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1. Introduction and main results

The KdV equation

∂tq + 1
4∂3

xq − 3
2q∂xq = 0 (1.1)

was studied in the 19th century by Boussinesq [4] and Korteweg–de Vries [24] as a 
model for solitary wave phenomena. Its modern theory began in the 1960s with works of 
Gardner–Greene–Kruskal–Miura [21] and Lax [26], who discovered that the KdV equa-
tion has infinitely many conserved quantities and can be formally rephrased in a Lax pair 
representation and studied through the associated family of one-dimensional Schrödinger 
operators. The conserved quantities formally correspond to mutually commuting Hamil-
tonians; this makes the KdV equation one of an infinite family of mutually commuting 
partial differential equations, called the KdV hierarchy.

The KdV hierarchy is most concisely introduced as the sequence of partial differential 
equations

∂q

∂t
= 2∂f̂n+1

∂x
, (x, t) ∈ R × R (1.2)

where the f̂n are differential polynomials in q, defined recursively by

f̂0 = 1, f̂1 = q/2,

f̂�+1 = −1
2

�∑
k=1

f̂kf̂�+1−k + 1
2

�∑
k=0

(
qf̂kf̂�−k + 1

4
∂f̂k

∂x

∂f̂�−k

∂x
− 1

2
∂2f̂k

∂x2 f̂�−k

)
.

Note that setting n = 0 in (1.2) gives the translation flow ∂tq = ∂xq and setting n = 1
recovers the KdV equation (1.1). For n ≥ 1, the n-th equation is a nonlinear partial dif-
ferential equation with spatial derivatives up to order 2n +1, called the KdV-n equation. 
Due to the Lax pair representation, these PDEs are said to be integrable; 50 years after 
this discovery, many other integrable PDEs have been discovered, and KdV continues to 
be one of the central models on which new integrability phenomena are explored [16].

Of course, rigorous results about the KdV equation and hierarchy are dependent on 
the type of initial data being considered,

q(x, 0) = V (x). (1.3)

The first application of the Lax pair representation was to rapidly decaying initial data 
via the inverse scattering transform of Gelfand–Levitan–Marchenko. Other classical ap-
plications were to periodic and finite gap quasiperiodic initial data; in those applications, 
solutions can be parametrized by Dirichlet data, which evolve by Dubrovin-type flows, 
or by an Abel map which linearizes the trajectories on a torus. In particular, the finite 
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gap quasiperiodic solutions are described by an algebro-geometric approach associated 
to a compact Riemann surface. The solutions are quasiperiodic in both space and time 
because they can be expressed in the form q(x, t) = F (δx + ζt) where F : Td → R is 
continuous and δ, ζ ∈ Rd, where d < ∞ is the number of gaps.

These theories motivate a more general consideration of the KdV hierarchy with 
almost periodic initial data. Recall that a function f : R → C is called almost periodic 
if the set of its translates {f(· − s) | s ∈ R} is precompact in the uniform norm; this 
includes continuous periodic and quasiperiodic functions as special cases. In the study of 
the KdV hierarchy with almost periodic initial data, one of the new difficulties is in the 
nature of the conserved quantities which take the form of spatial averages over R such 
as limL→∞

1
2L

∫ L

−L
q(x, t)2 dx, which are not useful for obtaining local control over the 

solution. Indeed, even short time existence of solutions is not known for arbitrary almost 
periodic initial data. From a spectral/scattering perspective, the difficulty comes from 
the fact that almost periodic Schrödinger operators have very diverse spectral properties.

Despite these obstacles, the KdV hierarchy with almost periodic initial data is an 
active area of research [17,18,39,9,2,19], motivated by a question of Deift [14,15] about 
whether such solutions are almost periodic in time. Most of these works are based on 
the reflectionless property and on spectral theoretic techniques initially developed in the 
time-independent setting (i.e. for the translation flow) [6,35,34]. Analogous questions 
have also been studied in the setting of the nonlinear Schrödinger equation and the 
Toda lattice [29,5,40,3,13].

To get more precise, we must recall some basic facts about Schrödinger operators, 
starting with a time-independent setting. We denote by ACloc(R) the set of functions on 
R which are absolutely continuous on every compact interval in R; such functions have 
a derivative in L1

loc(R). We can describe in those terms the familiar Sobolev space

W 2,2(R) = {f ∈ L2(R) | f ∈ ACloc(R), f ′ ∈ ACloc(R), f ′′ ∈ L2(R)}.

For a bounded function W : R → R, we consider the Schrödinger operator

HW = − d2

dx2 + W (x), (1.4)

which is an unbounded self-adjoint operator on L2(R) with the domain W 2,2(R). In 
particular, σ(HW ) ⊂ R. For any z ∈ C \ σ(HW ), the resolvent operator (HW − z)−1

exists and is an integral operator; its integral kernel is called the Green’s function and 
denoted G(x, y; z, W ). Of particular interest is the diagonal Green’s function, obtained 
by setting y = x. This is a Herglotz function (an analytic function which maps C+
to itself) so it has nontangential boundary values Lebesgue-a.e. on R. The Schrödinger 
operator HW is called reflectionless if

Re G(x, x; λ + i0, W ) = 0, for Lebesgue a.e. λ ∈ σ(HW ). (1.5)
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Let us denote by R(S) the set of bounded potentials W such that HW is reflectionless 
and σ(HW ) = S; we make R(S) a metric space with the L∞-metric.

Our first result is that under a boundedness assumption on solutions to KdV-n, the 
reflectionless property is preserved in time; this generalizes or extends previous results 
for the KdV equation in [31,30,2].

Proposition 1.1. Let q(x, t) be a classical solution to the Cauchy problem (1.2), (1.3) on 
x ∈ R, t ∈ [0, T ] for some T < ∞, obeying the boundedness condition

q, ∂2n
x q ∈ L∞(R × [0, T ]). (1.6)

Let S = σ(HV ). If V ∈ R(S), then q(·, t) ∈ R(S) for all t ∈ [0, T ].

In the above, we consider classical solutions q of (1.2), i.e., solutions such that q is 
2n +1 times differentiable in x, ∂2n+1

x q is jointly continuous in x and t, q is differentiable 
in t and (1.2) holds pointwise.

Periodic potentials are usually treated through a well-posedness theory in Sobolev 
spaces Hβ(T ), and described in terms of a nonlinear evolution map St : Hβ(T ) → Hβ(T )
which is a homeomorphism for each t and generates solutions q(·, t) = St(V ) of KdV-n. 
Built into that formulation is the a priori assumption that solutions q(x, t) stay periodic 
in x for all t. In contrast, Proposition 1.1 allows us to consider locally bounded solutions 
and actually recover spatial periodicity for periodic initial data. Indeed, we have the 
following corollary as a consequence of Proposition 1.1.

Corollary 1.2. Let q(x, t) be a classical solution to the Cauchy problem (1.2), (1.3) on 
x ∈ R, t ∈ [0, T ] for some T < ∞, obeying the boundedness condition (1.6). Suppose 
that the initial data satisfies V (x + �) = V (x) for an � > 0 and all x ∈ R. Then, for all 
t ∈ [0, T ], x ∈ R, q(x + �, t) = q(x, t) and q(·, t) = St(V ).

Note that since our result is about uniqueness, finiteness of T in the previous theorem 
should be viewed as a strength, not a weakness; it immediately implies the following 
result for global solutions.

Corollary 1.3. Let q(x, t) be a classical solution to the Cauchy problem (1.2), (1.3) on 
x ∈ R, t ∈ [0, ∞), obeying the boundedness condition (1.6) for all T < ∞. Suppose that 
the initial data satisfies V (x + �) = V (x) for an � > 0 and all x ∈ R. Then, for all 
t ∈ [0, ∞), x ∈ R, q(x + �, t) = q(x, t) and q(·, t) = St(V ).

After these results for the periodic problem, we will return to the more general setting, 
inspired by the regime of almost periodic initial data. We recall an important link between 
the reflectionless property and almost periodicity: by Kotani theory [25], if W is almost 
periodic and its absolutely continuous spectrum is σac(HW ) = σ(HW ), then HW is 
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reflectionless. We will use this in an application of our results in the final section of the 
paper.

