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Abstract—Adverse event detection is critical for many real-world applications including timely identification of product defects,
disasters, and major socio-political incidents. In the health context, adverse drug events account for countless hospitalizations and
deaths annually. Since users often begin their information seeking and reporting with online searches, examination of search query
logs has emerged as an important detection channel. However, search context - including query intent and heterogeneity in user
behaviors – is extremely important for extracting information from search queries, and yet the challenge of measuring and analyzing
these aspects has precluded their use in prior studies. We propose DeepSAVE, a novel deep learning framework for detecting adverse
events based on user search query logs. DeepSAVE uses an enriched variational autoencoder encompassing a novel query
embedding and user modeling module that work in concert to address the context challenge associated with search-based detection of
adverse events. Evaluation results on three large real-world event datasets show that DeepSAVE outperforms existing detection
methods as well as comparison deep learning auto encoders. Ablation analysis reveals that each component of DeepSAVE
significantly contributes to its overall performance. Collectively, the results demonstrate the viability of the proposed architecture for
detecting adverse events from search query logs.
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1 INTRODUCTION

Adverse event detection has become a critical component
of post-marketing surveillance in many contexts including
pharmaceutical drugs, children’s toys, and the automotive
industry [2]. For instance, adverse reactions to pharma-
ceutical drugs are responsible for over 10% of all hospital
admissions [38], resulting in millions of hospitalizations
and over 100,000 deaths annually [41]. The pharmaceutical
drug Pradaxa alone has caused 9,000 hospitalizations, 1,000
deaths, and $650 million in lawsuit settlements over the past
five years [48]. Similarly, in the automotive industry, Toyota
recently settled lawsuits totaling nearly $6 billion for inad-
equate rust protection on their trucks, and the unintended
acceleration “sticky pedal” fiasco [2]. Such surveillance also
has implications for other types of events, including socio-
political incidents and natural disasters [42] [24]

Detection entails use of signal or anomaly detection
methods capable of accurately identifying such events in
a timely manner (i.e., earlier). In recent years, there has been
greater focus on employing user-generated content channels
to detect adverse events [2], with user search query logs
serving as a major channel [3] [53]. The importance and
viability of search is largely due to the increased volume
and timeliness of search data – users often begin information
seeking and reporting with online searches [24] [2]. Conse-
quently, the ability to detect events using search query log-
based signals in an accurate and timely manner has impor-
tant implications for many real-world problems. Given its
immense potential for garnering situational awareness and
listening to the voice of the customer, in 2009, Google chief
economist Hal Varian noted that search trends could help
“predict the present” [12]. However, search-based event
detection has been somewhat maligned in recent years.
Recent studies have shed light on a major challenge – the
context problem [9] [26]. A high-profile example where lack

of proper contextualization might have been partly respon-
sible was Google shutting down their search-based flu trend
prediction service after it over-estimated flu levels by nearly
100% one year [10] [11]. The lower salience of search, due
to reliance on queries that are typically 3-5 words in length
or shorter, makes it difficult to properly infer query intent
[24] [1] – people seeking information on flu treatment versus
those wondering if they should get a flu shot this year [10].
Further, users’ internet behaviors are diverse – yet existing
detection methods rarely consider user heterogeneity [7].

We propose a novel deep learning framework called
DeepSAVE (deep learning for search-based adverse event
detection) for detecting adverse events based on user search
query logs. DeepSAVE employs an enriched variational
autoencoder that incorporates specific provisions to address
the context challenge related to detection of adverse events
via search, including a query embedding for better represen-
tation of search intent, and user-level modeling to account
for heterogeneity.

DeepSAVE was evaluated on a rich test bed encompass-
ing 104 million user search queries spanning a six year
period, coupled with three event databases containing over
800 events related to the health and automotive industries.
The results reveal that the proposed framework is able to
garner enhanced recall and f-measures relative to existing
baseline and benchmark methods. Ablation analysis shows
that each component of DeepSAVE significantly contributes
to its performance, underscoring the efficacy of the pro-
posed framework.

2 BACKGROUND AND RELATED WORK

2.1 Disproportionality Analysis

Disproportionality Analysis (DA) methods [33] find poten-
tial associations between entities and adverse outcomes.
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Examples of entities include the drug Pradaxa or Toy-
ota Prius, whereas associated outcomes might be stomach
bleeding (in the case of Pradaxa) or the accelerator pedal
sticking (in the case of Prius). DA methods are computed
based on a 2x2 contingency table encompassing entity and
outcome occurrences (see Table 1). DA has been widely used
in the past for adverse event detection from search and
spontaneous reporting databases [2]. Specific examples of
DA measures proposed in the literature are Reporting Odds
Ratio (ROR), Relative Reporting Ratio (RRR), Proportional
Reporting Ratio (PRR) and Information Component (IC) [33]
[8]. As noted, these measures are based on values in Table 1.
For instance, ROR is computed as (a*d)/(b*c). Szarfman et
al. [43] proposed a multi gamma poisson shrinker (MGPS)
method that adopts a relatively more involved Bayesian
approach. For most DA methods, values above a certain
threshold are deemed potential adverse events (i.e., “pos-
itives”) [13]. Many DA methods suffer from high variability
due to simplified “mention” model-based detection that
ignores search context [2]. Consequently, DA methods have
typically yielded low precision and recall for adverse event
detection [2] [3].

TABLE 1: 2x2 Contingency table. a, b, c, d represent the
frequency of occurrence

Outcome of Interest Other Outcomes
Entity of Interest a b

Other Entities c d

2.2 Association Rule Mining
Association rule mining (ARM) methods follow a similar
intuition to DA methods by attempting to find associations
between entities and related potential adverse outcomes.
Several measures, such as support and confidence [45] have
been proposed to mine association strength between two
objects [4] [50]. Given such measures for all entity-outcome
tuples, only tuples with measures above a certain threshold
are deemed potential events (“positives”). Most of these
methods are well-suited for pervasive adverse events (i.e.,
ones with high support), but do not work well for events
with a weaker signal [45]. To address this problem, some
studies have focused on more robust adverse event detec-
tion methods [50] [29] [45], but these still suffer from high
false positive rates and high computational complexity [20].
Ji et al. [20] proposed two association measures based on
a fuzzy recognition-primed decision model [19] for mining
causal relations between drugs and adverse reactions, called
causal leverage (CL) and exclusive causal leverage (ECL).
Further, Jin et al. [21] proposed an interestingness measure
and mining algorithm (EXCLEV) for highlighting unex-
pected events. These measures have demonstrated strong
results on electronic databases, but have not been applied in
the context of search data.

2.3 Event Mention Classification
Event mention classification methods use a classifier to
categorize potential adverse event mentions such as a tweet
or search query [2] [31]. The filtered mentions (i.e., those
categorized as relevant) are then input into DA or ARM
methods. For example, the classifier results may create a re-
fined subset of a,b,c,d in Table 1 which can then be used for

DA-based adverse event detection, thereby potentially alle-
viating false positives and enhancing precision. Numerous
approaches for classifying event mentions in text have been
proposed. Sarker et al. [41] trained a Support Vector Ma-
chine (SVM) classifier to detect whether a tweet contains an
ADR. They applied their method on a dataset encompassing
6K manually annotated tweets. Lee at al. [28] proposed a
method for ADR detection in tweets using a Convolutional
Neural Network (CNN) and region embeddings. Huynh
et al. [17] applied CNNs followed by Recurrent Neural
Networks (RNN) with and without attention mechanism to
two labeled datasets. Event mention classification methods
attempt to better contextualize and refine entity-outcome
mention tuples, thereby implicitly examining search/query
intent [24]. However, these approaches do not consider user-
level characteristics [7] such as heterogeneous search and
nuanced querying patterns. Moreover, they still rely on DA
methods for the final event detection signals. As we later
demonstrate empirically in our evaluation section, these
limitations make event mention classification techniques
less ideal for adverse event detection.

