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ABSTRACT

We consider a class of queries called durability prediction queries
that arise commonly in predictive analytics, where we use a given
predictive model to answer questions about possible futures to
inform our decisions. Examples of durability prediction queries
include “what is the probability that this financial product will
keep losing money over the next 12 quarters before turning in any
profit?” and “what is the chance for our proposed server cluster
to fail the required service-level agreement before its term ends?”
We devise a general method called Multi-Level Splitting Sampling
(MLSS) that can efficiently handle complex queries and complex
models—including those involving black-box functions—as long
as the models allow us to simulate possible futures step by step.
Our method addresses the inefficiency of standard Monte Carlo
(MC) methods by applying the idea of importance splitting to let one
“promising” sample path prefix generate multiple “offspring” paths,
thereby directing simulation efforts toward more promising paths.
We propose practical techniques for designing splitting strategies,
freeing users from manual tuning. Experiments show that our ap-
proach is able to achieve unbiased estimates and the same error
guarantees as standard MC while offering an order-of-magnitude
cost reduction.
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1 INTRODUCTION

Increasingly, we rely on predictive analytics to inform decision
making. Typically, we build a model to predict the future, using his-
torical data and expert domain knowledge. Then, using this model,
we can ask questions about possible futures to inform our deci-
sions. A common type of such questions are what we call durability
prediction queries, which predict how likely is it that a condition
will remain over a given duration into the future. For example,
business analysts ask durability prediction queries for financial risk
assessments: “what is the probability that this financial product will
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keep losing money over the next 12 quarters before turning in any
profit?” or “how likely is it that our client will not have a default
on the mortgage loan in the next five years?” As another example,
engineers ask durability prediction queries about reliability: “what
is the probability that a self-driving car makes a serious misjudge-
ment within its warranty period?” or “what is the chance for our
proposed server cluster to fail the required service-level agreement
before its term ends?” In this paper, we consider the problem of
answering durability prediction queries given a predictive model
of the future.

Durability prediction queries are challenging for several reasons.
In contrast to queries over historical data, these queries must deal
with uncertainties about the possible futures. Moreover, temporal
dependence broadly exists in temporal data: across examples such
as financial markets, customer behaviors, or system workloads, the
state of the world at the present time often depends strongly on
the recent past. This observation renders inapplicable much of the
existing work on query processing over probabilistic databases [17,
26, 32, 33, 49, 55, 62], where uncertainty in data is assumed to be
independent across objects (e.g., attribute or tuple values).

A second challenge stems from the growing popularity of com-
plex predictive models. Oftentimes, due to cost and data privacy
considerations, we do not have the luxury of building a custom
model directly just to answer one specific durability prediction
query; instead, we would be given a general model with which we
can simulate possible future states of data and use them to answer
various queries. This paper does not prescribe how to come up with
such a model; we assume it is given to us and focus on how to use
it to answer durability prediction queries efficiently. However, we
do want to support a wide gamut of models—be it a traditional
stochastic processes with good analytical properties or a black-box
model that powers its predictions by deep neural networks. While
it is possible to derive analytical answers to durability prediction
queries for simple queries and simple models on a case-by-case
basis (e.g., when the value of an auto-regressive process [54] hits
a particular threshold), our goal is to derive a general-purpose
procedure that works for any query and for any model, provided
that the model allows us to simulate possible futures step by step.
For example, the simulation model can use a recurrent neural net-
work [31, 37, 52] to predict prices for a collection of stocks for the
next hour using their prices during the past 36 hours, and the query
can ask for the probability that a given stock’s P/E ratio will rank
among the top 10 by the end of the week. In general, we will need
to resort to Monte Carlo (MC) techniques [6] to generate multiple
“sample paths” (each corresponding to one possible sequence of
future states) and evaluate the query condition on them, in order
to derive an estimate to the query answer.

A third challenge, however, stems from the serious inefficiency
of the standard MC technique of simple random sampling. It suffers
greatly when the answer probability is small. In fact, as previous
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studies have pointed out [42, 46], the relative error of standard MC
increases to infinity as the underlying probability approaches 0,
therefore requiring a prohibitively expensive number of simulations
in order to achieve acceptable error. Unfortunately, in many practi-
cal use cases of durability prediction queries such as the examples
above, people are interested in looking for robust and consistent
behaviors over time, which naturally leads to small answer prob-
abilities. Hence, the drawbacks of simple random sampling are
further amplified by durability prediction queries.

To address these challenges, we propose an alternative approach
to answer durability prediction queries that preserves the gener-
ality and simplicity of standard MC, but provides significant effi-
ciency improvement. The key insight is that not all sample paths are
equally promising. Instead of generating each sample path indepen-
dently from the very start (as in simple random sampling), we can
gauge, from where a path has been so far, how close it is to hitting
the condition of interest. We would then “split” a promising partial
path into multiple “offsprings,” by continuing multiple simulations
from this same partial path. With this approach, we effectively
direct more simulation efforts towards those more promising sim-
ulation paths. Note that we achieve this goal simply by choosing
when and where (during sampling) to invoke the given per-step
simulation procedure (which can be an arbitrarily complex black-
box) without changing its internals, which makes this approach
very general and practical.

Our main technical contributions are as follows:

o We formalize the notion of durability prediction queries given a
predictive model with a step-by-step simulation procedure. The
generality of our novel problem formulation and solutions means
that they are widely applicable, even for complex models and
complex queries that are increasingly common in practice.

o We propose Multi-Level Splitting Sampling (MLSS) as a general
method for answering durability prediction queries. This method
applies the idea of importance splitting [25], which has been well-
studied in statistic community [10, 42, 58]. However, the original
idea has limited applicability because of several strong assump-
tions on the underlying stochastic process, and it will produce
incorrect estimates when applied blindly to our problem. Our
approach drops many unrealistic assumptions and is generally ap-
plicable on a larger class of processes; it still provides significant
efficiency improvement with provably unbiased estimates.

e Practical application of MLSS requires designing “levels” that
correspond to “progress milestones” where we split a sample
path upon reaching them. We further propose an adaptive greedy
strategy that automatically and incrementally searches for a good
level design, thereby freeing users from manual tuning. The
strategy incurs low overhead and obtains good level design in
practice.

2 PRELIMINARIES
2.1 Problem Formulation

Stochastic Process and Simulation Model. Consider a dis-
crete time domain of interest T = {0,1,2,3, ... } and a discrete-time
stochastic process {X; };eT with state space X, where X; € X is a
random variable of state at time t. We are given an initial state xq
and a step-wise simulation procedure g that simulates the process
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forward step by step: given previous states x<; = {xo,...,x7-1}
up to time ¢t — 1, §(x<, t) returns (randomly) the state x; at time ¢
(x; is the observed value of X;). Starting from x(, we can generate
a sample path {xo,x1,x2,...} of arbitrary length for the process
by repeatedly invoking g. Multiple sample paths can be generated
simply by restarting the sequence of invocations.

This definition covers a wide range of generative models used
in practice for temporal data. It is worth noting that we place no
restriction on how complex the state space X and the step-wise
simulation procedure g are. We highlight some examples:

(1) Auto-regressive or AR(m) model: Here the simulation proce-
dure g draws the value v; at time t according to values of the last
m time steps, {0;—1,0¢-2,...,0t—m}, by Z?__’I @ivi—i + €, where ¢;’s
are model parameters and €;’s are random errors.

(2) Time-homogeneous (discrete-time) Markov chains: Here g gen-
erates the state at time t according to a given probability distribution
Pr[X; | X;-1] independent of ¢ and conditionally independent of
all states prior to the last.

(3) Black-box models: The popularity of deep learning in recent
years has given rise of highly complex models that are difficult
to reason with analytically. Consider, for example, a model that
captures the relationship between successive states using a recur-
rent neural network (RNN). Here, g generates the value v; for time
t according to v; ~ 0(g(hs—1,vr-1;0);0), where h;_1 denotes the
state of the hidden layer(s) at time ¢ — 1, o(+) and g(+) are activation
functions, and 6 denotes (time-invariant) model parameters; g fur-
ther updates h;_1 to h;. The state at time ¢ hence includes both v;
and h;.