In the nonperiodic setting, our work will use certain thickness conditions on the spec-
trum. By general principles, S = σ(HW ) is a closed set bounded below but not bounded 
above, so it can be written in the form

S = [E, ∞) \ ∪j∈J (E−
j , E+

j ), (1.7)

where E = inf S, J is a countable indexing set and (E−
j , E+

j ) denote maximal open 
intervals in [E, ∞) \ S called gaps. The “finite gap” solutions correspond to sets S with 
finitely many gaps, and periodic potentials have a sequence of isolated gaps indexed by 
n ∈ N such that E±

n → +∞ as n → ∞; however, for general almost periodic initial data 
the set S is generically a Cantor set and can even have zero Lebesgue measure [1,7]. 
Many difficulties arise from the possible accumulation of gaps at finite points.

Using the observation that G(x, x; z, W ) is continuous and strictly increasing for z ∈
(E−

j , E+
j ), Craig [6] introduced Dirichlet data for W ∈ R(S) by

μj(x) =

⎧⎪⎪⎨
⎪⎪⎩

z ∈ (E−
j , E+

j ), G(x, x; z, W ) = 0,

E+
j , G(x, x; z, W ) < 0 ∀z ∈ (E−

j , E+
j ),

E−
j , G(x, x; z, W ) > 0 ∀z ∈ (E−

j , E+
j ).

(1.8)

If μj(x) ∈ (E−
j , E+

j ), additional information is in the value of σj(x) = −∂xG(x, x;
z, W )|z=μj(x) ∈ {±1}. Together, for fixed x ∈ R, μj(x) and σj(x) can be thought of 
as lying on a double cover of the interval [E−

j , E+
j ] with gap edges identified, and they 

can be combined into an angular variable ϕj(x) ∈ R/2πZ defined by the conditions

μj(x) = E−
j + (E+

j − E−
j ) cos2

(
ϕj(x)

2

)
, (1.9)

σj(x) = − sgn sin ϕj(x). (1.10)

We view this as a correspondence from W ∈ R(S) to a trajectory ϕ(x) = (ϕj(x))j∈J on 
the “torus of Dirichlet data” D(S) := TJ .

In particular, the map W 	→ ϕ(0) is a map from R(S) to D(S), which will be a 
homeomorphism in our regime. The recovery of W from its Dirichlet data ϕ(0) uses the 
behavior of Dirichlet data with respect to translation: it was proven in [6,2] that the 
translation flow is governed by the ordinary differential equation

∂xϕ(x) = Ψ(ϕ(x)), (1.11)

where Ψ is the Dubrovin-type vector field on D(S) with components



6 M. Lukić, G. Young / Journal of Functional Analysis 279 (2020) 108705
Ψj(ϕ) = 2

√√√√(μj − E)
∏
��=j

(E−
� − μj)(E+

� − μj)
(μ� − μj)2 . (1.12)

Under suitable thickness assumptions on the spectrum, which will be discussed below, 
Craig [6] proved that Ψ is Lipschitz, so the solution to the ODE (1.11) is unique for any 
given initial data ϕ(0) ∈ D(S). This trajectory ϕ(x) determines the potential by (1.9)
and the trace formula

W (x) = E +
∑
j∈J

(E−
j + E+

j − 2μj(x)) (1.13)

which holds in great generality [23]. In summary, the map from R(S) to D(S) given by 
W 	→ ϕ(0) is then a homeomorphism, with an explicit inverse given by solving the ODE 
(1.11) and applying the trace formula (1.13).

For the set S with gaps denoted as in (1.7), we denote

γj = E+
j − E−

j ,

ηj,l = dist((E−
j , E+

j ), (E−
l , E+

l )),

ηj,0 = dist(E, (E−
j , E+

j )),

Cj = (ηj,0 + γj)1/2
∏
l∈J
��=j

(
1 + γl

ηj,l

)1/2

. (1.14)

To study the KdV-n equation, we fix n and assume that S obeys the moment condition
∑
k∈J

γk(1 + ηn
k,0) < ∞, (1.15)

and we set the metric on D(S) given by

‖ϕ − ϕ̃‖D(S) = sup
j∈J

γ
1/2
j (1 + ηn

j,0)1/2 ‖ϕj − ϕ̃j‖T (1.16)

which is consistent with the product topology. In particular, the torus D(S) is compact.
We consider the scalar fields on D(S)

Qk = Ek +
∑
j∈J

(
(E−

j )k + (E+
j )k − 2μk

j

)
(1.17)

and

Rm =
∑

α∈Nn
0∑m

m∏
k=1

Qαk

k

αk!(2k)αk
. (1.18)
k=1 kαk=m
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It will follow from (1.15) that Qk and thus Rm are continuous scalar fields for all k, m ≤ n.
We also consider another Dubrovin-type vector field Ξ with components

Ξj(ϕ) =
(

n∑
�=0

Rn−�μ
�
j

)
Ψj . (1.19)

We formulate conditions to ensure that the vector field Ξ is Lipschitz on D(S). These 
Craig-type conditions are as follows,

∑
k∈J

γ
1/2
k (1 + ηn

k,0)1/2 < ∞, (1.20)

sup
j∈J

Cj(1 + ηn
j,0)3/2

∑
k �=j

γ
1/2
k γ

1/2
j

ηj,k
< ∞, (1.21)

sup
j∈J

γj(1 + ηn
j,0)Cj

ηj,0
< ∞, (1.22)

sup
j∈J

Cjγ
1/2
j (1 + ηn

j,0)3/2 < ∞, (1.23)

with Cj given by (1.14). Although spectral gaps can accumulate at a finite point, these 
conditions provide quantitative bounds on the accumulation of gaps and serve as thick-
ness conditions on the spectrum. (1.20) is a kind of moment condition and it implies 
(1.15).

As in the discussion surrounding (1.11), by [6,2], the translation flow is governed by 
the following ordinary differential equation for fixed t,

∂xϕ(x, t) = Ψ(ϕ(x, t)). (1.24)

It was also proven in [6] that Ψ is Lipschitz under weaker assumptions than (1.20), (1.21), 
(1.22), and (1.23). In this paper we will show that

∂tϕ(x, t) = Ξ(ϕ(x, t)) (1.25)

and that Ξ is Lipschitz under assumptions (1.20), (1.21), (1.22), and (1.23). Note that 
the Craig-type conditions (1.20), (1.21), (1.22), (1.23) are inevitably stronger than those 
in [6] (which were designed to control the translation flow Ψ) or those in [2] (designed 
to control the flow corresponding to the KdV equation, n = 1). The Lipschitz property 
will imply that the two-parameter solution ϕ(x, t) solving (1.24) and (1.25) is uniquely 
determined by ϕ(0, 0), which is in turn uniquely determined by the initial data V . We 
prove the following:

Theorem 1.4. Let q(x, t) be a classical solution to (1.2), (1.3) on x ∈ R, t ∈ [0, T ]
for some T < ∞, with initial data V such that HV is reflectionless and the spectrum 
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S = σ(HV ) obeys (1.20), (1.21), (1.22), (1.23). We also assume q obeys (1.6). Then, for 
all t ∈ [0, T ],

(a) The space and time evolution of Dirichlet data ϕ = (ϕj)j∈J corresponding to q(x, t)
is uniquely determined from ϕ(0, 0) as the solution of the flows (1.24), (1.25) with 
respect to the Lipshitz vector fields Ψ and Ξ.

(b) The solution q(x, t) obeys

q(x, t) = E +
∑
j∈J

(
E+

j + E−
j − 2μj(x, t)

)
(1.26)

where σ(HV ) = [E, ∞) \
⋃

j∈J (E−
j , E+

j ) and μj(x, t) is the Dirichlet data.
(c) In particular, q is uniquely determined by (1.25) and (1.26).

Again, we have the following result for global solutions.

Corollary 1.5. Let q(x, t) be a classical solution to (1.2), (1.3) on x ∈ R, t ∈ [0, ∞), with 
initial data V such that HV is reflectionless and the spectrum S = σ(HV ) obeys (1.20), 
(1.21), (1.22), and (1.23). If q obeys the boundedness condition (1.6) for all T < ∞, then 
the conclusions of the previous theorem apply to q for all t ∈ [0, ∞).

Analogous results hold for negative time.
It should be noted that Theorem 1.4 doesn’t assume that our solution stays almost 

periodic in x; instead, this follows as a consequence. In this way, in addition to saying 
something new for the periodic case as we highlighted in Corollary 1.2, we also see that 
our results apply to the finite gap quasiperiodic case (where the Craig-type conditions 
are trivially satisfied). The theorem also applies to a class of small quasiperiodic initial 
data which we will describe below.