2.4 Data Mining Techniques for Twitter Event Detection
Twitter is a major channel for social-media based detection
of real-world events. Hashtags have made it easier to find
and extract tweets related to a specific event, upon which
data mining techniques can be applied. Several such meth-
ods have been proposed in recent years that consider event
detection as a temporal stochastic process. Here we discuss
a few exemplars selected based on their performance as re-
ported in prior studies [62] [3]. pyMABED [36] uses anomaly
detection to detect spikes in event mentions which can be
visualized in a system for manual inspection. SEDTWik [34]
examines tweet hashtags to find bursty segments which are
clustered to find important events. Precision is increased
by making use of an external data source (Wikipedia) to
verify events. TwitterTopics [18] aggressively filters tweets
based on length and content. It then applies hierarchical
clustering on the refined set of tweets and finally prunes
results by weighting. PeakLabel [3] uses a spike detection
heuristic to identify events from Twitter mentions. Despite
empirically performing well on social media-based event
detection tasks, it remains unclear how well these tech-
niques can perform on search data. For instance, while these
aforementioned methods perform analysis (e.g., anomaly
detection or cluster analysis) at the word or tag level,
important factors such as word sense and context are omit-
ted from the analysis pipeline. Hence, some of the same
intent and user heterogeneity limitations mentioned earlier
may apply. Moreover, many of these methods are based
on sophisticated pipelines that rely heavily on the manual
feature/model engineering paradigm.

2.5 Auto Encoders and Dimensionality Reduction
Dimensionality reduction methods are a family of unsu-
pervised methods that deal with learning an efficient com-
pressed representation of the data that is well-suited for easy
reconstruction of the input. Principal component analysis
(PCA) [54] and Singular Value Decomposition (SVD) [15]
are two seminal methods that have been successfully used
for data compression, anomaly, and event detection [37].
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In recent years, Auto encoders (AE) [16], which are a type
of unsupervised neural networks, have been proposed for
this task. They consist of two components, an encoder that
converts the input into a compressed representation, and a
decoder that converts the compressed representation back to
the original input. Reconstruction loss is used to back prop-
agate the error and enable learning. Initially, auto encoders
were used for dimensionality reduction [16], but recently,
they have been applied to anomaly detection tasks [40]
[55]. After training an auto encoder, if a test instance gives
high reconstruction loss (i.e., the network cannot reconstruct
the test input accurately relative to some threshold), it is
considered an anomaly. Denoising auto encoders (DAE)
[47] are a special type of auto encoder where a small
amount of noise is intentionally added to the input as a
regularization strategy. By learning on noisy input, the goal
is to train models robust to small perturbations. Variational
auto encoders (VAE) [25] constrain the compressed rep-
resentation to follow a prior distribution (e.g., Gaussian).
The encoder compresses the input into two compressed
representations: mean and variance which are joined to get
a single representation. Kullback-Leibler divergence is used
to constrain the compressed representation to match the
prior distribution. Adding this distribution constraint can
act as a regularization strategy. It also allows use of more
principled anomaly thresholds based on prior distributions.
Despite encompassing several attractive properties, to the
best of our knowledge, auto encoders have not previously
been used for adverse event detection.

2.6 Deep Learning for Search

There has been increased research interest in applying
neural networks to word (word2vec) [32] and sentence
embeddings [27]. These embeddings represent words and
sentences in a high dimension such that there are semantic
relationships between them. A few extensions of word2vec
[23] have also been proposed for modeling search queries.
Zamani et al. [57] and Le et al. [27] proposed a method of
averaging word embeddings to create embeddings for short
pieces of text such as queries and sentences. Query2vec
[23] uses ideas from word2vec and skipgram modeling to
propose several different schemes for creating query embed-
dings, including querygram, clickgram, and sessiongram.
Query embeddings could help better account for search
context factors such as query intent, yet have not been
employed in prior adverse event detection studies.

2.7 Research Gaps

Based on our review of prior work, we have identified two
important research gaps:

• Lack of Attention to Search Context – Salience is
critical, yet often elusive with user-generated content
channels such as search query logs [1]. Failure to
contextualize user-generated content can have dire
consequences for event detection [53]. Neverthe-
less, effective contextualization methods for adverse
event detection remain elusive. The intention behind
queries is one critical consideration [57]. Further,
users may internalize and vocalize adverse experi-
ences in diverse ways, depending on various factors.

Prior work examining user-generated channels has
mostly not considered such heterogeneity.

• Dearth of Parsimonious Models for Detecting Ad-
verse Events – Previous studies have largely relied
on aggregate-level DA or ARM methods applied
atop either basic or machine-learning classifier-based
mention models [10]. As we later demonstrate em-
pirically, such methods, which are applied uniformly
across entities in a sequential “pipeline” manner,
are unable to learn the nuanced characteristics of
specific potential adverse events since they fail to
consider the interplay between mention instances
and aggregate-level events.

3 PROPOSED FRAMEWORK: DEEPSAVE
3.1 Generic Definition of Problem and Solution Space
Suppose we have externally defined sets e1, e2, ..., em ∈ E
entities and o1, o2, ..., on ∈ O outcomes for a given prob-
lem domain. For instance, if attempting to detect adverse
drug events, entities would be all relevant drugs and
outcomes the set of all possible adverse reactions. For
automotive events, entities would be vehicle makes and
models, whereas outcomes would include vehicular defects
that could manifest after purchase. This results in a set of
possible entity-outcome tuples eioj ∈ E × O. The objective
is to examine potential event signals to identify, as timely
as possible, each tuple eioj ∈ A ⊂ E × O, where A is the
set of all true adverse events, which is defined by external
criteria and ex ante unobservable aside from a known subset
A′ ⊂ A that may be used for training.

In each time period t, users u1, u2, ...uk each perform
queries qut1, qut2, ...qutl, which may contain a potential
event signal eioj by either individually or collectively men-
tioning both entity ei and outcome oj . Following the stan-
dard approach adopted in the disproportionality analysis
literature [53] [52], evidence for an actual event may be
provided by entity-outcome tuples that are anomalous (i.e.,
disproportionate) in their occurrence relative to other tuples,
both within and across timeframes, or relative to themselves
from prior time periods [2]. At time t, some metric of
strength for each potential signal eitojt is compared against
its past occurrences eisojs ∀s < t as well as with other event
signals at the current time extoyt ∀ex∈Eoy∈O . Based on this
comparison, an anomaly score ateioj is assigned to each
signal eioj ∀ei∈Eoj∈O that quantifies the abnormality of the
signal. All signals are ranked based on anomaly scores, and
the top p% adverse event signals (highest anomaly scores)
are considered as our potential true positives. These are
measured against a ground truth set of known true events
from future times tk+1, tk+2, ..., tn to gauge performance.