Durability Prediction Queries. Given a stochastic process {X; }zeT
governed by g with initial state X, let ¢ : X — {0, 1} be a user-
specified Boolean query function that returns 1 if a given state
satisfies a condition of interest (and 0 otherwise). A durability pre-
diction query (or durability query for short) Q(g,s) returns the
probability that the process ever reaches any state for which g re-
turns 1 by the end of the prescribed time horizon s € T. Formally,
0(q,s) = Pr[V1<r<sq(X¢) = 1]. Alternatively, consider the time
T before the process first “hits” (meets) the condition of interest;
T is an random variable, and the durability query Q(g, s) returns
Pr[T < s], i.e, the probability that the hitting time is within the
prescribed threshold s. As mentioned above, Q(q, s) tends to be
small probabilities in real-life applications.

To illustrate, suppose we use a RNN-based model described
earlier to predict the price and earning for n stocks. The state
at time t consists of h; (of the hidden layers) as well as a vector
v = (pt1 ,et1 . .ptn , etn ), where ptl and etl are the price and
earning for stock i at time t. For a durability query Q(qg, s) concern-
ing the probability that stock i can break into top 10 by time s in
terms of P/E ratio, the query function g would access the vector of
prices and earnings in the state, compute all P/E ratios, and check if
i’s rank is within 10. Q(g, s) is the probability that a random sample
path reaches a state for which g evaluates to 1 within time s.

For simple models and simple query functions (e.g., the condition
of interest is whether an AR(m) process exceeds a given value), we
can in fact compute durability prediction queries analytically and
exactly. In general, with complex models or complex query func-
tions, computing durability prediction queries becomes exceedingly
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difficult. Especially when the model itself is complex, we have to
resort to Monte Carlo simulations using g. Let 7 = Q(q, s) denote
the exact answer to the query. Instead of returning 7, our goal is to
devise an algorithm that can produce an unbiased estimate 7 of 7
together with some statistical quality guarantee (e.g., confidence
interval or estimator variance). We measure the cost of the algo-
rithm by the total number of invocations of g. In practice, the user
can specify a cost budget, and our algorithm will produce a final
estimate with quality guarantee when the budget runs out. Alter-
natively, the user can specify a target level of quality guarantee,
and our algorithm will run until the target guarantee is reached. In
this paper, we are interested in achieving better guarantees given a
fixed budget, or achieving the target guarantee with lower costs.

2.2 Background and Other Approaches

Durability prediction queries are deeply connected to a classic
problem in statistics called first-hitting time or first-passage time
in stochastic system [16, 50, 60]. Similar problems related to first-
hitting time are also independently studied in very diverse fields,
from economics [53] to ecology [22]. We briefly introduce several
existing approaches for durability prediction queries (or the first-
hitting time problem) here, and lay the foundation for later sections.

Analytical Solution. As mentioned earlier, there exist analyti-
cal solutions for some simple stochastic processes [29], e.g., Random
Walks, AR(m) model, to name but a few. However, real applications
often require more complex structures. For instance, Compound-
Poisson process is a well-known stochastic model for risk theory
in financial worlds. In [61], authors derived an analytical solution
for such stochastic processes. However, the exact solution itself
is very complicated, involving multiple integrals that still require
numerical approximations. In general, the analytical solution to
first-hitting problem is model-specific, may not exist for most ap-
plications, and hence cannot be directly used for durability query
processing.

Simple Random Sampling (SRS). Monte Carlo simulations
is the most general approach for answering durability prediction
queries. SRS is the standard Monte Carlo technique. To answer
durability query Q(gq, s) with query function g and prescribed time
threshold s, we randomly simulate n independent sample paths ac-
cording to the procedure g. For each sample path SP; = {x¢, x1,... },
we define a label function indicating whether the simulated path
satisfies the query condition:

0, otherwise.

I(SP;) = {1’ Visrss q(x) = 1,

Then, an unbiased estimator of SRS is 7s;s = , with esti-

. T A 7 1-7,
mated variance Var(7s;s) = M

We use SRS as the main baseline solution throughout the paper.
The major drawback of SRS is its “blind search” nature—it randomly
simulates sample paths and just hopes that they could reach the
target. For durability prediction queries with small ground truth
answer 7, SRS would waste significantly much simulation effort on
those sample paths that do not ever satisfy the query condition.

X L(SPi)
n
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Importance Sampling (IS). Importance sampling is one of the
most popular variance reduction techniques for Monte Carlo sim-
ulations. It is a special case of biased sampling, where sampling
distribution systematically differs from the underlying distribu-
tion in order to obtain more precise estimate using fewer samples.
Let us use the following concrete example for illustration. Con-
sider an AR(1) model, where simulation procedure g draws the
value v; according to ¢10s—1 + €;. Here, ¢; is a constant param-
eter and ¢; is independent Gaussian noise; i.e., ¢, ~ N(0,0) for
t € T. Given time threshold s, the random variable of interest [(SP)
has probability density g(I) ~ []_; N(0,0). IS draws samples
from an instrumental distribution w, and an unbiased estimator is
. Z g(I(sPy)

o (I(SP;))
bution w is cr1t1cal for the success of IS. An iterative approach called
Cross-Entropy (CE) [18, 51] is widely used for importance sampling
optimization. However, IS typically requires a priori knowledge
about the model, e.g., model parameters or state transition prob-
abilities. This requirement can be impractical for some complex
temporal processes, not to mention black-box models that we con-
sider in this paper.

~—————I(SP;). Choosing a good instrumental distri-

Learning Durability Directly. Instead of answering durability
prediction queries from using a simulation model, one could also
learn predictive models that directly answer durability prediction
queries. However, a general simulation model as we considered in
this paper is often preferred based on the following considerations:
(1) In some cases, we do not always have the luxury of training
custom models from real data points just to answer queries. It
is costly or even unethical to collect training data for such pur-
poses, e.g., autonomous driving car testing. (2) Building an one-off
model to answer durability prediction queries (with different query
conditions and different parameters) would quickly become infea-
sible because each type of durability prediction implies a different
modeling exercise. In contrast, a general simulation model can be
conveniently reused for answering a variety of queries using our
technique without requiring extra data collections or modeling ex-
pertise. Moreover, a nice byproduct of utilizing simulation models
is that we also produce a set of concrete sample paths alongside the
point estimate and confidence interval. Users can look into these

“possible worlds” to get a better understanding of query answers.

Compared to the relatively opaque direct models that output only
the final durability prediction, this approach provides more inter-
pretability and credibility. We acknowledge the difficulty of having
good simulation functions, but we note that for many domains,
e.g., finances, autonomous vehicles, etc., the use of such general
simulation models are well-established and common.

Remarks. All solutions reviewed above have limitations: ana-
lytical solutions and IS are not generally applicable to durability
prediction queries; SRS can be very inefficient; and the alternative of
learning custom models to predict durability directly may be infea-
sible for practical (ethical or cost) reasons. In the ensuing sections,
we introduce a novel approach for answering durability prediction
queries from simulation models that achieves the generality of SRS
as well as the efficiency of IS.
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Table 1: Notations

s Prescribed time horizon of the durability query.
r Splitting ratio (or branching factor).
m Number of levels.
Bilp The partition boundary for the i-th level / target value.

i The i-th level. L,, is the target level.

Number of first-time entrance state into L;.

N; Np is the number of root paths;
Np,, is the number of hits to the target.
pi | (conditional) Level advancement probability from level L;_; to L;.

