An algorithm for the rapid numerical evaluation of Bessel functions of real
orders and arguments

James Bremer?®

?Department of Mathematics, University of California, Davis

Abstract

We describe a method for the rapid numerical evaluation of the Bessel functions of the first and
second kinds of nonnegative real orders and positive arguments. Our algorithm makes use of the
well-known observation that although the Bessel functions themselves are expensive to represent via
piecewise polynomial expansions, the logarithms of certain solutions of Bessel’s equation are not.
We exploit this observation by numerically precomputing the logarithms of carefully chosen Bessel
functions and representing them with piecewise bivariate Chebyshev expansions. Our scheme is
able to evaluate Bessel functions of orders between 0 and 1,000,000, 000 at essentially any positive
real argument. In that regime, it is competitive with existing methods for the rapid evaluation of
Bessel functions and has at least three advantages over them. First, our approach is quite general
and can be readily applied to many other special functions which satisfy second order ordinary
differential equations. Second, by calculating the logarithms of the Bessel functions rather than
the Bessel functions themselves, we avoid many issues which arise from numerical overflow and
underflow. Third, in the oscillatory regime, our algorithm calculates the values of a nonoscillatory
phase function for Bessel’s differential equation and its derivative. These quantities are useful for
computing the zeros of Bessel functions, as well as for rapidly applying the Fourier-Bessel transform.
The results of extensive numerical experiments demonstrating the efficacy of our algorithm are
presented. A Fortran package which includes our code for evaluating the Bessel functions is publicly
available.

Keywords: special functions, fast algorithms, nonoscillatory phase functions

1. Introduction

Here, we describe a numerical method for evaluating the Bessel functions of the first and second
kinds — J, and Y}, respectively — of nonnegative orders and positive arguments. In this regime,
it is competitive with (and possess some advantages over) existing methods for the numerical
evaluation of the Bessel functions such as [I] and [22].

The purpose of this article, though, is not to argue that existing schemes for the evaluation of Bessel
functions are inadequate or should be replaced with ours. Instead, it is to point out that there is
an incredibly straightforward approach to their numerical evaluation that applies to a large class of

Email address: bremer@math.ucdavis.edu (James Bremer)

special functions satisfying second order ordinary differential equations. Our decision to focus in the
first instance on Bessel functions stems in large part from the existence of satisfactory numerical
algorithms with which we can compare our approach. The results of applying this approach to
other classes of special functions, such as the associated Legendre functions and prolate spheroidal
wave functions, will be reported by the author at a later date.

It is well known that the scaled Bessel functions .J, (t)v/t and Y, (t)+/t satisfy the second order linear
ordinary differential equation
2

1
y"(t) + (1—V 2 4)y(t):O for all 0 <t < oo. (1)

We will, by a slight abuse of terminology, refer to as Bessel’s differential equation. When
0<v< %, the coefficient of y in is positive on the half-line (0, 00), whereas it is negative on

the interval
1
0 2 _ 2
(AV 4> (2)

1
(V2 — 4,oo> (3)

when v > 1. It follows from this and standard WKB estimates (see, for instance, [I1]) that solutions
of 1| are oscillatory on (0,00) when 0 < v < %, whereas they behave roughly like increasing or
decreasing exponentials on and are oscillatory on when v > % We will refer to the subset

O:{(V,t):Ogugi andt>O}U{(V,t):V>; andth/yz—i} (4)

of R x R as the oscillatory region and the subset

NZ{(V,t):y>;and 0<t<q/u2—i} (5)

of R x R as the nonoscillatory region.

and positive on

When v is large, we cannot expect to represent Bessel functions efficiently using polynomial expan-
sions in A because, in this event, they behave like rapidly increasing or decreasing exponentials.
Similarly, we cannot expect to represent Bessel functions efficiently with polynomial expansions on
any large subset of O since they oscillate there. Despite this, the logarithms of Bessel functions can
be represented efficiently via polynomial expansions on N. Moreover, there is a certain solution
of Bessel’s differential equation whose logarithm is nonoscillatory and hence can be represented
efficiently via polynomial expansions on large subsets of the oscillatory region O. This latter obser-
vation is related to the well-known fact that Bessel’s differential equation admits a nonoscillatory
phase function (see, for instance, Section 13.75 of [28] or [14]).

Many special functions of interest share this property of Bessel functions, at least in an asymp-
totic sense [24], 9]. However, the sheer effectiveness with which nonoscillatory phase functions can
represent solutions of the general equation

y'(t) + N2q(t)y(t) =0 forall a<t<b (6)

in which the coefficient ¢ is smooth and positive appears to have been overlooked. Indeed, under
mild conditions on g, it is shown in [5] that there exist a positive real number p, a nonoscillatory
function a and a basis of solutions {u, v} of (6) such that

" :cos(a(t)) exi(—
()=o) + 0 e(-u) g
and
_ sin (a(t)) exn(—
v(t) NI + O (exp(—pA)) . (8)

The constant p is a measure of the extent to which ¢ oscillates, with larger values of y corresponding
to greater smoothness on the part of ¢. The function « is nonoscillatory in the sense that it can be
represented using various series expansions the number of terms in which do not vary with A. That
is, O(exp(—uA)) accuracy is obtained using an O(1)-term expansion. The results of [5] are akin to
standard results on WKB approximation in that they apply to the more general case in which ¢
varies with the parameter A assuming only that ¢ satisfies certain innocuous hypotheses independent
of A. A fast and highly accurate numerical algorithm for the computation of nonoscillatory phase
functions for equations of the form (6]) is described in [4], although we will not need it here since an
effective asymptotic expansion of a nonoscillatory phase function for Bessel’s differential equation
is available. The algorithm of [4] is, however, of use in generalizing these results to cases in which
such expansions are not available.

The algorithm of this paper operates by numerically precomputing the logarithms of certain so-
lutions of Bessel’s differential equation. We note that the nonoscillatory phase function is the
imaginary part of the logarithm of a solution of Bessel’s differential equation. Since there is a
simple relationship between it and the real part (see the preliminaries, below), we store only the
phase function when in the oscillatory regime. We represent these functions via piecewise bivariate
Chebyshev expansions, the coefficients of which are arranged in a table. The table is, of course,
stored on the disk and loaded into memory when needed so it only needs to be computed once.
We supplement these precomputed expansions with asymptotic and series expansions in order to
evaluate J, and Y, for all nonnegative real orders v and positive real arguments. We note, though,
that in cases in which such expansions are not available, the range of the parameter and argument
covered by the precomputed expansions is sufficient for most purposes and could be extended if
needed. The size of the precomputed table used in the experiments of this paper is roughly 1.3
megabytes.

The remainder of this paper is structured as follows. In Section [2] we review certain mathematical
facts and numerical procedures which are used in the rest of this article. Section [3] details the
operation of a solver for nonlinear differential equations which is used by the algorithm of Section [4]
for the rapid solution of Bessel’s differential equation in the case in which the parameter v is
fixed. This procedure is, in turn, a component of the scheme for the construction of the precomputed
table which we use to evaluate Bessel functions. That scheme is described in Section Bl Section [6]
details our algorithm for the numerical evaluation of Bessel functions using this table and certain
asymptotic and series expansions. Section [7] describes extensive numerical experiments performed
in order to verify the efficacy of the algorithm of Section [} We conclude with a few remarks
regarding the contents of this article and possible directions for future work in Section

2. Mathematical and Numerical Preliminaries

2.1. The condition number of the evaluation of a function

The condition number of the evaluation of a differentiable function f : R — R at the point x is
commonly defined to be

!
of (2) o)
f(x)
(see, for instance, Section 1.6 of [I5]). This quantity measures the ratio of the magnitude of the
relative change in f(z) induced by a small change in the argument x to the magnitude of the
relative change in « in the sense that

flx+6)— flz)
f(@)

for small . Since almost all quantities which arise in the course of numerical calculations are

subject to perturbations with relative magnitudes on the order of machine epsilon, we consider

Kf(x)eo, (11)
where €y denotes machine epsilon, to be a rough estimate of the relative accuracy one should expect

when evaluating f(z) numerically (in fact, it tends to be a slightly pessimistic estimate). In the
rest of this paper, we take €y to be

€0 = 2772 ~ 2.22044604925031 x 10716, (12)

It is immediately clear from (9) that when f'(zo)zo # 0 and f(xzg) = 0, rs(z) diverges to co as
x — x9. One consequence of this is that there is often a significant loss of relative accuracy when
f(z) is evaluated near one of its roots. In order to avoid this issue, we will arrange for the functions
we use to represent solutions of Bessel’s equation to be bounded away from 0.

ry(e) =

d

x

(10)

~ kf(x)

2.2. Series expansions of the Bessel functions

For complex-valued v and x > 0, the Bessel function of the first kind of order v is given by

B s (—1)7 T\
LQQ_;%FU+DFU+U+D<2> ‘ (13)

Here, we use the convention that
1
— =0 (14)
I'(7)
whenever j is zero or a negative integer. Among other things, this ensures that is still sensible
when v is a negative integer. When « > 0 and v is not an integer, the Bessel function of the second

kind of order v is given by

cos(vm)Jy,(z) — J_,(x) .

Y, (2) = sin(vm)

(15)

For integer values of v, loses its meaning; however, taking the limit of Y, (z) asv — n € Z
yields

i =2t (3) - %2 O

i+ D +9(@+1) (z\+
”Z +1)I‘(n—|—]—|—1) (5) ’

(16)

where 1 is the logarithmic derlvatlve of the gamma function. A derivation of this formula can be
found in Section 7.2.4 of [10].

For the most part, when v and z are of small magnitude, the value of J,(z) can be computed in
a numerically stable fashion by truncating the series . In some cases, however, this can lead
to numerical underflow. Accordingly, we generally evaluate the logarithm of J, by truncating the
series in the expression

~1)T(v + 1) (f)y

TG +v+1) \2 (17)

log(J,(z)) = —log(T'(v + 1)) + vlog <2> + log Z G + .

instead. Of course, this expression is only valid in the nonoscﬂlatory regime, where J,, () is positive.

On the other hand, Formula can lead to significant errors when it is used to evaluate Y,
numerically. In particular, when v is close to, but still distinct from an integer, the evaluation of
Y, via results in significant round-off error due to numerical cancellation. Since Y, is analytic
as a function of v, this problem can be obviated by evaluating Y, via interpolation with respect
to the order v. Similarly, it is often more convenient to compute Y, when v is an integer using
interpolation than to do so via . Similar suggestions are made in [22].

