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Abstract

We describe an algorithm for the numerical solution of second order linear ordinary differential equations
in the high-frequency regime. It is based on the recent observation that solutions of equations of this
type can be accurately represented using nonoscillatory phase functions. Unlike standard solvers for
ordinary differential equations, the running time of our algorithm is independent of the frequency of
oscillation of the solutions. We illustrate this and other properties of the method with several numerical
experiments.
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1. Introduction

Second order linear differential equations of the form

y2ptq ` λ2qptqyptq “ 0 for all a ď t ď b (1)

are ubiquitous in analysis and mathematical physics. As a consequence, much attention has been
devoted to the development of numerical algorithms for their solution and, in most regimes, fast and
accurate methods are available.

However, when q is positive and λ is real-valued and large, the solutions of (1) are highly oscillatory
(this is a consequence of the Sturm comparison theorem) and standard solvers for ordinary differential
equations (for instance, Runge-Kutta schemes and spectral methods) suffer. Specifically, their running
times grow linearly with the parameter λ, which makes them prohibitively expensive when λ is large.

Because of the poor performance of standard solvers, asymptotic methods are often used in this regime.
In some instances, they allow for the accurate evaluation of solutions of equation of the form (1)
using a number of operations which is independent of the parameter λ. For example, [2] presents an
Op1q algorithm for calculating Legendre polynomials of arbitrary order using a combination of direct
evaluation and asymptotic formulas; it achieves near machine precision accuracy and serves as the
basis for a fast algorithm (also presented in [2]) for the construction of Gauss-Legendre quadratures
of extremely large orders. In a similar vein, [13] describes a fast algorithm for the computation of
Gauss-Legendre and Gauss-Jacobi quadratures which makes use of asymptotic formulas in order to
evaluate Jacobi polynomials in Op1q operations.

The formulas used in [2] and [13] are particular to the cases they consider, and while the same approach
can be applied to other classes of special functions satisfying equations of the form (1), in each case
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a new, specialized approach must be devised. Indeed, despite the extensive existing literature on the
asymptotic approximation of Legendre polynomials, the algorithm of [2] required the development of a
novel asymptotic expansion with suitable numerical properties.

Here, we describe an algorithm for the numerical solution of second order linear ordinary differential
equations of the form (1) whose running time is independent of the parameter λ. It applies to a large
class of second order ordinary differential equations — which includes those defining Bessel functions,
Legendre functions of integer and noninteger orders, prolate spheroidal wave functions, the classical
orthogonal polynomials, etc.

Our approach proceeds by constructing a nonoscillatory phase function which represents solutions of
(1). We say that α is a phase function for (1) if the functions u, v defined by the formulas

uptq “
cospαptqq

|α1ptq|
1{2

, (2)

and

vptq “
sinpαptqq

|α1ptq|
1{2

(3)

comprise a basis in the space of solutions of (1). Phase functions play a key role in the theories of
special functions and global transformations of ordinary differential equations [3, 19, 20, 1], and are the
basis of many numerical algorithms (see [23, 10, 15] for representative examples).

It was observed by E.E. Kummer in [18] that α is a phase function for (1) if and only if it satisfies the
third order nonlinear differential equation

`

α1ptq
˘2

“ λ2qptq ´
1

2

α3ptq

α1ptq
`

3

4

ˆ

α2ptq

α1ptq

̇2

(4)

on the interval ra, bs. The presence of quotients in (4) is often inconvenient, and we prefer the more
tractable equation

r2ptq ´
1

4

`

r1ptq
˘2

` 4λ2 pexpprptqq ´ qptqq “ 0 (5)

obtained from (4) by letting

α1ptq “ λ exp

ˆ

rptq

2

̇

. (6)

Of course, if r is a solution of (5) then a solution α of (4) such that αpaq “ 0 is given by the formula

αptq “ λ

ż t

a
exp

ˆ

rpuq

2

̇

du. (7)

We will refer to (4) as Kummer’s equation and (5) as the logarithm form of Kummer’s equation. The
form of these equations and the appearance of λ in them suggests that their solutions will be oscillatory
— and most of them are. However, there are several well-known examples of second order ordinary
differential equations which admit nonoscillatory phase functions. For example, the function

αptq “ λ arccosptq (8)

is a phase function for Chebyshev’s equation

y2ptq `

ˆ

2 ` t2 ` 4λ2p1 ´ t2q

4p1 ´ t2q2

̇

yptq “ 0 for all ´ 1 ď t ď 1. (9)

Bessel’s equation

y2ptq `

ˆ

1 ´
λ2 ´ 1{4

t2

̇

yptq “ 0 for all 0 ă t ă 8 (10)
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also admits a nonoscillatory phase function, although it cannot be expressed via elementary functions;
see, for instance, [15].