An earlier uniqueness result for the KdV equation was proved by Binder–Damanik–
Goldstein–Lukic [2] and is based on work of Rybkin [31] on the time evolution of Weyl so-
lutions, m-functions and M -matrices under the KdV equation. Our paper can be viewed 
as a generalization of these results to the entire KdV hierarchy. Moreover, through a 
more careful analysis of the time evolution of eigensolutions, our results improve those 
in [31,2] even for the KdV equation. Where earlier results for the KdV equation require 
q, ∂3

xq ∈ L∞(R × [0, T ]), our Theorem 1.4 for n = 1 only requires q, ∂2
xq ∈ L∞(R × [0, T ]).

The paper [2] also proved existence and almost periodicity of solutions to the KdV 
equation for a class of reflectionless initial data with Craig-type conditions on the spec-
trum S; these results were generalized by Eichinger–VandenBoom–Yuditskii [19] to a 
more general class of S (Widom sets with the Direct Cauchy Theorem property and 
a moment condition) and to the entire KdV hierarchy. Our uniqueness results can be 
viewed as complementary to those existence and almost periodicity results. Within the 
scope of applicability, our results show that the almost periodic solution constructed in 
[19] is the only locally bounded solution in the sense of (1.6).
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Finally, we describe the application to small quasiperiodic initial data. Let ε > 0, 
0 ≤ κ0 ≤ 1, and ω ∈ Rν for some ν ∈ N. We say V ∈ P(ω, ε, κ0) if V : R → R is of the 
form

V (x) =
∑

m∈Nν

c(m)e2πim·ωx (1.27)

where

|c(m)| ≤ ε exp(−κ0|m|), ∀n ∈ Zν .

All results will be in the small coupling regime, ε < ε0(a0, b0, κ0). The direct spec-
tral theory of HV for ε has been studied extensively by Eliasson [20] and Damanik–
Goldstein [8], with studies of the inverse spectral theory and the KdV equation in 
[39,11,12,10,2]. Using that theory, we will be able to prove that Theorem 1.4 applies 
to initial data V ∈ P(ω, ε, κ0).

We now state our uniqueness theorem as applied to data of the form (1.27) above, 
with ω satisfying a Diophantine condition,

|m · ω| ≥ a0|m|−b0 (1.28)

for some 0 < a0 < 1 and ν < b0 < ∞.

Theorem 1.6. Let ω ∈ Rν obey the Diophantine condition (1.28) for some 0 < a0 < 1
and ν < b0 < ∞. There is an ε0(a0, b0, κ0) > 0 such that if ε < ε0, and V ∈ P(ω, ε, κ0), 
then any solution of (1.2), (1.3), with q, ∂2n

x q ∈ L∞(R × [0, T ]) is unique.

2. Time evolution of the Weyl solutions and the Weyl M -matrix

In this section, we will study the time dependence of Weyl solutions and the Weyl 
M -matrix for the family of Schrödinger operators associated to a fixed classical solution 
q of (1.2), (1.3) which obeys the boundedness condition (1.6).

Historically, the discovery of the Lax pair representation was preceded by a description 
in [21] of the time-evolution of formal eigensolutions for the Schrödinger operator. The 
main analytical result of this section is that under suitable conditions, not only are 
eigensolutions preserved in this way, but so are Weyl solutions, as defined below. After 
describing the time evolution of Weyl solutions, we will be able to compute the time 
evolution of Weyl m-functions, the Weyl M -matrix, and reflection coefficients.

If W : R → R is bounded, the Schrödinger operator HW is in the “limit point” case 
at ±∞, i.e., for any z ∈ C \ σ(HW ) and each halfline [0, ±∞), there is a one-dimensional 
subspace of solutions of

−ψ′′ + Wψ = zψ (2.1)
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which are square-integrable on that half-line. Any nontrivial eigensolution which is 
square-integrable on the half-line [0, ±∞) is called a Weyl solution at ±∞ and denoted 
by ψ±(x; W ); Weyl solutions are defined up to normalization. It is a common convention 
to set ψ±(0; W ) = 1, but this convention isn’t natural in time-dependent considerations 
or when changing reference points. Instead, we will assume that a Weyl solution has been 
chosen corresponding to q(·, 0) = V and will consider a time evolution for the eigensolu-
tion, in which both x-dependence and t-dependence are written as a first-order (system 
of) ODEs.

We define, as in [22],

Q(x, t) =
( 0 1

q(x, t) − z 0

)
,

P (x, t) =
(

−1
2∂xF̂n(z) F̂n(z)

(q − z)F̂n(z) − 1
2∂2

xF̂n(z) 1
2∂xF̂n(z)

)
,

where

F̂n(z) =
n∑

�=0
f̂n−�z

�.

We consider, for any z ∈ C \ σ(HV ), the system of PDEs

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tν±(x, t) = P (x, t)ν±(x, t)

∂xν±(x, t) = Q(x, t)ν±(x, t)

ν±(0, 0) =
(

ψ±(0; V )
ψ′

±(0; V )

) (2.2)

Q(x, t) is the standard matrix for converting the second order eigenvalue equation, 
Hq(·,t)ψ = zψ, to a first order system, and P (x, t) will determine the time evolution 
for the Weyl solutions of HV . The matrix functions P, Q : R2 → M2(C) satisfy the zero 
curvature condition if

∂tQ − ∂xP + [P, Q] = 0 (2.3)

where [P, Q] is the commutator. As an equality of differential expressions, the zero cur-
vature condition (2.3) is equivalent to (1.2) [22], and (2.3) is sometimes viewed as a 
different way to introduce the KdV hierarchy.

Remark 2.1. Existence of a joint solution of the system (2.2) depends on the zero cur-
vature condition (2.3) by standard arguments from differential geometry. While these 
arguments are often presented under C∞ assumptions, they hold under our smoothness 
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conditions. Namely, the zero curvature condition (2.3) involves ∂xP , a differential poly-
nomial with at most 2n +1 spatial derivatives of q in each entry, and ∂tQ, which includes 
only one time derivative of q in the bottom left coordinate. For a classical solution q of 
KdV-n, these partial derivatives exist and are jointly continuous in (x, t). The system 
(2.2) can be written as an autonomous system on (x, t, ν) ∈ R2 × C2 corresponding to 
vector fields Q̂, P̂ written in the language of differential geometry as

Q̂ := ∂x + P ij(x, t)vj∂νi

P̂ := ∂t + Qij(x, t)vj∂νi.

These vector fields are C1, since, as in the above, P involves a differential polynomial 
with only 2n spatial derivatives on q, while Q only has (x, t) dependence through q. Then 
(2.3) is equivalent to the vanishing of the Lie bracket LP̂ Q̂ = [P̂ , Q̂] = 0, so the flows of 
P̂ and Q̂ commute by differential geometry arguments in [36, Lemma 5.13]. This shows 
existence of a solution of (2.2). Uniqueness follows from the fact that Q̂, P̂ ∈ C1.

We will now prove that the first component of the solution ν±(x, t) of (2.2) is the 
Weyl solution for Hq(·,t) for each t ∈ [0, T ].

Proposition 2.1. Let q be a classical solution of the Cauchy problem (1.2), (1.3) obeying 
the boundedness condition (1.6). Fix z ∈ C \ σ(HV ) and let

ν±(x, t) =
(

α±(x, t)
β±(x, t)

)

be the solution to (2.2). Then, for every t ∈ [0, T ], α±(·, t) is a Weyl solution at ±∞ for 
the potential q(·, t).

Proof. It follows from the form of Q that ∂xα±(x, t) = β±(x, t) and

∂2
xα±(x, t) = ∂xβ±(x, t) = (q(x, t) − z)α±(x, t)

so for each t, α±(x, t) as a function of x solves the eigensolution equation for potential 
q(·, t). It remains to prove that it is nontrivial for each t and square-integrable on the 
corresponding half-line.

Let us denote

g(x, t) := |α±(x, t)|2 + |β±(x, t)|2 = ‖ν±(x, t)‖2
C2 .

Then

∂tg(x, t) = 2 Re 〈∂tν±(x, t), ν±(x, t)〉C2 = 2 Re 〈P (x, t)ν±(x, t), ν±(x, t)〉C2
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so by the Cauchy-Schwarz inequality and using the operator norm of P (x, t),

|∂tg(x, t)| ≤ 2‖P (x, t)‖g(x, t).

Since entries of P (x, t) are polynomial expressions in q, ∂xq, . . . , ∂2n
x q, it follows from 

Sobolev inequalities and the boundedness assumption q, ∂2n
x q ∈ L∞(R × [0, T ]) that

C = sup
x∈R

sup
t∈[0,T ]

‖P (x, t)‖ < ∞.