The naive use of (15]) can also lead to numerical overflow when v is not close to an integer. In such
cases we evaluate log(—Y,(t)) via

g (-, (2)) = log (7, (a)) + 1og (
We calculate the logarithms of .J, appearing in using , of course.

— cos(vm) + exp(log(J_u(z)) - log(‘]”@)))> TS

sin(v)

2.3. Debye’s asymptotic expansion for small arguments

The following form of Debye’s asymptotic expansions can be found in [22]. For x < v and N a
nonnegative integer,

Ja) = T o) ()) (19)
T 14+ 0n411 (1, 0) \/ﬂ(ﬂfxz)i pr i N+1,1(V, P

and

N
yy<m>=—\/z(fxp(mx S) | (20)

2 _ xQ)i =

where

v v\ 2
= Z TN 1) a2 g2
n =vlog <$ + (x) 1) V2 — a2, (21)

e — 22
N (22)
On+1,1 and On41,2 are error terms, and ug, u1, ... are the polynomials defined via
uo(t) =1, (23)
and the recurrence relation
1 du,(t) 1 [
Unt1(t) = = (2 —t) dun(t) + / (1 = 57%)u, (1) dr for all n > 0. (24)
2 dt 8 Jo
In [22], it is shown that there exist positive real constants Cy, Cy, ... such that
2 Cni1
maX{wN-i-l,l(vaM7|0N+1,2(V7p)‘} < 2Zexp 3 | 3(Na1)’ (25)
3g2) g2+
where
v—x
g=—1" (26)
V3

for all N > 0. In other words, Debye’s asymptotic expansions for small values of the parameter
are uniform asymptotic expansions in inverse powers of the variable . See [22] for a further
discussion of the implications of this observation.

The naive use of and when t < v often results in numerical underflow and overflow. In
order to avoid such problems, in this regime we evaluate the logarithms of the Bessel functions via
the approximations

1
log (J,(x)) = —n — 1 log(y2 — 1‘2) + log

i

- u;(p)
Y
QWZ:% > (27)

J
and

N
log (Y, (x)) ~ 1 — § log(v? — 2?) + log \/f S -1yt (28)
j=0

rather than evaluate the Bessel functions themselves.

Debye’s asymptotic expansions are somewhat less efficient than the other methods used to evalate
Bessel functions in this work. As a consequence, we prefer other approaches whenever possible.

2.4. The Riccati equation, Kummer’s equation and phase functions

If y = exp(r(t)) satisfies

y'(t) +qt)y(t) =0 forall tel, (29)
where I C R is an open interval, then a straightforward computation shows that
7 (t) 4+ (r(t)* + q(t) =0 for all t € 1. (30)

Equation is known as the Riccati equation; an extensive discussion of it can be found, for
instance, in [16]. By assuming that ¢ is real-valued, and that

r(t) = a(t) +ip(t) (31)
with « and real-valued, we obtain from the system of ordinary differential equations
B(t) + (B'(1) — (/(1)* +q(t) =0
o’ (t) 424/ (1) (t) = 0.
If o/ is nonzero, then the second of these equations readily implies that
1
B(t) = —3 log (’a'(t)|) . (33)
Inserting into the first equation in yields
1 /") 3 [/a’(t)\?
t) — (o/(t)? — = = =0. 34
Q() (Oé()) 2<a/(t))+4(06/(t) ()
We will refer to as Kummer’s equation after E. E. Kummer who studied it in [I8]. We conclude
that if the derivative of the function « is nonzero and satisfies , then

" :cos(a(t))

(t) Vol (35)
and

o(t) = S le®) (36)

/()]
are solutions of the differential equation . A straightforward computation shows that the
Wronskian of {u,v} is 1, so that they form a basis in the space of solutions of this differential
equation. In this event, the function « is said to be a phase function for .

Suppose, on the other hand, that @ and v are real-valued solutions of , that the Wronskian of
{u,v} is 1, and that « is a smooth function such that
1
/
a(l) = 05—
®) u(t)? + o(t)?
Since % and ¥ cannot simultaneously vanish on I, the expression on the denominator of is never
0. A tedious (but straightforward) computation shows that satisfies Kummer’s equation, so
that « is a phase function for and the functions u, v defined via and form a basis in
its space of solutions. We note, though, that since only determines o up to a constant, u need
not coincide with @ and v need not coincide with v.

(37)

2.5. A nonoscillatory phase function for Bessel’s equation

In the case of the solutions

un(t) =\ 5 () (38)
and
0lt) =4/ 5 Yot (39)

of Bessel’s differential equation, becomes
2 1
) = 2
mt JE(t) + Y2(t)
Note that the Wronskian of the pair {u,,v,} is 1 on the interval (0,00) (see, for instance, For-
mula (28) in Section 7.11 of [10]). We define a phase function «,, for via the formula

a,(t)=C —l—/o al(s) ds (41)

with the constant C to be set so that

a (40)

cos(ay(t))

W = uy (1) (42)
and

sin(a, (1))

From and the series expansions for J, and Y, appearing in Section we see that
lim /o, (t) u,(t) =0 (44)
t—0t

while

lim /o, (t) v, (t) = —1. (45)

t—0t+ v

It follows that in order for
. cos(aw(t)) : sin(a, (1))
th%1+ (a{,(t) l,(t)) =0= lim (l,(t)) (46)

to hold, we must have

cos(C) = cos(ay,(0)) =0 (47)
and
sin(C') = sin(ay,(0)) = —1. (48)
We conclude that by taking C' = —m/2 — so that
t
ay,(t) = —g +/ ol (s) ds (49)
0

— we ensure that and are satisfied.

Now we denote by M, the function appearing in denominator of the second factor in ; that is,
M, is defined via

M, (1) = (Ju(1)* + (Y (1)) (50)
A cursory examination of Nicholson’s formula

M, (t) = 7782/0 Ko (2tsinh(s)) cosh(2vs) ds for all ¢t >0, (51)

a derivation of which can be found in Section 13.73 of [28], shows that M, and hence also o/, and
«y,, is nonoscillatory as a function of ¢t. Figure [I| shows plots of the nonoscillatory functions ay,
and], when v = 100. We note that while a,, and «/, can be represented efficiently via polynomial
expansions in the oscillatory regime, it is clear from these plots that that is not the case in the

nonoscillatory regime. The asymptotic expansion

3) Tlvtn+y)i as t — 00 (52)

Z \F F (n + DT (v—n+3)t>
can be derived easily from (51) (see Section 13.75 of [28]). The first few terms are
2 lp—-1 1 3(p—1 -9 1 3 5(p—1)(p—9(r—25
(f (p=1)(p-9) (k=1 (= 9) (1 >+...>7 (53)

it 2202 2 4 (20)* 24 6 (2t)6

M, ~

where p = 412,

From , we can derive an asymptotic expansion of . Indeed, if we denote the n'* coefficient
in the sum appearing in by r,, then the coefficients sg, s1, ... in the asymptotic expansion

o0
s
a;/(t)NZtTZ as t— 0o (54)
n=0
are given by
n
sp=1 and s, = — an_jrj for all n > 1. (55)
j=1

The proof of this is an exercise in elementary calculus, and can be found, for example, in Chapter 1
of [25]. We note that it follows from that ro = 1, and that the coefficients r1, 75 ... satisfy the

recurrence relation
—2n—1)2%2\ 2n—1
T = Trn—1 <M () > . (56)

4 2n

Using and , as many terms as desired in the expansion can be calculated either
numerically or analytically. The first few are

p—1 @ —26p+25 P — 11542 + 1187~ 1073

") ~1— — 57
o (t) 812 1284 10246 (57)
Obviously, the indefinite integral of is
- p—1 p?—26pu+25 pd— 11542 +1187,u—1073
L(t) ~C +t
awll) ~ Ottt =g+ =g 5120¢5 (58)

with C' a constant to be determined to ensure compatibility with the definition . From the

1.0

1000

800 g 0.8~

600 - 4 0.6

400 7 0.4

200 q 0.2

0 I I I I B 0.0 | I I I J
0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 1: On the left is a plot of the phase function «, (t) defined via when v = 100, and on the right is a plot
of its derivative with respect to t.

well-known asymptotic expansions

2

Jy(t)wuﬁcos(t—gu—%) as t— oo (59)
2

Y,,(t)w/ﬁsinQ:—gy—g) as t — oo, (60)

which can be found in Section 7.21 of [28] (for example), we see that it must be the case that

C:—%—gy—l—QﬂL (61)

and

with L an arbitrary integer. In order to set the integer L, we evaluated «,, numerically via for
many large values of ¢ and v and found that coincides with o, when L is taken to be 0. That
is,

Tow p—1 p?2—26p+25 pd— 11542+ 11874 — 1073
t) ~ ————ut iy
awll) ~ = gr it gt s 51205 +

We note that can be found as Formula 10.18.17 in [9].

By differentiating we obtain
pw—1 p?—26p+25 3p® — 34542 + 3561 — 3219

1w 321 51217 L
In many instance, differentiating both sides of an asymptotic expansion such as (57)) will not yield
a valid expression. However, in this case it is permissible because o), is analytic as function of ¢
(see, for instance, Chapter I of [25] for a discussion of this issue).

- as t — o00. (62)

O/l<t) ~

v

as t—oo. (63)

While the construction of «,, presented here is highly specialized to the case of Bessel’s differential
equation, the existence of nonoscillatory phase functions is an extremely general phenomenon. See
[5] for a proof that under mild conditions on the coefficient g the differential equation

y'(t) +qt)y(t) =0 forall a<t<b (64)

admits one.

2.6. Univariate Chebyshev series expansions

For —1 < 2 < 1 and integers k > 0, the Chebyshev polynomial T} of degree k is given by the
formula

Tk (x) = cos(k arccos(z)). (65)

The Chebyshev series of a continuous function f:[—1,1] = R is

> 4Ty (), (66)
§=0

where the coefficients ag, a1, ... are defined via
dx

1
=2 [f@ne 2

and the dash next to the summation symbol indicates that the first term in the series is halved. It is
a consequence of the well-known relationship between Fourier and Chebyshev series (as described,
for instance, in Chapter 5 of [2I]) and the celebrated theorem of Carleson [§] that converges to

(67)

10

f pointwise almost everywhere on [—1, 1]. Similarly, well-known results regarding the convergence
of Fourier series imply that under mild smoothness assumptions on f, converges uniformly to
f on [—1,1]. See Theorem 5.7 in [21I], which asserts that this is the case when f is of bounded
variation, for an example of a result of this type.