Exact solutions of (4) which are nonoscillatory need not exist in every case. However, [14] and [4]
make the observation that when the coefficient q appearing in (1) is nonoscillatory, there exists a
nonoscillatory function α such that (2), (3) approximate solutions of (1) with accuracy on the order
of pµλq´1 expp´µλq, where µ is a constant which depends on the coefficient q but not on λ. More
specifically, there exists a nonoscillatory function r which satisfies the equation

r2ptq ´
1

4

`

r1ptq
˘2

` 4λ2 pexpprptqq ´ qptqq “ qptqν, (11)

where ν is a smooth function such that

}ν}8 “ O
ˆ

1

µ
expp´µλq

̇

. (12)

The function α obtained from r via formula (7) is a solution of the nonlinear differential equation

`

α1ptq
˘2

“ λ2
ˆ

νptq

4λ2
` 1

̇

qptq ´
1

2

α3ptq

α1ptq
`

3

4

ˆ

α2ptq

α1ptq

̇2

; (13)

this implies that α is a phase function for the equation

y2ptq ` λ2
ˆ

1 `
νptq

4λ2

̇

qptqyptq “ 0 for all a ď t ď b. (14)

It follows from (14) and (12) that when α is inserted into formulas (2) and (3), the resulting functions
approximate solutions of (1) with O

`

pµλq´1 expp´µλq
˘

accuracy (see Theorem 12 in [4]). The functions
r and α are nonoscillatory in the sense that they can be accurately represented using various series
expansions (e.g., expansions in Chebyshev polynomials) whose number of terms does not depend on
λ. In other words, Op1q terms are required to represent the solutions of (1) with O

`

pµλq´1 expp´µλq
˘

accuracy. This is an improvement over superasymptotic and hyperasymptotic expansions (see, for in-
stance, [8, 7]), which represent solutions of (1) with accuracy on the order of expp´ρλq using expansions
with Opλq terms. Theorem 12 of [4], reproduced as Theorem 3 in Section 3.2 of this article, gives a
precise statement regarding the existence of nonoscillatory phase functions.

The existence of the nonoscillatory solution r of (11) is established in [4] by assuming that the coefficient
q extends to the real line and considering an integral equation related to (11) there (see Sections 3.1
and 3.2 for details). The function q is extended so that the Fourier transform can be used to quantify
the notion of “nonoscillatory” function. This method could serve as the basis of a numerical method
for the computation of nonoscillatory phase functions. However, in addition to requiring the extension
of q, such an approach also requires knowledge of the first two derivatives of q.

In this article, we describe a method for constructing a solution of the logarithm form of Kummer’s
equation whose difference from the nonoscillatory solution of (11) is on the order of exp

`

´1
2µλ

˘

. It
does not require that q be extended beyond the interval ra, bs, nor does it take as input the values of
the derivatives of q.

Our approach is based on two observations. First, that if

qptq “ 1 ` ϵptq (15)

for all t in an interval of the form ra, a` τ s, where τ ą 0 and ϵ is a smooth function of sufficiently small
magnitude, then the difference between the solution of the initial value problem

$

&

%

r2ptq ´
1

4

`

r1ptq
˘2

` 4λ2 pexpprptqq ´ qptqq “ 0 for all a ď t ď b

rpaq “ r1paq “ 0
(16)
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and the nonoscillatory solution of (11) is on the order of exp
`

´1
2µλ

˘

on the interval ra, bs. Second,
that when the coefficient q is perturbed by a smooth function φ which is of sufficiently small mag-
nitude on the interval ra, bs, the changes induced in the restrictions of the nonoscillatory solution of
(11) and its derivative to the interval ra, bs are also on the order of exp

`

´1
2µλ

˘

. These observations
follow by combining Theorem 4 of Section 3.3 with standard results on the continuity of solutions of
ordinary differential equations with respect to perturbation of initial values and coefficients. The role
of Theorem 4 is to bound the magnitude of the nonoscillatory solution r of (11) at the point a under
the assumption that q is nearly equal to a constant there. Such an estimate is required because of the
manner in which the nonoscillatory solution r of (11) is defined.

We exploit these observations as follows. First, we construct a windowed version q̃ of the function q
such that

q̃ptq “

#

1 ` ϵptq for all a ď t ă t` τ

qptq for all b´ τ ă t ď b,
(17)

where τ is (once again) a small positive real number and ϵptq is a function of small magnitude, and
calculate a solution r1 of the initial value problem

$

&

%

r2
1ptq ´

1

4

`

r1
1ptq

˘2
` 4λ2 pexp pr1ptqq ´ q̃ptqq “ 0 for all a ď t ď b

r1paq “ r1
1paq “ 0.

(18)

Next, we obtain a solution r2 of the problem
$

&

%

r2
2ptq ´

1

4

`

r1
2ptq

˘2
` 4λ2 pexp pr2ptqq ´ qptqq “ 0 for all a ď t ď b

r2 pbq “ r1 pbq and r1
2 pbq “ r1 pbq .

(19)

From our first observation, we see that the difference between the solution of (18) and the nonoscillatory
function r̃ obtained by applying Theorem 3 to the equation

r̃2ptq ´
1

4

`

r̃1ptq
˘2

` 4λ2 pexppr̃ptqq ´ q̃ptqq “ 0 (20)

is on the order of exp
`

´1
2µλ

˘

. Moreover, according to our second observation, the difference between
the function r1 and the nonoscillatory solution r of

r2ptq ´
1

4

`

r1ptq
˘2

` 4λ2 pexpprptqq ´ qptqq “ qptqνptq (21)

whose existence is guaranteed by Theorem 3 is on the order of

exp

ˆ

´
1

2
µλ

̇

(22)

on the interval rb´ τ, bs, as is the difference between the derivatives of these two functions. In particular,

|r1 pbq ´ r pbq| `
ˇ

ˇr1
1 pbq ´ r1 pbq

ˇ

ˇ “ O

ˆ

exp

ˆ

´
1

2
µλ

̇̇

. (23)

Together (12), (19), (21), and (23) imply that

|r2ptq ´ rptq| “ O

ˆ

exp

ˆ

´
1

2
µλ

̇̇

(24)

for all t P ra, bs. That is, the difference between the solution r2 of the boundary value problem (19) and
the nonoscillatory solution r of (11) decays exponentially with λ.

