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Abstract. We develop the basic theory of ergodic Schrédinger operators, which is well
known for ergodic probability measures, in the case of a base dynamics on an infinite mea-
sure space. This includes the almost sure constancy of the spectrum and the spectral type,
the definition and discussion of the density of states measure and the Lyapunov exponent,
as well as a version of the Pastur—Ishii theorem. We also give some counterexamples that
demonstrate that some results do not extend from the finite measure case to the infinite
measure case. These examples are based on some constructions in infinite ergodic theory
that may be of independent interest.
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1. Introduction

The subject of this paper are ergodic one-dimensional discrete Schrodinger oper-
ators; these are self-adjoint operators H,, on £?(Z) defined by

(Hou)p = up—1 + Upy1 + f(Tn(w))un’ (L.

where T is an invertible ergodic map on a measure space (2, B, u), f: Q2 — Ris
bounded, and w € 2.

These operators have been the subject of much research in the setting where
W is a probability measure; see, for example, [5, 6, 8, 9, 14, 18] and references
therein.

The subject of this paper is to explore the infinite measure setting, where
w(2) = oo and Q is o-finite. Infinite ergodic theory is an active area of research,
but the corresponding ergodic Schrodinger operators have not been discussed in
the literature from a global perspective.

Our work may be regarded as an initial step in the general analysis of such
operators. The potentials considered here are defined by the iteration of one
invertible map 7', and hence by a Z-action. This setting arises, for example, in the
study [12] of Schrédinger operators with potentials generated by almost primitive
(but non-primitive) substitutions; see [22] for a discussion of the infinite invariant
measures arising in that context.

Potentials generated by higher rank group actions on infinite measure spaces
arise in a natural way in the analysis of quasi-periodic continuum Schrodinger
operators via Aubry duality, compare [10].

In the probability measure setting, the theory of ergodic Schrodinger operators
relies on two properties of ergodic maps:

(i) almost-sure constancy of invariant functions: if f:Q — Rand foT = f
holds u-a.e., then there is a value ¢ € R such that f = ¢ u-a.e.;

(ii) Birkhoff’s theorem: if f € L'(2, 1) and () = 1, then for pu-a.e. w € L,

1 n—1
Jim Y f(T*w) = / fdu. (1.2)
k=0

If u(2) = oo, then property (i) still holds. However, the asymptotics of Birkhoff
averages become much more complicated. There is Hopf’s ergodic theorem which
considers ratios of Birkhoff averages for two different L' functions, but we have
not found it to be of use in this setting, partly since the functions we consider are
typically L but not L'. For our purposes, (ii) is replaced by the property
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(i) if f € LY(R, n), u() = oo, and Q is o-finite, then for p-a.e. w € Q,
1
lim - " f(T*w) =0 (1.3)

which is an easy consequence of Hopf’s ergodic theorem (see e.g. [1, Exer-
cise 2.2.1, p. 61]).

To fix terminology, given a measure space (€2, B, i) and a measurable trans-
formation 7: Q — Q, we will say that T is invertible if T is bijective and 7! is
measurable, measure-preserving if W(T~'E) = p(E) for all E € B, ergodic if
T—'E = E implies u(E) = 0 or u(R \ E) = 0, and non-singular if u(E) = 0 if
and only if u(T~!E) = 0. We will often assume in addition that the transforma-
tion T is conservative, which means there is no set W € B with (W) > 0 such
that the sets {T7"W}52 are disjoint. It is known that an invertible ergodic non-
singular transformation of a non-atomic measure space is conservative, so this is
a natural assumption [1, Proposition 1.2.1].

We will begin with a discussion of non-convergence phenomena for Birkhoff
averages of L functions in Sections 2 and 3. Specifically, Section 2 constructs
an example with non-convergent Birkhoff averages, while Section 3 constructs
an example in which the Birkhoff averages behave differently in forward and
backward time. Section 4 establishes basic properties of ergodic Schrodinger
operators in the infinite measure setting. In the probability measure setting, the
density of states measure and the Lyapunov exponent have a central place in the
theory; their analogs are discussed in Sections 5 and 6, respectively. In particular
the material from Sections 2 and 3 is used there to show that some central results
known in the probability measure case do not extend to the infinite measure case.

2. Non-convergence of Birkhoff averages

In what follows, let (2, B, i) be a o-finite measure space. Denote by

n—1
An(w, £,T) = % Y f(T*w)., neN={1.2..]}
k=0

the corresponding ergodic sums where 7: Q2 — 2 is a B-measurable transforma-
tion and f is a real-valued B-measurable function.
In this section we prove the following result.
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Theorem 2.1. Let T: 2 — Q be a conservative, invertible, measure preserving
ergodic transformation on (2, B, ). Then there exist a B-measurable function
f:Q — {0,1} and two strictly increasing sequences {py} and {qi} of positive
integers such that

lim Ay, (w, £, T)=1 and lim Ay (0, £, T)=0 (u-ae wec Q). (2.1)
k—00 k—o00

In particular, we have

limsup A, (w, £, T)=1 and lirgiann(a), £T)=0 (u-ae weQ).

n—>oo

We will need the following lemma.

Lemma 2.2. Let (2, B, u, T) be as above. Let g € L'(Q, iu) be an integrable
function and let Y € B be a measurable subset of finite measure, 0 < u(Y) < oo.
Then, for every € > 0 and an integer M > 1, there exists an integer N =
D(e,g,Y, M) > M, such that

Uw e Y:|Any(w, g, T)| > €}) <e.
The statement in the above lemma follows from the relation
lim Ay(w,g,T) =0, forpu-ae we Q,
N—>o0

which in turn follows from Hopf’s ergodic theorem, as noted in the introduction.
For a measurable subset Y € B, denote by 0y the characteristic function of Y.
Clearly, 8y € L'(Q2, ) if and only if u(Y) < oo.