If f:[—1,1] — R can be analytically continued to the set
Er:{z:’z+\/22+1’<r}, (68)

where 7 > 1, then the rate of convergence of can be estimated as follows:

N
sup Z/ a;Tj(z) — f(2)| =0 (r) as N — . (69)
z€[—1,1] =0

This result can be found as Theorem 5.16 in [2I], among many other sources.

2.7. Bivariate Chebyshev series expansions
The bivariate Chebyshev series of a continuous function f:[—1,1] x [-1,1] - R is

Z/ Z/ ai Ti(2)Tj(y), (70)

i=0 j=0
where the coefficients are defined via the formula
4 ot dx dy
ai; = —= z,y)T;(x)T; 71
o=z [, [Hernene gt ()
and the dashes next to the summation symbols indicate that the first term in each sum is halved. It

is an immediate consequence of the results of [12] on the pointwise almost everywhere convergence
of multiple Fourier series that

N / N /
Jdim Y 7Y ey Ti(@)Ti(y) = f(x.y) (72)
i=0 j=0

for almost all (x,y) € [-1,1] x [-1,1]. As in the case of univariate Chebyshev series, under mild

smoothness conditions on f, the convergence of is uniform. See, for instance, Theorem 5.9 in
[21].

The result of the preceding section on the convergence of the Chebyshev series of analytic functions
can be generalized to bivariate Chebyshev expansions. In particular, if f(z,y) is analytic on the

set
{(m,y)E(CX(C: ‘93—}-\/332—1‘<7‘1, ‘y—l—\/y27—1‘<7"2}, (73)
where r{,79 > 1, then
jaij = O (ri'ry”) (74)

according to Theorem 11 in Chapter V of [2]. As a consequence, the Chebyshev series of f converges
rapidly when f can be extended to an analytic function.

2.8. Chebyshev interpolation and spectral integration
In practice it is, of course, not possible to compute all of the coefficients in the Chebyshev series
expansions or , or even to compute the first few coefficients in these series exactly. Standard

11

results, however, show that these coefficients of such a series can be approximated to high accuracy
assuming that they decay rapidly.
For each nonnegative integer n, we refer to the collection of points
iy
pjm:cos(]), j=0,1,...,n, (75)
n

as the (n + 1)-point Chebyshev grid on the interval [—1,1], and we call individual elements of this
set Chebyshev nodes or points. One discrete version of the well-known orthogonality relation

0 if i
/1 L@@ 4) Tf z'7,é]'>0 (76)
— =< T if =
-1 \/1—$2 2 . . J
m if i=75=0.

is
if 0<i,j<n andi#j
if 0<i=j<n (77)

if i=j=0or i=j=n.

n
"

Z n(pl,n)j}(pl,n) =

=0

S vz O

Here, the double dash next to the summation sign indicates that the first and last term in the
series are halved. Formula can be found in a slightly different form in Chapter 4 of [21]. Any
univariate polynomial f of degree n can be represented in the form

f@) =3 bTi), (78)
=0

and the coefficients in the expansion can be easily computed from the values of f at the nodes
. In particular, it follows from that

=2 5" Te (o) £ () (79)

=0
forall k=0,1,...,n.

If f:[-1,1] — R is smooth but no longer a polynomial, then the coefficients by, b1, . .., b, obtained
from are related to the coefficients ag, ai, ... in the Chebyshev expansion of f via

o
b, = ap + Z (@kt2jn + G—pyojn) forall k=0,1,..., n. (80)
j=1

This result can be found in a slightly different form in Section 6.3.1 of [2I]. It follows easily from
and the fact that the Chebyshev polynomials are bounded in L* ([—1,1]) norm by 1 that

@)= Y um@)| <2 Y fal (81)
=0

l=n+1

sup
z€[—1,1]

In other words, assuming that the coefficients of the Chebyshev expansion of f decay rapidly, the
series converges rapidly to f as n — oco. We will, by a slight abuse of terminology, refer to
(78) as the n'" order Chebyshev expansion of the function f: [~1,1] — R.

Given only the values of a function f : [-1,1] — R at the nodes of the (n + 1)-point Chebyshev

12

grid on [—1, 1], it is possible to evaluate the Chebyshev expansion in an efficient and numerical
stable fashion without explicitly computing the coefficients by, ..., b,. In particular, the value of
at a point € [—1, 1] which does not coincide with any of the grid points pop, - .., pnn is given
by the barycentric interpolation formula

s E))y sn 2D), (82)

=0 T = Pjn j=0 T = Pjn

See, for instance, [27] for a thorough discussion of the numerical stability and efficiency of this
technique.

For each k > 1, the general antiderivative of T}, is

/Tk(x) g — L (Tk+1(ﬂf) _ Tk—l(x)) s (83)

o\ ke+1 ko1
while

/ To(z) da = %Tl(az) e (84)
and

/ () dz = %Tg(az) e} (85)

These formulas can be found, for instance, in Section 2.4.4 of [2I]. Using them, the values of

) = /_) an, (86)

where f is defined via , can be computed at the Chebyshev nodes . We will refer to
the matrix which takes the values of f at the nodes to those of g at the same nodes as the
(n+1) x (n+ 1) spectral integration matrix.

There results for univariate Chebyshev expansions can be easily generalized to the case of bivariate
Chebyshev expansions. Given f:[—1,1] x [—1,1] — R, we will refer to the series

S @) T () (87)

i=0 ;=0

whose the coefficients {b;; : 0 < 7,5 < n} are defined via the formula

" "
7'] 2 Z Z pl " pk n) f (pl,nu pk,n) (88)

=0 k=0

as the n'" order Chebyshev expansion of f. It is easy to see that

i " " " e s
sup LL‘ y Z bmn € T](y) < 2 Z Z ‘aij|7 (89)

ze[-1,1] i=0 j=0 i=n+1j=n+1
where the {a;;} are defined via (71)).

2.9. Compressed bivariate Chebyshev expansions

It often happens that many of the coefficients in the bivariate Chebyshev expansion of a
function f : [—1,1] x [1,1] — R are of negligible magnitude. In order to reduce the cost of storing

13

such expansions as well as the cost of evaluating them, we use the following construction to reduce
the number of coefficients which need to be considered.

Suppose that € > 0, and that

SN by T @) T (y) (90)

i=0 j=0
is the n'" order Chebyshev expansion for f : [~1,1] x [~1,1] — R. We let M denote the least
positive integer which is less than or equal to n and such that

|bij| <€ forall i>M and j=0,...,n, (91)
assuming such an integer exists. If it does not, then we take M = n. Similarly, foreach:=0,..., M,
we let m; be the least positive integer less than or equal to n such that
|bij| <€ forall j=my+1,...,n (92)
if such an integer exists, and we let m; = n otherwise. We refer to the series
M m;
D byTi(a)Ty (=), (93)
i=0 j=0

where lf);; is defined via
>~ _)by i 1<j<noand i=0,n
Yo) sby if 1<i<n oand j=0, n

1 .
7bi; otherwise,

(94)

as the e-compressed n'* order Chebyshev expansion of f.

Obviously, the results discussed in Sections through Section [2.9| can be modified in a straight-
forward fashion so as to apply to a function given on an arbitrary interval [a,b] (in the case of
univariate functions) or one given on a compact rectangle [a,b] X [c,d] (in the case of a bivariate
function). For instance, the nodes of the (n + 1)-point Chebyshev grid on [a, b] are

[)jyn:b_zacos<7z>+b;a, j=0,1,....n (95)
and the n'* order Chebyshev expansion of f : [a,b] — R is
;” biT; <b_2aa: + Zfi) , (96)
where the coefficients by, ..., b, are given by
2
b; = - Z T; (o) f (Prn) - (97)
=0

2.10. An adaptive discretization procedure

We now briefly describe a fairly standard procedure for adaptively discretizing a smooth function
f :]a,b] = R. It takes as input a desired precision € > 0 and a positive integer n. The goal of this

14

procedure is to construct a partition
a=7 <7< <Yn=2>= (98)

of [a,b] such that the n'* order Chebyshev expansion of f on each of the subintervals [v;,v;4+1] of
[a, b] approximates f with accuracy e. That is, for each j =0,...,m — 1 we aim to achieve

n

" 2 . .
sup f@%—EIMﬂ“< $+%H+WO <e (99)

TE[Yj,Vj+1] i=0 Vi+1 =5 Yi — Vi+1
where by j,b1; ..., b, ; are the coefficients in the n" order Chebyshev expansion of f on the interval

[V, 7j+1]. These coefficients are defined by the formula
2 " l +
Vi T i+l m Yi+1 T

bij = > Tilpin) f <J 5 cos <n> + J) : (100)

=0

During the procedure, two lists of subintervals are maintained: a list of subintervals which are to
be processed and a list of output subintervals. Initially, the list of subintervals to be processed
consists of [a,b] and the list of output subintervals is empty. The procedure terminates when the
list of subintervals to be processed is empty or when the number of subintervals in this list exceeds
a present limit (we usually take this limit to be 300). In the latter case, the procedure is deemed
to have failed. As long as the list of subintervals to process is nonempty and its length does not
exceed the preset maximum, the algorithm proceeds by removing a subinterval [n;,72] from that
list and performing the following operations:

1. Compute the coefficients by, ..., b, in the n® order Chebyshev expansion of the restriction of
f to the interval [n,n2].

2. Compute the quantity

9

max{ boiq|,|bzyo

,...|bn|}' o

A:
max {|bo| , [b1], - .. |bn|}

3. If A < e then the subinterval [n;,72] is added to the list of output subintervals.

4. If A > ¢, then the subintervals

{771:771;_772} and {m;nzﬂh} (102)

are added to the list of subintervals to be processed.

This algorithm is heuristic in the sense that there is no guarantee that will be achieved, but
similar adaptive discretization procedures are widely used with great success.

There is one common circumstance which leads to the failure of this procedure. The quantity A
is an attempt to estimate the relative accuracy with which the Chebyshev expansion of f on the
interval [n1,n2] approximates f. In cases in which the condition number of the evaluation of f
is larger than e on some part of [a,b], the procedure will generally fail or an excessive number of
subintervals will be generated. Particular care needs to be taken when f has a zero in [a, b]. In most
cases, for x near a zero of f, the condition number of evaluation of f(z) (as defined in Section

15

is large. In this article, we avoid such difficulties by only applying this procedure to functions which
are bounded away from 0.