In the high-frequency regime, the difference between r1 and the nonoscillatory function r̃ is considerably
smaller than machine precision, as is the difference between r2 and the nonoscillatory function r.
Consequently, for the purposes of numerical computation, r1 and r2 can be regarded as nonoscillatory.
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In particular, solutions of the boundary value problems (18) and (19) can be obtained via a standard
method for the numerical solution of ordinary differential equations, and each of the functions r1 and
r2 can be approximated to high accuracy by a finite series expansion whose number of terms does not
depend on λ. Moreover, the number of operations required to compute these expansions of r1 and r2
does not depend on λ.

There is one significant limitation on the accuracy obtained by the algorithm of this paper. When λ is
large, the evaluation of the functions u, v defined via the formulas (2) and (3) requires the computation
of trigonometric functions of large arguments. There is an inevitable loss of accuracy when these
calculations are performed in finite precision arithmetic. Nonetheless, acceptable accuracy is obtained
in many cases. For instance, Section 5.3 describes an experiment in which the Bessel function of the
first kind of order 108 was evaluated to approximately ten digits of accuracy at a large collection of
points on the real axis.

We also note that although some accuracy is lost when evaluating (2), (3) in the high-frequency regime,
the phase function α produced by the algorithm of this paper is highly accurate. Among other things,
it can be used to rapidly calculate the roots of special functions to high precision. This and other
applications of nonoscillatory phase functions will be reported at a later date.

The remainder of this paper is organized as follows. Section 2 summarizes a number of mathematical
and numerical facts to be used in the rest of the paper. In Section 3, we develop the analytic apparatus
used in Section 4 to devise an algorithm for the rapid solutions of second order linear differential
equations in the high-frequency regime. Section 5 presents the results of several numerical experiments
conducted to assess the performance of the algorithm of Section 4.

2. Analytic and numerical preliminaries

2.1. Schwartz functions and tempered distributions

We denote by C8 pRq the set of all infinitely differentiable functions f : R Ñ C. We say that an
infinitely differentiable function φ : R Ñ C is a Schwartz function if φ and all of its derivatives decay
faster than any polynomial. That is, if

sup
tPR

|tiφpjqptq| ă 8 (25)

for all pairs i, j of nonnegative integers. The set of all Schwartz functions is denoted by SpRq. We
endow it with the topology generated by the family of seminorms

}φ}k “

k
ÿ

j“0

sup
tPR

ˇ

ˇ

ˇ
tkφpjqpxq

ˇ

ˇ

ˇ
k “ 0, 1, 2, . . . , (26)

so that a sequence tφnu of functions in SpRq converges to φ in SpRq if and only if

lim
nÑ8

}φn ´ φ}k “ 0 for all k “ 0, 1, 2, . . . . (27)

The space SpRq clearly contains the set C8
c pRnq of compactly supported infinitely differentiable func-

tions. We denote the space of continuous linear functionals on SpRq, which are known as tempered
distributions, by S1pRq.

See, for instance, [16] for a thorough discussion of Schwartz functions and tempered distributions.

2.2. The Fourier transform

We define the Fourier transform of a function f P SpRq via the formula

fppξq “

ż 8

´8

expp´ixξqfpxq dx. (28)
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The Fourier transform is an isomorphism SpRq Ñ SpRq (meaning that it is a continuous, invertible
mapping SpRq Ñ SpRq whose inverse is also continuous). The formula

⟨ωp, φ⟩ “ ⟨ω, φp⟩ (29)

extends the Fourier transform to an isomorphism S1pRq Ñ S1pRq. The definition (29) coincides with
(28) when f P L1 pRq. Moreover, when f P L2 pRq,

fppξq “ lim
RÑ8

ż R

´R
expp´ixξqfpxq dx. (30)

Owing to our choice of convention for the Fourier transform,

f ˚ gzpξq “ fppξqgppξq (31)

and

f ¨ gy pξq “
1

2π

ż 8

´8

fppξ ´ ηqgppηq dη (32)

whenever f and g are elements of L1 pRq. Moreover,

fpxq “
1

2π

ż 8

´8

exppixξqfppξq dξ (33)

whenever f and fp are elements of L1 pRq. The observation that f is an entire function when fp is a
compactly supported distribution is one consequence of the well-known Paley-Wiener theorem. See
[11, 12] for a thorough treatment of the Fourier transform.

2.3. The constant coefficient Helmholtz equation

The following theorem is a special case of a more general one which can be found in [17].

Theorem 1. Suppose that f P SpRq. If λ is a positive real number, then the function g defined by the
formula

gpxq “
1

2λ

ż 8

´8

sin pλ |x´ y|q fpyq dy (34)

is an infinitely differentiable function,

g2pxq ` λ2gpxq “ fpxq for all x P R, (35)

and

gppξq “
fppξq

λ2 ´ ξ2
. (36)

If λ is complex number with positive imaginary part, then the function h defined by the formula

hpxq “
1

2λi

ż 8

´8

exp p2λi |x´ y|q fpyq dy (37)

is an infinitely differentiable function,

h2pxq ` λ2hpxq “ fpxq for all x P R, (38)

and

hppξq “
fppξq

λ2 ´ ξ2
. (39)

We interpret the Fourier transform (36) of g as a tempered distribution defined via principal value
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integrals; that is to say that for all φ P SpRq,⟨︄
fppξq

λ2 ´ ξ2
, φ

⟩︄
“

1

2λ

˜

lim
ϵÑ0

ż

|ξ´λ|ąϵ

fppξqφpξq

λ´ ξ
dξ ´ lim

ϵÑ0

ż

|ξ`λ|ąϵ

fppξqφpξq

λ` ξ
dξ

¸

. (40)

The following variant of Theorem 1 can be found in [5].