3.2 DeepSAVE Components
Figure 1 depicts our DeepSAVE deep learning framework
for adverse event detection. It consists of multiple compo-
nents designed to address the aforementioned gaps in the
literature:

• Query Embedding for the query intent aspect of
search context. This module combines search queries
with clickstream data to create query embeddings
for better intent inference. In particular, the query
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Fig. 1: Proposed Deep Learning Framework for Adverse Event Detection

embedding attempts to disentangle relevant from
irrelevant queries, and further categorize relevant
queries into different types.

• User Modeling to account for the user heterogene-
ity aspect of search context. This component of the
framework uses hierarchical bayesian modeling to
generate a novel user embedding to identify and
account for diversity in how users seek information
via search. Collectively, the user modeling accounts
for diverse user content generation and consumption
patterns.

• Enriched Variational Auto Encoder for parsimo-
nious modeling of adverse events. The auto encoder
takes compressed representations of the aforemen-
tioned components and attempts to reconstruct them
with a prior distribution constraint. To enhance per-
formance, the decoder is enriched with query and
user embeddings to better align reconstruction loss
with valid adverse event signals.

3.3 Overview of DeepSAVE
We begin with a high-level overview of DeepSAVE before
diving further into the three components: enriched varia-
tional autoencoder, query embeddings, and user modeling.
As noted, adverse event detection is about detecting an
event signal. As shown in Figure 1, DeepSAVE embodies
this core intuition. Longitudinal search data is divided into n
sliding windows of size s. For each window wi, queries with
entity-outcome tuples are extracted. Since a user’s search
intent might manifest across multiple queries, we let the
entity and outcome terms occur in different queries within
a time period T. Each query is associated with its text, a
user id, and a set of URLs visited within t seconds after
entering the query. Relevant queries are passed through two
different components of DeepSAVE that extract information
for tuples and create input matrices for an entity with
outcomes as row vectors.

The query embedding and user modeling modules col-
lectively extract two key matrices that are used as input
for the variational autoencoder. The query embedding mod-
ule focuses on derivation of meaningful representations of
queries for user intent inference. Since a single outcome
can be associated with multiple queries, we use a recurrent
neural network to aggregate the query embeddings for each

outcome before inserting them into vectors in the query
embeddings matrix Mq .

The user modeling component extracts individual, as
well as aggregated measures for users belonging to each
tuple. These values are intended to capture users’ informa-
tion foraging behavior. Data generated by the user modeling
module is used to create a user feature + user embedding
matrix Mu. Ultimately, we are interested in finding entity-
outcome tuples (i.e., rows) of the feature + user embedding
matrix Mu. The query matrix is used for enrichment (i.e.,
regularization strategy) analogous to a denoising autoen-
coder [47].

The two matrices generated by the user modeling and
query embedding components are each passed through
separate Feedforward Neural Networks to extract represen-
tations that are concatenated and non-linearly aggregated
together by another Feedforward Neural Network to form
a single compressed representation which is constrained to
follow an isotropic Gaussian distribution. By upsampling,
this representation is converted back into the original Mu.
As noted, the matrix for query embeddings is not recon-
structed since it is only used to help the auto encoder
reconstruct the core matrix Mu, which is used to identify
adverse events.

DeepSAVE is trained and tested using a sliding time
series window approach. Given test window wi+1, training
employs a cumulative growing window spanning w0 to wi.
Consistent with prior autoencoders, reconstruction loss is
used to train the VAE [25], resulting in a fully unsupervised
method for adverse event detection (in the sense that no
apriori event labels are used). For each test window wi+1,
reconstruction loss is calculated for each outcome row in
the entity-outcome text matrix. Entity-outcome tuples with
reconstruction loss above a certain threshold are considered
potential adverse events. Details about the enriched VAE,
query embedding, and user modeling appear in the remain-
der of the section.

3.4 Enriched Variational Auto Encoder
Variational auto encoders (VAEs) have shown great promise
for efficiently compressing input data into specific distribu-
tions. These distributions in turn exhibit statistically sound
properties for threshold-based anomaly detection – for in-
stance, only 5% of data lies outside two standard deviations
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in a Gaussian distribution. In order to leverage these prop-
erties, DeepSAVE uses a VAE as its core anomaly detection
engine. The algorithmic intuition guiding our enriched VAE
is that since adverse-event related searches are less common,
when properly accounting for query intent and diversity in
user search behavior, they will exhibit anomalous patterns
relative to regular searches in a time series modeling con-
text. More specifically, as we train the enriched VAE for each
time window, it learns the distribution of entity-outcome
row and entity-level matrix association patterns – whenever
an adverse event occurs, if its entity matrix falls outside
the learned data distribution due to spikes in certain entity-
outcome searches, those entity-outcome time periods will
be flagged as anomalous signals [55]. The enriched VAE
leverages query embedding and user modeling-based en-
richment to the input as a regularization strategy to account
for query intent and user heterogeneity, thereby enabling
more accurate reconstruction loss measurement.

As alluded to in our framework overview, DeepSAVE
trains on a set of entity matrices, each consisting of all
possible outcomes as rows. Therefore, each row can also
be called an entity-outcome tuple. The query embedding
and user modeling components (described later in sections
3.3 and 3.4) are used to generate two input matrices: Mq ,
Mu, for the enriched VAE. From relevant queries, data for
these matrices is generated and passed through separate
feedforward neural networks and global max pooling lay-
ers to extract compressed global representations for each
matrix. For instance, the compressed query embeddings
representation is a global representation that encompasses
query intent for the input entity as a whole, as well as the
individual outcomes. These representations are non-linearly
aggregated together before being applied with a Gaussian
constraint that acts as a regularization strategy. Aggregation
is done in order to obtain a single global representation from
all components, which is used to reconstruct the feature +
user embedding matrix.

Formally, let u1, u2, ..., un ∈ Mu denote the outcome
rows of an entity matrix for user features and embeddings
and b1, b2, ..., bn ∈ Mq for query embeddings. Row vectors
for each matrix are of different sizes su, sb respectively. We
pass each matrix through a separate feedforward neural
network that compresses the width of the matrix while
keeping the number of rows the same. Since the embedding
and feature information is present in the columns of the
matrices, we start by compressing them using a feedforward
neural network with weights Wm:

CM = σ(bm +M ∗Wm) (1)

where the number of unitsm in the neural network layer
is much smaller than the number of columns in the matrix
M . σ is the activation function and ∗ is the matrix product.

For each entity matrix Mq , Mu, we consider the output
CM as the compressed representation. Let Cu, Cq denote the
compressed representations of feature and query matrices
respectively. Then, the aggregated compressed representa-
tion is given by:

C = σ(bc + (Cconcat) ∗Wc (2)

Cconcat is the concatenation of the compressed represen-
tations which is given by:

Cconcat = Cq ⊕ Cu (3)

Given C , we convert it into two more compressed
representations for mean and variance of the constraining
distribution (a Gaussian distribution in our case):

Zµ = f(Wzu ∗ Cconcat + bconcat) (4)

Zσ = f(Wzσ ∗ Cconcat + bconcat) (5)

Z = zµ + zσ ∗ ε (6)

In equation 6, z is sampled using a ”reparametrization
trick” [25] that enables backpropagation in the network.
The ε ∼ Normal(0,1) parameter adds a random node in
the network thus allowing for the gradients to flow back.
Finally, Z is upsampled using another feedforward neural
network to reconstruct the feature matrix. As noted, we do
not reconstruct the query matrix since it is only used for
enrichment of the autoencoder. Let p be the part of auto
encoder that is responsible for compressed (encoder) and
q be the part that is responsible for reconstruction. The
encoder-decoder network is trained end-to-end with loss
function given in equation 7.