3. An adaptive solver for nonlinear differential equations

In this section, we describe a numerical algorithm for the solution of nonlinear second order differ-
ential equations of the form

y"(t) = f(t,y(t),y(t)) forall a <t<b. (103)

It is intended to be extremely robust, but not necessarily highly efficient. This is fitting since we
only use it to perform precomputations. Here, we assume that initial conditions for the desired
solution y of (103) are specified. That is, we seek a solution of (103) which satisfies

y(a) = yo and y'(a) = y,, (104)
where the constants y, and y/, are given. The algorithm can easily be modified for the case of a
terminal value problem.

The procedure takes as input a subroutine for evaluating f and its derivatives with respect to y and
', a positive integer n, and a positive real number € > 0. It maintains a list of output subintervals,
a stack containing a set of subintervals to process, and two constants c¢; and cso. Initially, the list
of output subintervals is empty, the stack consists of [a,b], ¢ is taken to be y,, and ¢y is taken
to be y,. If the size of the stack exceeds a preset maximum (taken to be 300 in the calculations
performed in this paper), the procedure is deemed to have failed. As long as the stack is nonempty
and its length does not exceed the preset maximum, the algorithm proceeds by popping an interval
[171, m2] off of the stack and performing the following operations:

1. Form the nodes tg,t1,...,t, of the (n 4+ 1)-point Chebyshev grid on the interval [n,n2].

2. Apply the trapezoidal method (see, for instance, [17]) in order to approximate the values of
the second derivative y) of the function satisfying

Yo (t) = f(t,y(t),y'(t)) forall m <t<mp
Yo(m) = a1 (105)
Yo(m) = c2
at the points tg,t1,...,ts.

3. Using spectral integration, approximate the values of y;, and yo at the points ¢, . .., t, through
the formulas
t
yo(t) = co —i—/ Yo (s) ds (106)
m
and
t
yo(t) =1 +/ yo(s) ds. (107)
m

4. Apply Newton’s method to the initial value problem ([105)). The function yq is used as the
initial guess for Newton’s method. The ;" iteration of Newton’s method starts with an initial

16

approximation y;_1 and consists of solving the linearized problem

(1) %(t,you),ya(t))éj(t) - gj,u, bolt). w()35(1) = F(t.mo(0).ub()) —4(t) (108)

on the interval [, 1] for §; and forming the new approximation y; = y;—1 + ¢;. The initial
conditions
9;(0) = 5}(0) =0 (109)

are imposed since yg is already consistent with the desired initial conditions. All of the
functions appearing in are represented via their values at the points tg,%1,...,t,. Of
course, the values of a function at these nodes implicitly defines its n'h order Chebyshev
expansion.

An integral equation method is used to solve (108). More specifically, by assuming that §; is
given by

@(t):/nf /njaj(f) dr ds (110)

the system ([108)) is transformed into the integral equation

750~ vy 0.1 0) [[oy(r) ar ds-
m Jmn

af t

ay,(t,yj—l(t),%_l(t))/ oj(1) dr ds = f(t,y;-1(t), 551 (1) — yj_1(t).
m

We note that the choice of the representation ((110]) of 9, is consistent with the conditions (109).

The linear system which arises from requiring that (111)) is satisfied at the points tg, t1, ...,y

is inverted in order to calculate the values of o; at those nodes. Spectral integration (as

described in Section [2.9) is used to evaluate the integrals, and to compute the values of ¢ at

to, ..., ty, via (110).
Define

(111)

Ay = max {135(t0)| 10 ()] . |8 ()1} (112)
If j >1and A; < Aj_1, then Newton iterations continue. Otherwise, the Newton iteration

is terminated, having obtained y;_1 as the result of the procedure.

. Compute the Chebyshev coefficients by, b1, ...,b, of the polynomial which interpolate the
values of y;_1 at the points tg,%1,...,t, and define A via

A_max{ ,|bn|} 113)
max {|b1|, |b2], ... |bn|}

boiq|,|bzyo

Y

If A > ¢, then push the subintervals

| e (114)
and
[771’771-;772] (115)

17

onto the stack (in that order) so that (115) is the next interval to be processed by the
algorithm.

If A <, then [n, 2] is added to the list of output intervals, ¢; is set equal to y;(12), and ¢z
is set equal to y;(n2).

As in the case of the adaptive discretization procedure of Section this is a heuristic algorithm
which is not guaranteed to achieve an accurate discretization of the solution of . Moreover, the
quantity A defined in is an attempt to measure the relative accuracy with which the obtained
solution of is represented on the interval under consideration. When the condition number of
evaluation of the solution y of is large, this algorithm tends to produce an excessive number
of intervals or fail altogether. Since the condition number of evaluation of a function f is generally
large near its zeros, in this article we always apply it in cases in which the solution of is
bounded away from O.

Remark 1. When applied to , the trapezoidal method produces approzimations of the values

of yo and y|, at the nodes to,t1,...,t, in addition to approzimations of the values of y(. We discard
those values and recompute yo and y(, via spectral integration. We do so because while the values of
yo and y{, obtained by the trapezoidal method at to,ty, ..., t, must satisfy the relations

Wit) = Flts,y(t).y/ (1)) forall j=0,1,....n,

they need not be consistent with each other in the sense that

Yo (to) C2 Yo (to)
/ t c /! t
yo(. 1) _ '2 LS, yo(. 1) (116)
3/6 (tn) 2 yg(tn)
and
yo(to) c1 Yo (to)
t c L (t
yo(' 1) N Yo (t1) | (117)

yO(tn) C1 yé)(tn)
where Sy, denotes the (n + 1) x (n + 1) spectral integration matriz, might not hold. Proceeding
without recomputing the values of yo and yj, in order to make sure that these consistency conditions
are satisfied would lead to the failure of Newton’s method in most cases.

4. An algorithm for the rapid numerical solution of Bessel’s differential equation

In this section, we describe a numerical algorithm for the solution of Bessel’s differential equation
for a fixed value of v. Our algorithm runs in time independent of v and is a key component of the
scheme of the following section for the construction of tables which allow for the rapid numerical
evaluation of the Bessel functions.

The algorithm takes as input ¥ > 0 and a desired precision € > 0. It proceeds in three stages.

Stage one: computation of a nonoscillatory phase function

18

In this stage, we calculate the nonoscillatory phase function «a, defined by on the interval
/ 1
[V2 — T 1000 u] (118)

[2, 1000] (119)

in the event that 0 < v < % In either case, we will denote the left-hand side of the interval on
which we calculate «,, by a and the right-hand side by b.

if v > %, and on the interval

We first construct the derivative o, of o, by solving Kummer’s equation on the interval [a, b]
with with ¢ taken to be the coefficient of y in Bessel’s differential equation ; that is,

4, (120)

Most solutions of are oscillatory; however, the phase function «, is a nonoscillatory. Moreover,
the values of o, and its derivative o at the right-hand endpoint b can be approximated to high
accuracy via the asymptotic expansions and . Accordingly, we solve a terminal value
problem for Kummer’s equation with the values of a,(b) and o/, (b) specified. We use the adaptive
procedure of Section [3| to solve Kummer’s equation; the input n to that procedure is taken to be
30 and the desired precision is set to e. The functions «, and «], are represented via their values
at the nodes of the 31-point Chebyshev grids (see Section on a collection of subintervals

[vo, 1] [y, 92l s - -+ [vm—15vm] (121)

where a = 9 < 71 < ... < vy = b is a partition of [a,b] which is determined adaptively by the
solver of Section Bl We use the formula

aw(t) = an(b) + /b ol (s) ds (122)

to calculate «,,. More specifically, spectral integration is used to obtain the values of «,, at the nodes
of the 31-point Chebyshev grids on the subintervals (121)). The value of «,(b) is approximated to
high accuracy via the asymptotic expansion . We use the first 30 terms of each of the expansions

7 and _

The functions «,, o), and o), can calculated in an efficient and numerically stable fashion at any
point in the interval [a, b] via barycentric Chebyshev interpolation using their values at the nodes
of the Chebyshev grids on the subintervals (see Section . Using the values of o, and o),
J, and Y, can be evaluated at any point on the interval [a, b] via and (39).

Step two: computation of v + log (—Y,,(t)\/f)

In the event that v > %, we calculate the function v + log (—Yy(t)\/i) on the interval

v o]t 12
1000 V" 2] (123)

by solving a terminal value problem for Riccati’s equation
() + (r'(1))* + q(t) = 0 (124)

19

with ¢ given by ([120]). In fact, we solve Riccati’s equation on the slightly larger interval

v
v t*] , 125
[1000 (125)
where t* is the solution of the equation

ay (t°) = g (126)

That there exists a solution t* of this equation such that

1

> A2 —) (127)

is a consequence of a well-known result regarding the zeros of Bessel functions; namely, that .J,
cannot have zeros on the interval
0,4/v2— 2 (128)
’ 4

(see, for instance, Chapter 15 of [28]). From (42)), we see that the zeros of .J, occur at points ¢ such
that

ay(t) = g +rk with k € Z. (129)

It is obvious from the definition of ay, that o, (0) = —7, and that a, is increasing as a function
of t. Consequently, if ¢t* denotes the smallest positive real number such that J, (t*) = 0, then t*
satisfies ([126]) and and it must be the case that

1

t* 2_ = 130
> Al 1 (130)

since there are no zeros of J, in . The values of a, and its derivative having been calculated
in the preceding phase, there is no difficulty in using Newton’s method to obtain the value of t*
by solving the nonlinear equation numerically. Moreover, the values of the functions Y, and
Y] at t* can be calculated without the loss of precision indicated by their condition numbers of
evaluation (see Section for a definition of the condition number of evaluation of a function). In

particular, since o, (t*) = — 7,

2 sm(al,(t*)) 2

vl (t%) 7t o, (%)

* I (g% "
YI(t) = | 2 cos(an (t)ap () — | 2 S@E)an () [1 _aut) g
i 2(o, (t7))> 27t (o, (1))

The condition number of the evaluation of the nonoscillatory functions «, and !/ is not large and
is bounded independent of v, so there calculations can be performed without much loss of accuracy.
See, for instance, [3], where this issue is discussed in detail. We note that the numerical evaluation
of J, and Y, at an arbitrary point t via and will result in a relative error on the order
of the condition number of the evaluation of these functions. This loss of accuracy stems from the
evaluation of the trigonometric functions cosine and sine which appear in those formulas.