Theorem 2. Suppose that f is continuous on the interval ra, bs, and that λ is a positive real number.
Suppose also that y : ra, bs Ñ C is twice continuously differentiable, and that

y2pxq ` λ2ypxq “ fpxq for all a ď x ď b. (41)

Then

ypxq “ ypaq cospλpx´ aqq `
y1paq

λ
sinpλpx´ aqq `

1

λ

ż x

a
sin pλ px´ uqq fpuq du (42)

for all a ď x ď b.

2.4. Schwarzian derivatives

The Schwarzian derivative of a smooth function f : R Ñ R is

tf, tu “
f3ptq

f 1ptq
´

3

2

ˆ

f2ptq

f 1ptq

̇2

. (43)

The Schwarzian derivative of xptq is related to the Schwarzian derivative of its inverse tpxq through the
formula

tx, tu “ ´

ˆ

dx

dt

̇2

tt, xu. (44)

This identity can be found, for instance, in Section 1.13 of [20].

2.5. The Lambert W function

The Lambert W function or product logarithm is the multiple-valued inverse of the function

fpzq “ z exppzq. (45)

We follow [6] in using W0 to denote the branch of W which is real-valued and greater than or equal to
´1 on the interval r´1{e,8q. It is immediate from the definition of W0 that

x exppxq ď y if and only if x ď W0pyq. (46)

for all real numbers y ě ´1{e.

2.6. Chebyshev polynomials and interpolation

For each nonnegative integer m, we refer to the collection of points

ρj “ cos

ˆ

πj

m

̇

, j “ 0, 1, . . . ,m (47)

as the pm ` 1q-point Chebyshev grid on the interval r´1, 1s, and we call individal elements of this set
Chebyshev nodes or points.

Suppose that f : r´1, 1s Ñ R is a continuous function. For each integer m, there exists a unique
polynomial of degree m which agrees with f on the pm ` 1q-point Chebyshev grid. We refer to this
polynomial as the mth order Chebyshev interpolant for f and denote it by Ψm rf s. In other words,
Ψm rf s is the polynomial of degree m defined by the requirement that

Ψm rf s pρjq “ f pρjq (48)
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for j “ 0, 1, 2, . . . ,m. If f is Lipschitz continuous, then Ψm rf s converges to f in L8 pr´1, 1sq norm as
m Ñ 8. Moreover, in the event that f is analytic on an ellipse with foci ˘1 the sum of whose semiaxis
is γ ą 1,

}Ψm rf s ´ f}8 “ O
`

m´γ
˘

. (49)

Proofs of these and related facts can be found in [24], for instance.

Given the values of f on the pm ` 1q-point Chebyshev grid ρ0, ρ1, . . . , ρm, the value of Ψ rf s can be
calculated at any point x in r´1, 1s via the formula

Ψ rf s pxq “

˜

m
ÿ

j“0

p´1qjfpρjq

x´ ρj

¸

M

˜

m
ÿ

j“0

p´1qj

x´ ρj

¸

. (50)

The process of approximating a function f via Φ rf s is referred to as Chebyshev interpolation and
(50) is known as the barycentric interpolation formula for Chebyshev polynomials. The stability of
barycentric interpolation is discussed extensively in [24].

Suppose that f : r´1, 1s Ñ R is continuous function, that m is a positive integer, and that g is the
function defined by the formula

gptq “

ż t

´1
Ψm rf s puq du. (51)

If v “ tv0, v1, . . . , vmu is the vector defined by the formula

vj “ f pρjq (52)

and w “ tw0, w1, . . . , wmu is the vector defined by the formula

wj “ g pρjq , (53)

then we refer to the pm` 1q ˆ pm` 1q matrix Sm such that

Smv “ w (54)

as the spectral integration matrix of order m (that such a matrix exists is clear since the underlying
operation is linear).

The preceding constructions can be easily modified in order to accommodate functions defined on any
finite interval ra, bs. For instance, the pm` 1q-point Chebyshev grid on the interval ra, bs is the set

"

b´ a

2
ρj `

a` b

2
: j “ 0, 1 . . . ,m.

*

(55)

Remark 1. The set (47) is the collection of the extreme points of the mth order Chebyshev polynomial
Tm. The roots of Chebyshev polynomials are often used as interpolation nodes instead. There are few
meaningful differences between these two choices, although (47) includes the endpoints ˘1, which is
convenient when solving boundary value problems for ordinary differential equations.

3. Analytical apparatus

Here we develop the analytic apparatus used in Section 4 to design an algorithm for the numerical
solution of second order linear ordinary differential equations of the form (1) whose running time is
independent of the parameter λ.

We will assume throughout this section that the coefficient q in (1) extends to a strictly positive function
on the entire real line. We do this so that the notation of “nonoscillatory” can be defined using the
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Fourier transform. Note that the numerical algorithm described in Section 4 does not require that q
be extended outside of the interval ra, bs on which (1) is given.