L(θ, φ,Mu,Mq) = E(Mu,MuZ)

−KL(qφ(Z|Mu,Mq)||pθ(Z))
(7)

E(Mu,Mu|Z) = |Mu − (Mu||Z)|q (8)

KL(q||p) = p(Mu) ∗ (log(p(Mu)− log(q(Mu))) (9)

Equation 7 contains two terms, the first term is the
reconstruction loss given by E in equation 8, while the
second term is the Kullback Leibler divergence (9) which
quantifies the misfit between the posterior distribution of Z
and a unit Gaussian. θ are the parameters of the encoder
network q while φ represents the parameters of decoder
network p.

As noted, training reconstruction loss is only calculated
across the entire feature matrix Mu. However, during test-
ing, we calculate the reconstruction loss for each outcome
row (entity-outcome tuple) in the feature + user embedding
matrix (Eq. 10). This represents the anomaly score for the
signal; if it is higher than a threshold thrsh, we consider it
an adverse event signal.

∀ e ∈ Entities ∀ Vo ∈Mue

E(Vo, Vo∗) = |Vo − Vo∗|1 > thrsh

thrsh→ AE Signal for Vo and e
(10)

3.5 Query Embeddings

Query intent is an important contextual consideration for
search-based detection models [10] [26]. For instance, the
query “does adderall give headache relief” contains an en-
tity (adderall) and outcome (headache), but is obviously not
referring to a potential adverse event since the intent is to
ask a clarification question as a prospective user of Adderall,
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and the context of the search is focusing on potential benefits
of the entity (i.e., relief).

To mitigate this issue, we build a neural embedding for
query intent detection (query embedding). The key intuition
in our query embedding is to infer latent intent based on
observed post-query clickstream behavior for a subset of
users. For instance, if a user goes to a number of health
sites after a query, it is more likely a signal than if they
visit celebrity news sites. To this end, a classification model
trained on this query-clickstream interplay is used on the
auxiliary task of determining the category relevance of sites
for post-query clicks, using the model’s inner representation
to derive our query embedding. Details are as follows.

For this task, we require a high-level taxonomy of web-
sites by topic to categorize what type of information a user
clicked after a query. For our system, we used DMOZ,
a crowd-sourced hand-labeled directory of thousands of
websites commonly employed by researchers for such tasks
[60] [61]. We categorize queries as relevant if at least one of
the URLs visited within a time window after the query has
a category germane to the entity. For instance, if detecting
adverse drug events, “health” categories in DMOZ [58]
would be considered relevant. Using this procedure, we
build a labeled dataset of query-relevance pairs and train
a Transformer [46] model for query categorization. Trans-
formers were used since we want to focus on query intent,
and such models use self-attention effectively to capture
context. The inner representation (i.e., last linear layer of the
Transformer) is used as the query embedding. As shown
in section 5.3, this query embedding significantly improves
our event detection capabilities.

Fig. 2: Transformer Classifier used to Derive Query Embed-
dings

Figure 2 shows the query classifier used to derive our
query embedding. Words along with their positional encod-
ing are input to a Transformer architecture which converts
them into dense vector representations called embeddings.
These embeddings are fed to a multi headed attention layer
which focuses on the important information in the query
and assigns attention weights to each word. This allows
us to attend to the important parts of the query during
learning. The attention weights are finally used with a feed
forward neural network which converts everything into a
1D vector representation qo which is a global representation

of the query. qo is input to a softmax classifier for classifica-
tion.

The outputs qo , which are the output representation of
the final layer encompass semantic meaning of the input
queries in a high dimensional space and constitute our
query embedding. In the evaluation section, we empirically
show that these embeddings are semantically meaningful
and help in user intent inference, thereby reducing false
positives.

Formally, given a sequence of words w1, w2, . . . , wn ∈ q
in a query wherewi is a vector for word embedding [32] and
pi is a vector of positional embeddings [46], the Transformer
creates three separate embeddings from the input which
are called s (words of sentence/query), k (key), v (values)
embeddings. These are gathered in a single matrix to give
us S,K, V . An attention operation is performed on these
three matrices to give us weights for each word.

Attention(S,K, V ) = softmax (
SKT

√
dk

)V (11)

In equation 11, dk is the dimension of the key embed-
dings. In order to further enhance the performance of atten-
tion, a multi-headed attention mechanism is used which is
described by the following equation.

MultiHead(S,K, V ) = Concat(head1, . . . , headh)W 0

where headi = Attention(SWS
i ,KW

k
i , V W

V
i )

(12)

WS
i ,W

k
i ,W

V
i are the weights for each matrix. After

applying the multi-headed attention to get attention weights
for each word, a feed forward neural network is applied to
aggregate embeddings in S into a 1D vector representation
qo which is used with a softmax layer for classification.
qo is called the query embedding. Finally, qo is passed
to a feedforward layer followed by a softmax layer for
classification.

L = WQ ∗ qo + b (13)

Pclass=c =
eLc

(
∑
j=0,n e

Lj
(14)

We maximize the cross entropy loss function to train this
model. Given θ as parameters of the model, loss function is
given by:

L(q; θ) = log(Pc|w1, w2, ..., wn) (15)

3.5.1 Analysis of Query Embeddings
In the same vein as other neural embeddings, we extract the
outputs of the Transformer qo and use them as our query
embedding. To illustrate the potential value of the proposed
embedding, similar to prior embedding studies, we exam-
ined the semantic composition of closely related groups of
queries to see how effectively they captured diverse query
intent information. We performed this analysis by analyzing
the nearest neighbors of queries and clustering them via k-
Means to find patterns.

Table 2 shows results from a partitional cluster analysis
using k-Means, applied on query embeddings derived from
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TABLE 2: Clusters encompassing different types of queries

Example Clusters Sample Queries within Clusters
1. Not relevant to
the entity

urex iphone dvd ripper, battery portalac,
chicago metra train schedule, ibuprofen
coupon

2. Broad prelimi-
nary information
searches

will prozac work, can cefadroxil treat
chlamydia, can you abuse subutex, can
cromolyn be substituted for prednisone

3. Specific adverse
outcome searches

bactrim and sudden death, accutane
and headaches, neostigmine bromide for
sexual anixety, cisplatin delayed nausea

4. Clarification
seeking searches

why albuterol causes jitteriness, how do i
fix fentanyl withdrawal, how does elavil
effect pain management

5. Specialized
question-related
searches

if allergic to tylenol what can i take
instead, if allergic to penicillin would it
not rid strep, if i take progesterone and
feel nauseated

6. Value proposi-
tion and effective-
ness of entities

abilify for depression reviews, abreva
cold sore treatment reviews, garcinia
cambovia weight loss review

searches related to a health context (i.e., where the entities
are pharmaceutical drugs and outcomes of interest are drug
reactions). The first column depicts the relevance or intent
of queries within the cluster, whereas the second column
shows sample queries for each cluster. Italics are used to
highlight certain intent-related facets of each cluster. Look-
ing at the table, if the goal were to identify adverse drug
events, Clusters 3 and 4 seem especially relevant since users
are searching for information or clarification about adverse
drug reactions. Some queries from Cluster 2, which seem
to be broader preliminary searches, might also relate to
adverse events. In contrast, Cluster 5 seems to be highly spe-
cialized searches from prospective users of the drug entities.
Similarly, Cluster 6 is seemingly asking about the possible
value of a given drug from pre-experience users. Cluster 1
contains queries completely irrelevant to the adverse drug
event entity-outcome tuple context. It is also worth noting
that the resulting intent clusters appear to be differentiated
on the basis of not only entity and outcome composition
of the queries, but also their stop/function word presence
(e.g., is, can, how, if). By leveraging a classifier that connects
queries to subsequent URL clickstream behavior, the pro-
posed query embedding is able to identify subtle intent pat-
terns. As alluded to, later in the evaluation section, we show
that inclusion of query embeddings in DeepSAVE enhances
overall event detection precision and recall. Moreover, our
query embedding also offers better performance relative to
alternative query classification approaches.