Thus, it follows that

g(x, 0)e−2Ct ≤ g(x, t) ≤ g(x, 0)e2Ct

for t ∈ [0, T ] and therefore

e−2Ct

±∞∫
0

‖ν±(x, 0)‖2 dx ≤
±∞∫
0

‖ν±(x, t)‖2 dx ≤ e2Ct

±∞∫
0

‖ν±(x, 0)‖2 dx. (2.4)

Since α±(·, 0) is a Weyl solution corresponding to the bounded potential V , it is by 
definition nontrivial. Moreover, by boundedness of V , the derivative of the Weyl solution 
is also square-integrable on the corresponding half-line [37,38,33,27], so

0 <

±∞∫
0

‖ν±(x, 0)‖2 < ∞.

It follows from (2.4) that for all t ∈ [0, T ],

0 <

±∞∫
0

‖ν±(x, t)‖2 dx < ∞.

Strict positivity implies that α±(·, t) is nontrivial and finiteness that α±(·, t) is the Weyl 
solution. �

By the above lemma, we consider ψ±(x, t; z) = α±(x, t; z) a Weyl solution of H(q(·, t))
at energy z and we know that its time evolution is governed by the P -matrix,

∂t

(
ψ±(x, t; z)

∂xψ±(x, t; z)

)
= P (x, t; z)

(
ψ±(x, t; z)

∂xψ±(x, t; z)

)
. (2.5)

Note that we are now making the z dependence explicit in our notation.
In particular the Weyl m functions are now defined uniquely (regardless of the choice 

of normalization of ψ±(x, 0, z)) as the logarithmic derivatives of the Weyl solutions,
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m±(x, t; z) = ±∂xψ±(x, t; z)
ψ±(x, t; z)

and (2.5) allows us to determine their time evolution, as well as that of the Weyl M -
matrix,

M =
( −1

m−+m+
1
2

m−−m+
m−+m+

1
2

m−−m+
m−+m+

m−m+
m−+m+

)

The following lemma follows an argument described in [31] for the KdV equation; we 
repeat the argument for the rest of the hierarchy for the sake of completeness.

Lemma 2.2. Let q be a classical solution of the Cauchy problem (1.2), (1.3) obeying the 
boundedness condition (1.6). Then, for each x ∈ R and z ∈ C \ R, the Weyl M -matrix 
is differentiable in t ∈ [0, T ] and obeys

∂tM = PM + MP �. (2.6)

Proof. For fixed z ∈ C+, since the time evolution of ψ± and ∂xψ± is given by (2.5), the 
time evolution of m± is computed as

∂tm± = ±∂t∂xψ±
ψ±

− m±
∂tψ±
ψ±

= ±P21 + (P22 − P11)m± ∓ P12m2
±.

Then, the time derivatives of m1 = −1
m++m−

, m2 = m−m+
m++m−

, m3 = 1
2

m−−m+
m++m−

follow by 
mere calculations,

∂tm1 = 2P11m1 + 2P12m3,

∂tm2 = −2P11m2 + 2P21m3,

∂tm3 = P21m1 + P12m2.

So by direct computation, we have ∂tM = PM + MP �. �
Corollary 2.3. Let q be a classical solution of the Cauchy problem (1.2), (1.3) obeying 
the boundedness condition (1.6). Then the spectrum S = σ(Hq(·,t)) is independent of 
t ∈ [0, T ] and (2.6) holds for all z ∈ C \ S.

Proof. We use a characterization of the spectrum of a Schrödinger operator in terms of 
its Weyl M -matrix: the spectrum of Hq(·,t) is the complement of the maximal set Ω ⊂ C

such that M(0, t; z) has an analytic extension as a matrix-valued function on Ω with the 
“symmetry”

M(0, t; z) = M(0, t; z̄)∗. (2.7)
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We will show that the existence of such an analytic extension on some set is an invariant 
for the time evolution (2.6).

Since M(0, 0; z) has an analytic extension with the property (2.7) on C \ σ(HV ), and 
the matrix P is bounded for t ∈ [0, T ] and analytic in z ∈ C, solving (2.6) as an initial 
value problem starting from t = 0 shows that M(0, t; z) is also analytic on C \ σ(HV ). 
Moreover, since P (z̄) = P (z), (2.6) implies

∂tM(0, t; z̄)∗ = P (0, t; z)M(0, t; z̄)∗ + M(0, t; z̄)∗P (0, t; z)�.

In words, M(0, t; ̄z)∗ obeys the same time evolution as M(0, t; z). Since M(0, 0; ̄z)∗ =
M(0, 0; z), it follows that M(0, t; ̄z)∗ = M(0, t; z) for all t.

Since we have proved that M(0, t; z) has an analytic extension with the property (2.7)
on C \ σ(HV ), it follows that σ(Hq(·,t)) ⊂ σ(HV ) for all t ∈ [0, T ]. Analogously, solving 
(2.6) backward in time shows that σ(HV ) ⊂ σ(Hq(·,t)) and completes the proof. �

As Herglotz functions, m± have nontangential boundary values m±(λ + i0) for 
Lebesgue-a.e. λ ∈ R. Moreover, for a nontrivial Herglotz function, the boundary val-
ues are nonzero almost everywhere. In particular, for Lebesgue a.e. λ, the boundary 
values m±(λ + i0) exist and (m− + m+)(λ + i0) �= 0.

This justifies the definition, for a.e. λ ∈ σ(HW ), of the left and right reflection coeffi-
cient for a Schrödinger operator HW defined as in [31] by

R±(x; λ) :=
(

−m∓ + m±
m− + m+

)
(x; λ + i0). (2.8)

If this quantity vanishes for Lebesgue-a.e. λ ∈ σ(HW ), then (1.5) holds and HW is 
reflectionless. Invariance of the reflectionless property under the translation flow was 
already proven in [31, Corollary 3]. We note the generalization of the argument of [31, 
Theorem 2] to the KdV-n flow. In light of the above corollary, we may define the reflection 
coefficient of Hq(·,t) as

R±(x, t; λ) :=
(

−m∓ + m±
m− + m+

)
(x, t; λ + i0) (2.9)

for almost very λ ∈ σ(HV ). We use Lemma 2.2 to derive an ODE for the reflection 
coefficient.

Proposition 2.4. Suppose q obeys (1.2), (1.3), (1.6) for some T > 0, then

R±(x, t; λ) = R±(x, 0; λ) exp

⎧⎨
⎩2i

t∫
0

Im(m±(x, s; λ + i0))P12(x, s; λ) ds

⎫⎬
⎭ (2.10)

for all 0 ≤ t ≤ T and almost every λ ∈ σ(HV ).
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Proof. In addition to z ∈ C \ σ(HV ), the time evolution (2.6) holds wherever the Weyl 
m-functions have nontangential limits. Again, by basic properties of Herglotz functions, 
the nontangential limit, denoted m±(x, 0, λ + i0) exists for Lebesgue almost every λ ∈ R. 
So, m±(x, 0; λ + i0) exists for Lebesgue almost every λ ∈ σ(HV ) and the evolution in 
(2.2) may be extended to these λ.

Thus, using 2.2 and the symmetry P (z) = P (z), we compute for almost every λ ∈
σ(HV ),

∂tR±(x, t; λ) = 2iP12(x, t; λ)R±(x, t, λ) Im m±(x, t; λ + i0)

which implies (2.10). �
In particular, since the reflectionless property corresponds to the case R± = 0, the 

proof of Proposition 1.1 is immediate.
Using the results above, we will prove Corollary 1.2. Our proof relies on the following 

facts established in [28,34]. By [28], if S is the spectrum of a periodic operator with 
period �, we may associate to any point {μj , σj}j∈J ∈ D(S) a periodic operator HQ

with the same Dirichlet data and period �. Since HQ, being periodic, is reflectionless, 
the bijective correspondence between R(S) and D(S) established in [34] proves that HQ

is the only reflectionless operator corresponding to {μj, σj}j∈J .