Proof of Theorem 2.1. Select aset Y € B of finite positive measure, 0 < u(Y) < oc.
Set Yo = Y, No = 1 and construct inductively for k£ > 1:

Ni—1
Ne=Q 7% 0y, . Y. Nec). Y= | T/ (7). (2.2)
j=0
and
Zp ={w € Y:|Ay, (0, 0y,_,, T)| > 275} (2.3)

Note that we have inclusions ¥ = Yy C Y1 C Y, C ---, and, by the ergodicity
of T, u(R\ Ugso Y&) = 0. In view of Lemma 2.2,

w(Zp) <27k, (2.4)
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Define f € L°°(2) by the formula

0 if weY,
flo) = X , (2.5)
A+ ED%/2 if w e Ye\Yr—q, k> 1.
Then we have
Ay (@.0y,_ . T) <27, forw e Y\Z,

and
{T'w:0<j < N —1} C Y.

If k is odd, then f(w) = 0 for w € Y3\ Yx_; and hence
0< Ay, (0, £,T) < Ay, (0,0y,_,, T) <27% forw e Y\ Z, (2.6)

since f(w) < by,_,(w) forw € Yj.
Similarly, if & > 2 is even, then f(w) = 1 for w € Y3\ Yx_; and hence

0<An (. 1— £ T) < Ay, (0,0y,_,.T) <27%, forw e Y\Z,
since 1 — f(w) < by,_, (w) for w € Y. It follows that
1> An (0, £, T)>1-27% forweY\Z. (2.7)

By the Borel-Cantelli lemma, the inequality (2.4) implies that u(W) = 0

where -~
W =limsup Z = () ( U Zk>.

n>1 k=n

In view of the inequalities (2.6) and (2.7), we obtain
lim Ay, (0, £, T)=0, lim Ay, (o, £, T)=1, (2.8)
k—00 k—o0

forallw € Y\W.

Since w(Y\W) = u(Y) > 0 and T is ergodic, the relations (2.8) extend to
p-a.e. w € Q. One takes pr = Noi and gx = N, to complete the proof of
Theorem 2.1. O

3. Different behaviors for Birkhoff averages in forward and backward time

We describe an example of a conservative, invertible, measure preserving ergodic
transformation (€2, B, i, T') and a B-measurable function f: Q2 — {0, 1} such that

limsup A, (w, /,T) =1, (3.1)

n—-+o0o
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while
lim A,(w, £,T™Y =0, (3.2)

n—>—+o00
(both) for all w € Q.

We wish to thank Benjy Weiss for referring us to an old paper by Dowker
and Erdé@s [11], where similar examples are described (in a somewhat different
setting).

Set K = (0,1] = R/Z to be the (left-open and right-closed) unit interval
naturally identified with the circle, let « be any badly approximable irrational
number (i.e. one with bounded partial quotients), and denote by R: K — K the
a-rotation on K (determined by the identity R(x) = x + o (mod 1)).

One proceeds by setting

Q={(u,m)e KxZ:1<m<h(u)} CR>, (3.3)

where h: K — R is defined by the formula

h(u) =22, uek.

Next, one defines the function f: 2 — R by the formula

Fum) = 1 if m < h(u) =22, (3.4)

0 otherwise,

and the map 7: Q2 — by the formula

, 1) if (u, 1) € Q,
Tu.m) = u,m+1) if (u,m+1) (3.5)
(R(u),1)  otherwise.
In other words, (€2, T') is the suspension Z-flow over the rotation (K, R) with
the delay function [k (u)]. Note that £ is strictly decreasing and

min h(u) = h(l) = 16.
uek

Finally, consider the product of Lebesgue measure on R and counting measure
on Z, and let i denote the restriction of this measure to Q2. Since u(2) =
fol [h(t)]dt = oo, it follows that T is a conservative, invertible, measure pre-
serving ergodic transformation on the infinite measure space (€2, B, i) (see e.g.
[11, Section 1.2]).

For these choices of (2,7) and f, we shall validate both relations (3.1)
and (3.2) (in Subsections 3.2 and 3.4, respectively).
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3.1. Some notation. Let wg = (1o, mp) € 2 be fixed. Set
o = (ug.my) = T*wy, forallk € Z. (3.6)

It is enough to prove (3.1) and (3.2) for = wy, under the added assumption that
mo = 1 (because (1, 1) = T~V (4, m) lies in the T-orbit of every (u, m) € Q).
Since the set
lk € Ziugp—1 #Fur} CZ

contains 0 and is unbounded from both below and above, it could be uniquely
arranged into an infinite two-sided increasing sequence of integers t = (¢,)nez,
with to5 = 0:

<ty <t <ty=0<t <tr <:--.

The set of integers Z is partitioned into finite subsets
Vie = ltes te1) N2, Vil = tipr — te = [h(Bio)] (3.7)
where
B = uy = RF(up). (3.8)
In fact, we have
Un = Uy, = Pr = RF(uo), foralln € Vj. (3.9)

Next we set

Pk = [h(Br)] = tepr —t = |Vil.  qx = [/pk]. folallk € Z.  (3.10)

Then the following pg-tuples of 0’s and 1’s coincide:

—1
F@)i ™ = (Dges Ope—gi) :=(1,...,1, 0,...,0), forallk € Z.

qi times  px—qy times

(3.11)
Since 79 = 0, the second equality in (3.7) implies that
n n—1
tn =Y (k—lie)) =Y pr. foralln >0, (3.12a)
k=1 k=0
and
0
ton = (1t = lr—1) (3.12b)
k=—n+1
-1
= (3.12¢)
k=—n

n
= —Zp_k, foralln € IN.
k=1



880 M. Boshernitzan, D. Damanik, J. Fillman, and M. Luki¢

3.2. Proof of (3.1). Since « is irrational, the sequence (B8,);>, is dense in
K = (0,1] (see (3.8)), so it achieves its minimum infinitely many times. That
is, the set

S={n=2:0n=pn}=1{n2>2:pn < ptn-1}

is infinite where
Mn = min B, foralln € IN.