In Section 3.1, we reformulate Kummer’s equation as a nonlinear integral equation in preparation for
a statement of the main theorem of [4]. This is done in Section 3.2, and several consequences of this
result are discussed there. In Section 3.3, we develop a theorem which bounds the restriction of the
solution r of the logarithm form of Kummer’s equation to the interval p´8, as under the assumption
that the coefficient q is nearly equal to 1 there. This result is recorded as Theorem 4. In Section 3.4, we
observe that combining this theorem with standard techniques from the theory of ordinary differential
equations suffices to establish the two observations which underlie the algorithm of Section 4.

3.1. Integral equation formulation of Kummer’s equation

In this section, we reformulate Kummer’s equation

`

α1ptq
˘2

“ λ2qptq ´
1

2

α3ptq

α1ptq
`

3

4

ˆ

α2ptq

α1ptq

̇2

(56)

as a nonlinear integral equation in preparation for the statement of the principal result of [4].

By letting

α1ptq “ λ exp

ˆ

rptq

2

̇

(57)

in (56) we obtain

r2ptq ´
1

4

`

r1ptq
˘2

` 4λ2 pexpprptqq ´ qptqq “ 0, (58)

which we refer to as the logarithm form of Kummer’s equation. Representing the solution r of (58) in
the form

rptq “ logpqptqq ` δptq (59)

results in the equation

δ2ptq ´
1

2

q1ptq

qptq
δ1ptq ´

1

4

`

δ1ptq
˘2

` 4λ2qptq pexppδptq ´ 1qq “ qptqpptq, (60)

where the function p is defined by the formula

pptq “
1

qptq

˜

5

4

ˆ

q1ptq

qptq

̇2

´
q2ptq

qptq

¸

. (61)

By expanding the exponential in (60) in a power series and rearranging terms we obtain

δ2ptq ´
1

2

q1ptq

qptq
δ1ptq ` 4λ2qptqδptq ´

1

4

`

δ1ptq
˘2

` 4λ2qptq

˜

pδptqq
2

2!
`

pδptqq
3

3!
` ¨ ¨ ¨

¸

“ qptqpptq. (62)

The change of variables

xptq “

ż t

a

a

qpuq du (63)

transforms (62) into

δ2pxq ` 4λ2δpxq “ S rδs pxq ` ppxq, (64)

where S is the nonlinear differential operator defined via the formula

S rf s pxq “
pf 1pxqq

2

4
´ 4λ2

˜

pfpxqq
2

2!
`

pfpxqq
3

3!
` ¨ ¨ ¨

¸

. (65)
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We observe that the function pptq defined in formula (61) is related to the Schwarzian derivative (see
Section 2.4) tx, tu of the function x defined in (63) via the formula

pptq “ ´
2

qptq
tx, tu “ ´2

ˆ

dt

dx

̇2

tx, tu. (66)

From (66) and Formula (44) in Section 2.4, we see that

ppxq “ 2tt, xu; (67)

that is the function ppxq is twice the Schwarzian derivative of the inverse of the function xptq.

We also observe that the differential operator appearing on the left-hand side of (64) is the constant
coefficient Helmholtz equation. In order to exploit this observation, we define the operator T for
functions f P SpRq via the formula

T rf s pxq “
1

4λ

ż 8

´8

sin p2λ |x´ y|q fpyq dy for all x P R. (68)

According to Theorem 1, T rf s is the unique solution of the ordinary differential equation

y2pxq ` 4λ2ypxq “ fpxq (69)

such that

T rf sz pξq “
fppξq

4λ2 ´ ξ2
. (70)

Consequently, introducing the representation

δpxq “ T rσs pxq (71)

into (64) results in the nonlinear integral equation

σpxq “ S rT rσss pxq ` ppxq. (72)

3.2. Nonoscillatory solutions of Kummer’s equation

Equation (72) does not admit solutions for all functions p. However, according to the following result,
which appears as Theorem 12 in [4], if the function p is nonoscillatory then there exists a function ν of
small magnitude such that the nonlinear integral equation

σpxq “ S rT rσss ` ppxq ` νpxq (73)

admits a solution σ which is also nonoscillatory.

Theorem 3. Suppose that q P C8 pRq is strictly positive, that xptq is defined by the formula

xptq “

ż t

0

a

qpuq du, (74)

and that the function p defined via the formula

ppxq “ 2tt, xu (75)

is an element of SpRq. Suppose further that there exist positive real numbers λ, Γ and µ such that

λ ě 4max

"

1

µ
,Γ

*

(76)

and

|pppξq| ď Γ exp p´µ |ξ|q for all ξ P R. (77)

Then there exist functions σ and ν in SpRq such that σ is the unique solution of the nonlinear integral

10



equation

σpxq “ S rT rσss pxq ` ppxq ` νpxq, for all x P R, (78)

|σppξq| ď
3

2Γ
exp p´µ|ξ|q for all |ξ| ď

?
2λ, (79)

σppξq “ 0 for all |ξ| ą
?
2λ, (80)

and

}ν}8 ď
Γ

µ
exp p´µλq . (81)

Suppose that σ and ν are the functions obtained by invoking Theorem 3, and that xptq is the function
defined by the formula

xptq “

ż t

a

a

qpuq du. (82)

We define δ by the formula

δpxq “ T rσs pxq, (83)

r by the formula

rptq “ logpqptqq ` δpxptqq, (84)

and α by the formula

αptq “ λ

ż t

a
exp

ˆ

rpuq

2

̇

du. (85)

From the discussion in Section 3.1, we conclude that δpxq is a solution of the nonlinear differential
equation

