measurement, we make the same no

level-skipping assumption as in s-MLSS. While this assumption

does not hold in general, it allows to obtain a surrogate measure

that is much cheaper to estimate. Importantly, it does not affect the

correctness of our sampling and estimation procedures in any way

because it is only used to choose a partition plan. Moreover, as we

will see in experiments in Section 6.3, this measure work well in

practice for both s-MLSS and g-MLSS on various models and query

types. 3) We then present an adaptive greedy strategy (Section 5.2)

that searches for the parameters settings aimed at optimizing the

above empirical metric. This strategy is generic, applicable to both

s-MLSS and g-MLSS, and can work with other, better empirical

measures if available.

5.1 Partition Plan Evaluation

Previous work in statistics [42] showed an analogy between MLSS

(with fixed splitting ratio) and branching process theory [30], and

concluded that the optimal setting forMLSS is tomake advancement

probabilities between consecutive levels roughly the same, called a

“balanced growth.” That is, consider MLSS with< levels,

?1 = ?2 = · · · = ?< = ? = g1/< . (10)

From standard branching process theory, we have

Var(ĝ<;BB ) =
<(1 − ?)?2<−1

#0
. (11)

The above expression indicates that given a fixed number of root

paths, more levels lead to smaller variance. However, more levels

also lead to more expensive simulation cost of a root path because

of the exponential splitting growth of a root path through the

levels. Our optimization goal, using MLSS as approximate query

processing technique, is not just to minimize variance. Instead,

we hope to minimize the variance in a fixed amount of the time.

Ultimately, the query time usingMLSS is determined by the variance

of the estimator. A smaller variance in unit time directly leads to

less simulation cost for answering durability query. Though the

“balanced growth” strategy is a reasonable guideline to partition

the space, it is still not clear, in practice, how to partition levels

that create balanced growth and how to choose the right number

of levels.

To meet our needs, we propose the following evaluation metric.

Consider a level partition plan �, which consists of a set of values

what we call “partition boundaries”; that is, � = {E | E ∈ (0, 1)}.

Given a fixed amount of simulation budget, say C0 time, we have

simulated # (C0) root paths (including all its splitting copies). Note

that # (C0) is a random variable depending on the total time C0 and

the average simulation time 2� of a root path using partition plan

�. We define an evaluation function for � in terms of variance of

estimator ĝ<;BB by # (C0):

4E0; (�) = Var

(
#< (C0)

# (C0)A<−1

)
, (12)

where #< (C0) is a random variable denoting the total number of

target hits within C0 time. In this case,< = |� | + 1, denoting the total

number levels induced by plan �. Since # (C0) is a random variable,

we should express the variance term conditioning on # (C0), and

use the law of total variance and the decomposition trick in (4):

4E0; (�) = E

[
Var(#

〈1〉
< )

# (C0)A 2(<−1) | # (C0)

]
+ Var

(
E

[
#< (C0)

# (C0)A<−1 | # (C0)

] )
.
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Figure 6: Query efficiency on Queue Model
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Figure 7: Query efficiency on CPP Model

6.1 MLSS vs. SRS

In this section, we comprehensively compare the performance of

MLSS and SRS. Note that under the settings of experiments in

this particular section, “level skipping” will not occur, so g-MLSS is

equivalent to s-MLSS. Therefore, we do not distinguish between

s-MLSS and g-MLSS in this section, and just use the term MLSS for

simplicity to compare with the baseline. In Section 6.2, we modify

the processes to make them more volatile (so “level skipping” will

happen) and further evaluate the performance of g-MLSS. For

each stochastic temporal model, we design four types of durability

queries: Medium, Small, Tiny and Rare, denoting the quantity of the

(estimated) true answer probability of the queries. Detailed query

parameters are summarized in Table 2.

Estimations and Overall Efficiency. We first demonstrate the

answer quality, i.e., unbiasedness, of MLSS. For each model and for

each type of query, we repeatedly run SRS and MLSS 100 times,

respectively, and average the returned answers alongwith empirical

standard deviations. Results are summarized in Tables 3 (Queue

Model), 4 (CPP Model) and, 5 (RNN Model). As shown in these

tables, the answers (hitting probability) returned by SRS and MLSS,

on all types of queries and on all models, are essentially the same.