3.6 User Modeling

User heterogeneity is an important aspect of search [7]. Dif-
ferent users seek information in different ways. For instance,
continuing with our health example, if we consider drugs as
entities and reactions as outcomes, some users are paranoid
about their health and frequently seek medical information
for drugs and reactions (i.e., hypochondriacs) [51]. Simi-
larly, people taking multiple drugs are at greater risk of
drug-drug interactions, which may result in differences in
search patterns. Given the anomaly identification nature
of adverse event detection, accounting for heterogeneity

in user characteristics is important for disentangling signal
from noise. However, many of these user characteristics are
not observable, but rather latent factors that influence user
behaviors. By taking into consideration how these latent
characteristics vary across a heterogenous population, we
can significantly improve detection of adverse events from
user searches. Because we need to estimate latent, unob-
served characteristics that are heterogenous across users, we
turn to hierarchical Bayesian models. Bayesian techniques
have been used extensively in social science literature to
create explanatory models that assume observed behaviors
are, in part, functions of unobserved heterogenous traits
or opinions such as aptitude or utility [59]. These models
are ideal for this type of inference because they allow for
the structured distribution of latent factors across users to
be estimated simultaneously with the impact they have
on discretely observed behaviors [5]. Bayesian techniques
have been used previously in adverse event detection,
but not, to our knowledge, in this way. For instance, the
Multi-Item Gamma Poisson Shrinker (MGPS) algorithm
uses Bayesian estimation to hierarchically model reporting
ratios for adverse events as draws from a population of true,
unknown values [14]. Another study utilizes prior specifica-
tions within the Bayesian framework to incorporate domain
knowledge into the predictive model [30]. Bayesian network
structures have also been used for estimating conditional
probabilities for predicting adverse events and medical di-
agnoses [6] [35]. Because of its various strengths, there is
increasing interest in incorporating Bayesian techniques into
sophisticated predictive models [49].

3.6.1 User Embeddings
Similar to how query embeddings signify the semantic
meaning/intent of queries, we develop user embeddings
to represent the individualized search behaviors of users.
Accordingly, we develop a hierarchical Bayesian model
[5] to identify heterogeneity in users’ latent information
seeking propensities for various categories of entities and
outcomes. Specifically, the model predicts what type of site
a user will visit (i.e. healthcare or other) after searching
for each category of drugs and reactions. We then use the
user-specific coefficients for each drug and reaction in our
predictive model to represent latent user characteristics.
For example, in our adverse drug event detection exam-
ple context, assume some users are hypochondriacs who
search for and seek information from healthcare sites for
certain drugs and reactions very frequently (a latent user
characteristic). These users are not likely to provide a good
signal for adverse event detection. Another group of more
normal users, who may provide a more reliable signal, may
search for drug or reaction terms less frequently and visit
fewer health related sites when they do. When a user in this
second group does experience an adverse reaction, searches
for a drug-reaction tuple, and visits health-related sites to
obtain information, the VAE can use the coefficients repre-
senting such latent characteristics to adjust signal strength
and emphasize information from these more reliable users,
significantly improving performance.

Figure 3 illustrates how the Bayesian model quantifies
this intuition in the context of our health example. Each
Gaussian distribution represents a particular category of
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Fig. 3: Intuition for Bayesian Model used to create User
Embeddings

drug (entity) and reaction (outcome). Each user is repre-
sented along each category distribution by a beta value
that indicates their placement relative to others – a user’s
vector of betas across entity and outcome categories can
shed light on behavior patterns. Users lying on the mean
of the distribution are average users that might not exhibit
any atypical properties. However, users on the high end of
the distribution might express patterns like hypochondria
or high drug-drug interactions.

The input to the Bayesian model is categories of entity
and outcome tuples. The output is the likelihood of the user
visiting a target category website (e.g “Health” if working
with adverse drug events). The model employs logistic
regression where the weights are estimated by allowing
the coefficients to vary randomly by users according to a
Gaussian distribution with mean and standard deviation
freely determined by the model. Formally, let Sjk denote
a binary variable indicating if a user k visited a particular
site type on their jth search. Let Cjk be the search category
for an entity-outcome tuple for user k on jth search. Then,
the model is defined by the following equation.

P (SjkCjk ∀ i) =
1

(1 + exp−(β0k +
∑
i=1,n βik ∗ Sjk + ejk))

(16)
ejk ∼ N(0, σ2), βik ∼ N(āik, σ

2
k) ∀ i = 0...n (17)

In the above equations, i denotes the total number of
categories for entity-outcome tuples, j denotes the total
observations of a user, and k denotes the total number of
users. After training, we are only concerned with the values
of β, which we call “user betas”. For every user u, we create
a vector Vu signifying our user embedding, containing beta
values for the user for every entity and outcome category
that the user belongs to. Along with aggregated user level
features f which will be discussed in an upcoming section,
we add user embeddings for all users of an input entity-
outcome tuple into a matrix representation in DeepSAVE,
which we denote as Mu.

3.6.2 Analysis of User Embeddings

Although user embeddings consist of user betas which are
latent constructs, we conducted a partitional cluster analysis
to dive deeper into the patterns these embeddings exhibit.

For all users in our corpus, we clustered them into k regions
via k-means and converted their user embedding vector
into 2 dimensions using t-distributed stochastic neighbor
embedding (TSNE) for visualization.

Fig. 4: Cluster Analysis of User Embeddings

Figure 4 depicts the clusters created using the afore-
mentioned process. The partitioning confirms that there
are indeed separate regions of users based on their user
embeddings. On manual inspection of cluster centroids, we
found that the four clusters corresponded to users with
different beta values, indicating different behaviors. For
instance, users in the first cluster have high beta values
for both drug and reaction categories, implying frequent
medical searches, while cluster 4 corresponds to users with
only high drug beta values. On the other end, cluster 3
contains users with small beta values, i.e users with searches
that infrequently lead to health sites. Cluster 2 contains
somewhat “average” users – those with beta values closer
to the mean. These embeddings are intended to enhance
the regularization capabilities of the VAE in DeepSAVE,
as described later in the evaluation section. They are also
reconstructed by the VAE.

3.6.3 Aggregated User Features
Consistent with prior adverse event detection studies in-
volving user-generated time series data, we use window-
level aggregated time series data to account for natural spik-
iness and smooth out data sparsity [2] [3]. Entity-outcome
co-occurrences are converted into aggregate-level features
as depicted in Table 3. We rely on a small set of meaningful
features, some of which have been used in previous liter-
ature [53] [56]. These features, which provide a small but
dense representation of users’ collective search behavior, are
input to the VAE via the feature + user embedding matrix
Mu and are reconstructed at the output. In DeepSAVE, their
respective reconstruction errors are used as the basis for
detecting adverse events.