Proof of Corollary 1.2. Let S = σ(V ) and fix t ∈ [0, T ]. By (2.3), σ(q(·, t)) = S. Asso-
ciate to q(·, t) a point {μj(·, t), σj(·, t)} ∈ D(S). By [28], there exists an operator HQ(·,t)
with Dirichlet data {μj(·, t), σj(·, t)} ∈ D(S) and such that Q(· + �, t) = Q(·, t). By 
Proposition 1.1, q(·, t) ∈ R(S). Furthermore, by the bijection established in [34], and 
since Q(·, t) ∈ R(S), we have the equality q(·, t) = Q(·, t). Thus, q(· + �, t) = q(·, t) for 
all t, so q is a spatially periodic solution of KdV-n, which implies q(·, t) = St(V ). �
3. Diagonal Green’s function and trace formulas

In order to turn our attention to Dirichlet eigenvalues, we have to review some facts 
about the diagonal Green’s function. Consider the Schrödinger operator Hq(·,t); denote 
its Weyl solutions by ψ±(x, t; z) and m-functions by m±(x, t; z). Its diagonal Green’s 
function can be expressed in terms of Weyl solutions as

G(x, x, t; z) = − 1
m−(x, t; z) + m+(x, t; z) .

It is well known (see [32, Theorem 4.5] and [23]) that the Weyl m-functions for a potential 
W which is 2n + 1 times differentiable in x have an asymptotic expansion of the form

m±(x, t; −k2) = −k +
2n+1∑
j=1

(±1)jcj+1(x, t)k−j + o
(
k−2n−1)
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as k → ∞ nontangentially, ε < arg(k) < π
2 − ε for some ε > 0. The coefficients cj can 

be computed using the Ricatti equation for m±; likewise, the diagonal Green’s function 
is found to have a similar expansion and its coefficients can be computed [22, Equation 
D.22] using the identity

−2G∂2
xG + (∂xG)2 + 4(q − z)G2 = 1

which results in the asymptotic expansion

G(x, x, t; −k2) = 1
2

n+1∑
�=0

f̂�k
−2�−1 + o(k−2n−3) (3.1)

valid as k → ∞ nontangentially, ε < arg(k) < π
2 − ε for some ε > 0. Here f̂� are precisely 

the quantities defined recursively in the introduction.
We will assume from now on that S obeys the moment condition (1.15). We consider 

the scalar fields Rm on D(S) for m ≤ n. Our goal will be to prove that these are 
continuous scalar fields on D(S) and that they correspond precisely to f̂� for our solution. 
In other words, we will prove that our solution q(x, t) obeys certain trace formulas.

We will use the following estimate from [2, Lemma 4.1]: if S obeys the condition 
(1.15), then Qk is a continuous scalar field on D(S) for any k ≤ n + 1. It is bounded by

Qk ≤ |E|k + 3Dk

∑
j∈J

(1 + ηk−1
j,0 )γj (3.2)

where the constant Dk depends only on the index k, E and supj∈J γj .
It follows that Rm defined by (1.18) is also a continuous scalar field on D(S) for 

1 ≤ m ≤ n. This definition will be motivated by the fact that for solutions q(x, t) of the 
Cauchy problem, the trace formulas will be of the form f̂m = Rm, in the sense given 
in Lemma 3.2 below. We begin with an elementary inequality (which will be repeatedly 
useful) and then proceed to derive some estimates on these scalar fields.

Lemma 3.1. For σ(HV ) obeying (1.15), there are constants M1, M3 such that for 1 ≤
m ≤ n,

|Rm| ≤ M1

and for any k ∈ J , ∣∣∣∣∂Rm

∂ϕk

∣∣∣∣ ≤ M3(1 + (ηk,0 + γk)m)γk. (3.3)

Proof. Note that Rm is a polynomial in the Qk. For the sake of clarity, we denote for 
1 ≤ m ≤ n,

Rm = Pm(Q1, . . . , Qm)
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In the above, the Pm are polynomials of degree m in the first m scalar fields defined in 
(1.17). Due to the moment condition (1.15), the Qk for 1 ≤ k ≤ n +1 are continuous, and 
thus, so are the Rm. Also by condition (1.15), D(S) with the metric (1.16) is compact. 
Thus, we have a uniform bound on each Rm for 1 ≤ m ≤ n. Taking the maximum of 
these yields M1.

Noting that

n ≥ max
1≤k,j≤n

deg
(

∂Pk

∂Qj

)
,

we write

∂Pm

∂Qj
=

∑
|α|≤m

Aα

m∏
k=1

Qαk

k

We then take A to be the maximum of all the coefficients of the ∂Pm

∂Qj
for 1 ≤ m, j ≤ n

and using the notation in estimate (3.2), define C = max1≤k≤n Dk for convenience. We 
also note the elementary fact 1 + xk ≤ 2(1 + xn) for 0 ≤ k ≤ n, and x > 0. Then for any 
m and j we have the estimate, uniform in m and j,

∣∣∣∣∂Pm

∂Qj

∣∣∣∣ ≤ A
∑

|α|≤m

m∏
k=1

(|E|k + 3Dk

∑
i∈J

(1 + ηk−1
i,0 )γi)αk

≤ A
∑

|α|≤m

m∏
k=1

3αk (1 + |E|n)αk (1 + Dk

∑
i∈J

(1 + ηk−1
i,0 )γi)αk

≤ 3n(1 + |E|n)n
∑

|α|≤m

m∏
k=1

(1 + 2C
∑
i∈J

(1 + ηn−1
i,0 )γi)αk

≤ 3n(1 + |E|n)n

(
1 + 2C

∑
i∈J

(1 + ηn−1
i,0 )γi

)n ((
2n

n

)
− 1

)

=: M2

Thus, for 1 ≤ m ≤ n we have
∣∣∣∣∂Rm

∂ϕk

∣∣∣∣ =
∣∣∣∣∂Pm

∂Q1

∂Q1

∂ϕk
+ · · · + ∂Pm

∂Qm

∂Qm

∂ϕk

∣∣∣∣
≤
∣∣∣∣∂Pm

∂Q1

∣∣∣∣
∣∣∣∣∂Q1

∂ϕk

∣∣∣∣ + · · · +
∣∣∣∣ ∂Pm

∂Qm

∣∣∣∣
∣∣∣∣∂Qm

∂ϕk

∣∣∣∣
≤ M2γk

(
1 + 2(|E| + ηk,0 + γk) + · · · + m(|E| + ηk,0 + γk)m−1)

≤ m(m + 1)
2 (1 + (|E| + ηk,0 + γk)m)M2γk.
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By using the power mean inequality

1 + (|E| + ηk,0 + γk)m ≤ 2m−1(1 + |E|m)(1 + (ηk,0 + γk)m), (3.4)

this implies (3.3) with M3 := n(n+1)
2 2n(1 + |E|n)M2. �

For a reflectionless solution q, let us define for each (x, t) ∈ R × [0, T ] the set of 
Dirichlet data ϕ(x, t) ∈ D(S). Begin by defining

μj(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

z ∈ (E−
j , E+

j ), G(x, x, t; z) = 0
E+

j , G(x, x, t; z) < 0 ∀z ∈ (E−
j , E+

j )
E−

j , G(x, x, t; z) > 0 ∀z ∈ (E−
j , E+

j )
(3.5)

If μj(x, t) ∈ (E−
j , E+

j ), we also define σj = −∂xG(x, x, t; z)|z=μj(x,t) ∈ {±1}. Then 
ϕj(x, t) are defined by (1.9), (1.10).

We will now prove that the values of differential polynomials f̂� evaluated at some 
(x, t) are precisely given by the scalar fields R� evaluated at the Dirichlet data ϕ(x, t).

Lemma 3.2. Let q be a classical solution of the Cauchy problem (1.2), (1.3) obeying the 
boundedness condition (1.6). Let V ∈ R(S) where S obeys the moment condition (1.15). 
For all 1 ≤ m ≤ n and all (x, t) ∈ R × [0, T ],

f̂m(x, t) = Rm(ϕ(x, t)).

These are higher-order trace formulas; the case m = 1 is precisely (1.26). We also 
emphasize that the above lemma represents f̂n as a polynomial in the moments Qk.

Proof. As noted [19, Equation 2.7], the diagonal Green’s function has an exponential 
Herglotz representation. The representation takes the form

G(x, x, t; z) = 1
2
√

z − E
e−

∫∞
E

f(ξ)
ξ−z dξ (3.6)

again with the positive real axis is chosen as the branch cut for the square root, and 
where

f(ξ) = 1
2 − 1

π
arg G(x, x, t; ξ + i0).