Y, (") = (131)

and

From the values of Y,, and Y/ at t*, we calculate the values of v + log(—Y, (t)v/t) and its derivative
there. Then we solve the corresponding terminal value problem for Riccati’s equation. We use the

20

solver described in Section [3|to do so. Our motivation for calculating v + log(—Y, (¢)v/t) in lieu of
log(—Y,(t)v/t) is that the former is bounded away from 0 on the interval while the latter is
not. As discussed in Section 2.1] the condition number of evaluation of a function near one of its
roots is typically large and this causes difficulties for the adaptive solver of Section

As with the phase function «, and its derivative, the function v + log(—Y;(t)+/t) is represented
via its values at the 31-point Chebyshev grid on a collection of subintervals of . It can be
evaluated via barycentric Chebyshev interpolation at any point on that interval, and the values of
Y, can obviously be obtained from those of v + log(—Y, (t)v/1).

Stage three: computation of —v + log(J, (t)v/t)

Assuming that v > L, we calculate the function —v + log(.J, (£)v/t) on the interval

(o, V2 — i] : (133)

This function is a solution of the Riccati equation (133]) with ¢ as in (120]), and it is tempting to
try to calculate in the same way that v + log(Y,(t)v/t) is constructed in the preceding step. That
is, by evaluating J, and its derivative at a suitably chosen point

1

and solving the corresponding terminal value problem for Riccati’s equation. Such an approach is
not numerically viable. The solution

— v+ log(J, (t)V1) (135)
is recessive when solving the Riccati equation in the backward direction while
v+ log(—Y, (t)Vt) (136)

is dominant. As a consequence, approximations of obtained by solving a terminal boundary
value problem for are highly inaccurate while approximations of obtained in such a
fashion are not. See, for instance, Chapter I of [I3] for a discussion of the recessive and dominant
solutions of ordinary differential equations.

Rather than solving a terminal boundary value for in order to calculate , we solve an
initial value problem. When v > 10, we use the logarithm form of Debye’s asymptotic of J,
in order to evaluate and its derivative at the left-hand endpoint of . When v < 10,
Debye’s expansion is not necessarily sufficiently accurate and we use the series expansion in
order to evaluate and its derivative at the left-hand endpoint of . Again, our motivation
for calculating —v + log(J,, (t)v/t) in lieu of log(J,(t)+/t) is that the former is bounded away from
0 on the interval while the latter is not.

The initial value problem is solved using the procedure of Section [3], and, as in the cases of «,, and
v +log(—Y,(t)\/t), we represent —v +log(J,(t)y/t) via its value at the 31-point Chebyshev grid on
a collection of subintervals of . Using this data, the value of J, can be evaluated at any point
in the interval [a, b] via the obvious procedure.

Remark 2. Although the algorithm described in this section is highly specialized to the case of

21

Bessel’s differential equation, it can, in fact, be modified so as to apply to a large class of second
order equations of the form

y'(t) +qt)y(t) =0 forall a <t <b. (137)

Suppose, for instance, that q is smooth on [a,b], has a zero at ty € (a,b), is negative on (a,ty) and is
positive on (to,b). The procedure of the first stage for constructing a nonoscillatory phase function
on (to,b) relies on an asymptotic expansion which allows for the evaluation of a nonoscillatory
phase function at the point b. In the absence of such an approximation, the algorithm of [4)] can be
used instead. That algorithm also proceeds by solving Kummer’s equation , but it incorporates
a mechanism for numerically calculating the appropriate initial values of a nonoscillatory phase
function and its derivatives.

The procedure of the second stage does not rely on any asymptotic or series expansions of Bessel
functions, only on the values of the phase function computed in the first phase. Consequently, it
does not need to be modified in order to obtain a solution of Riccati’s equation which is increasing
ast— 0.

In the third stage, one of Debye’s asymptotic expansions is used to compute the values of the Bessel
function J, and its derivative at a point near 0. In the event that such an approximation is not
available, a solution of the Riccati equation which is increasing as t — to from the left can be
obtained by solving an wnitial value problem with arbitrary initial conditions and then scaling the
result in order to make it consistent with the desired solution of . This procedure is analogous
to that used in order to obtain a recessive solution of a linear recurrence relation by running the
recurrence relation backwards (see, for instance, Section 3.6 of [9]).

Further generalization to the case in which q has multiple zeros on the interval [a,b] is also possible,
but beyond the scope of this article.

5. The numerical construction of the precomputed table

In this section, we describe the procedure used to construct the table which allows for the numerical
evaluation of the Bessel functions J, and Y, for a large range of parameters and arguments. This
table stores the coefficients in the piecewise compressed bivariate Chebyshev expansions (as defined
in Section of several functions.

A first set of functions A; and Cp allow for the evaluation of the nonoscillatory phase function
oy, (t) defined in Section as well as its derivative o, (t), on the subset

1
O, = {(y,t) £ 2 < v < 1,000,000,000 and A/v2 — 7St< 10001/} (138)

of the oscillatory region O. A second set of functions As and Cy allow for the evaluation of «,, ()
and o, (t) on

Oy ={(r,t):0<v <2 and 2 <+¢<1000}. (139)
A third set of functions B; and By allow for the evaluation of —v+log(J, (t)v/t) and v+log(—Y, (t)v/t)

on the subset

1
le{(u,t):uz2 and —— <t< 1/2—4} (140)

22

J & §i+1 J & §j+1
0 1 1 5 1 1
1,000,000,000 100,000,000 10,000 1,000
1 L 1 6 1 1
100,000,000 10,000,000 1,000 100
9 1 1 7 11
10,000,000 1,000,000 100 50
3 1 1 3 11
1,000,000 100,000 50 10
1 1 1 1
4 100,000 10,000 9 10 2

Table 1: The endpoints of the intervals [£;, £ +1] used in Stage one of the procedure of Section

of the nonoscillatory region /. When v is large, it is numerically advantageous to expand ay,, o,
—v +1log(J,(t)v/t) and v +log(—Y; (t)v/t) in powers of L rather than in powers of v. Consequently,
in this procedure the functions Ay, C1, By and By depend on = = % Here, we only describe the
construction of the functions A1, C1, By and By. The procedure for the construction of Ay and Cy

is quite similar, however.

There computations were conducted using IEEE extended precision arithmetic in order to ensure
high accuracy. The resulting table, which consists of the coefficients in the expansions of Ay, Cy,
Ao, Cy, By and Bs, is approximately 1.3 megabytes in size. It allows for the evaluation of ay,
o, —v +log(J,(t)v/t) and v + log(—Y, (t)+/t) with roughly double precision relative accuracy (see
the experiments of Section . The code was written in Fortran using OpenMP extensions and
compiled with version 4.8.4 of the GNU Fortran compiler. It was executed on a computer equipped
with 28 Intel Xeon E5-2697 processor cores running at 2.6 GHz. The construction of this table
took approximately 227 seconds on this machine.

We conducted these calculations using extended precision arithmetic in order to ensure that the
resulting expansions obtained full double precision accuracy. When these calculations are conducted
in IEEE double precision arithmetic instead, only a small amount of precision is lost. We found
that a table which can evaluate oy, o), —v + log(J,(t)v/t) and v + log(—Y, (t)v/t) with roughly

v
12 digits of relative accuracy could be constructed using double precision arithmetic. Less than 5

seconds were required to do so.

Stage one: construction of the phase functions and logarithms

We began this stage of the procedure by constructing a partition
§o<& <& <...<&o (141)

1 1
. — (142)
1,000, 000, 000" 2

This partition divides (142) into ten subintervals, the endpoints of which are given in Table |1} For
each such interval [£;,&;41], we formed the nodes

2 Y (143)

of the interval

23

of the 50-point Chebyshev grid on [€;,£;41]. Next, for each z in the collection

0 0 1 1 9 9
ajg),...,xéo),xg),...,xéo),...,xg)7""ng) (144)

we executed the algorithm of Section 4| with v take to be % The requested precision for the solver
of Section [3| used by the algorithm of Section |4/ was set to € = 1072° and we set the parameter n to
be 50 so that the functions produced by the algorithm of Section [3| were represented via their values
on the 50-point Chebyshev grids on a collection of subintervals. Were it not for the fact that the
solver of Section [3| runs in time independent of v, these calculations would have been prohibitively
expensive to carry out, even on a massively parallel computer.

For each value of v corresponding to one of the points ([144)), this resulted in the values of «,, and
al, at the nodes of the 50-point Chebyshev grids on a collection of subintervals of

AV2— i, 1000y> (145)

and likewise for —v + log(J,(t)v/t) and v + log(—Y,,(t)y/t) on a collection of subintervals of

v 51
1000° 1% 4]. (146)

As discussed in Section this data allows for the evaluation of «, and its derivative at any point
in (145), as well as the evaluation of —v+1log(.J,(t)v/t) and v +log(—Y, (t)v/) at any point in (146]).

Stage two: formation of unified discretizations

For each x in the set (144) we adaptively discretized the function f, : [0,1] — R defined via

Foly) = o (HJr (10001/ - H) y) with v = % (147)

using the procedure of Section We requested € = 107! precision and took the parameter
n to be 49. Each discretization consisted of a collection of subintervals of [0, 1] on which f, was
represented to high accuracy using a 49-term Chebyshev expansion. We then formed a unified
discretization

lao, a1], a1, az] ..., [az4, azs] (148)

of [0,1] by merging these discretizations; that is, by ensuring that the sets (148) had the property
that each subset appearing in the discretization of one of the functions f, is the union of some

collection of the subintervals (148]).

For each z, we also adaptively discretized each of the functions g, : [0,1] — R and h, : [0,1] = R
defined via the formulas

1 v 1 v
- _ 1 , ith v==, t= 2 14
92(v) v+ og(J (t)\ﬁ) with v a:’t 1000+< v 1 1000>y (149)
and
1 1% 1 1%
€T p— 1 _Yl/ h :77 e 2_7_ . 1
he(y) 1/+0g< (t)ﬂ) with v ==, 1 1000+< v 1000)1/ (150)

24

Again, we used the procedure of Section with € = 1077 and n = 49. We then formed the
unified discretization

[bo, b1], [b1,b2] , - - ., [ba2, bas] (151)
of [0,1] in the same fashion in which we formed ((148)).