δ2pxq ` 4λ2δpxq “ S rδs pxq ` ppxq ` νpxq for all x P R, (86)

that δpxptqq is a solution of the nonlinear differential equation

δ2ptq ´
1

2

q1ptq

qptq
δ1ptq ´

1

4

`

δ1ptq
˘2

` 4λ2qptq pexppδptqq ´ 1q “ qptq ppptq ` νptqq for all t P R, (87)

that rptq is a solution of the nonlinear differential equation

r2ptq ´
1

4
pr1ptqq2 ` 4λ2 pexpprptqq ´ qptqq “ qptqνptq for all t P R, (88)

and that α is a solution of the nonlinear differential equation

`

α1ptq
˘2

“ λ2
ˆ

νptq

4λ2
` 1

̇

qptq ´
1

2

α3ptq

α1ptq
`

3

4

ˆ

α2ptq

α1ptq

̇2

for all t P R. (89)

From (89), we see that α is a phase function for the second order linear ordinary differential equation

y2ptq ` λ2
ˆ

1 `
νptq

4λ2

̇

qptqyptq “ 0 for all a ď t ď b. (90)

The following consequence of Theorem 3, which appears as Theorem 14 in [4], bounds the order of
magnitude of the difference between solutions of (90) and those of (1).

Corollary 1. Suppose that the hypotheses of Theorem 3 are satisfied, that σ and ν are the functions
obtained by invoking it. Suppose also that α is defined as in (85), and that u, v are the functions defined

11



via the formulas

uptq “
cospαptqq
a

α1ptq
(91)

and

vptq “
sinpαptqq
a

α1ptq
. (92)

Then there exist a constant C and a basis tũ, ṽu in the space of solutions of (1) such that

|uptq ´ ũptq| ď
C

λ
exp p´µλq for all a ď t ď b (93)

and

|vptq ´ ṽptq| ď
C

λ
exp p´µλq for all a ď t ď b. (94)

The constant C depends on the coefficient q appearing in (1), but not on the parameter λ.

3.3. A bound on δ in the event that p is small in magnitude

In this section, we bound the solution δ of the nonlinear differential equation (86) and its derivative
under an assumption on the function p appearing in (86). More specifically, we show that when the
function p is of sufficiently small magnitude on the interval p´8, as and λ is sufficiently large, the
restrictions of δ and δ1 to p´8, as are on the order of

exp

ˆ

´
λµ

2

̇

. (95)

This result, whose proof is the purpose of this section, is recorded as Theorem 4.

Deriving bounds on the magnitude of δ and δ1 on the infinite interval p´8, as is complicated by the
fact that the operator T is defined via convolution with the nonintegrable kernel

1

4λ
sin p2λ|x|q . (96)

To sidestep this difficulty, we perturb the parameter λ in the linear differential operator appearing on
the left-hand side of Equation (86) by an imaginary constant iη of small magnitude. To be more precise,
for each sufficiently small η ą 0 we define the operator Tη for functions f P SpRq via the formula

Tη rf s pxq “
1

4 pλ` iηq

ż 8

´8

exp p2pλ` iηq |x´ y|q fpyq dy. (97)

and we let δη denote the function defined via

δηpxq “ Tη rσs pxq. (98)

According to Theorem 1, for each η ą 0, δη is the unique solution of the equation

δ2
ηpxq ` 4pλ` iηq2δηpxq “ σpxq (99)

such that

Tη rδηs{ pξq “
σppξq

4pλ` iηq2 ´ ξ2
for all ξ P R. (100)

Since σ is a solution of the integral equation (73), it follows from (99) that

δ2
ηpxq ` 4pλ` iηq2δηpxq “ S rδs pxq ` ppxq ` νpxq. (101)

Note that it is indeed S rδs and not S rδηs which appears on the right-hand side of (101). The advantage
of (101) over the nonlinear differential equation

δ2pxq ` 4λ2δpxq “ S rδs pxq ` ppxq ` νpxq (102)

12



defining δ is that the fundamental solution

1

4pλ` iηqi
exp p2pλ` iηqi|x|q (103)

of the differential equation

y2pxq ` 4pλ` iηq2ypxq “ 0 (104)

associated with the Fourier transform is an element of L1 pRq.

The proof of Theorem 4 involves four technical lemmas. The first of these, Lemma 1, bounds the
functions |δpxq ´ δηpxq| and

ˇ

ˇδ1pxq ´ δ1
ηpxq

ˇ

ˇ for all x on the real line. Lemmas 2 and 3 provide inequal-
ities which are used in Lemma 4 to bound the magnitudes of δη and δ1

η on the interval p´8, as under
assumptions on the magnitude of the function p there. Lemma 4 is established via a standard “conti-
nuity” argument. That is, we use the continuity of the functions δη and δ1

η to show that the subset of
p´8, as on which the relevant bound is satisfied is nonempty, open and closed in the relative topology
of p´8, as. Since p´8, as is a connected space, it follows that the bound is satisfied on all of p´8, as.
Lemma 4 is then combined with the bounds on |δ ´ δη| and

ˇ

ˇδ1 ´ δ1
η

ˇ

ˇ provided by Lemma 1 to establish
the principal result of this section, Theorem 4, which bounds the magnitude of δ and δ1 on p´8, as

under the assumption that the function p is small there.