3 SIMPLE MLSS

Since generating too many paths that do not meet the query con-
dition can be a waste of simulation cost, it is natural to design a
sampling procedure that more frequently produces paths that reach
the target. To this end we apply the idea of splitting [25]. The in-
tuition is to encourage further explorations of paths that are more
likely to hit the condition of interest by splitting them into multiple
offsprings when they reach particular “milestones” (see Figure 1 for
illustration). Such treatment is analogous to the notion of sample
weight/importance in importance sampling, but without explicitly
tweaking the underlying step-wise simulation procedure g.
Traditional applications of the splitting idea are mostly con-
cerned with much simpler settings (e.g., process with strong Markov
properties). To apply splitting to our setting of durability prediction
queries, we need to introduce the concept of value functions.

Value Functions. We first capture how promising a path prefix
is using a heuristic value function f(x;) : XXT — (0, 1]. The closer
f(xt) is to 1, the more likely that the process will reach the query
condition given the current state. We further require that f(x;) =1
if and only if q(x;) = 1.

As outlined in the definition of levels below, f guides when
to split a path, thus a properly defined f leads to more efficient
simulation efforts. It is worth noting that the unbiasedness of our
estimator in this section does not depend on f; only its efficiency
does.

The best choice of f is problem-specific as it depends on both
the simulation model and the query. In practical applications, the
query condition often takes the form z(x;) > ff, where z: X - R
is a real-valued evaluation of a state and f is a user-specified value
threshold, and z(x;) has a higher chance to hit the boundary when
X is closer to it. Thus a reasonable value function would be f(x;) =
min{z(x;)/p, 1}. More sophisticated designs of value functions are
certainly possible, but are beyond the scope of this paper.

Levels. With the help of the value function f, we can now in-
troduce the notion of levels to capture multiple intermediate “mile-
stones” a sample path can reach before meeting the query condition.
We partition [0, 1], the range of value function f, into m+ 1 disjoint
levels (intervals) with boundaries 0 = fy < f1 < -+ < B = 1,
where L; = [fi, fi+1) for 0 < i < m — 1 are the first m levels,
and the degenerated interval L, = [1,1] is the last level. Let
T;(SP) = inf{t > 0 | f(x;) € L;} be the first time that a sam-
ple path SP : {x;};>1 enters level L;. Let Z; = {SP | T;(SP) < s}
denote the event that the process enters L; before time threshold s;
i.e., the set of all possible simulated paths that enter L; before s.
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3.1

We are now ready to describe a simple version of Multi-Level Split-
ting Sampling, s-MLSS. Frequently used notations are summarized
in Table 1. As noted earlier, the idea of splitting can be traced back
to 1951 [38] and has been used by several authors in statistic com-
munity [25]. The interested readers can refer to [25] for a more
comprehensive introduction. However, prior studies mostly fo-
cused on stochastic processes with strong Markov property. Here
we introduce s-MLSS for more general simulation models in the
context of durability prediction queries. Nonetheless, s-MLSS still
inherits a critical assumption from existing literature:
(No Level-Skipping) Any sample path generated from the sto-
chastic procedure g has to enter L; before it enters L;.1, for every
i< m.

This assumption is rather restrictive and does not hold in general.
It is possible (especially in practice with discrete time) for a sample
path’s value to jump, between two consecutive time instants, from
a level to a higher one, crossing multiple levels in between. We
show with experiments in Section 6 that ignoring this assumption
and blindly applying s-MLSS will in practice lead to incorrect an-
swers. In Section 4, we instead see how g-MLSS, our general version
of MLSS, lifts this assumption and correctly handles the general
case. Nonetheless, s-MLSS serves as a good starting point for our
exposition.

As a result of the no-level skipping assumption, we have the
following containment relation:

s-MLSS Sampler and Estimator

1)

ZEm CEp-1 C -+ CE] CEp.

With (1) and the chain rule for probability we decompose the target
probability 7 as

T =Pr[Ep] =Pr[Em | Em-1]---Pr[E1 | Eol Pr[Eol = [17; pi, (2)

where p; = Pr[E; | Ej-1] is referred to as the level advancement
probability. Next we show the s-MLSS sampling approach that
estimates p;’s and in turn 7.

s-MLSS Sampler. In a nutshell, s-MLSS works in rounds of

stages, estimating the decomposed probability p; separately be-

tween consecutive levels. For each level L;, we maintain a counter

N; denoting the number of sample paths that enter L; for the first

time. In the first stage, we start the simulation of a path from the

initial level Ly, which we refer to as the root path, and increment

the counter Ny by 1. We continue the simulation up to time s:

(1) If the sample path does not enter the next level Ly, we stop and
start a new round of simulation for the next root path.

(2) Otherwise, we increment the counter Ny by 1 and split the root
path into r independent copies at the first time it enters Ly,
where r is a constant called splitting ratio. Assume the hitting
time is t, we define the state X; of sample path as the entrance
stateto L. All splitting copies from the original path will use the
same entrance state X; as starting point for future simulations.

Then in the next stage, for each of the splitting offspring of the

root path, we recursively follow the similar procedure as described

above: simulate the path up to time s; if it reaches the next level,
increment the counter of that level, split and repeat; If not, finish
the simulation at time s. The simulation of a root path stops when
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Figure 1: Simulations of a root path using MLSS with split-
ting ratio r = 3. Horizontal axis is time, with horizon s = 200;
vertical axis shows the result of the value function.

we finish the simulations of all its splitting offspring—either enters
the target level Ly, or runs until the time s.

Figure 1 illustrates a concrete example of the simulations of
one root path. Here we have s = 200, levels Ly = [0,0.4),L; =
[0.4,0.67),Ly = [0.67,1),L3 = [1,1], and splitting ratio r = 3.
The root path (red line) starts from Ly and enters L; at timestamp
133. Then it splits into 3 copies (black lines) and continues the
simulations forward. Two out of the three splitting paths (from L;)
enter Ly and each of them further splits into three more copies (blue
lines), respectively. Finally, one out of the six splits (from L) enters
the target level L3. All other copies (that do not have the chance
to split) run till time s and stop. Following the above procedure,
assume we sample and simulate Ny root paths until the stopping
criteria is met (i.e., the simulation budget runs out or the estimate
achieves the target quality guarantee).

s-MLSS Estimator.
through MLSS for each level, we have p; = %’, p2 =

Using the counters we have maintained
N
PN

Pm = %r':_l The estimator for MLSS is

m
Tmiss = Hﬁl =
i=1

It can be shown that 7,5 is an unbiased estimator of 7. Intuitively,
s-MLSS generates a forest of Ny r-ary trees of sample paths with
depth m: the root is the initial state, nodes are the states at which
we split, and edges are simulated sample paths. The total number
of leaf nodes is at most Nor™~1, and we count the total number of
them, Ny, reaching the target. In turn, it gives us the estimator in
form Ny, /Nor™=1.

Nm _ Nm
rNm-1 B N()rm_l '

®)

PROPOSITION 1. Under the “no level-skipping” assumption (1),
using the MLSS with m levels and a splitting ratio r, Tp,ss is an
unbiased estimator of t; that is, E[,,,155] = .

Variance Analysis. Assume that we have sampled and simu-
lated Ny independent root paths. The variance of our estimator
(using standard variance estimator) is

SN (NS = Ni)?

No(Np — 1)r2(m=1" @

Var (Triss) =
where N,<ni ) denotes the number of hits to the final target con-
tributed by the root path i, and Ny, is the sample mean of target
hits from simulations of Ny root paths. Please refer to the extended
version of this paper [24] for full derivations.

Relationship between SRS and MLSS. It is not hard to prove
that SRS is a special case of MLSS with splitting ratior = 1. Asr = 1,
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4 b.
Liv. u(h) =2/3 / P Ly #(R) =1/ 2ﬁﬂ/;
Ly Ly

ﬁfﬂjf

v L /

(1) normal path (2) level-skipping path
Figure 2: Different types of simulated partial paths.
imiss = Nin/No = fors. Similarly, Var(fiss) = Var(Ngy’)/No =
Tsrs (1 — Tsrs) / No, that degenerates to Var(7sys).