0<k=<n

Since « is a badly approximable irrational, for all integers n > 1, the n + 1
points Br, k = 0,1,2,...,n, are all different and they partition K = (0, 1]
(viewed as the unit circle) into subintervals of proportional lengths. By “propor-
tional lengths” we mean that the ratio of the lengths of any two such subintervals
is bounded by a constant ¢; = ¢;(«) > 1, which is independent of n. This follows,
for example, from the three distance theorem, compare [3].

It follows that u, < ;35 < L, and that, for all 0 < k < n such that i # in,
we have ,BkM_nMn < ¢; and hence ﬁ" > 1+Cl Set ¢, = IJCF% > 1 to be a new
constant.

Then, for the above constants ¢y, ¢y > 1,

1<C2§%, ﬁn<c—1, foralln e Sand0 <k <n—1, (3.13)
n n
because 8, = u,, foralln € §.

The following estimate for all n € S follows from (3.12a), (3.13), and the fact
that / is decreasing:

n—1

n—1
= Y IR = 3 hleapn) = nh(capn) < ghheafn) = L h(capn).
k=0

k=0 n

Observe that g, = [v/h(Bn)] = [\/h(n)] for n € S (see (3.10)) and that

lim 2 =0, (3.14)
nesS (n

n—>oo

h . .
because hm Un = 0 and 11 lim % = 0 (here the assumption ¢, > 1 is

used).
In order to prove (3.1), it is enough to show that

lim Ay, 4, (wo. £.T) =1 (3.15)
es

n——+o00
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because A, (wo, f, T) < 1 for all n € IN. We start by splitting the sum

1 thtqn—1
Atytqn (@0, £, T) = > f(T wy)
In + qn k=0

th—1  th+qn—1

:tn—ll—qn((z"' > )f(Tka))

k=0 k=t,

S1+ 5>
tn‘i‘Qn’

where
th—1

0<S1=Y f(Trwo) <ty
k=0

and, forn € S,

th+qn—1 th+qn—1
So= Y [(Tro)= > 1=g¢u
k=ty k=t

(in view of the definition of f and since g, = [/h(Bx)], for n € §). It follows
from (3.14) that

0 < limsup < lim sup =0
nes In + qn nes In + qn
n—+oo n—+o00
and that S
2 — 1im 4dn —1.
neS Iy +qn neS In+(qn
n—+o0 n—+00

whence (3.15) follows. This completes the proof of (3.1).

3.3. More notation and estimates. We assume the conventions and notation
introduced above, in particular (3.6), (3.7), and (3.12). We also set new sequences

Vi=—-V_, tp =—t_g, ppr=P-k qy=4q-k TforallkeZ.
Then we have
/ !/ !/ / !/
<L, <t <ty=0<1t <ty <.,

and
Vi=_ ] ]NZ=1[t,_, + 1,11 N Z.
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Thus (see (3.10))

Vil = Vgl = [h(B=k)] = p—k = py. forallk € Z.

Proposition 3.1. For all k € 7, we have

(f(@—g), flo—@—1)- - flo—@_ +1) = (Dg; (0)p; —g; -

Proof. The verification is straightforward:

F@-). f@—1)e s F@ 1)
= (f(a)t_k)7 f(a)t_k-l-l)’ DR f(a)t_(k_l)—l))

= (f@n)y ™!
(3.11)
= (1)q1’( (O)p;(—q,’( .
Proposition 3.2. For all k € Z, we have

> flo-n) = gj.

nevy
Proof. This follows from Proposition 3.1.

3.4. Proof of (3.2). Denote

1 n
= — E —k), > 1.
dnp n kzlf(a) k) n =z

where wy = T*wy = (ug, my) for k € Z.
In order to prove (3.2), it is enough to show that

lim a, = 0.
n—-+o0o

Lemma 3.3. For integersn > t{, we have 0 < a, < 1.

(3.16)

(3.17)

(3.18)

Proof. This follows from (3.17) because f is {0, 1}-valued and f(w—_;) = 0 while

f (w_,;) = 1 (in view of Proposition 3.1 with k = 1).

d

Lemma 3.4. Assume that for some k > 2 we have n € Vk/ = (t,/c_l, t,/c] N Z. Then

an < max(a,;(_l,a,]/c).
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Proof. The identity (n + 1)(an+1 — an) = f(®@—n+1)) — an (Which holds for all
n > 1) and Lemma 3.3 imply the inequalities

a >a,, if flo_ =1,
{nﬂ w1 f(©0-i) forn = 1l

ap+1 < dp, if f(w_(n+1)) =0,
By Proposition 3.1, we obtain the inequalities
atl/c > atl/c_l > a,]/c_2 > e > at]/c_q;c
= a,]/c_q;c < a,]/c_q;c_l <L e < atl/c—1+1 < at]/c_l,
whence the claim of Lemma 3.4 follows. O

We conclude from Lemma 3.4 that in order to establish the limit (3.18), it
suffices to do it only over the subsequence (#;), i.e. to prove that

li r=0. 3.19
k—irllooatk ( )

We have

ay = 73 flo).

k i=1

Since [1, ;] N IN can be partitioned into the disjoint union

k
LglnN=]JV,
j=1
and since |V/| = p} and
> flo) =4q]

/
nEVj

(see (3.16) and Proposition 3.2, respectively), we obtain

k
Zj:lq}
=
2 j=1 PJ/'

(Recall that p} = p_; = [(R™/(ug))] = 16 and ¢} = [\/,7;.] < \/;; > 4,
see (3.16), (3.9), and (3.10)).
By the Cauchy—Schwarz (or Jensen) inequality, we have

k 2 k k
(Zq}) <k @)*<k)_ p
j=1 j=1 J=1

a, =
Ik
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, 2
(ay)? = (Zf:lqj) < Zkk -

k
2j=1P; j=1P;

whence

It remains to prove that
. Z?:l P]/-
lim ——
k—+o00 k
because then (3.19) and hence (3.2) follow. But
k oz
Y P Yalh(R7 (uo))]
k N k

is just the k-th ergodic average of the positive function [A(u)] for the irrational
rotation R~! evaluated at 1. Therefore

k ’
lim —Zj:l Pi _
k—+o00 k

:+OO

1
/[h(u)]du = +o00,
0

completing the proof of (3.2).