Formally, For each user u, let Qu be the set of all queries
that user performed and Queioj ∈ Qu be the set of queries
that user performed related to the entity-outcome tuple eioj .
Let fueiojt be the frequency with which the user u performs
queries related to eioj on day t within a time window W .
Let cq be the number of target category websites visited after
query q ∈ Qu, and dq be the duration of time spent on
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those sites. Table 3 shows formulas for user features. Feature
Vu represents user embeddings. We hypothesize that along
with other user features, reconstructing user embeddings
forces the VAE to learn the interplay between users’ benign
and anomalous search behavior. As we empirically show
in the results, these features significantly enhance detection
performance.

TABLE 3: Formulas for User Features

Feature Formula

Average Freq. fuave = ((
∑

t∈W fueiojt))/(|W |)
Frequency Variation

√∑
t∈W (fueiojt − f

u
ave)/(|W | − 1|)

Weighted Sum
∑

t∈W (fueiojt/(max(t ∈W )− t))
Entity Query Prop. |Qu

eioj
|/|Qu

ei
|

Outcome Query Prop. |Qu
eioj
|/|Qu

oj
|

Web Time
∑

q∈Qu dq

Target Category URLs
∑

q∈Qu cq

Tuple Freq.
∑

t∈W fueiojt

User Embeddings Vu

4 EVALUATION

4.1 Test Bed

Two types of data were incorporated in our evaluation
test bed. The first were three event databases comprising
over 800 verified adverse events from the US Food and
Drug Administration (FDA), Health Canada, and the US
National Highway Transportation Safety Agency (NHTSA).
The FDA and Health Canada databases comprise adverse
drug events, whereas the NHTSA database are adverse
automotive events. For each event, the databases provided
a detailed description of the event along with a timestamp
indicating when they internally discovered the incident.
We included all events appearing from 2013 through 2018.
Tables 4 summarizes the event database. As noted earlier,
in the FDA and HealthCanada contexts, entities are drugs
whereas in the NHTSA data they are vehicle makes and
models (e.g., ”Toyota Prius”). Since the same entity can be
associated with multiple adverse events at different points
in time, in Table 4, unique entities signify the set of non-
redundant entity appearances in the event data sets. Poten-
tial entity-outcome tuples are all unique entity-outcome tuples
appearing in the search data at least once related to these
unique entities. These tuples constitute the total hypothesis
space for DeepSAVE and comparison models - all true/false
positives and negatives are a subset of these tuples.

TABLE 4: Adverse Event Data Statistics

Data Set No.
Events

Unique
Entities

Potential Entity-
Outcome Tuples

FDA 426 210 62,351
HealthCanada 234 131 19,160
NHTSA 290 79 19,168

The second type of data in our test bed set encom-
passed user-generated data provided by Comscore. Com-
score maintains a panel encompassing over 2 million users.
All search queries and clickstream behavior for these users

are tracked, along with user demographics. This data affords
opportunities for examining search context considerations
such as intent and user modeling. Table 5 summarizes the
panel-based search and clickstream data. The total entity
queries signify the number of search queries performed by
the users in the panel that encompass an entity term related
to the events databases described in Table 4. The entity-query
URLs visited are the total number of URLs visited as a result
of these queries. In the evaluation, we applied DeepSAVE
and comparison methods on this user panel data to detect
events in the event database.

TABLE 5: User Search Query Data Statistics

Search Data Statistics Health &
Automotive

Unique Users 2,357,854
Total Entity Queries (health & automotive) 75,522,063
Entity Queries/Month 1,161,877
Average Entity Queries/User 32.03
Query-related URLs Visited 535,580,255
Average Entity URLs/Month 8,239,696
Average Entity URLs/User 227.15

4.2 Metrics

We adopted four evaluation metrics commonly employed
in prior ADE detection studies [53] [52]: precision, recall, f-
measure, and timeliness. Precision and recall measure the
ability to accurately identify adverse events. Recall denotes
detection rate, while precision is a measure of false positive
rate, with implications for alert fatigue. F-measure is the
harmonic mean of precision and recall. Timeliness is how
much earlier an adverse event can be detected, in compar-
ison to the point in time when the event is timestamped in
the official event database. Since our task entails identifying
adverse events earlier, when calculating recall and precision,
positives were only those signals that occurred prior to
the first-report date for that particular event in the gold
standard database. More formally, precision and recall were
computed as TP/(TP+FP) and TP/(TP+FN), respectively,
where TP were all events detected earlier than their database
timestamp.

For timeliness, suppose we have n events e1, e2, ..., en
under consideration with each event having a timestamps
td1, td2, ..., tdn, the date it was officially defined as a true
adverse event (by the FDA or relevant organization), and
timestamp tr1, tr2, ..., trn, the initial inception (e.g. drug
release) date of the entity or the inception date of our
query dataset, 1/1/2012, whichever is later. Let m reflect
the number of events the algorithm identifies prior to their
official recognition date, where m ≤ n, with timestamps
ta1, ta2, ..., tam representing when the algorithm would
have predicted the event based on available data. The
timeliness metric is measured as the average time between
detection by the algorithm and official recognition, normal-
ized by the length of time from entity/data inception to
official recognition of the event i.e (

∑
i=1,...,m(tdi−tai)(tdi−

tri))/m ∈ [0, 1]. Normalization was performed in order to
provide a more equal footing to events officially recognized
at various times. However, we can also calculate the timeli-
ness in months/days by removing the normalization factor



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3017786, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 6: Summary Results for DeepSAVE.

Method & Type FDA HealthCanada NHTSA
Method Type Fmeas Prec Rec Timely Fmeas Prec Rec Timely Fmeas Prec Rec Timely

Dis-
proportionality

Analysis

ROR [39] 13.0 11.4 15.2 0.63 7.0 8.7 5.9 0.67 17.1 18.5 16.0 0.67
PRR [13] 12.5 11.2 14.0 0.62 6.9 8.3 5.9 0.66 17.1 18.5 16.0 0.67
RRR [8] 11.6 11.6 11.6 0.62 9.5 13.2 7.5 0.67 18.0 19.7 16.5 0.66
IC [8] 12.0 14.0 12.2 0.61 9.5 13.2 7.5 0.67 18.0 19.7 16.5 0.65
MGPS [43] 16.4 15.9 16.8 0.61 9.4 14.6 6.9 0.65 19.4 20.1 18.8 0.66

DA atop Event
Mention
Classifier

SVM [41] 7.4 15.7 4.9 0.59 2.2 13.0 1.2 0.47 As noted, supervised classifiers
couldn’t be run due to lack of

labeled automotive training data

CRNN [17] 13.0 11.4 15.2 0.63 7.0 8.7 5.9 0.71
CNN [17] 13.6 15.3 12.2 0.64 7.2 12.0 5.1 0.63
FASTTEXT [22] 3.0 7.9 1.8 0.57 2.9 23.5 1.6 0.66

Association Rule
Mining

LEV [19] 14.1 13.8 14.3 0.48 9.6 13.1 7.6 0.62 15.8 16.5 15.2 0.67
CL [45] 13.8 14.2 13.5 0.56 9.2 13.0 7.1 0.65 17.0 17.2 16.8 0.68
ECL [19] 16.5 16.7 16.4 0.45 10.4 14.5 8.1 0.69 18.0 18.8 17.3 0.70
EXCLEV [21] 16.6 17.2 16.1 0.53 10.6 14.2 8.5 0.67 19.1 19.2 19.1 0.71