The reflectionless property of the potential yields

f(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

0, ξ ∈ S

−1
2 , ξ ∈ (E−

j , μj)
1
2 , ξ ∈ (μj , E+

j )
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By the moment condition (1.15), for k = 1, . . . , n + 1,

2k

∞∫
E

ξk−1f(ξ) dξ = Qk − Ek

Assuming ε < arg(z − E) < 2π − ε for some ε > 0 and ξ ≥ E, we can estimate

∣∣∣∣∣ 1
ξ − z

+
n∑

k=1

ξk−1

zk

∣∣∣∣∣ =

∣∣∣∣∣
ξn

zn

ξ − z

∣∣∣∣∣ ≤
(

1 + 1
sin ε

) ∣∣∣∣ ξn

zn(z − E)

∣∣∣∣ .
Multiplying by f(ξ) and integrating implies that

∣∣∣∣∣∣
∞∫

E

1
ξ − z

f(ξ) dξ +
n∑

k=1

Qk − Ek

2kzk

∣∣∣∣∣∣ ≤
(

1 + 1
sin ε

)
|Qn+1 − En+1|

|z|n|z − E| ,

which in turn yields the asymptotic expansion

G(x, x, t; z) = 1
2
√

z − E
e
∑n

k=1
Qk−Ek

2kzk +o(z−n) (3.7)

as z → ∞, arg(z − E) ∈ (ε, 2π − ε).
In order to compare coefficients to the expansion in (3.1), we write

1
2
√

z − E
= 1

2
√

z
e− 1

2 log(1− E
z ) = 1

2
√

z
e
∑n

k=1
Ek

2kzk +o(z−n)

and combine with (3.7) to find

G(x, x, t; z) = 1
2
√

z
e
∑n

k=1
Qk

2kzk +o(z−n)

= 1
2

n∑
m=0

1
zm+ 1

2

∑
α∈Nn

0∑m
k=1 kαk=m

n∏
k=1

Qαk

k

αk!(2k)αk
+ o(z−n− 1

2 )

Comparing coefficients to the expansion in (3.1) completes the proof. �
The equation (3.6) also yields a product formula for the diagonal Green’s function 

common in the literature:

G(x, x, t; z) = 1
2

√
1

E − z

∏ (μ�(x, t) − z)2

(E− − z)(E+ − z)
. (3.8)
�∈J � �
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4. Time evolution of Dirichlet eigenvalues

Now we will derive the time evolution for ϕj in terms of a Lipschitz vector field on 
the torus D(S) equipped with the metric (1.16).

Lemma 4.1. Suppose q(x, t) a solution to (1.2), (1.3) satisfying (1.6). Let (ϕj(x, t))j∈J be 
the corresponding Dirichlet data defined in (1.8), (1.9) and (1.10). If (x, t) is such that 
ϕj(x, t) /∈ πZ, then

∂tϕj(x, t) = Ξj(ϕ(x, t)). (4.1)

Proof. By the definitions (1.9), (1.10) and (1.8), if ϕj(x, t) /∈ πZ, then

G(x, x, t; μj(x, t)) = 0

so by the implicit function theorem,

∂μj

∂t
= −

∂G(x, x, t; z)/∂t|z=μj(x,t)

∂G(x, x, t; z)/∂z|z=μj(x,t)
.

Using (1.9) and (1.10) we have differentiability of ϕj and the explicit expression

∂ϕj

∂t
= ∂μj/∂t

−σj(x, t)
√

(E+
j − μj)(μj − E−

j )
.

Noting that G(x, x, t; z) = m1, the upper left entry of the Weyl M -matrix M(x, t; z), we 
read off the time evolution for the diagonal Green’s function from Lemma 2.2,

∂tm1(x, t, z) = 2P12m3(x, t, z) + 2P11m1(x, t, z).

Then, plugging in z = μj(x, t) ∈ C \ S in the above we see

∂tm1(x, t, μj(x, t)) = −σj(x, t)F̂n(μj(x, t)).

Differentiating the product formula (3.8) in z, we find

∂G(x, x, t; z)/∂z|z=μj(x,t) = 1
2

√√√√ 1
(E − μj)(E−

j − μj)(E+
j − μj)

∏
l �=j

(μl − μj)2

(E−
l − μj)(E+

l − μj)
.

So, in combination, we have

∂ϕj

∂t
=
(

n∑
Rn−�(μj(x, t))�

)
Ψj . �
�=0
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We now note that by arguments identical to those found in [2, Lemma 3.4, Lemma 
3.5] show that the above evolution equation for ϕj holds also for ϕj(x, t) ∈ πZ, i.e. at the 
gap edges. Indeed, Lemma 3.4 of [2] relies only on continuity of G(t, x, x, z) in z and t to 
prove ϕj(x, t) is continuous in t. Lemma 3.5 of [2] is an intermediate result which relies 
only on the continuity of the vector field Ξj in time. This hypothesis is clearly satisfied 
in our case once we note that each Rn is a polynomial in the Qn, which are continuous 
in the μj by (1.20). In conclusion, we have the following result.

Proposition 4.2. Suppose q(x, t) a solution to (1.2), (1.3) satisfying (1.6). Let (ϕj(x, t))j∈J

be the corresponding Dirichlet data defined in (1.8), (1.9) and (1.10). For any (x, t) ∈ R2

and j ∈ J ,

∂tϕj(x, t) = Ξj(ϕ(x, t)). (4.2)

Now that we know (4.2) holds for all x, t, we can view this collection of equations 
indexed by j as an autonomous system of ODEs on D(S), generated by the vector field 
Ξ. We now establish sufficient conditions for this vector field to be Lipschitz on the torus: 
this will allow us to conclude uniqueness of solution of (4.2); as is already established, 
the solution to (1.2), (1.3) is uniquely recovered from the Dirichlet data.

Lemma 4.3. If the set S = σ(HV ) obeys (1.20), (1.21), (1.22), (1.23), the vector field Ξ
with components defined by (1.19) is a Lipschitz vector field on TJ .

Proof. Computing directly,

∂Ξj

∂ϕk
=
(

n−1∑
�=0

∂Rn−�

∂ϕk
μ�

j

)
Ψj +

(
n∑

�=0

Rn−�μ
�
j

)
∂Ψj

∂ϕk
, k �= j

∂Ξj

∂ϕj
=
(

n−1∑
�=0

∂Rn−�

∂ϕj
μ�

j +
n−1∑
�=1

�Rn−�
∂μj

∂ϕj
μ�−1

j

)
Ψj +

(
n∑

�=0

Rn−�μ
�
j

)
∂Ψj

∂ϕj

We will now show that |Ψj | ≤ 2Cj ; this follows from maximizing the smooth function 

f(s) = (E+
� −μj)(E−

� −μj)
(E−

� +sγ�−μj)2 for 0 ≤ s ≤ 1. For E+
j < E−

� , we see that f decreases and,

(E−
� − μj)(E+

� − μj)
(μj − μ�)2 ≤ E+

� − μj

E−
� − μj

= 1 + γ�

E−
� − μj

≤ 1 + γ�

ηj,�
,

and similarly for E−
j > E+

� , where f increases. And, thus we have our bound on Ψj,

Ψj = 2

√√√√(μj − E)
∏
��=j

(E−
� − μj)(E+

� − μj)
(μj − μ�)2
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≤ 2(ηj,0 + γj)1/2
∏
��=j

(
1 + γ�

ηj,�

)1/2

= 2Cj .

We will also need that 
∣∣∣∂Ψj

∂ϕk

∣∣∣ ≤ γk

2ηj,k
Cj when k �= j. Note that 

∣∣∣ ∂μk

∂ϕk

∣∣∣ ≤ 1
2γk by a 

differentiation of (1.9). Then we estimate,

Ψj = 2

√√√√(μj − E)
∏

��=j,k

(E−
� − μj)(E+

� − μj)
(μj − μ�)2 ·

√
(E−

k − μj)(E+
k − μj)

(μj − μk)2

=⇒
∣∣∣∣∂Ψj

∂ϕk

∣∣∣∣ = |Ψj | 1
|μj − μk|

∣∣∣∣∂μk

∂ϕk

∣∣∣∣ ≤ Cj
γk

ηj,k
.

Thus, for k �= j,

∣∣∣∣∂Ξj

∂ϕk

∣∣∣∣ ≤ 2Cj

n−1∑
�=0

∣∣∣∣∂Rn−�

∂ϕk

∣∣∣∣ (|E| + ηj,0 + γj)� + γk

ηj,k
Cj

n∑
�=0

|Rn−�|(|E| + ηj,0 + γj)�.