Stage three: construction of the functions A1 and C}

The function A; is defined via the formula

1 1 1 1
Ai(x,y) = 0w (4 V2 — 1 + (10001/ L 4) y) with v = - (152)

and (' is given by

1 1 1 1
Cy(z,y) = ;o/y (q/uQ ~ 1 + (1000y — V2 — 4) t) with v = = (153)

Obviously, A1 and C; are defined on the compact rectangle

1 1
_ — 0,1]. 154
[1,000,000,000’2] < [0.1] (154)
For each i = 0,...,9 and each j = 0,...,24, we formed the 49" order compressed bivariate
Chebyshev expansions of A; and C7 on the compact rectangle
[&i, Giv1] % [a, a4]. (155)

There are 250 such rectangles and the uncompressed bivariate Chebyshev expansions of order 49
on each rectangle would involve 2,500 coefficients. A total of 250 x 2,500 = 625,000 coefficients
would be required to store the uncompressed bivariate expansions for A;, and another 625,000
would be required for C7. The compressed bivariate expansions are much smaller. A mere 31, 884
values (this includes both the coefficients and the indices appearing in the sums , which must
also be stored) were required to represent A;. Only 51,076 values were needed to represent Cj.

Stage four: construction of the functions By and Bs

The function Bj is defined via the formula

Bi(z,y) = -1+ — log (J ()\/i) with 1/:%, :1000 (1/ - 1000) (156)

and Bs is defined by

Bi(z,y) =1+~ log(Y(t)ﬂ) with 1/:%, T <4/ 1 1000) (157)

Obviously, B; and By are given on the compact rectangle

1 Ll 0] (158)
1,000, 000, 000" 2 T
For each i = 0,...,9 and each j = 0,...,23, we formed the 49"" order compressed bivariate

25

Chebyshev expansions of By and By on the compact rectangle
(&, &ir1] % [bj,bjg1] (159)

There are 230 such rectangles and the uncompressed bivariate Chebyshev expansions of By and By
would involve 2 x 230 x 2,500 = 1, 150,000 coefficients. Using the compressed expansions, we are
able to store Bj using 32,910 values and By with 46,950 values.

Remark 3. [t is possible to compute the values of both v, and o, using the function Ay via spectral
differentiation (as discussed, for instance, [21]). Such an approach would, however, lead a level of
loss of precision in the obtained values of !, which we find unacceptable.

In a similar vein, spectral integration could be used to evaluate o, given the values of o,. Spectral
integration does not suffer from the same defect as spectral differentiation and such a calculation
could be carried out with little loss of precision; however, integration of o), can only determine a,
up to a constant. The appropriate constant would have to be calculated or stored in some fashion.
We chose the simpler, but possibly more expensive, procedure described in this paper over such
approach.

In order to evaluate a,(t) and o (t) given the expansions of A; and Cy constructed using the
procedure describe above, we execute the following sequence of steps:

1. First, we let
(160)
and

1

t— 1/2—1
y= :
(1000 — 4/v2 1)

2. Next, we next search through the intervals (144]) in order to find the index i of the one
containing x and through the intervals (148)) for index j of the interval containing y.

(161)

3. Having discovered that (x,y) € [&,&+1] X [aj,aj41], we evaluate the compressed bivariate
Chebyshev series expansion representing A; on this rectangle. We scale the result by v in
order to obtain the value of a,(t). We then evaluate the compressed bivariate Chebyshev
expansion representing C7 on this rectangle. We scale the result by v in order to obtain the
value of o/, (t).

A virtually identical procedure is used to evaluate log(.J, (¢)) and log(—Y,(¢)) using the expansions
of By and Bs stored in the table.

6. An algorithm for the rapid numerical evaluation of Bessel functions

In this section, we describe the operation of our code for evaluating the Bessel functions .J, and Y,
of nonnegative orders and positive arguments. It was written in Fortran and its interface to the
user consists of two subroutines, one called bessel_eval_init and the other bessel_eval. The
bessel_eval_init routine reads the precomputed table constructed via the procedure of Section

26

from the disk into memory. Once this has been accomplished, the bessel_eval can be called. It
takes as input an order v > 0 and an argument ¢ > 0. When (v, t) is in the oscillatory region O,
it returns the values of «,,(t) and o, (t) as well as those of J,(t) and Y, (¢t). When (v,t) is in the
nonoscillatory region N, it returns the values of log(J,(t)) and log(—Y,(t)) as well as those of J, (¢)
and Y, (t). Of course, when ¢ < v, these latter values might not be representable via the IEEE
double format arithmetic. In this event, 0 is returned for J,(¢) and —oo for Y, (¢).

The bessel_eval code is available from the GitHub repository at address
http://github.com/JamesCBremerJr/BesselEval,

and from the author’s website at the address
http://www.math.ucdavis.edu/ bremer/code.html.

The bessel_eval code operates as follows:

1. When v > 2 and 4/v2 — i <t <1,000v, the precomputed expansions of A; and C; are used

to evaluate the nonoscillatory phase function «,, and its derivative o), at the point ¢. Then,

formulas
_|mtcos(an(t))
=T Jam (162)
and
Y, (1) wt sin(aw (1)) (163)

V2)

are used to produce the values of J,(t) and Y, (1).

2. When v > 2 and {55 <t <4/ v — %, the precomputed expansions of B; and By are used to

evaluate —v +log(J, (t)v/t) and v +log(Y, (t)v/t). The values of J,(t) and Y, (t) are calculated
in the obvious fashion. Note that it is the the values of log(J,(t)) and log(—Y,(¢)) and not
those of —v+log(J, (t)v/t) and v+log(Y,, (t)v/t) that are returned by the bessel_eval routine.

3. When v > 100 and t < {555, Debye’s expansions and are used to evaluate log(J,(t))

and log(—Y,(t)). The values of J,(t) and Y, (t) are computed as one would expect.

4. When v < 100 and t < 1555, the series expansions and are used to produce the
values of log(J,,(t)) and log(—Y,(t)). The values of J,(t) and Y, (t) are then computed as one
would expect.

5. When v < 2 and 2 < ¢ < 1000, the precomputed expansions of A, and Cs are used to evaluate
the nonoscillatory phase function a,, and its derivative o, at the point ¢. Then, formulas (162])
and (163]) are used to produce the values of J,(t) and Y, (¢).

6. When v < 2, ¢ < 2 and (v,t) is in the oscillatory region, we use the series expansions

and in in order to evaluate J,(t) and Y, (¢). As discussed in Section Chebyshev
interpolation is used in the computation of Y, when v is either an integer or close to one.

27

The value of o, is evaluated via the formula , and that of «, is calculated via

a,(t) = arctan (?I/:Eg) . (164)

7. When v < 2, t < 2 and (v,t) is in the nonoscillatory regime, the series expansions and
are used to evaluate log(.J,(t)) and log(—Y,(¢)). As discussed in Section Chebyshev
interpolation is used in the computation of Y, when v is either an integer or close to one. The
values of J,,(t) and Y, () are calculated in the obvious fashion. We use series expansions rather
than Debye’s expansion to evaluate J,(t) and Y, (¢) in this case because Debye’s expansions
lose accuracy when v is small.

7. Numerical Experiments

In this section, we describe the results of numerical experiments conducted to illustrate the perfor-
mance of the bessel_eval subroutine. These experiments were carried out on a laptop computer
equipped with an Intel Core i7-5600U processor running at 2.6 GHz and 16GB of memory. Our
code was compiled with the GNU Fortran compiler version 5.2.1 using the “-03” compiler opti-
mization flag. The size of the precomputed table used in the experiments of this paper is roughly
1.3 megabytes and, on the laptop used in our experiments, took approximately 1072 seconds to
read into memory.

7.1. The accuracy with which o/, is evaluated in the oscillatory region

In these experiments, we measured the accuracy with which bessel_eval calculates values of o,
in the oscillatory region. We did so by comparison with highly accurate reference values computed
using version 11 of Wolfram’s Mathematica package.

In each experiment, we first constructed 10,000 pairs (v, t) by first choosing v in a given range and
then randomly selecting a value of ¢ in the interval

(V2 — 1/4,1000 1/) .

Unless, that is, v < 1/2, in which case we selected a random value of ¢ in the interval (0,1000)
instead. For each pair (v,t) obtained in this fashion, we calculated the relative error in the value of
al,(t) returned by bessel _eval. Table [2| displays the results. There, each row corresponds to one
experiment and reports the maximum observed relative error as well as the average running time
of bessel _eval.

7.2. The accuracy with which —v + log(J,(t)) and —v + log(=Y,(t)) are evaluated for small to
moderate values of v

In these experiments, we measured the accuracy with which bessel_eval calculates —v+log(J, (1))
and —v + log(—Y,(t)) in the nonoscillatory region. Reference values for these experiments were
generated using version 11.0 of Wolfram’s Mathematica package. A considerable amount of time
is required for Mathematica to evaluate the Bessel functions J,(t) and Y, (t) when the magnitude
of v is large and t is small relative to v. Consequently, in these experiments we only considered
values of v between % and 10,000. Larger values of v were treated in the experiments described in
the following section.

28

Range of v

Maximum relative
error in o, (t)

Average evaluation
time (in seconds)

0-1
1-10

10 - 100
100 - 1,000

1,000 - 10,000

10,000 - 100,000

100,000 - 1,000,000
1,000,000 - 10,000,000
10,000,000 - 100,000,000
100,000,000 - 1,000,000,000

4.44x10716
1.11x10~16
1.11x10716
1.11x10716
1.11x10716
1.11x10716
1.11x10716
3.33x10716
1.11x10716
1.11x10716

6.02x 10797
1.04x10797
1.93x10797
1.97x10797
1.15%x10797
1.03x10797
9.70x 10798
1.42x10797
1.02x10797
1.78%x10797

Table 2: The results of the experiments of Section in which the accuracy of the evaluation of «, in the oscillatory
region is tested through comparison with highly accurate reference values.

Range of v Maximum relative ~Maximum relative Average evaluation
error in error in time (in seconds)
—v+log(Jy(t)) v+log(=Y,(t))
05-1 2.43x10716 1.30x1015 2.11x10796
1-10 5.88x10716 8.48x10716 1.18x107%
10 - 100 7.06x10716 8.38x 10716 8.05x10797
100 - 1,000 5.12x10716 7.57x10~16 7.46x107°7
1,000 - 10,000 6.41x10~16 4.56x10716 5.70x10797

Table 3: The results of the experiments of Section [7.2] in which the accuracy of bessel_eval in the nonoscillatory
region is tested via comparison with highly accurate reference values generated using Wolfram’s Mathematica package.

In each experiment, we constructed 10,000 pairs (v, t) by first choosing a value of v in a given range
and then selecting a random point ¢ in the interval

(o, m) .

For each pair (v,t) obtained in this fashion, we calculated the relative accuracy of the quantities
—v+log(J,(t)) and v + log(—Y,(t)). Table 3| displays the results of these experiments. There each
row corresponds to one experiment and reports the largest relative errors which were observed as
well as the average time taken by the bessel_eval routine.