Twitter Event
Detection
Methods

PyMABED [36] 21.0 13.1 52.6 0.75 20.7 16.2 28.6 0.86 25.1 20.6 32.1 0.76
T-Topic [18] 20.9 13.5 46.7 0.64 20.8 16.3 29.0 0.81 26.2 24.7 28.0 0.72
SEDTWik [34] 19.2 34.1 14.6 0.68 15.2 29.9 10.2 0.86 22.1 31.8 16.9 0.80
PeakLabel [3] 18.7 17.1 20.7 0.69 17.5 17.0 17.9 0.71 22.7 19.9 26.6 0.73

Auto Encoders &
Dimensionality

Reduction

PCA [54] 27.1 20.9 38.5 0.65 19.2 16.1 23.9 0.76 25.1 19.8 34.2 0.77
SVD [15] 26.8 20.5 38.7 0.64 19.7 16.7 23.9 0.76 25.1 19.8 34.2 0.77
AE [16] 15.9 11.8 24.4 0.57 13.7 28.8 9.0 0.71 21.6 14.2 45.9 0.69
DAE [47] 22.4 17.2 32.3 0.64 15.9 35.6 10.2 0.63 20.3 13.1 44.4 0.71
VAE [25] 25.5 24.5 26.7 0.63 14.8 32.2 9.6 0.68 20.4 13.2 44.7 0.70

DeepSAVE 35.2 26.6 52.0 0.73 26.0 21.1 33.8 0.74 37.0 27.1 58.3 0.74

Fig. 5: Effect of reconstruction error threshold on f-measure, precision, and recall performance. Twitter Event Detection
methods were omitted since they don’t have thresholds.

Consistent with prior studies [2] [3], for each such iden-
tified positive signal, a determination of true/false positive
(i.e., TP or FP) was made using a two-stage approach. First,
the key entity and outcome keywords appearing in the sig-
nal were automatically compared against those appearing
in the gold standard database descriptions. If the similarity
was below a certain threshold, the signal was automatically
rejected as a false positive. For those above a threshold, an
independent domain expert examined a sample of docu-
ments pertaining to the signal (e.g., the underlying queries
and URLs) to determine relevance.

4.3 Implementation Details
For DeepSAVE’s query embeddings, Transformer [46] was
used with 128 units in the hidden layer, resulting in 128-
dimensionsal query embeddings. For the user modeling
module, we mapped all outcomes and entities into a few
categories. A Bayesian model was trained per each entity-
outcome category tuple, across all relevant users. Each
Bayesian model included six beta values per user: entity
category, outcome category, entity and outcome category,
other drug entities, other outcome categories, and other
entity and outcome categories. The feedforward neural net-
works used in the architecture had 64 layers each except

for at the compressed layer where we only had 16 units
in the layer. Mean Absolute Error was used as the recon-
struction loss measure to train and test the VAE. For the
parameters, we tried out different learning rates, number
of layers, and window sizes and kept the best performing
ones. They impact of parameters is also discussed in section
5.2. For DeepSAVE and all comparison methods, precision,
recall, and f-measure performance on the top 10% reactions
with highest error were reported in the main results table,
although we also plotted these measures across a broader
range of thresholds to show performance domination.

4.4 Comparison Methods
As noted, similar to DeepSAVE, the top n% reactions with
highest DA measures, ARM measures, and AE reconstruc-
tion errors were kept for testing against the gold standard
database. For the classification-based comparison methods
(SVM, CRNN, CNN, FASTTEXT), classifiers were trained
and tuned on a labeled adverse drug mention data set
[41]. However, these techniques couldn’t be run on the
automotive test bed due to lack of labeled training data.
CNN [17] and CRNN [17] were run using a window size
of 5. For CRNN, a single layer with 128 recurrent units
was employed. FASTTEXT [22] used 100 sized word vectors
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with a window size of 5 and 0.1 learning rate. AE [16]
was run using a 3 layer neural network with 8 units in the
compressed layer and 128 in the remaining ones. For DAE
[47], we added small random Gaussian noise (0.01*N(0,1))
to the input. For VAE, we used the same architecture as AE
but added a Gaussian constraint on the compressed layer.
For twitter event detection methods, we used the default
parameters.

Fig. 6: Impact of Parameters on DeepSAVE F-measure

5 EXPERIMENTAL RESULTS

In all results tables, f-measure, precision, and recall are
reported as percentages. The ”Timely” column denotes the
average timeliness of the true positives, as described in
Section 4.2. Table 6 presents the experiment results for Deep-
SAVE and 22 benchmark methods. DeepSAVE significantly
outperformed all benchmark methods on f-measure and
recall on all three data sets. On these metrics, DeepSAVE
performed at least 6 to 10 percentage points better than all
comparison methods. Most notably, recall rates were two-
three times higher than many comparison techniques. In
terms of precision, DeepSAVE was close to other methods
on the FDA and NHTSA test beds. DeepSAVE’s far superior
true positives with relatively decent false positive rates
is crucial since recall is considered essential for adverse
event detection [2]. In general, auto encoders and twitter
event detection methods produced better results relative to
DA, association rule, and classifier techniques. Interestingly,
entity-outcome classifiers coupled with DA methods did
not work well. Overall, the results underscore the effective-
ness of DeepSAVE for search-based adverse event detection
relative to DA, association rule, classifier, and standard
VAE methods. In the case of NHTSA, supervised entity-
outcome classifiers couldn’t be run due to lack of labeled
automotive training data. Therefore, there are no results for
Disproportionality analysis atop Mention Classifier.

5.1 Effect of Threshold
Figure 5 depicts the effect of test reconstruction loss error on
the performance of DeepSAVE versus the best benchmark
methods in each comparison category on the FDA data.
Results on NHTSA and Health Canada were similar. As
we increase the threshold for reconstruction error, thereby
making the number of positive signals generated fewer and
more selective, f-measure steadily increases for DeepSAVE

while it decreases or remains constant for many comparison
methods. This can be seen by looking at the recall and preci-
sion figures – recall for DeepSAVE is at least 25 points higher
than other methods while precision is at most 5 points lower
than VAE. Since recall is markedly higher and precision is
slightly lower at every threshold, but with a steep increase
for higher thresholds, DeepSAVE’s f-measures dominate top
comparison methods across a wide range of event detection
thresholds. These results suggest that DeepSAVE’s perfor-
mance gains are robust across a wide range of thresholds.

5.2 Parameter Impact
Like any deep learning model applied to time series data,
the DeepSAVE framework includes a few parameters such
as the learning rate (lr) of the model, number of convo-
lutional layers, and the time series sliding window size
for analysis (in months). In order to examine the impact
of different parameter values on performance, we exam-
ined various combinations of layers (1,2,3), learning rate
(0.001,0.0005,0.0001), and window size (4,6,8) on our three
data sets. While in Table 6 we report lr = 0.0005, layers =
1, and window size = 4, in general, we found that the total
impact on f-measures across these 27 parameter settings
was less than 2 percentage points on all three data sets.
To illustrate this point, we show the results on the NHTSA
events, Figure 6, where the greatest variance was observed.
As depicted, DeepSAVE’s performance was fairly robust
to changes in learning rates and number of convolutional
layers. With respect to sliding window size, the 4 and 6
month windows garnered fairly similar f-measures (i.e.,
within 1 percentage point). Increasing the window size to
8 months did reduce the f-measure by about two points
for a couple of settings. Though not depicted in this figure,
timeliness values for all these settings also remained similar,
as did the precision and recall profiles, across all three event
data sets. Collectively, these results suggest that DeepSAVE
is robust across an array of parameter settings.