Lemma 1. Suppose that σ P SpRq, that there exist positive real numbers µ, Γ and λ such that

|σppξq| ď
3Γ

2
exp p´µ |ξ|q for all |ξ| ă

?
2λ, (105)

and that

σppξq “ 0 for all |ξ| ě
?
2λ. (106)

Suppose also that η is a positive real number such that

2η ď λ. (107)

Suppose further that δ is defined via the formula

δpxq “ T rσs pxq “
1

4λ

ż 8

´8

sin p2λ |x´ y|qσpyq dy, (108)

and that δη is defined via the formula

δηpxq “ Tη rσs pxq “
1

4 pλ` iηq i

ż 8

´8

exp p2 pλ` iηq i |x´ y|qσpyq dy. (109)

Then

lim
|x|Ñ8

|δηpxq| `
ˇ

ˇδ1
ηpxq

ˇ

ˇ “ 0, (110)

|δpxq| ď
3Γ

4πµλ2
for all x P R, (111)

ˇ

ˇδ1pxq
ˇ

ˇ ď
3Γ

4πµ2λ2
, for all x P R, (112)

|δpxq ´ δηpxq| ď
3Γη

πµλ3
for all x P R, (113)

and
ˇ

ˇδ1pxq ´ δ1
ηpxq

ˇ

ˇ ď
3Γη

πµ2λ3
for all x P R. (114)
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Proof. We observe that functions

σppξq

4pλ` iηq2 ´ ξ2
(115)

and
iξσppξq

4pλ` iηq2 ´ ξ2
, (116)

are elements of C8
c pRq. Among other things, this implies that the inverse Fourier transforms of (115)

and (116), which are δη and δ1
η, respectively, are elements of SpRq. The conclusion (110) follows

immediately from this observation.

An elementary calculation shows that
ˇ

ˇ

ˇ

ˇ

1

4pλ` iηq2 ´ ξ2
´

1

4λ2 ´ ξ2

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

4η

4λ2 ´ ξ2

ˇ

ˇ

ˇ

ˇ

d

4λ2 ` η2

p4λ2 ´ ξ2 ´ 4η2q2 ` 64η2λ2
. (117)

We observe that
ˇ

ˇ

ˇ

ˇ

4η

4λ2 ´ ξ2

ˇ

ˇ

ˇ

ˇ

ď
2η

λ2
(118)

for all η ą 0 and |ξ| ď
?
2λ. Moreover,

4λ2 ´ 4η2 ´ ξ2 ě 2λ2 ´ 4η2 ě 0 (119)

for all |ξ| ď
?
2λ and λ ě 2η. It follows from (119) that

4λ2 ` η2

p4λ2 ´ ξ2 ´ 4η2q2 ` 64η2λ2
ď

4λ2 ` η2

p2λ2 ´ 4η2q2 ` 64η2λ2

“
4λ2 ` η2

4λ4 ` 48λ2η2 ` 16η4

ď
1

λ2
4λ2 ` η2

4λ2 ` 48η2

ď
1

λ2

(120)

for all 0 ă 2η ď λ, and |ξ| ď
?
2λ. By inserting (120) and (118) into (117),we conclude that

ˇ

ˇ

ˇ

ˇ

1

4pλ` iηq2 ´ ξ2
´

1

4λ2 ´ ξ2

ˇ

ˇ

ˇ

ˇ

ď
2η

λ3
(121)

for all 0 ă 2η ď λ and |ξ| ă
?
2λ. From Theorem 1 and (108) we see that

}δ}8 ď
1

2π

›

›

›
δp
›

›

›

1
ď

1

2π

ż 8

´8

ˇ

ˇ

ˇ

ˇ

σppξq

4λ2 ´ ξ2

ˇ

ˇ

ˇ

ˇ

dξ, (122)

and
›

›δ1
›

›

8
ď

1

2π

›

›

›
δ1p

›

›

›

1
ď

1

2π

ż 8

´8

ˇ

ˇ

ˇ

ˇ

iξσppξq

4λ2 ´ ξ2

ˇ

ˇ

ˇ

ˇ

dξ. (123)

We insert (105) and (106) into (122) to obtain

}δ}8 ď
3Γ

4π

ż

?
2λ

´
?
2λ

ˇ

ˇ

ˇ

ˇ

1

4λ2 ´ ξ2

ˇ

ˇ

ˇ

ˇ

exp p´µ |ξ|q dξ ď
3Γ

8πλ2

ż

?
2λ

´
?
2λ

exp p´µ |ξ|q dξ ď
3Γ

4πµλ2
, (124)

which is (111). By inserting (105) and (106) into (123) we obtain

›

›δ1
›

›

8
ď

3Γ

4π

ż

?
2λ

´
?
2λ

ˇ

ˇ

ˇ

ˇ

iξ

4λ2 ´ ξ2

ˇ

ˇ

ˇ

ˇ

exp p´µ |ξ|q dξ ď
3Γ

8πλ2

ż

?
2λ

´
?
2λ

|ξ| exp p´µ |ξ|q dξ ď
3Γ

4πµ2λ2
, (125)
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which is (112). Next, we observe that

}δ ´ δη}
8

ď
1

2π

›

›

›
δp ´ δηp

›

›

›

1
ď

1

2π

ż 8

´8

ˇ

ˇ

ˇ

ˇ

σppξq

4λ2 ´ ξ2
´

σppξq

4pλ` iηq2 ´ ξ2

ˇ

ˇ

ˇ

ˇ

dξ, (126)

and that
›

›δ1 ´ δ1
η

›

›

8
ď

1

2π

›

›

›
iξδp ´ iξδηp

›

›

›

1
ď

1

2π

ż 8

´8

ˇ

ˇ

ˇ

ˇ

iξσppξq

4λ2 ´ ξ2
´

iξσppξq

4pλ` iηq2 ´ ξ2

ˇ

ˇ

ˇ

ˇ

dξ. (127)