(4.3)

The second sum is bounded using the estimates in Lemma 3.1 as

γk

ηj,k
Cj

n∑
�=0

|Rn−�|(|E| + ηj,0 + γj)� ≤ γk

ηj,k
CjM1

n∑
�=0

(|E| + ηj,0 + γj)�

≤ γk

ηj,k
(n + 1)CjM1(1 + (|E| + ηj,0 + γj)n)

≤ M̃1(1 + (ηj,0 + γj)n) γk

ηj,k
Cj

where M̃1 := 2n−1(n + 1)M1(1 + |E|n) and the last step uses (3.4).
For the first sum in (4.3), we again use Lemma 3.1 and (3.4), as well as the inequality 

1 + xk ≤ 2(1 + xn) for 0 ≤ k ≤ n, and x > 0. Indeed, we have

2Cj

n−1∑
�=0

∣∣∣∣∂Rn−�

∂ϕk

∣∣∣∣ (|E| + ηj,0 + γj)�

≤ 4M3γkCj(1 + (ηk,0 + γk)n)
n−1∑
�=0

(|E| + ηj,0 + γj)�

≤ 4M3(1 + |E|n)γkCj(1 + (ηk,0 + γk)n)
n−1∑
�=0

2�(1 + (ηj,0 + γj)�)

≤ M̃3γkCj(1 + (ηk,0 + γk)n)(1 + (ηj,0 + γj)n)
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∣∣∣∣
where M̃3 := 2n+2nM3(1 + |E|n). Combining our estimates with (4.3), and applying the 
power mean inequality, we see for k �= j,

∂Ξj

∂ϕk

∣∣∣∣≤ M̃1Cj
γk

ηj,k
(1 + (ηj,0 + γj)n) + M̃3Cjγk(1 + (ηk,0 + γk)n)(1 + (ηj,0 + γj)n)

≤ max{M̃1, M̃3}Cj(1 + (ηj,0 + γj)n)
(

γk

ηj,k
+ γk(1 + (ηk,0 + γk)n)

)

≤ 2n−1 max{M̃1, M̃3}Cj(1 + ηn
j,0 + γn

j )
(

γk

ηj,k
+ γk(1 + 2n−1(ηn

k,0 + γn
k ))

)

≤ 22n−2 max{M̃1, M̃3}(1 + sup
m∈J

γn
m)Cj(1 + ηn

j,0)
(

γk

ηj,k
+ (1 + sup

m∈J
γn

m)γk(1 + ηn
k,0)

)

≤ 22n−2 max{M̃1, M̃3}(1 + sup
m∈J

γn
m)2Cj(1 + ηn

j,0)
(

γk

ηj,k
+ γk(1 + ηn

k,0)
)

≤ M̃Cj(1 + ηn
j,0)

(
γk

ηj,k
+ γk(1 + ηn

k,0)
)

.

Where we have defined M̃ := 22n−2 max{M̃1, M̃3}(1 + supm∈J γn
m)2 in the above for 

convenience. Note that M̃ is finite by (1.20), which implies 
∑

m∈J γm < ∞ so that of 
course supm∈J γn

m < ∞.
For k = j, in addition to the estimates above, we will need to show the following 

bound on ∂Ψj

∂ϕj
,

∣∣∣∣∂Ψj

∂ϕj

∣∣∣∣ ≤ Cjγj

2

⎛
⎝ 1

ηj,0
+
∑
��=j

γ�

ηj,�(ηj,� + γ�)

⎞
⎠

This follows by first, another maximization argument, which finds

∣∣∣∣ 2
μ� − μj

− 1
E+

� − μj

− 1
E−

� − μj

∣∣∣∣ ≤ γ�

ηj,�(γ� + ηj,�)
.

The above justifies the termwise differentiation of the sum over the index J and shows

∣∣∣∣∂Ψj

∂ϕj

∣∣∣∣ =

∣∣∣∣∣∣
Ψj

2
∂μj

∂ϕj

⎛
⎝ 1

μj − E
+
∑
��=j

(
2

μ� − μj
− 1

E+
� − μj

− 1
E−

� − μj

)⎞⎠
∣∣∣∣∣∣

≤ Cjγj

2

⎛
⎝ 1

ηj,0
+
∑
��=j

γ�

ηj,�(γ� + ηj,�)

⎞
⎠ .

For the first term in ∂Ξj , we use (3.4) to find
∂ϕj
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n−1∑
�=0

∣∣∣∣∂Rn−�

∂ϕj

∣∣∣∣ |μj |� ≤ M3γj

n−1∑
�=0

(1 + (ηj,0 + γj)n−�)(|E| + ηj,0 + γj)�

≤ 2n−1M3(1 + |E|n)γj

n−1∑
�=0

(1 + (ηj,0 + γj)n−�)(1 + (ηj,0 + γj)�)

≤ 2n+1nM3(1 + |E|n)γj(1 + (ηj,0 + γj)n)

= 1
2M̃3γj(1 + (ηj,0 + γj)n)

since (1 + (ηj,0 + γj)n−�)(1 + (ηj,0 + γj)�) ≤ 4(1 + (ηj,0 + γj)n). Similar methods bound 
the remaining two terms:

n−1∑
�=1

�|Rn−�|
∣∣∣∣∂μj

∂ϕj

∣∣∣∣ |μj |�−1 ≤ (n − 1)M1

2 γj

n−1∑
�=1

(|E| + ηj,0 + γj)�−1

≤ (n − 1)M1

2 (1 + |E|n)γj

n−1∑
�=1

2�−1(1 + (ηj,0 + γj)�−1)

≤ 2n−1 (n − 1)2M1

2 (1 + |E|n)γj(1 + (ηj,0 + γj)n)

≤ (n − 1)
2 M̃1γj(1 + (ηj,0 + γj)n)

and

n∑
�=0

|Rn−�||μj |� ≤ M1

n∑
�=0

(|E| + ηj,0 + γj)�

≤ M1(1 + |E|n)
n∑

�=0

2�(1 + (ηj,0 + γj)�)

≤ 2n+1M1(n + 1)(1 + |E|n)(1 + (ηj,0 + γj)n)

= 4M̃1(1 + (ηj,0 + γj)n).

Thus, we have

∣∣∣∣∂Ξj

∂ϕj

∣∣∣∣ ≤ 2Cj

(
n−1∑
�=0

∣∣∣∣∂Rn−�

∂ϕj

∣∣∣∣ |μj |� +
n−1∑
�=1

�|Rn−�|
∣∣∣∣∂μj

∂ϕj

∣∣∣∣ |μj |�−1

)
+
(

n∑
�=0

|Rn−�||μj |�
)∣∣∣∣∂Ψj

∂ϕj

∣∣∣∣
≤ M̃3Cjγj (1 + (ηj,0 + γj)n)

+ (n − 1)M̃1Cjγj(1 + (ηj,0 + γj)n)

+ 2M̃1Cjγj

⎛
⎝ 1

ηj,0
+
∑ γk

ηj,k(ηj,k + γk)

⎞
⎠ (1 + (ηj,0 + γj)n)
k �=j
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≤ M̃32n−1( sup
m∈J

γn
m + 1)Cjγj

(
1 + ηn

j,0
)

+ (n − 1)M̃12n−1( sup
m∈J

γn
m + 1)Cjγj(1 + ηn

j,0)

+ 2M̃12n−1( sup
m∈J

γn
m + 1)Cjγj

⎛
⎝ 1

ηj,0
+
∑
k �=j

γk

ηj,k(ηj,k + γk)

⎞
⎠ (1 + ηn

j,0)

≤ 2nM̃Cjγj(1 + ηn
j,0)

⎛
⎝1 + 1

ηj,0
+
∑
k �=j

γk

ηj,k(ηj,k + γk)

⎞
⎠ .

Finally, we collect the above estimates and show Ξ is Lipschitz.

‖Ξ(ϕ) − Ξ(ϕ̃)‖

= sup
j∈J

γ
1/2
j (1 + ηn

j,0)1/2 ‖Ξj(ϕ) − Ξj(ϕ̃)‖

≤ sup
j∈J

γ
1/2
j (1 + ηn

j,0)1/2
∑
k∈J

∥∥∥∥∂Ξj

∂ϕk

∥∥∥∥
∞

‖ϕk − ϕ̃k‖

≤ ‖ϕ − ϕ̃‖ sup
j∈J

∑
k∈J

γ
1/2
j (1 + ηn

j,0)1/2γ
−1/2
k (1 + ηn

k,0)−1/2
∥∥∥∥∂Ξj

∂ϕk

∥∥∥∥
∞

≤ ‖ϕ − ϕ̃‖

⎛
⎝sup

j∈J
γ

1/2
j (1 + ηn

j,0)1/2
∑
k �=j

γ
−1/2
k (1 + ηn

k,0)−1/2
∥∥∥∥∂Ξj

∂ϕk

∥∥∥∥
∞

+ sup
j∈J

∥∥∥∥∂Ξj

∂ϕj

∥∥∥∥
∞

⎞
⎠ .