5.3 Ablation Analysis
DeepSAVE encompasses novel query and user embeddings.
In order to analyze the additive impact of each component,
Table 7 shows the performance of the model as we incre-
mentally added components on top of a baseline VAE for
the FDA, Health Canada, and NHTSA event data. Adding
either query embeddings or user embeddings gives a 3
to 13 point lift in f-measure and augments recall by upto
50%. These results highlight the notion that provisions for
better understanding query intent and user heterogeneity
are invaluable for better contextualized search-based event
detection. Lastly, combining both embeddings in the feature
matrix gives us the final results for DeepSAVE with a further
increase in recall, precision and f-measure. The results in Ta-
ble 7 underscore the fact that all components of DeepSAVE
contribute to its overall performance.

5.3.1 Performance of Query Embeddings
In order to further examine the effectiveness of the pro-
posed query embeddings, we compared it against three
other query embedding methods: mean embeddings [27],
query2vec [23], and using LSTM instead of Transformers
in our query classifier. We did this by replacing the query



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3017786, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 7: Ablation Analysis of DeepSAVE Components

FDA Health Canada NHTSA
Method Fmeas Prec Rec Timely Fmeas Prec Rec Timely Fmeas Prec Rec Timely
VAE 25.5 24.5 26.7 0.63 14.8 32.2 9.6 0.68 20.4 13.2 44.7 0.70
VAE+Q 30.4 24.8 39.2 0.62 25.8 19.6 37.7 0.78 35.9 25.2 62.4 0.74
VAE+U 34.5 26.1 51.2 0.72 24.9 19.9 33.3 0.75 35.7 25.7 58.2 0.77
DeepSAVE 35.2 26.6 52.0 0.73 26.0 21.2 33.8 0.74 37.0 27.1 58.3 0.74

Fig. 7: Effect of user and query embeddings on VAE reconstruction loss.

embedding matrix in DeepSAVE with embeddings from the
selected methods on the FDA event data. The results appear
in Table 8. DeepSAVE query embeddings outperform both
other methods on all four metrics, with performance lifts
of 2 to 12 percentage points. These results, which were also
observed on NHTSA and Health Canada, support the value
of the proposed query embeddings for search-based event
detection.

TABLE 8: Ablation Analysis for Query Embeddings

Method Fmeas Prec Rec Timely
Mean Embeddings [27] 28.3 22.1 39.5 0.65
Query2Vec [23] 28.7 23.2 37.8 0.63
LSTM Embeddings 34.2 26.7 47.6 0.68
DeepSAVE Q.Embed. 35.2 26.6 52.0 0.73

5.3.2 Effect on AutoEncoder
The above results show the effectiveness of the query and
user embeddings from a performance metric perspective.
Digging deeper into their inner workings, Figure 7 depicts
their effect on reconstruction loss (error) distribution for the
enriched VAEs. We illustrate this using the entity matrices
for 4 randomly chosen drugs in the data. The figure shows
the original error (loss) distributions as well as those after
adding the query embedding atop the VAE. Without the
query embeddings, the VAE reconstruction error is much
more compressed. After adding the query embeddings, the
error distribution becomes less compressed, better reflecting
the intended Gaussian shape. By smoothing out the Gaus-
sian distribution, the query embeddings help reduce the
number of false positives incurred at different thresholds.

Similar to the query embeddings, we further analyze the
viability of our user embeddings by examining the VAE
reconstruction loss error distributions on the same drug
entities (bottom of Figure 7). The stark difference between

error distributions in VAEs with and without the user
embeddings is clearly visible. After the inclusion of user
embeddings atop query embeddings, the error distribution
still follows a Gaussian shape, but becomes less compressed,
with more of a long tail towards the right (higher loss).
This is advantageous since by dispersing the distribution
of losses, the resulting model is able to more easily discern
high reconstruction loss cases (i.e., possible true positives).
Upon manual inspection, it was found that most of the
points that are on these long tails were indeed true posi-
tives thus highlighting the efficacy of user embeddings in
improving model performance. These results speak to the
intended regularization benefits of adding query and user
embeddings to the enriched VAE.

5.4 Case Study: Stock Movement Events
The three data sets used in our evaluation encompass
adverse events. However, search context factors such as
user heterogeneity and query intent may manifest in other
event detections settings as well. In order to examine the
effectiveness of DeepSAVE in such contexts, we compared
its performance against two of our top benchmark methods
- pyMABED and SEDTWiK - on a stock movement event
detection task. Following prior studies that dealt with event
detection in stocks [44], our events were stocks publicly
traded on the NASDAQ, S&P 500, and Russell 2000 which
had attained significant gains or losses over a certain period
of time. Hence, the entities were companies and outcomes
were upward or downward stock price movement. We de-
fined our events as stocks which gained or lost 20% within
a 6-month time period. These values were chosen based on
prior literature, and since these values resulted in a quantity
of events and entities that were in the same range as our
adverse event data sets. Overall, the stock movement event
data set was comprised of 330 events related to 100 unique
entities, spanning the time period 2016-2018.
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Similar to the approach described in section 4.1, we
used our existing search log corpus to derive entity queries.
Examples of queries include ’Amazon has poor support’ and
’shorting Tesla stock’. For DeepSAVE and the comparison
methods, we then derived potential event signals and com-
pared them against the events to compute precision, recall,
f-measure, and timeliness. Table 9 shows the results for
DeepSAVE and the two aforementioned comparison bench-
mark methods. It is worth noting that the overall results
were higher since such macro time-period stock movement
events are generally considered easier to detect relative to
adverse events. Nevertheless, DeepSAVE attained a 10-30
percentage point lift in f-measure and recall, and also gar-
nered higher precision. The case study further underscores
the importance of holistic methods for search-based event
detection that take into account search context factors.

TABLE 9: Results on Stock Dataset

Method Fmeas Prec Rec Timely
pyMABED [36] 71.6 85.4 61.6 0.40
SEDTWik [34] 60.9 86.7 46.8 0.38
DeepSAVE 81.9 89.6 75.4 0.40

6 CONCLUSION

In this paper, we proposed DeepSAVE, a novel deep learn-
ing framework for adverse event detection from web search
query logs. DeepSAVE uses an enriched variational autoen-
coder comprising of novel query embeddings for enhanced
contextualization via intent clarification and user-level mod-
eling to account for heterogeneous adverse experiences.
Evaluation on three event databases in the health and
automotive domains encompassing nearly 1,000 adverse
events reveals that DeepSAVE garners enhanced recall and
f-measures relative to existing state-of-the-art adverse event
detection methods. Given the lack of prior work on appli-
cation of novel autoencoder architectures for this problem,
the results contribute to the nascent body of knowledge
on advanced machine learning methods for adverse event
detection. DeepSAVE has important practical implications.
For example, it could be used to detect adverse events
in various critical contexts such as disease surveillance,
socio-political incidents, product defect identification, and
e-commerce. While we focused mostly on adverse event
contexts, our case study on financial events suggests that the
proposed method might also be suitable for more general-
purpose event detection problems. We believe this study
signifies an important first step toward these directions.
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