7.8. The accuracy of the evaluation of —v+log(J,(t)) and v+log(—Y,(t)) deep in the nonoscillatory
TegiON

The bessel_eval subroutine makes use of the asymptotic expansions and when 0 < t <

v/10,000. For large v, Debye expansion’s are accurate in a much larger interval. In these exper-

iments, we exploit this fact in order to measure the accuracy with which bessel_eval calculates

—v +log(J,(t)) and v + log(—Y,(t)) deep in the nonoscillatory region.

In each experiment, we constructed 10,000 pairs by first selecting a value of v in a given range
at random and then picking a random value of ¢ in the interval (v/1000,r/10). For each pair
(v,t) obtained in this fashion, we computed the values of both —v +log(J,,(t)) and v + log(—Y,(t))
using bessel_eval and compared them to reference values obtained using Debye’s expansion. The

29

reference calculations were performed using IEEE quadruple precision arithmetic in order to ensure
high accuracy. The results are shown in Table Each row there corresponds to one experiment
and reports the range of v, the maximum relative error which was observed, and the average time
taken by bessel_eval.

Range of v Maximum relative Maximum relative Average evaluation
error in error in time (in seconds)
—v+log(,(t) v +log(~Y(t))
100 - 1,000 8.26x10716 7.99%10716 4.50x10797
1,000 - 10,000 8.88x 10716 9.00x1016 3.97x10797
10,000 - 100,000 9.13x10716 8.52x 10716 3.84x1077
100,000 - 1,000,000 7.62x10716 8.71x10716 4.15%10707
1,000,000 - 10,000,000 7.45x10715 7.39x1071 3.62x1077
10,000,000 - 100,000,000 8.62x10716 7.66x10716 3.59%10797
100,000,000 - 1,000,000,000 7.49%10716 9.38x1016 3.87x10797

Table 4: The results of the experiments of Section in which the accuracy with which —v + log(J,(t)) and
v + log(—=Y,(t)) is tested for values of 100 < v < 1,000,000,000 and ¢ < v through comparison with Debye’s
expansions.

7.4. The accuracy of the evaluation of J,(t) and Y, (t) as a function of t

In these experiments, we measured the relative accuracy with which bessel_eval calculates the
Hankel function of the first kind H,(t) = J,(t) + iY,(t) as a function of t. We considered the
Hankel function instead of treating J, and Y, separately because H,(t) does not vanish in the
interval (0,00) and its absolute value is nonoscillatory there, properties not shared by the Bessel
functions J, and Y.

In each experiment, we chose a value of v and measured the relative accuracy with which bessel_eval
calculates J,(t) +1Y,(t) at each of 1,000 equispaced points in the interval [r, 100000r]. Highly ac-
curate reference values for these experiments were computed using Mathematica. We chose the
following values of v: /2, 104/2, 1004/2 and 1,000y/2 . We also repeated these experiments using
Amos’ well-known code [I].

Figure [2| displays the results. Each graph there plots the base-10 logarithms of the relative errors
in the calculated values of J, (t) +1Y,(t) as dots. The graph of the function x(t)ep, where x(t) is the
condition number of the evaluation of H, at the point ¢ and ¢y = 27°2 ~ 2.22044604925031 x 10~ 16
is machine epsilon, is also plotted as a solid curve. The results for bessel_eval are shown on the
left while those for Amos’ code appear on the right on the right.

7.5. The speed and accuracy of the evaluation of J, and Yy, as a function of n

In these experiments, we compared the speed and accuracy with which bessel_eval calculates
Hankel functions of integer orders with the speed and accuracy of Amos’ code [I]. Reference values
were calculated using the well-known three-term recurrence relations satisfied by Bessel functions.
The calculation of reference values was performed using IEEE quadruple precision arithmetic in
order to ensure high accuracy.

30

bessel_eval

Amos’

code

n Maximum relative ~ Average evaluation Maximum relative Average evaluation
error in H, time (in seconds) error in H, time (in seconds)

0 3.02x10713 4.38x107°7 9.32x1071° 6.00x10707

1 3.08x10712 2.68x107°7 5.03x10~ 6.64x10707
10 3.42x10712 2.86x10797 9.04x10713 1.40x 10796
100 3.36x10 1 2.47x107%7 1.78x10~ 1! 1.98x107%¢
1,000 2.45x10710 2.58x10797 1.90x10~10 2.00x 10796
10,000 3.38x107Y9 2.35x10797 2.62x107Y9 1.80x 1079
100,000 3.21x10798 2.26x10797 1.84x10708 1.67x10706
1,000,000 2.93x107°7 2.36x10707 - -
10,000,000 2.67x10796 2.18x10797 - -
100,000,000 2.97x1079° 2.06x10797 - -
1,000,000,000 2.83x107% 1.97x107%7 - -

Table 5: The results of the experiments of Section in which the speed and accuracy with which bessel_eval and
the well-known code of Amos [I] evaluates Hankel functions of integer orders is compared. Experiments in which
Amos’ code returned an error code are marked with dashes.

In the first experiment, n was taken to be 0 and 10,000 random points at which to evaluate H,
were chosen in the interval (0,1000). In each subsequent experiment, n was taken to be a positive
integer and 10,000 random points at which to evaluate H,, were chosen from the interval

(an, 1000n) , (165)

where a,, < 4/n? —1/4 is the solution of the equation log(—Y,,(a)) = 100. In this way, we avoided
problems with numerical overflow and underflow. At each point chosen in this fashion, the value of
the Hankel function H,, was calculated using bessel_eval and with Amos’ code. Table [5| reports
the results. There, the maximum observed relative error in the values of H,, generated by each code
is reported as a function of n as is the average time taken by each code to perform an evaluation.
Amos’ code aborts and returns an error code in cases in which it is unable to evaluate the Bessel
functions to at least 7-digit accuracy. The corresponding entries of Table [5|are marked with dashes.

7.6. The accuracy of the evaluation of J,(t) and Y,(t) in the nonoscillatory regime

The preceding section reports on the accuracy with which the algorithm of this paper evaluates
J, and Y,. The experiments described there are global in nature; that is, we report the largest
error which was observed in evaluating the Bessel functions on an interval including both the
oscillatory and nonsocillatory regimes. In fact, less accuracy is lost when evaluating J, and Y,
in the nonoscillatory regime. In this set of experiments, we measured the accuracy with which
bessel_Eval evauates J, and Y, in the nonoscillatory regime only.

In each experiment, we constructed 10, 000 pairs (v, t) by first choosing a value of v in a given range
and then selecting a random point ¢ in the nonoscillatory interval for J, and Y,. For each pair
(v,t) obtained in this fashion, we calculated the relative accuracy of J,(t) and Y, (t). The results
are shown in Table [6l

31

Range of v Maximum relative ~Maximum relative Average evaluation

error in error in time (in seconds)
Ju(t) Y, (1)
100 - 1,000 9.85%x1013 9.63x10~13 8.31x10797
1,000 - 10,000 8.97x10712 7.67x10712 5.22x10797
10,000 - 100,000 4.81x10~11 4.64x1011 4.37x10797
100,000 - 1,000,000 2.50x10~10 4.10x10~10 3.88x 10797
1,000,000 - 10,000,000 1.89x10710 9.01x10710 3.84x10797
10,000,000 - 100,000,000 3.49%x1079° 1.21x1079 3.52x 10797
100,000,000 - 1,000,000,000 1.50x10~97 9.20x10798 3.63x10797

Table 6: The results of the experiments of Section [7.6] in which the accuracy with which bessel_eval calculates
Bessel functions in the nonoscillatory regime is measured.

7.7. Eztended precision experiments

It is a straightforward to increase the accuracy of the precomputed expansions used by the algo-
rithm of this paper. We constructed a second set of these expansions, this time asking for 25 digits
of accuracy. Of course, these precomputations were conducted using IEEE quadruple precision
arithmetic. We then reran the experiments of Sections and [7.5] using IEEE quadruple
precision arithmetic instead of the standard IEEE double precision arithmetic. Because the laptop
we used for experiments does not support quadruple precision arithmetic in hardware, it was emu-
lated with software. This is, of course, highly inefficient and the running times of these experiments
reflect this fact. The results are shown in Tables [7] through Moreover, because Amos’ code
was not designed for extended precision arithmetic, we omitted comparion with it (it should be
noted, though, that the mere fact that a quadruple precision code could be produced so easily is a
significant advantage of our approach).

Range of v Maximum relative Average evaluation
error in o, (t) time (in seconds)
0-1 2.05x10728 1.79x107%
1-10 3.47x10~28 5.70x10796
10 - 100 9.62x1073° 5.47x10796
100 - 1,000 9.02x10~%* 5.31x10~96
1,000 - 10,000 1.71x10732 5.45x10796
10,000 - 100,000 7.60x10733 5.30x 10796
100,000 - 1,000,000 9.62x10734 5.24x 10796
1,000,000 - 10,000,000 9.62x1073° 5.26x 10796
10,000,000 - 100,000,000 9.62x1073° 5.28 x 1006
100,000,000 - 1,000,000,000 2.48x10~28 5.37x 10706

Table 7: The results obtained by rerunning the experiments of Sectionusing IEEE quadruple precision arithmetic.
These experiments measure the accuracy of the evaluation of o}, in the oscillatory region.

8. Conclusions and future work

Using a simple-minded procedure which can be applied to a large class of special functions with little
modification, we constructed a table which allows for the numerical evaluation of Bessel functions

32

Range of v Maximum relative ~Maximum relative Average evaluation

error in error in time (in seconds)
v+ 1Og(Ju(t)) v+ 1Og(*Yu(t))
0.5-1 3.83x 10734 2.54%x10728 4.65%1079
1-10 2.26x1072° 1.18x10~27 1.41x10794
10 - 100 7.63%x1072° 1.09x10~27 9.97x1079°
100 - 1,000 8.19x10~28 1.61x10727 9.51x1079°
1,000 - 10,000 4.57x10728 7.80x10728 4.93x1079

Table 8: The results of rerunning the experiments of Section using IEEE quadruple precision arithmetic. These
experiments test the accuracy of bessel_eval in the nonoscillatory region via comparison with highly accurate
reference values generated using Wolfram’s Mathematica package.