We examine the sum over k �= j first. Using our estimates on 
∥∥∥ ∂Ξj

∂ϕk

∥∥∥
∞

for k �= j computed 

above, we see:

sup
j∈J

γ
1/2
j (1 + ηn

j,0)1/2
∑
k �=j

γ
−1/2
k (1 + ηn

k,0)−1/2
∥∥∥∥∂Ξj

∂ϕk

∥∥∥∥
∞

≤ M̃ sup
j∈J

Cj(1 + ηn
j,0)3/2

∑
k �=j

γ
1/2
k γ

1/2
j

ηj,k(1 + ηn
k,0)1/2

+ M̃ sup
j∈J

Cjγ
1/2
j (1 + ηn

j,0)3/2
∑
k �=j

γ
1/2
k (1 + ηn

k,0)1/2

≤ M̃ sup
j∈J

Cj(1 + ηn
j,0)3/2

∑
k �=j

γ
1/2
k γ

1/2
j

ηj,k(1 + ηn
k,0)1/2

+ M̃

(∑
k∈J

γ
1/2
k (1 + ηn

k,0)1/2

)
sup
j∈J

Cjγ
1/2
j (1 + ηn

j,0)3/2

=: L1
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where L1 < ∞ by assumption (1.21) on the first term, and (1.20) and (1.23) on the 
second.

For the k = j term, we take a supremum over our estimate on ∂Ξj

∂ϕj
, bounding as 

follows,

sup
j∈J

∣∣∣∣∂Ξj

∂ϕj

∣∣∣∣ ≤ 2nM̃ sup
j∈J

Cjγj(1 + ηn
j,0)

⎛
⎝1 + 1

ηj,0
+
∑
k �=j

γk

ηj,k(ηj,k + γk)

⎞
⎠

≤ 2nM̃

⎛
⎝sup

j∈J
Cjγj(1 + ηn

j,0) + sup
j∈J

γj(1 + ηn
j,0)Cj

ηj,0

+ sup
j∈J

Cjγj(1 + ηn
j,0)

∑
k �=j

γk

ηj,k(ηj,k + γk)

⎞
⎠

≤ 2nM̃

⎛
⎝sup

j∈J
Cjγj(1 + ηn

j,0) + sup
j∈J

γj(1 + ηn
j,0)Cj

ηj,0

+ sup
j∈J

Cj(1 + ηn
j,0)

∑
k �=j

(
γ

1/2
k γ

1/2
j

ηj,k

)2⎞⎠
=: L2.

In the above, the first term in L2 is finite by (1.23), once we note that (1.20) implies 
γj < 1 for all but finitely many indices j ∈ J , so that for these indices, γj < γ

1/2
j . For 

the second term, we make use of (1.22), and for the final term, (1.21) suffices.
In summary,

‖Ξ(ϕ) − Ξ(ϕ̃)‖ ≤ (L1 + L2) ‖ϕ − ϕ̃‖

and the vector field is Lipschitz. �
The proof of the remainder of Theorem 1.4 is now nothing more than collecting our 

results.

Proof of Theorem 1.4. Let V : R → R be such that HV is reflectionless and σ(HV ) = S, 
where S obeys (1.20), (1.21), (1.22), and (1.23). Associate to V the angular variables 
(ϕ̃j(x))j∈J ∈ R(S).

Let q(x, t) be a classical solution to (1.2), (1.3) satisfying boundedness condition (1.6). 
By Corollary 2.3 and Proposition 1.1, we may associate angular variables (ϕj(x, t))j∈J ∈
R(S) at any time t ∈ [0, T ]. Using the trace formula (1.13), this allows us to write

q(x, t) = E +
∑
j∈J

(
E+

j + E−
j − 2μj(x, t)

)
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By Proposition 4.2, ϕj(x, t) satisfies

∂tϕj(x, t) = Ξj(ϕ)

where Ξ is Lipschitz by Lemma 4.3. Thus, setting the initial condition (ϕj(x, 0))j∈J =
(ϕ̃j(x))j∈J ensures the μj(x, t) in the above trace formula representation, and thus the 
solution q(x, t), is unique. �
5. Application to small quasi-periodic initial data with Diophantine frequency

In this section, we will show our uniqueness result applies to small quasi-periodic 
initial data in order to prove Theorem 1.6.

In the setting of Theorem 1.6 it is natural to label the gaps by the values of the 
rotation number |m · ω|, or more concisely, by m ∈ Zν , with the labels m and −m

corresponding to the same gap, while m = 0 corresponds to the bottom of the spectrum. 
For ε < ε0(a0, b0, κ0), in [10,2], the following bounds were established:

(1) For every m ∈ Zν \ {0},

γm < 2ε exp
(

−κ0

2 |m|
)

. (5.1)

(2) For every m ∈ Zν \ {0},

ηm,0 ≤ c|m|2 (5.2)

for a constant c depending only on ε and ω.
(3) For every m ∈ Zν \ {0}, n ∈ Zν , m �= n and |m| ≥ |n|,

ηm,n ≥ a|m|−b (5.3)

for constants a, b > 0 depending only on ω, ε, κ0, ν.

As a consequence [2], the constants Cm defined in (1.14) obey

Cm ≤ F exp (F log |m| log log |m|) (5.4)

for F = F (a, b, κ0, ν, ω).
Our goal is to use the above estimates to show that the spectrum of HV , for V of the 

form (1.27), obeys the Craig-type conditions (1.20), (1.21), (1.22), (1.23), and therefore 
that Theorem 1.4 applies. This will prove Theorem 1.6.

Lemma 5.1. For V of the form (1.27), and satisfying the Diophantine condition (1.28), 
conditions (1.20), (1.21), (1.22), (1.23) are satisfied for any positive integer n.
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Proof. For (1.20), we combine (5.1) and (5.2) to find

∑
m∈Zν \{0}

γ1/2
m (1 + ηn

m,0)1/2 <
√

2ε
∑

m∈Zν \{0}
exp

(
−κ0|m|

4

)
(1 + cn|m|2n)1/2 < ∞.

For (1.21), we use (5.3) to bound the sum;

∑
k �=m

γ
1/2
k

ηm,k
=

∑
|k|>|m|

γ
1/2
k

ηm,k
+

∑
|k|<|m|

γ
1/2
k

ηm,k

≤ 2ε

a

⎛
⎝ ∑

|k|>|m|
|k|b exp

(
−κ0|k|

4

)
+ |m|b

∑
|k|<|m|

exp
(

−κ0|k|
4

)⎞⎠

≤ 2ε

a

⎛
⎝∑

k �=m

|k|b exp
(

−κ0|k|
4

)⎞⎠ (1 + |m|b).

And from (5.4), (5.2), we have for m ∈ Zν \ {0},

Cmγ1/2
m (1 + ηn

m,0)3/2 ≤ F exp
(

F log |m| log log |m| − κ0|m|
4

)
(1 + cn|m|2n)3/2.

And by taking the product of these estimates we may conclude

sup
m�=0

Cmγ1/2
m (1 + ηn

m,0)3/2
∑
k �=m

γ
1/2
k

ηm,k
< ∞.

For (1.22), it suffices to note for m ∈ Zν \ {0},

γm(1 + ηn
m,0)Cm

ηm,0
≤ 2ε

a
F exp

(
F log |m| log log |m| − κ0

2 |m|
)

(1 + cn|m|2n)|m|b

and so supm�=0
γm(1+ηn

m,0)Cm

ηm,0
< ∞. (1.23) follows immediately from the estimate

γ1/2
m (1 + ηn

m,0)3/2Cm ≤
√

2εF exp
(

F log |m| log log |m| − κ0

4 |m|
)

(1 + cn|m|2n)3/2

for m ∈ Zν \ {0}. �
Proof of Theorem 1.6. By [8], σ(HV ) = σac(HV ). Thus, by Kotani theory, HV is reflec-
tionless [25]. Furthermore, by Lemma 5.1, conditions (1.20), (1.21), (1.22), and (1.23)
are satisfied. Thus we have, by Theorem 1.4, uniqueness of any solution q(x, t) to (1.2), 
(1.3), provided q, ∂2n

x q ∈ L∞(R × [0, T ]). �
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