4. Basic consequences of ergodicity

Throughout the remainder of the paper, let (2, B, i) denote a o-finite measure
space with () = oo, T: Q2 — Q a conservative, invertible, ergodic, measure-
preserving transformation, and f:Q — R bounded and measurable. For each
w € Q, H, = A+ V, is defined by (1.1). Throughout, S: £>(Z) — {*(Z) will
denote the left shift S: 68, — §,—1.

Lemma 4.1. If i: R — C is a locally bounded Borel function, then the family
{h(Hp)}weq is weakly measurable in the sense that

17V (@) = (¢, h(Ho)¥)
defines a measurable function Q — C for all ¢, v € (*(Z).

Proof. Let K = [-2 — || floo» 2 + || f lloo]- Since 6(H,) € K for p-ae. w, it
suffices to prove the theorem for bounded Borel functions K — C. Let A denote
the set of bounded Borel functions /#: K — C such that / ;f’ ’w(w) is a measurable
function Q — C for all ¢, ¥ € £2(Z). It is clear that A is a vector subspace of all
bounded Borel functions and that it contains the constant function 7 = 1. We will
now prove some additional properties of A.
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Step 1. A contains the function i(x) = x. Measurability of f,7, and 7!
imply that
IV (@)= (¢.AY) + > v f(TFw)
keZ
is a measurable function of w.

Step 2. If g, h € A, then gh € A. This follows from
(¢, S(Ho)h(Ho)V) = > (¢, 8(Hu)8n) (80, h(Ho) V)

nez

because products and pointwise limits of measurable functions are measurable.

Step 3. If g, € A for all n € N, g, are uniformly bounded, and g, — ¢
pointwise, then g € A. If g, are uniformly bounded and converge to g pointwise,
then g, (Hy) N g(Hy) by [20, Theorem 3.1], so [ g,;‘/’ converge pointwise to
I g’ ¥ As the pointwise limit of measurable functions, g’ ¥ is measurable.

Step 4. C(K) c A. Since A is an algebra and contains the functions 1 and x, it
contains all polynomials. Since it is closed under uniform limits, by Weierstrass’
theorem A contains all continuous functions.

Step 5. The set £ of Borel sets B C K such that yp € A is a g-algebra. It is
clear that @ € €. Since yp € A implies yx\p = 1 — xp € A, € is closed under
taking complements. If By, B, € £, then B; N B, € € because xp,nB, = XB, XB,-
Thus, € is closed under finite intersections and therefore finite unions. Finally,
XU, B, = limy oo XUN_, By implies that € is closed under countable unions.

Step 6. xp € A for all Borel sets B C K. For any closed F C K, the character-
istic function y is the limit of continuous functions max(1 — ndist(x, F), 0) as
n — oo, by Step 4, yr € A. Thus, the o-algebra &£ contains all closed sets, so it
contains B, the Borel o-algebra.

Step 7. h € A for all bounded Borel functions /2 : K — C. The set A contains
all simple functions as linear combinations of characteristic functions. Since every
bounded Borel function can be uniformly approximated by simple functions, A
contains all bounded Borel functions. |

Lemma 4.2. Let (2, B, ) be as above, and suppose that T is ergodic, invertible,
and conservative. Suppose further that { P, }eq is a weakly measurable family of
orthogonal projections such that Pr, = SP,S*. Then Tr(P,) = dim(range(Py))
is w-almost surely constant — moreover, the | almost sure value of Tr(P,) must
be either 0 or oco.
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Proof. By weak measurability, (5,, P,0,) is a measurable function of w € Q for
eachn € Z, so Q(w) := Tr(P,) is a measurable function of w. Moreover, Q is
T -invariant, since

Q(Tw) = (8. Prwbn)

nez

=) (8n. SPuS*5y)

nez

= Z(5n+1,Pa)5n+1)

nez
= 0().

Thus, by ergodicity of T, there exists some ¢ € [0, oo] such that Q(w) = ¢ for
u-almost every w. To conclude the proof, we note that O > 0, so it suffices to
show that ¢ > 0 implies ¢ = oo. To that end, assume that ¢ > 0 and consider
f:Q — R defined by

f(@) = (8o. Pubo). 4.1)
Notice that f is nonnegative and that

f(T"w) = (80, Prrwbo) = (80, S" Pu(S™)"80) = (8n. Pwbn). 4.2)

so f need not be T-invariant. However, f cannot vanish almost everywhere, for,
if f(w) = 0 for u-almost every w, then by taking a countable intersection of sets
of full u-measure, we would have a full-measure set of w with f(T"w) = 0 for
all n € Z and hence
Q) =Y f(T"»)=0
nez

for all such w, i.e. ¢ = 0. In particular, since f does not vanish almost everywhere,
we may choose § > 0and 27 C Q with ©(27) > 0and f(w) > 25 forall w € ;.
By removing a set of p-measure zero from 2, we may assume without loss that
O(w) = c for all w € 27 as well. By Poincaré recurrence ([1, Theorem 1.1.5]),
we may throw out yet another set of measure zero to get

liminf | f(w) — f(T"w)| = 0

for all @ € Q. Thus, to every @ € 2 there corresponds a sequence n; =
nj(w) — oo with

f(Tw) >§ 4.3)
for all j. Evidently then,
Q) =) f(I"w) = oo (4.4)
nez

for all w € Q. Therefore, ¢ = oo, as claimed. O
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Notice that Lemma 4.2 need not hold if 7 is dissipative. Indeed, consider
Q = Z endowed with counting measure and 7:n +— n — 1. Forn € Z, let P,
denote orthogonal projection onto the one-dimensional subspace spanned by §,,.
It is easy to see that

SPnS*Z n—1=PTn’

but Tr(P,) = 1 foralln € Z.