However, we still need careful considerations to apply MLSS in
practice for the best performance; e.g., how to select splitting ratio
r, how many partitions of levels do we need and how to decide the
boundaries of partitions. There are many trade-offs among those
choices. We discuss how to solve for the optimal setting of MLSS
that minimizes the simulation cost in Section 5.

skip, _
/”iﬂ*‘1

4 GENERAL MLSS

The last section introduced the s-MLSS estimator under the “no
level-skipping” assumption. In general, this assumption can be
easily violated, e.g., with volatile stochastic processes such as stock
prices. To remove this assumption and make MLSS more widely

applicable, we propose a novel and general MLSS procedure.
Without the “no level-skipping” assumption, (1) and (2) no longer
hold and need to be modified. With the same sequence of boundaries
0=p < p1 <-+ < Pm =1, we denote by U;(SP) = inf{t >
0 | f(x;) = Pi} the first time that a sample path SP : {x;};>1
crosses boundary f;. Notice the difference here between U; and T;
(in Section 3.1) that T; specifically requires the process to land inside
L; while U; only requires the process to pass the lower boundary
of L;. Denote by ©; = {SP | U;(SP) < s} the event that the process
crossed boundary f; before s. Similarly, we have
O C Oy C -+ CBO1 C Oy,

®)
and subsequently

T =Pr[Op] =Pr[Op | Op-1] - Pr[O; | Bo] Pr[@] =TI, m  (6)
where 7; = Pr[©; | ©;—1]. The above probability decomposition is
general and carries no assumption. Next we outline the g-MLSS
sampling procedure that unbiasedly estimates ;.

4.1 g-MLSS Sampler and Estimator

The g-MLSS sampler starts simulations from root paths, and re-
cursively split the sample path whenever it lands in any level for
the first time until time runs out or the path satisfies the query
condition. Whenever a splitting happens, we record the proportion
of offspring processes that cross the higher boundary of the level
in which the splitting happens.

Formally, in a realized g-MLSS simulation, denote by H; ¢ X xT
the set of splitting states in L;, each of which belongs to a separate

path that lands in L; before s. On the other hand, denote by n?kip
the number of paths that pass fiy1 without landing in L;, where
level-skipping happens (see Figure 2). For any h € H;, let u(h)

denote the ratio of h’s offsprings that cross f;4+1. The estimator of
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T
Figure 3: A simple two-level case with level-skipping. Dashed
path represents a (discrete-time) series that directly goes from Ly
to Ly skipping L.
Ti+1,1 > 0 is given by

A 1 skip
i1 = m ( hZ(H p(h) +n; ) 7)
i eH;

It is worth noting that, with g-MLSS, there is no need to use a
unified splitting ratio r as in s-MLSS. After all, when a path splits at
h, we only need the ratio p(h) instead of the size of its offsprings.
The special case is the starting level Ly, since we directly start
with Np independent root paths. The estimation of ; is given by

[+ P
i = N Following the probability decomposition by (6),

0
the general MLSS estimator for 7 is

m
Tlss = 1_[ A ®)
i=1

PROPOSITION 2. In general, using the Multi-Level Splitting Sam-
pling with m levels, 7,155 in (8) is an unbiased estimator of t; that is,

E[fmlss] =T

Given the general form of MLSS as above, it is more clear how
s-MLSS is a special case of the general one. With the “no level-
skipping” assumption, n; skiPg are always zero. Given a unified split-
ting ratio r, for any splitting state h € H; in L;, u(h) = Nix1(h)/r,
where Nji1(h) denotes the number of hits (from h’s split offsprings)
to hit the next level Li+;. Additionally, |H;| = Nj (recall that
N; is the number of entrances to L;). Hence, (7) degenerates to
Mig1 = L M = NlH and the g-MLSS estimator by

Nj r rN;’
(8) is equivalent to the s-MLSS estimator by (3).

In summary, g-MLSS greatly extends the applicability of s-MLSS
by allowing level-skipping and a dynamic splitting ratio. With the
g-MLSS algorithm and estimator, we are able to efficiently obtain
quality estimations of durability prediction queries on mostly any
temporal process that exhibits continuity and temporal dependence.
Moreover, the flexible splitting procedure opens up many interest-
ing opportunities for optimization, e.g., how to optimally allocate
splitting ratios across sample paths, or how to learn and converge
to the optimal assignment on-the-fly while conducting MLSS.

4.2 Variance Analysis

In order to practically apply g-MLSS, we need its variance term to
determine the stopping condition (i.e., confidence interval or rela-
tive error) for durability query processing. The variance of general
MLSS estimator as in (8) would be very complicated and challeng-
ing, because the underlying stochastic process takes general forms.
Unfortunately, we do not have a closed-form expression of the
variance for the general case in this paper. With that being said,
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it will not limit the utility of g-MLSS in practice. In this section,
we first showcase the variance analysis of general MLSS estimator
for a simple but non-trivial case—two levels with level-skipping
(Figure 3). Then, we show how to use bootstrapping [20] to provide
a variance estimate of g-MLSS for the general case in practice.

Simple Two-level Level-skipping. There are two types of paths
hitting the target: solid line path (with no level-skipping) and dashed
line path (directly jump from Lo to Lz). With abuse of notation,
let po1 = p1 and p12 = p2 (recall (1) and (2)). The numbers in
subscript simply represent the transition between levels. These
probabilities represent the normal case as we discussed in Section 3.
However, with the existence of level-skipping, we need to introduce
an additional probability po 2 denoting the chance of level-skipping.
Hence, the ground truth hitting probability consists of two parts:
T = po,1P1,2 + Po,2. Accordingly, we decompose counter Ny (num-
ber of hits to the target) as N2 = N, (ns) 4 N, (s) , where N, (1) is the
number of hits from non-skipping paths whlle N, () i the number
of hits from level-skipping paths. Then, our estlmator also con-

sists of the estimations of these two parts, 7,15 = NZ.(ns) /Nor +
Nz(s) /Np. For variance, we have Var(%,,5;) = Var(Nz(m))/Ngr2 +

Var(N (s))/N 2 First, N, () can be viewed as a binomial variable
with Nj trials and probablhty poz2; ie, N, QN B(No, po 2)) Thus
Var(N( )) Nopo2(1 — po2). Second, the quantlty N condi-
tions on the number of paths without skipping (Nj), Wthh it is
also an random variable throughout the sampling procedure. We
cannot just break it up as in standard variance analysis. Instead, we
should do a conditioning on number of non-skipping paths and use
the law of total variance:

Var(N") = Var(E[NZ('“) | Ny ]) +E

Var(N" | Ny )j

= Var(Nyrpi) + E[N;Var(N{V) ]
(Var(N{") = Var(NJ?) = Var(N{"), Vi, j < N)
= rp,Var(Ny) + E[Ni]Var(N; ")
=r’p},Nopo1 (1 - po) + E[N; [Var(N;").
(N1 ~ B(No, po,1))
Hence,

Var(NZ(ns)) 2 p01(1 P01) Var(N2<1>)
NZr2 =P N, 0.1 N2

Putting it all together, we have

2 P01(1 —po.1) Var(sz)

Var(pss) = Pi2 No tpo1 Nor? +

Poz2(1-po2)
OZN 0,2 . (9)

In practice, we can use fio; = N1/Np as an unblased estimation
for po,1. Similarly, fo2 = N( /No and p12 = /Ngr as unbi-
ased estimations for po 2 and 1.2, respectlvely Var(N ) can be
estimated unbiasedly similar to (4) by reusing the sunulated root
paths. Again, it is not hard to find that the variance term we de-
rived in (4) is a special case of the above equation when there is no
level-skipping; i.e., po2 = 0 and po 1 = 1.