Even though they are not identical, the differences are well within

the standard deviation. This finding confirmed our analysis and

proof in Section 3 about MLSS’s unbiased estimation.

Next, let us compare the query efficiency between SRS and MLSS.

We time the query until its answer (estimation) achieves certain

quality target. As shown in Figure 6 (Queue Model) and Figure 7

(CPP Model), MLSS generally runs significant faster than SRS (note

the log scale on y-axis). For Medium and Small queries, we can see

a 40% to 60% query time reduction brought by MLSS. For Tiny and

Rare queries, MLSS runs 10x faster than SRS, without loss of answer

quality. As discussed earlier in Section 3.1, the main advantage of

MLSS to SRS is the ability to focus and encourage simulations that

move towards the target. This property is especially helpful for

those durability queries with lower probability, since MLSS can

better distribute simulation efforts to promising paths hitting the

Table 6: Performance comparison between s-MLSS and g-

MLSS on temporal process with volatile values changes.
Volatile CPP Volatile Queue

Tiny Query

(B : 500, V : 700)

Rare Query

(B : 500, V : 1000)

Tiny Query

(B : 500, V : 65)

Rare Query

(B : 500, V : 75)

SRS 2.2%±1.5% 0.1%±0.2% 1.7%±0.9% 0.3%±0.26%

s-MLSS 1.1%±0.8% 0.05%±0.07% 1.2%±0.5% 0.2%±0.11%

g-MLSS 2.1%±1.2% 0.09%±0.1 % 1.7%±0.5% 0.3%±0.17%

target, instead of blindly wasting time on those failure paths (which

would be a large portion of the total) as SRS did. We observe similar

query efficiency improvement on the more complex RNN model.

In Table 5, for Small and Tiny queries (which are more commonly

asked in practice) on RNN model, there is a roughly 80% to an

order-of-magnitude query time reduction provided by MLSS.

Overall, MLSS clearly surpasses SRS across different models

and on different types of commonly asked durability queries in

practice, providing query speedup from 40% up to an order of

magnitude, without sacrificing answer quality. It is also worth

mentioning that MLSS is best suited for Tiny and Rare queries, and

may not provide much benefit for larger queries. If the target is

relatively easy to reach (which corresponds to large probability),

the splitting behavior of MLSS would bring little benefit and may

result in unnecessary overhead. Hence, in later sections, we would

focus our discussions/evaluations more on Tiny and Rare queries,

which are also the commonly asked durability queries in practice.

Query Performance over Time. To take a closer look at query

performance comparison of MLSS and SRS, we monitor query an-

swers and its quality (CI or RE) over time, and plot the convergence

of estimations on single run of MLSS and SRS, respectively. See

Figure 8 for details. In Figure 8(1), we run a Small query on Queue

model and use CI as estimation quality measure. For better illustra-

tion, CI intervals are interpreted as percentage to the true proba-

bility such that it will be centered at 0. The grey ribbon in the plot

shows the desired region for a reliable estimate (true probability

with 1% CI). Symmetric red lines and blue lines demonstrate how

CIs of MLSS and SRS converge over time. Red dotted line and blue

dotted line are the estimate of MLSS and SRS over time. It is clear

that MLSS converges faster than SRS on estimation quality. On the

other hand, we can also see that the estimates (red dotted line and

blue dotted line) from MLSS and SRS are always nicely contained

by its corresponding CI, showing the statistical guarantees brought

by CI. We observe similar behaviors on CPP model (Figure 8(2)) and

RNN model (Figure 8(3)). Here we use run Tiny queries on these

two models and use RE as quality measure. Similarly, the time that

MLSS needs for a reliable estimate (10% RE, dashed line in the plot)

is significantly shorter than that of SRS.

6.2 Simple MLSS vs. General MLSS

s-MLSS works well in practice if the underlying process satisfies the

no level-skipping assumption, as demonstrated in previous sections.

To show the limitation of s-MLSS and the generality of g-MLSS,

we consider level skipping by experimenting with new temporal

processes based on CPP model and Queue model with impulse

value jumps between consecutive time instants. More specifically,

when C > 0.8B we introduce large value increase of (200 for CPP,

and 5 for Queue) with small probabilities (0.005 for CPP and 0.2

for Queue). We refer to these two processes as Volatile CPP and

Volatile Queue.
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