Theorem 4.3. There exists a compact set ¥ C R such that 6(Hy,) = X for
u-almost every w € Q.

Proof. For —co < p < g < oo, Lemma 4.1 implies that (x(p,4)(Hw))we is a
weakly measurable family of projections. Let dj, ;, denote the almost sure value of
Tr(x(p,q)(Hw)), which is either 0 or co by Lemma 4.2. Next, let 2, ; denote the
(full measure) set of w € Q for which Tr(x(,,4)(Hw)) = dp 4 and define

Qo =) .q-
p<4,p,q€Q

which is a set of full measure. Now, for all w,® € Q¢, we claim that 0 (H,) =
o(Hg). To see this, assume E € R \ 0(H,). Then we can choose p < ¢ rational
with £ € (p,q) € R\ 0(Hy). One then has

0=Tr(x(p.g)(Ho)) = dp.g = Tr(X(p.q)(H&))
which implies that £ € R \ 0 (Hg). By symmetry, we are done. |

Corollary 4.4. Forall E € R, one has n({w: E € 0p,(Hy)}) = 0.

Proof. Since the space of sequences u: Z — C with
Un—1 +Unt1 + Vp(n)uy,
is two-dimensional, it follows that
Tr(x(ey(Hy)) = dim(ker(Hy, — E)) <2 < o0

for all w. By Lemma 4.2, the almost sure value of Tr(y(£y(H,)) must be zero, i.e.
E is p-almost surely not an eigenvalue of H,,. |

Corollary 4.5. One has u({w: o4isc(Hy) # 0}) = 0.
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Proof. Suppose ogisc(Hy) # @. Given E € o0gisc(Hyp), there exist rational
numbers p < g such that (p,q) No(Hy) = {E}, so

Tr(x(p.q)(Hw)) = dim(ker(H, — E)) = 1.

In particular, following the notation in the proof of Theorem 4.3, ® ¢ €2, 4, so
@ ¢ Qo. O

The arguments given in [6] and [21] generalize without modification to estab-
lish p-almost everywhere constancy of the spectral decomposition into absolutely
continuous, singular continuous and pure point parts.

Theorem 4.6. There exist compact sets Xac, Xsc, Zpp S R so that for p-almost
every w € , one has 04(Hy,) = X, for e € {ac, sc, pp}.

Proof. Let P P, and P denote projection onto the absolutely continuous,
singular continuous, and pure point subspaces corresponding to H,,, respectively.
By following the argument in Theorem 4.3, it clearly suffices to prove weak
measurability of these three families of projections. If P¢ denotes projection onto
the continuous subspace of H,,, we have

T
. . 1 i —i
im lim 7/(¢,.«z’Hw(l—;([_N,N])e tHo 4.5)

Py =1
<¢ ww) N—oo T—o00
0
by [21, Equation (5.20)]. If P} denotes projection onto the singular subspace
of H,, then

(¢, Pyv) = inf sup (. x1(Ho)V), (4.6)
§>0 Jegg
|1]<8
where J denotes the collection of intervals in R with rational endpoints. This
follows from [21, Lemma B.6]. Since P¢ = P + P and P5, = P + PIP we
are done. O

5. The density of states

In this section, we explore possible notions of the density of states for an ergodic
family (Hy)wpeg-
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5.1. Ergodic averages of spectral measures. When the underlying measure p
is a probability measure, one can view the density of states as the p-average of the
8o spectral measures of the family H,, i.e.

/ ¢(E) dk(E) = / (80. g(Ha)S0) dpt(w). 5.1)

R Q

By Cauchy—Schwarz, the integrand on the right hand side is bounded and hence
is L' with respect to . In the case when y is an infinite measure and Q is o-
finite, we clearly need to treat convergence issues with more care. One way to
work around this is to exhaust 2 by subsets of finite ©-measure and then attempt
to understand the natural restrictions of (5.1) to these subsets. More precisely, let
JF denote the collection of measurable subsets ' € 2 having finite p-measure.
For each F € 7, define a probability measure dk ¥ by

/ ¢(E) dkF (E) = ﬁ F/ (80. g(Ho)S0) d() (5.2)

for each continuous function g having compact support. Obviously, dk¥ is
absolutely continuous with respect to dk*’ whenever F C F’, since

w(F) g 1
KLk (B) + [ 0. xaHab) o). (53

F'\F

k¥ (B) =

Theorem 5.1. Let X denote the almost sure spectrum of the operators H, from
Theorem 4.3. One then has

|J supp(dkF) = x. (5.4)
FeF
Proof. For notational ease, let S denote the left hand side of (5.4). To prove the
inclusion “C”, suppose that £y € R\ X. We may then choose a continuous,
nonnegative function g for which g(E¢) = 1 and g|x = 0. One then has
g(Hy) = 0 for p almost every w € Q2 by the spectral theorem. From this, it
follows that

1
F(p) — —
/g(E)dk (E) = (P !(5o,g(Hw)5o)du(w) =0

for all F € J. Thus, for all F, one has Eq ¢ supp(dk’), so

U supp(dkf) c =,
FeF
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which then implies § C X, since X is closed. Conversely, given Eg € R\ S, pick
a continuous nonnegative function g with g(£o) = 1 such that g vanishes on S.
For each F € F, we get