We believe the variance analysis of g-MLSS estimator, though
very complex, would follow the similar procedure as in the simple
two-level case. We leave this part as one of the future work.
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General Level-skipping and Bootstrapping Evaluation. In
the general case, the standard technique of bootstrap sampling
can be used in practice to provide a good estimation for variance
of g-MLSS estimator. This approach is widely used to empirically
estimate the variance or the distribution of sample mean when the
population variance is complex and or not accessible.

More specifically, in our setting, assume we have already sim-
ulated Ny root paths and obtained an estimate 7y of the hitting
probability. In one bootstrap run, we randomly draw n root paths,
with replacement, from the existing root paths, from which we cal-
culate a g-MLSS estimate, called a bootstrap estimate. We perform
N such independent bootstrap runs to obtain N bootstrap estimates
%i,i = 1,.., N. From the empirical distribution of 7;,i = 1, ..., N, we
calculate the (bootstrapped) variance for g-MLSS, i.e., \7;'(?0) =
Zﬁl (#; — 7)2/N, where 7 is the mean of bootstrap estimates from
N bootstrap runs.

Despite the simplicity and effectiveness of bootstrap sampling, it
may incur considerable evaluation cost, as bootstrapping essentially
replays the history multiple times, and may become increasingly
expensive as we expand the sample pool. Compared to the case
of s-MLSS or g-MLSS with the two-level setting where variance
can be directly calculated, applying g-MLSS with bootstrap eval-
uation requires more care to achieve good overall performance.
There are several techniques for speeding up bootstrap sampling,
ranging from more advanced subsampling procedures [4, 40] to
parallel computation. A practical rule of thumb that we found in
practice is to run bootstrap evaluation conservatively—compared
with frequent bootstrapping to ensure that we never overshoot the
given quality target, sometimes overrunning the simulation a little
would be overall more efficient. As we will see in Section 6, applying
this rule, even with an unoptimized bootstraping implementation,
g-MLSS can still provide up to 5x overall speedup over SRS.

5 OPTIMIZING MLSS DESIGN

There is still one missing piece in applying MLSS: how do we choose
its parameters? Specifically, how many levels do we need, and given
the number of levels, how do we properly partition the value func-
tion range into levels? In Section 4, we saw that g-MLSS also allows
variable splitting ratios—how do we additionally choose these?
Manually tuning all these parameters is clearly impractical. On the
other hand, automatic optimization is also challenging because of
the vast space of possibilities as well as the difficulty of not knowing
the effectiveness of our choices a priori.

We make some simplifying assumptions to make the optimiza-
tion problem tractable. 1) We focus only on choosing level partition
plans; we forgo the freedom of setting variable splitting ratios and
instead choose a small, fixed splitting ratio r. As validated in exper-
iments in Section 6, large ratios tend to be suboptimal because they
dramatically increase the number of paths at higher levels. Fur-
thermore, variable splitting ratios can be effectively approximated
by replacing a level having a large ratio with multiple levels, each
having the same small fixed ratio. 2) We derive an empirical mea-
sure for evaluating different MLSS parameter settings (Section 5.1).
For ease of derivation and measurement, we make the same no
level-skipping assumption as in s-MLSS. While this assumption
does not hold in general, it allows to obtain a surrogate measure
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that is much cheaper to estimate. Importantly, it does not affect the
correctness of our sampling and estimation procedures in any way
because it is only used to choose a partition plan. Moreover, as we
will see in experiments in Section 6.3, this measure work well in
practice for both s-MLSS and g-MLSS on various models and query
types. 3) We then present an adaptive greedy strategy (Section 5.2)
that searches for the parameters settings aimed at optimizing the
above empirical metric. This strategy is generic, applicable to both
s-MLSS and g-MLSS, and can work with other, better empirical
measures if available.

5.1 Partition Plan Evaluation

Previous work in statistics [42] showed an analogy between MLSS
(with fixed splitting ratio) and branching process theory [30], and
concluded that the optimal setting for MLSS is to make advancement
probabilities between consecutive levels roughly the same, called a
“balanced growth.” That is, consider MLSS with m levels,

p1:p2:...:pm:p:fl/m_ (10)
From standard branching process theory, we have
. m(1 - p)p*™!
Var(fpss) = ———— (11)

No

The above expression indicates that given a fixed number of root
paths, more levels lead to smaller variance. However, more levels
also lead to more expensive simulation cost of a root path because
of the exponential splitting growth of a root path through the
levels. Our optimization goal, using MLSS as approximate query
processing technique, is not just to minimize variance. Instead,
we hope to minimize the variance in a fixed amount of the time.
Ultimately, the query time using MLSS is determined by the variance
of the estimator. A smaller variance in unit time directly leads to
less simulation cost for answering durability query. Though the
“balanced growth” strategy is a reasonable guideline to partition
the space, it is still not clear, in practice, how to partition levels
that create balanced growth and how to choose the right number
of levels.

To meet our needs, we propose the following evaluation metric.
Consider a level partition plan B, which consists of a set of values
what we call “partition boundaries”; that is, B = {v | v € (0,1)}.
Given a fixed amount of simulation budget, say f( time, we have
simulated N (y) root paths (including all its splitting copies). Note
that N(tp) is a random variable depending on the total time #y and
the average simulation time cp of a root path using partition plan
B. We define an evaluation function for B in terms of variance of
estimator 7,,;5s by N(f):

where Ny, (t) is a random variable denoting the total number of
target hits within ¢ time. In this case, m = |B| + 1, denoting the total
number levels induced by plan B. Since N(#y) is a random variable,
we should express the variance term conditioning on N(#), and
use the law of total variance and the decomposition trick in (4):

(1)
eval (B) = B| Bl | N(to) +Var(E[N?’#% | N(to)]).

Nm(t())

Nt v

eval(B) = Var(
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Algorithm 1: Adaptive Greedy Partition.
Input :Interval I = [0,1].
Output: A partition plan B= {o | v € (0,1) }.
1 B« 0
2 opt_eval «— INT_MAX;
3 U1 «— 0,0p; <« 1;
4 forroundi={1,2,---}do

// remember the minimum so far

5 Uniformly generate a value set C = {v | v € (v}, Up;) } as
candidates for the i-th partition boundary;

6 e* = min eval (BU v);
veC

7 0" = argmin eval (B U v);
veC

8 if e* < opt_eval then

9 B «— BUv*;

10 opt_eval «— e*;

11 Find the level [B;, B;1(Bi, fj € B, Bi < pj), induced by B
and I, that has the smallest level advancement probability
pijs

12 V1o < Pivhi < Pj;

13 else

14 |_ break;

15_return B;

I\I]E]Zf%] = 7, thus the second term in the

above equation is 0. Recall that N,ﬁ} ) is a random variable denoting
the number of target hits from a root path. Given N(#y) and parti-

Given N(ty), E[

tion plan B, Var(N,glU) becomes a constant. Hence, the first term in
(1)
Yar(Nm ) 511 /N(ty)]. The term E[1/N(to)]

r2(m-1)
can be roughly estimated by 1/ Ct—; = cg/tp. Finally, the evaluation
function of a partition plan B is

the equation becomes

Var(N,<nl>) cB

EUGZ(B) = rz(}‘n——l) E

(13)

Ideally, given a fixed amount of time #;, we hope to solve for
partition plan B that minimizes the objective eval(B). However, this
optimization problem is hard to solve analytically, since Var(N,g))
and cp are themselves variables when the plan B changes. But
fortunately, we can optimize the objective empirically, as Var(N,<nl>)
and cp can be estimated through the MLSS simulations. Var(N,<nl>)
can be estimated using variances of target hits from all simulated
root paths, and cg can also be estimated simply dividing ty by the
number of simulations of root path within time #. In this way,
we can start with a candidate pool of partition plans. For each
candidate, we run MLSS simulations for the same amount of time
fo as trial runs to estimate the objective eval(B), and finally pick
the best candidate that produces the minimum value.