Range of v Maximum relative Maximum relative Average evaluation
error in error in time (in seconds)
—v+log(J,(t) v+ log(~Y(t))
100 - 1,000 3.00x10=28 2.58x10728 3.53x107%
1,000 - 10,000 2.95%x10728 2.55x10728 2.73x10795
10,000 - 100,000 2.47x10728 2.38x10728 2.28x107%
100,000 - 1,000,000 2.67x10728 2.27x10728 2.01x107%
1,000,000 - 10,000,000 2.22x10728 2.43%x10728 1.83x107%
10,000,000 - 100,000,000 1.62x1028 1.69x10~28 1.70x1070%
100,000,000 - 1,000,000,000 2.66x10728 2.76x10728 1.59x10~9

Table 9: The results of rerunning the experiments of Section |7.3| using IEEE quadruple precision arithmetic. These
experiments test the accuracy with which —v + log(J, (t)) and v + log(—Y; (¢)) is evaluated for values of 100 < v <
1,000, 000,000 and t < v through comparison with Debye’s expansions.

n Maximum relative Average evaluation
error in H, time (in seconds)
0 3.00x10~26 5.41x1079°
1 2.17x10~%° 3.02x1079°
10 1.85x10724 3.16x1079%
100 2.39x10~% 2.48x1079°
1,000 2.45x10~22 2.14x1079
10,000 8.01x10~22 1.90x10705
100,000 1.48x10720 1.77x107%
1,000,000 6.08x10~20 1.70x107%
10,000,000 8.52x10~ 1 1.57x107%
100,000,000 7.62x10718 1.51x107%
1,000,000,000 5.57x10717 1.53x1079

Table 10: The results of rerunning the experiments of Section using IEEE quadruple precision arithmetic. In
these experiments, the speed and accuracy with which bessel_eval evaluates Hankel functions of integer orders is
measured.

of nonnegative real orders and positive arguments. In the regime, the performance of the resulting
code is comparable to that of the well-known and widely used code of Amos [I].

33

In the nonoscillatory region, our algorithm calculates the logarithms of the Bessel functions as well
as their values. This is useful in cases in which the magnitudes of the Bessel functions themselves
are too large or too small to be encoded using the IEEE double precision format. In the oscillatory
region, in addition to the values of the Bessel function itself, our algorithm also returns the values
of a nonoscillatory phase function for Bessel’s equation and its derivative. This is extremely helpful
when computing the zeros of special functions [3], and when applying special function transforms
via the butterfly algorithm (see, for instance, [6l, 19} 20, [7, 23], 26]).

Amos’ code allows for the numerical evaluation of Bessel functions of complex arguments. The
phase function approach can be extended to do so as well. Indeed, Bessel’s differential equation
admits a phase function which is nonoscillatory on the upper half of the complex plane. Moreover,
that phase function is related to a solution of Bessel’s differential equation which is an element of
the Hardy space of functions analytic on the complex plane. These observations can be exploited in
order to efficiently evaluate Bessel functions in the upper half of the complex plane; such a method
will be reported by the author at a later date.

The author will report on the use of the method of this paper to evaluate associated Legendre
functions and prolate spheroidal wave functions at a later date, as well as on the rapid application
of special function transforms using techniques related to those discussed here.

9. Acknowledgments
The author was supported by National Science Foundation grant DMS-1418723, and by a UC Davis
Chancellor’s Fellowship.

10. References

References

[1] Amos, D. E. Algorithm 644: a portable package for Bessel functions of a complex argument
and nonnegative order. ACM Transactions on Mathematica Software 8 (1986), 265-273.

[2] BOCHNER, S., AND MARTIN, W. Several Complex Variables. Princeton University Press,
1948.

[3] BREMER, J. On the numerical calculation of the roots of special functions satisfying second
order ordinary differential equations. STAM Journal on Scientific Computing 39 (2017), A55—
AR2.

[4] BREMER, J. On the numerical solution of second order differential equations in the high-
frequency regime. Applied and Computational Harmonic Analysis (2017), to appear.

[5] BREMER, J., AND ROKHLIN, V. Improved estimates for nonoscillatory phase functions. Dis-
crete and Continuous Dynamical Systems, Series A 36 (2016), 4101-4131.

[6] CANDES, E., DEMANET, L., AND YING, L. Fast computation of Fourier integral operators.
SIAM Journal on Scientific Computing (2007), 2464—2493.

34

[7]

[19]

[20]

[21]

[22]

CaNDES, E., DEMANET, L., AND YING, L. Fast butterfly algorithm for the computation
of Fourier integral operators. SIAM Journal on Multiscale Modeling and Simulation (2009),
1727-1750.

CARLESON, L. On convergence and growth of partial sums of Fourier series. Acta Mathematica
116 (1966), 135-157.

NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.13 of 2016-
09-16. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. 1. Schneider, R. F. Boisvert,
C. W. Clark, B. R. Miller and B. V. Saunders, eds.

ERDELYI, A., ET AL. Higher Transcendental Functions, vol. II. McGraw-Hill, 1953.
FEDORYUK, M. V. Asymptotic Analysis. Springer-Verlag, 1993.

FEFFERMAN, C. On the convergence of multiple Fourier series. Bulletin of the American
Mathematical Society 77 (1971), 744-745.

GIL, A., SEGURA, J., AND TEMME, N. M. Numerical Methods for Special Functions. SIAM,
2007.

HEITMAN, Z., BREMER, J., ROKHLIN, V., AND VIOREANU, B. On the asymptotics of Bessel
functions in the Fresnel regime. Applied and Computational Harmonic Analysis 39 (2015),
347-355.

Hicuam, N. J. Accuracy and Stability of Numerical Algorithms, second ed. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 2002.

HiLLE, E. Ordinary differential equations in the complex domain. Wiley, New York, 1976.

ISERLES, A. A First Course in the Numerical Analysis of Differential Equations. Cambridge
University Press, 1996.

KuMMER, E. De generali quadam aequatione differentiali tertti ordinis. Progr. Evang. Kongil.
Stadtgymnasium Liegnitz (1834).

L1, Y., AND YaNG, H. Interpolative butterfly factorization. SIAM Journal on Scientific
Computing, to appear.

L1, Y., YANG, H., MARTIN, E., HO, K. L., AND YING, L. Butterfly factorization. SIAM
Journal on Multiscale Modeling and Simulation 13 (2015), 714-732.

MasoON, J., AND HANDSCOMB, D. Chebyshev Polynomials. Chapman and Hall, 2003.

MATVIYENKO, G. On the evaluation of Bessel functions. Applied and Computational Harmonic
Analysis 1 (1993), 116-135.

MICHIELSSEN, E., AND BOAG, A. A multilevel matrix decomposition algorithm for analyzing
scattering from large structures. IEEE Transactions Antennas and Propagation 44 (1996),
1086-1093.

35

[24] MILLER, J. On the choice of standard solutions for a homogeneous linear differential equation
of the second order. Quarterly Journal of Mechanics and Applied Mathematics 3 (1950),
225-235.

[25] OLVER, F. W. Asymptotics and Special Functions. A.K. Peters, Natick, MA, 1997.

[26] O‘NEIL, M., WOOLFE, F., AND ROKHLIN, V. An algorithm for the rapid evaluation of special
function transforms. Applied and Computational Harmonic Analysis 28 (2010), 203-226.

[27] TREFETHEN, N. Approzimation Theory and Approzimation Practice. Society for Industrial
and Applied Mathematics, 2013.

[28] WATSON, G. N. A Treatise on the Theory of Bessel Functions, second ed. Cambridge Uni-
versity Press, New York, 1995.

36

-6

8L

—16 | | | | | | I 16 | | | | | | I
0 20000 40000 60000 80000 100000 120000 140000 0 20000 40000 60000 80000 100000 120000 140000
v=12
-6 -6
-8 B -8 4

14} g 14} 1
6 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 6 ‘ ‘ ‘ ‘ ‘ ‘ ‘
200000 400000 600000 800000 1.0x10° 1.2x10° 1.4x10° 200000 400000 600000 800000 1.0x10° 1.2x10° 1.4x10°
v =102
-6 T T T T T T T -6 T T T T T T T

-14} B -14} 4
6 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 6 ‘ ‘ ‘ ‘ ‘ ‘ ‘
2.0x10° 4.0x10° 6.0x10° 8.0x10° 1.0x107 1.2x107 1.4x107 0 2.0x10° 4.0x10° 6.0x10° 8.0x10° 1.0x10”7 1.2x107 1.4x107
v = 1001/2
-6 -6

=12} B =12} B
14} 4 14+ 4
. ‘ ‘ ‘ ‘ ‘ ‘ ‘ . ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2.0x107 4.0x107 6.0x10” 8.0x107 1.0x10® 1.2x10° 1.4x108 0 2.0x107 4.0x107 6.0x10” 8.0x107 1.0x10® 1.2x10° 1.4x108
v = 1000+/2

Figure 2: The results of the experiments of Section [7.4] In each graph, the base-10 logarithm of the relative errors in
calculated values of H, (t) are plotted as dots and the graph of the function log,,(k(t))eo, where x(t) is the condition
number of the evaluation of the function H,(¢) and € is machine epsilon, is plotted as a solid line. The plots on
the left show the results obtained using the bessel_eval routine while those on the right show results obtained from
Amos’ well-known and widely used code [I].

37

	Introduction
	Mathematical and Numerical Preliminaries
	The condition number of the evaluation of a function
	Series expansions of the Bessel functions
	Debye's asymptotic expansion for small arguments
	The Riccati equation, Kummer's equation and phase functions
	A nonoscillatory phase function for Bessel's equation
	Univariate Chebyshev series expansions
	Bivariate Chebyshev series expansions
	Chebyshev interpolation and spectral integration
	Compressed bivariate Chebyshev expansions
	An adaptive discretization procedure

	An adaptive solver for nonlinear differential equations
	An algorithm for the rapid numerical solution of Bessel's differential equation
	The numerical construction of the precomputed table
	An algorithm for the rapid numerical evaluation of Bessel functions
	Numerical Experiments
	The accuracy with which α_ν' is evaluated in the oscillatory region
	The accuracy with which -ν+log(J_ν(t)) and -ν+ log(-Y_ν(t)) are evaluated for small to moderate values of ν
	The accuracy of the evaluation of -ν+ log(J_ν(t)) and ν+log(-Y_ν(t)) deep in the nonoscillatory region
	The accuracy of the evaluation of J_ν(t) and Y_ν(t) as a function of t
	The speed and accuracy of the evaluation of J_n and Y_n as a function of n
	The accuracy of the evaluation of J_ν(t) and Y_ν(t) in the nonoscillatory regime
	Extended precision experiments

	Conclusions and future work
	Acknowledgments
	References