0= / ¢(E) dkF (E) = ﬁ F/ (80. §(Hw)S0) dpt(@). (5.5)

By o-finiteness, 2 enjoys a countable exhaustion F; € F, C --- by members of
F. Using (5.5), for each n, (89, g(Hy)do) vanishes for p-almost every w € Fy,.
Thus, the same inner product vanishes for p-almost every w € . Lastly, note
that

/ (60. g(Ha)0) dju() = / (S81. g(H,)S81) dpt(®)
F F

- / (81, g(Ho)b1) du(),

T=1(F)

s0, by the same argument as before, (81, g(H)81) = 0 for u-almost every w € Q.
Since {89, 61} is a cyclic pair for H,,, g(H,) = 0 for u almost every w € 2, which
implies Eo ¢ X. O

Consider an exhaustion F; € F, C --- of Q by sets of finite measure, and
abbreviate dk! = dkfi. By general measure theory, there exists some weakly
convergent subsequence dk% . One may hope that the sequence dk’ itself might
be weakly convergent, but this is not the case.

Theorem 5.2. In general, the measures d k! need not have a weak limit dk as
| — oo.

Proof. To see this, it suffices to construct an example for which the first moments

/ E dk'(E)

fail to converge as | — oo.

Take 2 = R endowed with Lebesgue measure and an invertible, measure-
preserving, ergodic, conservative transformation 7', and put F; = [-[,[] for
[ € Z. Next, choose a sequence (a,) € {0, 1}%+ such that the Cesar0 averages

_ar++a

S ]
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fail to converge as [ — oo. It is not hard to see that we may construct a bounded,
continuous function f so that

-1 I+1

/f(x)dx = /f(x)dx = qaj.
—1-1 1

With this setup, define the family of Schrodinger operators (Hy)xer as usual, and

observe that
1

w(Fy)

/ Edk'(E) / (80, Hybo) dpi(w)

F;

1
E/f(x)dx

[-4.1]

=S,

which fails to converge by construction. In particular, dk’ is not weakly conver-
gent. O

The example above generalizes readily. Assume given (2, B, u) which is o-
finite with ©(2) = oo, and an exhaustion F; C --- of Q by sets of finite measure
such that u(F,\ Fy—1) > 0 for n > 1. We can then choose a sequence a;, so that
the weighted Cesar0 averages s; = % fail to converge. With the convention

Fy = 0, the choice
o0
a:
f=) ————XF\F,_
;u(ﬂ\ﬂ_o A

produces an example for which the spatial density of states cutoffs do not converge
weakly.

5.2. Thermodynamic limit of finite truncations. In the finite-measure case,
we can also view the density of states as a weak™ limit of averages of spectral
measures or the weak™ limit of uniform measures placed on the spectra of finite
cutoffs. More precisely, given N € N, let Py 4+:0%(Z) — (*({0,...,N —1})
and Py_:4*(Z) — €>({—N,...,—1}) denote the canonical projections. Then,
forw € Q and N € Z, define probability measures d kjf, y and d Igjf, n on R via

[ B akEn ) = 5 TPy sg(Ho P,

[ e aig () = 5 Te(e(Pus HoPi o)),
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for each continuous function g. For later use, we point out that taking g(E) =
we have

N—-1
/Edk+N(E) /EdiéajN(E) = % Y f(I"w) = Ay(o, £.T). (5.6)
n=0

. -
[ Ed e = [ EdiyE =y 3 s .
n=—N :

= An(w, fo T, T7Y).

Theorem 5.3. There exists Q. S Q2 of full u-measure such that, for every
continuous function g, there exist constants 1*(g) and 1*(g) such that

1*(9) = timinf [ gdity (58)

= lim inf gdk y. (5.9)

I‘i(g):h]\r,nsup gdky y (5.10)
o0

= hlflnsup/gdéj]\,. (5.11)

Jorall w € Q..

Proof. First, notice that

/]
Mz

/ (E)dk oy (E) = (8. g(Hu)3;)

-
I

z| =

i

(57, £ (Ho)3)) + L (50, 2(Ha)bo)

=
=+
=
L

=
+
=z~

(8. 8(Hro)d;) +
0

N

1
— {80, g(Hy)é
N+1<0g( )d0)

<.
I

H, .
N1 (80, & (Hw)d0)
Taking lim inf and lim sup of both sides proves that liminf [ gd k;’, y and
limsup [ g dk;“’ n are T-invariant functions of w. A similar argument shows that
this holds with — replacing 4. Thus, we find a full-measure set 2 and constants
I%(g), I*(g) so that (5.8) and (5.10) hold true for w € Q.
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Next, let P denote the collection of all polynomials having rational coeflicients,
and Q. = (),ep ©2p. Uniformly approximating a continuous function g by p € P
on K := [-2 — || flleos2 + || fllec], We observe (5.8) and (5.10) hold for all
continuous g and all w € Q..

Next, consider p € P and w € Q.. By an explicit calculation, one has

‘ / pdky y — / p dléjf,N‘ = O(1/N),

where the implicit constant depends on p but not on N. Thus, (5.9) and (5.11)
hold for p € P. Passing to general g via uniform approximation concludes the
proof. |

Theorem 2.1 shows us that Theorem 5.3 is optimal in the sense that we cannot
expect the “upper” and “lower” density of states limits to agree. To see this, assume
given (2, B, u, T) ergodic, conservative, invertible, and o-finite with p(2) = oo,
and choose a measurable function f:Q2 — {0,1} as in Theorem 2.1. Define
Vo(n) = f(T"w)and H,, = A+V, asusual. Then, with g(E) = E, Theorem 2.1
and (5.6) imply

It (g)=0#1=1%(g).
Additionally, choosing f as in Section 3 (3.1) and (3.2) imply
I(@=1"(e)=0#1=1"%(g),

so the behavior on the left and right half-lines may not be the same.