5.2 An Adaptive Greedy Partition Strategy

To empirically optimize MLSS, it is prohibitively expensive to run
trial simulations for all feasible partition plans and splitting ratios.
In this section, we present a heuristic greedy strategy that works
well in practice to automatically search for (near-) optimal MLSS
parameters.
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Figure 4: Tandem Queue with Poisson arrivals and Exponen-
tial service time.

The main idea of our strategy is to adaptively and recursively
partition the space—place the partition boundaries one by one and
always partition the level with smaller level advancement proba-
bility. The intuition behind our greedy behavior is two-fold: (1) A
level with smaller level advancement probability means that this
level is an “obstacle” blocking sample paths reaching the target.
Partition such levels would focus the simulation resources more
on success paths; (2) as we recursively bisect levels with smaller
advancement probability, it automatically moves towards a “bal-
anced growth” situation where advancement probabilities from all
levels are roughly the same. Recall our discussion in Section 5.1;
this behavior has already been confirmed by [42] to have a better
sampling efficiency.

Full description is shown in Algorithm 1. Throughout the pro-
cedure, we adaptively make two decisions: the optimal number of
levels, and the placement of these levels. At the beginning, we start
with the original interval [0, 1] (Line 1). Then we place the parti-
tion boundary one by one, recursively bisecting the value intervals,
until a stopping condition is met (Line 4-14). In the loop, we first
generate a set of candidate boundaries (Line 5) and then use the
empirical evaluation approach, as elaborated in Section 5.1, to find
the optimal partition boundary (Line 6 and Line 7). Finally, we need
to update our partition plan and decide when to stop the procedure.
If the current best evaluation is better the previous, we continue
to add a new partition boundary (Line 8-12). Note that here we
need to greedily pick the next interval with smallest advancement
probability to partition (Line 11-12). Otherwise, if the current best
evaluation is already worse than the previous, there is no need to
further add more partition boundaries to the plan, since more levels
lead to exponential growth of splitting paths and would incur more
expensive simulation cost overall.

The aforementioned empirical optimization framework saves
users from the time-consuming manual parameters tuning process
when applying MLSS in practice. We set a reasonable fixed splitting
ratio (which we further justify in Section 6.3) in advance, and our
optimization framework will take care of the rest. An additional
benefit of our empirical optimization solution is that all trial runs
of MLSS are not “wasted.” Since each trial simulation, no matter
which plan it follows, returns an unbiased estimator. So in process
of picking the optimal parameters, we also are building up towards
a reliable estimation for the query.

6 EXPERIMENTS

We select three stochastic temporal processes with simulation mod-
els that are commonly used in practical applications.

(1) Tandem Queues: As shown in Figure 4, we have a queueing sys-
tem with tandem queues, which is the simplest non-trivial network
of queues in queueing theory [15]. The process is the following.
Customers come into Queue 1 following a Poisson distribution
with Pois(1). Queue 1 services each customer following an Expo-
nential distribution with Exp(p1), and then sends customers into
Queue 2. Queue 2 services each customer by another Exponen-
tial distribution with Exp(u2) before customers leave the system.
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Figure 5: A stochastic process by LSTM-RNN-MDN.
We consider the number of customers in Queue 2 as a stochastic

process, and always start with an empty system (i.e., two empty
queues). In our experiments, we set A = 0.5, 11 = pi2 = 2. Queu-
ing system is the foundation for many real-world problems [45],
e.g., birth-death process, supply chains, transportation scheduling,
and computer networks analysis [41]. Durability queries on such
models are widely used to evaluate the robustness of systems.

(2) Compound-Poisson Process: A Compound-Poisson Process
(CPP) can be described by the following stochastic process U =
{U(t)}+>0- U(t) = u+ct — S(t), where S(¢) is a compound Poisson
process with jump density A and jump distribution F, and u, ¢ > 0
are constants. This type of process is commonly used in the finan-
cial world for risk management and financial product design [2].
Intuitively, imagine a insurance policy with u as initial surplus and
¢ as users’ monthly payment. The compound Poisson process S(t)
represents the aggregate claim payments up to time ¢. Then the
overall stochastic process U shows the net profit of this insurance
policy. In our experiments, we set Poisson jump density A = 0.8
and use uniform distribution Uni(5, 10) as jump distribution. We
choose u = 15 and ¢ = 4.5. Recall durability query examples in
Section 1, durability queries in financial domains can be used for
revenue projection, risk management, and financial product design.
(3) Recurrent Neural Networks: As shown in Figure 5, we train a
Recurrent Neural Networks (RNN) with Long-Short Term Memory
(LSTM) and Mixture Density Network (MDN) [7] using Google’s
5-year daily stock prices from 2015 to 2020. The LSTM-RNN-MDN
structure has proven its success at many real-life tasks of proba-
bilistically modeling and generating sequence data: e.g., language
models [5], speech recognition [27], hand-writing analysis [28], and
music composition [19]. In our network, we use two stacked RNN
layers, 256 LSTM units per RNN layer, and a 2-dimensional mixture
layer with 5 mixtures. During training phase, we trained the model
for sequence length of 50, and for 100 epochs with a batch size of
32. Such learning-based black-box model demonstrates the general
applicability of MLSS and of durability queries.

Evaluation Metric. = We evaluate the performance of different
methods using the following two metrics: total number of sim-
ulation steps (invocations of simulation procedure g) and total
simulation time. In our experiments, we run sampling procedures
until the estimation satisfies a given quality target. Specifically, we
use two quality measurements throughout our experiments:

(1) Confidence Interval: Confidence interval (CI) is a statistical
measurement for point estimates. It shows how likely (or how con-
fident) that the true parameter is in the proposed range. There is
no universal formula to construct CI for an arbitrary estimator.
However, if a point estimator /i takes the form of the mean of n in-
dependent and identically distributed (i.i.d.) random variables with
equal expectation y, then by the Central Limit Theorem and Normal
Approximation, an approximate 1-a CI of y can be constructed by:
[/ = zg/2V 02 /1, fi + 24 /202 [n], where z4 5 is the Normal critical
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Table 2: Query settings on different models.

Query Type | Medium (s, f) | Small (s, B) | Tiny (s, p) | Rare (s, B)

Queue Model 500, 20 500, 26 500, 40 500, 45
CPP Model 500, 300 500, 350 500, 450 500, 500
RNN Model - 200, 1550 | 200, 1600 -

Table 3: Query answer comparisons on Queue Model. Results
are averaged over 100 runs with standard deviation.

Query Type | Medium Small Tiny Rare
SRS 17.2%+0.5% | 5.1%+0.5% | 0.15%+0.03% | 0.04%+2e~>
MLSS 17.9%+0.4% | 5.5%+0.5% | 0.17%%0.02% | 0.04%+3e~>

Table 4: Query answer comparisons on CPP Model. Results
are averaged over 100 runs with standard deviation.

Query Type | Medium Small Tiny Rare
SRS 15.5%+0.5% | 5.3%+0.5% | 0.24% +0.02% | 0.03%+3e™>
MLSS 15.6%+0.4% | 5.3%+0.5% | 0.26%+0.01% | 0.03%+4e~>

value with right-tail probability &/2, and o2 is the variance of esti-
mate. By default, to obtain reliable query answers, we require that
all estimations should have a 1% CI with 95% confidence level (i.e.,
Z4/2 = 1.96). Unfortunately, the standard CI, as in the above equa-
tion, has a limitation: when the true probability y is very close to 0
or 1, where the Normal Approximation assumption does not hold,
the CI guarantee would break. Hence, we also consider another
quality measurement below for extreme cases.
(2) Relative Error: Relative Error (RE) measures the variance (of
estimate) as a relative ratio to the true probability, defined as follows:
RE = Vo2 /i, where i is the true probability and o2 is the variance
of estimate. This is not feasible to calculate directly in practice,
since we do not know the true probability u before the query. But in
practice, we can roughly estimate the ground truth probability, and
use that to fairly compare the RE ratio among different methods. By
default, we require that all estimations should have a low relative
error at 10%. Unlike CI, RE is widely applicable to any scenario.
In sum, throughout the experiment section, we evaluate dura-
bility queries with different ground truth probabilities. For queries
that have small-to-moderate probability (i.e., > 0.05), we use CI
as the quality measure. For queries that have tiny probability (i.e.,
107% to 1072), we use RE as the alternative measure.