6. The Lyapunov exponents

As before, let (2, B, ) be a measure space, and 7" a non-singular invertible
ergodic map. Throughout this section, we will also assume that 7 is conservative.

Assume that f and H,, are defined as above. Let us define the one-step transfer
matrix

E— fw) -1
A(E,w) =
o= (777
and the n-step transfer matrix
AE, T" 'w)---A(E, ) ifn >0,
A(E,n,w) =11 ifn =0,

AE, T o)~ A(E, T 'w)™ ! ifn <O0.
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In this section we explore the growth of norms of transfer matrices and its relation
to the spectral properties of H,,.

Theorem 6.1. For any E € C, there exist finite numbers LT (E), L*(E), called
upper and lower Lyapunov exponents, such that for u-a.e. o,

1 _
limsup — log|A(E,n, )| = LE(E), (6.1)
n—>too |”|

1
lim inf i log||A(E,n,w)|| = LE(E). (6.2)
Proof. Denote
Jn(@) =log||A(E. n, 0)|| (6.3)
and
~ 1
FE(w) = limsup — f;,(w), (6.4)
n—+oo |I’l|
1
% (w) = liminf — f;,(w). (6.5)
= n—+oo |n|

We prove that f*(w) and S *(w) are p-a.e. constant.
Sub-multiplicativity of the matrix norm implies that for m,n > 0,

Jman(@) < fm(@) + fu(T"0).

In particular, with m = 1, this implies

Jnr1(w) < S1(w) + fu(Tw)

n n n

and taking the liminf as n — 400, we conclude

[T () < [T (Tw)

Thus, for any y € R, the set

By ={w: [T (0) <y}

obeys T™'B, C B,. Since T is conservative and ergodic, this implies that
u(By) = 0 or u(By) = 0. Thus, there is a constant ¢ such that f+(a)) =c
for y-a.e. w. This constant is precisely LT (E).

The proof for the other three constants is analogous. |
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Obviously, LT(E) < L*(E) and L~ (E) < L™(E). But there are also
inequalities between Lyapunov exponents at +oco and those at —oo.

Proposition 6.2. Both lower Lyapunov exponents are smaller or equal than both
upper Lyapunov exponents, i.e.

L™(E) = L™(E), L™(E)=L™(E).

Proof. Use the same notation as in the proof of the previous theorem. Notice that
forn > 0,

fn(@) = fu(T"w). (6.6)
Let § < L*(E). Then for pu-a.e. every w, the inequality f,(w)/n < § holds
for finitely many positive values of n. Thus, denoting

Ap = {o: fa(@)/n > &}

M(Q\U ﬂAn) =0

m=>1 n=m

we have

so for some value of m > 1, the set W = ),,.,,, 4» Obeys
w(W) > 0.

Since T is invertible and ergodic, by [1, Proposition 1.2.2], for u-a.e. w, w is in
T"W for infinitely many values of n, so by (6.6), f_,(w)/n > § for infinitely
many values of n. Thus, L™(E) > §.

Since this holds for any § < L*(E), we have shown L=(E) > L*(E). The
other inequality is analogous. |

However, the upper and lower Lyapunov exponents are not necessarily equal.
To see this, we will rely on the construction in Section 2 and the avalanche
principle. The avalanche principle was introduced by Goldstein—Schlag [13]; we
will use a strengthened version due to Bourgain—Jitomirskaya [4].

Lemma 6.3 ([4, Lemma 5]). Let u be sufficiently large, N =3°, and Ay, ..., AN €
SL(2, R) such that |A;|| > w and

|log||A; || + log||Aj 1] — logllAj+14;l| < 4 log .
Then

1 N—-1 N—-1 N
tog | T 41 + 3 togll sl = 3 togli Az | < €1
J=N j=2 J=2

where C1 is an absolute constant.
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Note that if all the all conditions of the above lemma hold and
[logll4; |l + log|lAj 1] — log|l Aj+1 4;l| <y

for some y < % log i, then the above inequalities imply

1 N-1
N
log H 1_[ Aj H = Z log||[Aj+1ll = (N =2)y — C1—, (6.7)
j=N j=2 M

which is the form we will use below.

Proposition 6.4. For large enough M > 0, there exist bounded sampling func-
tions f:Q — R such that LY (E) > LT (E) when |E| > M.

Proof. Let us follow the construction in Theorem 2.1, noting that we can force
all the numbers Ny in that construction to be powers of 3. We pick a sampling
function f such that the potential takes two possible values, v; and v,, and that
w-almost surely,

1 .
limsup = |{j € Z:1 < j <3 f(TVw) = vi}| = 1.

S—>00

1 .
liminf —|{j € Z:1 < j <3°, f(T’w) = v} =0.
s—o0 3§

Then, for every E, w-almost surely, denoting A(x) = (¥ 74),
3‘&‘
. 1 ;
limsup — > "log| A(E, T/ )| = maxlog|| A(E — v)]I.
§—00 3 i=1 i

3S
1 ,
1 P o
lim inf - _X;logllA(E,T ®)|| = minlog|| A(E —v;)].
J=

Sub-multiplicativity of matrix norms guarantees that
1
LT (E) < liminf 3 log |A(E, 3%, w)|| < minlog||A(E — v;)].
S—>00 l

If the avalanche principle is applicable to A(E, j, w) with a suitable choice of p,
(6.7) implies that

_ 1 C
L+(E) > limsup — log ||A(E, 3%, w)|| > maxlog||A(E — v;)|| — 1 V.
§—00 3s i n
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Thus, LT(E) > L*(E) will follow from
C
max log||A(E — v;)|| — minlog||A(E —vi)|| > 71 + y. (6.8)
l 1

Thus, it suffices to show that there is a suitable choice of v, v, such that, for
all large enough E, there are choices of u, y such that the avalanche principle is
applicable and (6.8) holds. We will now show that this is true if we choose