Implementation Details.  All stochastic temporal models and
proposed solutions were implemented in Python3. More specifically,
for neural network’s construction and training, we use Keras [14]
(back end by TensorFlow [1]). Unless otherwise stated, for MLSS (s-
MLSS and g-MLSS), to limit the number factors influencing perfor-
mance, by default we fix the splitting ratio r = 3 and use “balanced-
growth” level-partition plans (recall discussions in Section 5.1),
which are obtained by manual tuning given the number of parti-
tions. Effectiveness of the adaptive greedy partition strategy will
be examined separately in Section 6.3. For durability queries, we
use the query condition in the form z(x;) > f and the simple value
function f(x;) = min{z(x;)/p, 1} as we introduced in Section 3.
Recall that z(-) is a real-valued evaluation of a state and f is a user-
specified value threshold. For Queue model, z(-) evaluates the state
by returning the number of customers in Queue 2; for CPP model, it
is the value of U(t), and for RNN model, z(+) returns the (simulated)
stock price at a given state. All experiments were performed on a
Linux machine with two Intel Xeon E5-2640 v4 2.4GHz processor
with 256GB of memory.
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Figure 6: Query efficiency on Queue Model
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Figure 7: Query efficiency on CPP Model
6.1 MLSS vs. SRS

In this section, we comprehensively compare the performance of
MLSS and SRS. Note that under the settings of experiments in
this particular section, “level skipping” will not occur, so g-MLSS is
equivalent to s-MLSS. Therefore, we do not distinguish between
s-MLSS and g-MLSS in this section, and just use the term MLSS for
simplicity to compare with the baseline. In Section 6.2, we modify
the processes to make them more volatile (so “level skipping” will
happen) and further evaluate the performance of g-MLSS. For
each stochastic temporal model, we design four types of durability
queries: Medium, Small, Tiny and Rare, denoting the quantity of the
(estimated) true answer probability of the queries. Detailed query
parameters are summarized in Table 2.

Estimations and Overall Efficiency. We first demonstrate the
answer quality, i.e., unbiasedness, of MLSS. For each model and for
each type of query, we repeatedly run SRS and MLSS 100 times,
respectively, and average the returned answers along with empirical
standard deviations. Results are summarized in Tables 3 (Queue
Model), 4 (CPP Model) and, 5 (RNN Model). As shown in these
tables, the answers (hitting probability) returned by SRS and MLSS,
on all types of queries and on all models, are essentially the same.
Even though they are not identical, the differences are well within
the standard deviation. This finding confirmed our analysis and
proof in Section 3 about MLSS’s unbiased estimation.

Next, let us compare the query efficiency between SRS and MLSS.
We time the query until its answer (estimation) achieves certain
quality target. As shown in Figure 6 (Queue Model) and Figure 7
(CPP Model), MLSS generally runs significant faster than SRS (note
the log scale on y-axis). For Medium and Small queries, we can see
a 40% to 60% query time reduction brought by MLSS. For Tiny and
Rare queries, MLSS runs 10x faster than SRS, without loss of answer
quality. As discussed earlier in Section 3.1, the main advantage of
MLSS to SRS is the ability to focus and encourage simulations that
move towards the target. This property is especially helpful for
those durability queries with lower probability, since MLSS can
better distribute simulation efforts to promising paths hitting the
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Table 6: Performance comparison between s-MLSS and g-
MLSS on temporal process with volatile values changes.

Volatile CPP Volatile Queue
Tiny Query Rare Query Tiny Query Rare Query
(51500, :700) | (s : 500, 8 : 1000) | (s :500,8:65) | (s: 500, : 75)
SRS 2.2%+1.5% 0.1%+0.2% 1.7%+0.9% 0.3%+0.26%
s-MLSS 1.1%+0.8% 0.05%+0.07% 1.2%+0.5% 0.2%+0.11%
g-MLSS 2.1%+1.2% 0.09%+0.1 % 1.7%+0.5% 0.3%+0.17%

target, instead of blindly wasting time on those failure paths (which
would be a large portion of the total) as SRS did. We observe similar
query efficiency improvement on the more complex RNN model.
In Table 5, for Small and Tiny queries (which are more commonly
asked in practice) on RNN model, there is a roughly 80% to an
order-of-magnitude query time reduction provided by MLSS.
Overall, MLSS clearly surpasses SRS across different models
and on different types of commonly asked durability queries in
practice, providing query speedup from 40% up to an order of
magnitude, without sacrificing answer quality. It is also worth
mentioning that MLSS is best suited for Tiny and Rare queries, and
may not provide much benefit for larger queries. If the target is
relatively easy to reach (which corresponds to large probability),
the splitting behavior of MLSS would bring little benefit and may
result in unnecessary overhead. Hence, in later sections, we would
focus our discussions/evaluations more on Tiny and Rare queries,
which are also the commonly asked durability queries in practice.

Query Performance over Time. To take a closer look at query
performance comparison of MLSS and SRS, we monitor query an-
swers and its quality (CI or RE) over time, and plot the convergence
of estimations on single run of MLSS and SRS, respectively. See
Figure 8 for details. In Figure 8(1), we run a Small query on Queue
model and use CI as estimation quality measure. For better illustra-
tion, CI intervals are interpreted as percentage to the true proba-
bility such that it will be centered at 0. The grey ribbon in the plot
shows the desired region for a reliable estimate (true probability
with 1% CI). Symmetric red lines and blue lines demonstrate how
CIs of MLSS and SRS converge over time. Red dotted line and blue
dotted line are the estimate of MLSS and SRS over time. It is clear
that MLSS converges faster than SRS on estimation quality. On the
other hand, we can also see that the estimates (red dotted line and
blue dotted line) from MLSS and SRS are always nicely contained
by its corresponding CI, showing the statistical guarantees brought
by CI. We observe similar behaviors on CPP model (Figure 8(2)) and
RNN model (Figure 8(3)). Here we use run Tiny queries on these
two models and use RE as quality measure. Similarly, the time that
MLSS needs for a reliable estimate (10% RE, dashed line in the plot)
is significantly shorter than that of SRS.

6.2 Simple MLSS vs. General MLSS

s-MLSS works well in practice if the underlying process satisfies the
no level-skipping assumption, as demonstrated in previous sections.
To show the limitation of s-MLSS and the generality of g-MLSS,
we consider level skipping by experimenting with new temporal
processes based on CPP model and Queue model with impulse
value jumps between consecutive time instants. More specifically,
when t > 0.8s we introduce large value increase of (200 for CPP,
and 5 for Queue) with small probabilities (0.005 for CPP and 0.2
for Queue). We refer to these two processes as Volatile CPP and
Volatile Queue.
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Figure 9: g-MLSS query efficiency on models with volatile
value changes.

Estimation and Overall Efficiency. First, we test the unbi-
asedness of our approach. we fix the simulation budget (i.e., 50000
invocations to the simulation procedure) and compare average es-
timations with empirical standard deviation based on estimates
obtained from 100 independent runs. Results are summarized in
Table 6. It is clear that, with the existence of level skipping, s-MLSS
gives wrong estimates. In contrast, g-MLSS still provides unbiased
estimation by gracefully handling level-skipping paths, and it has
higher precision (smaller standard deviation) compared to SRS un-
der the same simulation budget.