4
=48 =2Cy, = —4, =E-§, = —.
V1 1, U2 H 4 (E —5)2
For large enough E, it is then obvious that
< 110 > “ +
y<glogp. ToETET LY

We will now need some norm estimates. Let

1 x2 x4
_ 1 X)X
g(x)—zlog(l—i-z—i- X +4).
If A € SL(2,R) and Tr(A*A) = 2 + x? for some x € R, then
log|[A] = g(x),

since ||A||? is the larger eigenvalue of A*A and eigenvalues of A*A are the
solutions of A2—(2+x2)A+1 = 0. Itis straightforward to compute Tr(A4 (x)* A(x))
and Tr(A(y)*A(x)*A(x)A(y)) to see

log[|A(x) | = g(x),

log| A() AW = g(v/x2y2 + (x — y)?).

log<1+x—22+ \/x2+x74)

2 X2

2 2

For x > 0,

N = N = N =

g(x)

A%

<)

oQ
—~

p—

+

|

+
2D

which implies that
log| A(E £ 6)|| = log .
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In the opposite direction, for x > 0, we use /1 + 4/x2 < 1 + 2/x? to estimate

1 1 1 1 4 1 2 1
g(x)—logx:§10g<§+§+§ 1+§)§§log(1+;>§;.

For 1 < x < y, using this inequality three times and noting

Vx2y2 + (x —y)2 > x,

we get

3 1 x4 (x—y)? _ 4
800 +20) gV T (3P = o+ g log T EOTI 2
b 2 x2y b

where, for the last step, we used log (1 + (’; > ;2) < (’; > 2 < ~. Thus, for large
enough F and x,y € {E — 6, E + 8},

[logllA(x)[| + log[[A()|| —loglA(x)AW)I| < y.

For x > 0,
x 4 2x+x3
/24 x4
g/(x):l 2¢/x24+% Zl x+1 - 1

Py 2 2 =
2ip2y Jepxt 245 4ex+ s 2040

s0, by the mean value theorem,

]
g(x+5)_g(X—5)Zm

for x > §. In particular,
C
S(E+8) —g(E—8) > 7‘ +y.

By these estimates, the avalanche principle is applicable and, by the estimates
above, L1 (E) > L™ (E) for all large enough E. Note that g is an even function so
the above discussion applies with minimal modifications to the case of negative
E with large enough | E|. This completes the proof. O

Proposition 6.5. There exists a conservative, invertible, measure preserving er-
godic transformation (2, B, u, T), a sampling function f:Q — Rand M > 0
such that

LY(E)> L™ (E)

when E > M, and
LY(E) < L™(E)

when E < —M.
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Proof. We start with the ergodic system and function f constructed in Section 3.
We rescale f so that it takes two possible values, vy = § and v, = —§, such that
for almost every w,

1 .
limsup—|{j € Z:1<j <N, f(T'w) =8} =1,
N

N—>oo

1 .
lim —|{jeZ:1<j<N, f(T7w)=234}=0.
Jm [ eZil = j =N f(T7w) =6}
The first of these inequalities implies
1 - 1
limsup—|{j € Z:1 < j <3° f(T'w) =8} > =. (6.9)
§—>00 3S 3

From here, we use the same approach as in the previous proof: the avalanche
principle is used to prove that different asymptotics of Birkhoff averages imply
different asymptotics of the subadditive logs of matrix norms. If we choose

4

5:6C1, /_L:E—(g, V:m,

(the extra factor of 3 for § comes from the factor of 3 in (6.9)), since then

1 8 C
—log u, % 3=t
V=g 0Bk I+ E+8 (MH’)

and we prove as in the previous proof that
- 1 2 C —
LHE) 2 38(E+8) + J8(E=8) = —L—y>g(E =9 = ["(F). O

An analogous argument proves the analogous proposition for lower Lyapunov
exponents:

Proposition 6.6. There exists a conservative, invertible, measure preserving er-
godic transformation (2, B, u, T), a sampling function f:Q — Rand M > 0
such that

LT(E) > L™(E)

when E > M, and
L™ (E) < L™(E)

when E < —M.

The following is the extension of the Ishii—Pashtur theorem to the infinite
measure setting.
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Theorem 6.7. S, C {E € R: L*(E) = O or L—(E) = 0} .
Proof. Denote
2={EeR:LT(E)=00r L”(E) =0}.
Forevery E € R\ Z,
f(E.0)>0 and fH(E,0)>0 (6.10)

holds for a.e. w € Q. Since f,(E, w) are measurable functions, so are f +(E,w)
and f*(E, w); thus, the set

{(E,w) € R x Q:(6.10) holds}

is measurable. Thus, by Fubini’s theorem, for p-a.e. w € , there is a set B, with
| B, | = 0 such that (6.10) holds for all £ € (R\ Z) \ Be.

By a result of Last—Simon [17, Theorem 3.10], for a.e. E w.r.t. the absolutely
continuous part of the spectral measure of H,, we have for at least one choice of
the £ sign,

lim sup

N
A(E, +n,w)|* < 6.11
im suj NlogzNZ” ( )| (6.11)

n=1
(the theorem of Last—Simon is stated for half-line operators, but that implies the
whole line result using standard arguments).

However, it is easy to see that f*(E, ) > 0 implies that the corresponding
limsup in (6.11) is 4+-00. Thus, P& (R\ 2)\ B,) = 0, and | B,| = 0 then implies

PEIRN\2) =0
for pu-a.e. w. Thus, 0ac(Hy) C 2 for p-a.e. w, which completes the proof. [

Conspicuously absent from our discussion here is a version of Kotani theory
(see, e.g., [7, 15, 19] for some papers on Kotani theory in the finite measure case)
or some hints as to why no natural analogue exists. We regard results in this
direction for the infinite measure case as very interesting.
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