Second, we evaluate the query efficiency of g-MLSS. Figure 9
shows the performance of g-MLSS on Volatile CPP and Volatile
Queue. Recall from our discussions in Section 4 that we do not have
an analytical expression for g-MLSS variance; instead, we imple-
ment bootstrap sampling to empirically estimate it for evaluating
the stopping condition. Hence, the bootstrap evaluation time is
also counted towards the total query time (shown in green in the
plot). Overall, as presented in Figure 9, g-MLSS beats SRS by a large
margin. Especially for Rare, we can see nearly 80% improvement
on both models. Focusing on the breakdown of total query time,
we can see that the bootstrap evaluation takes up a large portion
(more than 50%) of the query time. Our currently implementation
of bootstrapping is rather unoptimized; with more sophisticated
implementations, we expect g-MLSS to still have plenty of room
for further efficiency improvement.

6.3 MLSS Optimization

In previous sections, we have shown the dominance of MLSS (both
s-MLSS and g-MLSS) over SRS across a variety of models and query
types. We now focus more on MLSS itself, and investigate how
sampling parameters of MLSS affect its overall efficiency and how
to efficiently fine-tune MLSS in practice. Due to space limit, we
present some experiments (on the trade-off between splitting ra-
tio/number of level partitions and the overall efficiency) into the

0.00

0

(3) RNN Model, Tiny Query, RE
Figure 8: Query answer quality over time.
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— sks run) on RNN Model.
T Query Type Small Tiny
2.6% 0.51%
SRS 3.8 hours 33.7 hours
1,009,431 steps | 7,262,735 steps
L 1.9% 0.45%
R 30 MLSS 0.75 hour 3.9 hours
196,913 steps 804,035 steps

extended version of the paper [24]. Here, we focus on experimen-
tally validating our greedy level partition strategy (Algorithm 1).
The baseline partition plans for comparison are the corresponding
“balanced-growth” partition plans, which are obtained via manual
tuning under the balanced-growth guideline and have the optimal
number of levels. In the following, we will refer to MLSS using such
pre-tuned balanced-growth partition plans as MLSS-BAL; we do
not charge the cost of manual tuning to running MLSS-BAL.

Greedy Level Partitions for s-MLSS.  Figure 10 shows the ef-
fectiveness of the proposed greedy strategy on s-MLSS (in terms
of the resulting overall running time to meet a given quality ). For
better visualization, we normalize all running times as ratios rel-
ative to the SRS baseline; hence in all plots, SRS is shown as the
blue bars with ratio 1. We also show the total number of simulation
steps on top of each bar. Red bars represent the running times of
MLSS-BAL (recall that they do not include the cost of fine-tuning
to find their balance-growth partition plans). Yellow bars (MLSS-
G) and brown bars (MLSS-G-Partition) together reflect the total
running times of MLSS using the greedy algorithm, with MLSS-
G-Partition representing the search overhead of greedy algorithm.
Overall, across all three models and different types of queries, the
greedy algorithm is able to find a partition plan comparable to the
manually tuned “balanced growth” plan—the cost of MLSS-G is
not so far away from MLSS-BAL,! and is still significantly lower
than SRS with a 60% to an order-of-magnitude improvement. The
search overhead (MLSS-G-Partition) is 10% to 30% of the total cost;
importantly, overhead seems lower for harder cases of Tiny and
Rare, making greedy adaption an attractive approach in practice.

Greedy Level Partitions for g-MLSS.  We further test the
greedy strategy on g-MLSS under volatile stochastic processes in
Figure 11. Again, we use (a rather unoptimized implementation of)
bootstrapping to estimate the variance of g-MLSS in order to test
the stopping condition; that cost is shown as a green bar. Overall,
the total cost of g-MLSS with greedy adaptation (including greedy
search overhead and bootstrapping overhead on top of simulation
time) is lower than SRS in most cases acceptably close to MLSS-BAL,
which has the benefit of pre-tuning. Compared to the SRS baseline,
our fully automated approach has a ~20% speedup on Tiny query
and up to 80% improvement on Rare query on both models.

! As can be seen in Figures 10(2) and (3), sometimes our greedy strategy can discover a
even better partition plan than MLSS-BAL. This should not be surprising because the
optimality of plans with balanced growth is based on certain assumptions (Section 5)
that may not hold in practice. Nonetheless, MLSS-BAL is a reasonable yardstick for
comparison because the balanced growth guideline is, to the best of our knowledge,
the only one that offers some theoretical guarantee of optimality.
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Figure 10: Efficiency of Greedy Level Partitions with s-MLSS.
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Figure 11: Efficiency of Greedy Level Partitions on volatile
temporal processes with g-MLSS.

In sum, considering that the greedy strategy does not need any
information in advance and can automatically search for partition
plans, it is a reasonable approach to try in practice if users do not
have related knowledge of the model or the query.

6.4 Implementations inside DBMS

The database management system (DBMS) provides a single plat-
form for not only data management, transformation, and querying,
but also increasing machine learning support [8]. Predictive mod-
els, ranging from classic statistical models (i.e., Queue and CPP)
to complex learning-based models, can be seamlessly encoded in-
side DBMS for data analytics; e.g., MCDB [34]. MLSS can also be
straightforwardly integrated into a DBMS by implementing its sam-
pler and estimator as stored procedures. In this section, we move
the query answering pipeline inside a DBMS (PostgreSQL), includ-
ing both the predictive models and query processing algorithm.
More specifically, we use a database table for storing parameters
of the procedure g to allow step-by-step forward simulations and
implement MLSS as stored procedure using Python Procedural
Language. We repeat our experiments as in Section 6.1 and report
results in Table 7. We see the advantage of MLSS over SRS as in
earlier experiments; for example, we brought the running times
of Rare queries from 0.3-0.8 hour required by SRS to under a few
minutes. This demonstrates sufficient promises towards an end-
to-end ML lifecycle inside DBMS: data ETL (Extract, Transform
and Load), building predictive models, and efficiently answering
durability queries based on predictions for various data analytics.
Moreover, we can materialize sample paths generated from MLSS
simulations as separate database tables, which can be further used
for visualizations or other analysis.

7 RELATED WORK

The closest line of work to ours is query processing over proba-
bilistic databases [17]: range search queries [11, 13, 56, 57], top-k
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queries [26, 32, 33, 49, 55, 62], join queries [12, 39] and skyline
queries [47]. But there is a fundamental difference between these
previous studies and our problem. In this paper, we consider query
processing based on predictive models that predict future tem-
poral data, where temporal dependence is not neglectable when
modelling data uncertainty. As a comparison, previous work on
probabilistic databases mainly focuses on the static (snapshot) data,
where data uncertainty is considered independently for individuals.

Another similar line of work is MCDB and its variants [3, 9, 34,
48]. Unlike probabilistic databases, MCDB does not make strong
assumptions about uncertainty independence, but generally em-
bodies data uncertainty with user-defined variable generation (VG)
functions. The use of VG functions is analogous to the way that we
handle uncertain temporal data with predictive models. Moreover,
MCDB’s solutions are simulation-based too. The only difference is
that our work devise novel sampling procedure to improve sampling
efficiency while MCDB focuses on making standard Monte Carlo
simulations run faster inside database management system. In [21],
authors used Markov Chains to present uncertain spatio-temporal
data and studied how to answer probabilistic range queries. How-
ever, their solutions are specific to Markov Chains and requires the
transition probability matrix as a priori information. In contrast,
our techniques are generally applicable to a variety of predictive
models, and are largely independent of the underlying model itself.

Regarding durability queries, there are several papers explor-
ing the notions of durability on temporal data. In [23, 43, 44, 59],
authors consider durability as a fraction of times (that satisfies cer-
tain conditions) over a (temporal) sequence of snapshot data, and
answer queries to return the top k objects with highest durability.
In [35, 36, 63], authors view durability as the length of time interval.
They proposed that, on the two-dimensional space coordinating by
durability and data values, skyline queries can discover interesting
insights or facts from temporal data that are robust and consistent.
Though in different forms, these papers studied durability on exist-
ing historical data, which is certain. To the best of our knowledge,
our work is among the first to extend the notion of durability into
the future, where data can only be probabilistic.
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