We insert (105), (106) and (121) into (126) to establish that

}δ ´ δη}
8

ď
3Γη

2πλ3

ż

?
2λ

´
?
2λ

exp p´µ |ξ|q dξ ď
3Γη

πµλ3
, (128)

for all 0 ă η ă 2λ, which is the conclusion (113). Finally, we combine (105), (106) and (121) with (127)
to conclude that

›

›δ1 ´ δ1
η

›

›

8
ď

3Γη

2πλ3

ż

?
2λ

´
?
2λ

|ξ| exp p´µ |ξ|q dξ ď
3Γη

πµ2λ3
, (129)

for all 0 ă 2η ă λ, which establishes (114).

The following technical lemma, which will be used in the proof of Lemma 4, bounds the magnitude of
S rδs, where S is the nonlinear differential operator defined in (65), in terms of the solution δη of the
complexified equation and its derivative.

Lemma 2. Suppose that the hypotheses of Lemma 1 are satisfied, and that

λ ě 4max

"

Γ,
1

µ

*

. (130)

Suppose further that S is the nonlinear differential operator defined via (65). Then

|S rδs pxq| ď
η2

68
`

ˇ

ˇδ1
ηpxq

ˇ

ˇ

2

2
`

102λ2

25
|δηpxq|

2 for all x P R. (131)

Proof. We define the function τ via the formula

τpxq “ δpxq ´ δηpxq (132)

so that δ “ δη ` τη. We invoke Lemma 1 and exploit the assumption (130) to obtain

|τpxq| ď
3η

16πλ
, for all x P R (133)

ˇ

ˇτ 1pxq
ˇ

ˇ ď
3η

64π
for all x P R. (134)

and

|δpxq| ď
3

64π
for all x P R. (135)

From the definition (65) of S and the triangle inequality we conclude that

|S rδs pxq| ď

ˇ

ˇ

ˇ
pδ1pxqq

2
ˇ

ˇ

ˇ

4
` 4λ2 |exppδpxqq ´ δpxq ´ 1|

(136)

for all x P R. We insert the inequality

|exppxq ´ x´ 1| ď
|x|

2

2
expp|x|q for all x P R (137)
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into (136) to obtain

|S rδs pxq| ď
|δ1pxq|

2

4
` 2λ2 exp p|δpxq|q |δpxq|

2 for all x P R. (138)

From (135) we obtain

exp p|δpxq|q ď exp

ˆ

3

64π

̇

ď
102

100
for all x P R. (139)

We insert (139) into (138) to see that

|S rδs pxq| ď
|δ1pxq|

2

4
`

204λ2

100
|δpxq|

2 for all x P R. (140)

We combine (132) with (140) and the fact that

p|x` y|q2 ď p|x| ` |y|q2 ď 2
´

|x|
2

` |y|
2
¯

for all x, y P R (141)

to conclude that

|S rδs pxq| ď

ˇ

ˇδ1
ηpxq

ˇ

ˇ

2
` |τ 1pxq|

2

2
`

408λ2

100

´

|δηpxq|
2

` |τpxq|
2
¯

(142)

for all x P R. Next we insert (133) and (134) into (142) to see that

|S rδs pxq| ď
η2

68
`

ˇ

ˇδ1
ηpxq

ˇ

ˇ

2

2
`

102λ2

25
|δηpxq|

2 (143)

for all x P R, which is the conclusion of the theorem.

Our third technical lemma bounds the magnitude of the Fourier transform of the product of σ with a
decaying exponential function at the points ˘2λ.

Lemma 3. Suppose that the hypotheses of Lemma 1 are satisfied, and that x is an arbitrary real
number. Then

ˇ

ˇ

ˇ

ˇ

ż 8

´8

expp˘2λiyq exp p´2η |x´ y|qσpyq dy

ˇ

ˇ

ˇ

ˇ

ď
3Γ

2
exp

ˆ

´
λµ

2

̇

. (144)

Proof. For any x P R, we define the function gx via the formula

gxpyq “ exp p´2η |x´ y|q . (145)

We observe that

gxp pξq “
4η expp´ixξq

4η2 ` ξ2
. (146)

Consequently,

σ ¨ gxz p˘2λq “
1

2π

ż 8

´8

σpp˘2λ´ ξq gxp pξq dξ “
1

2π

ż 8

´8

σpp˘2λ´ ξq
4η expp´ixξq

4η2 ` ξ2
dξ. (147)

We insert (105) and (106) into (147) to conclude that

|gx ¨ σz p˘2λq| ď
3Γ

4π

ż

?
2λ

´
?
2λ

exp p´ |˘2λ´ ξ|µq
4η

4η2 ` ξ2
dξ

ď
3Γ

4π
exp

´

´

´

2λ´
?
2λ

¯

µ
¯

ż 8

´8

4η

4η2 ` ξ2
dξ

ď
3Γ

2
exp

ˆ

´
λµ

2

̇

.

(148)
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In the third line of (148) we used the (easily verifiable) fact that
ż 8

´8

4η

4η2 ` ξ2
dξ “ 2π for all η ą 0. (149)

We now combine Lemmas 1, 2 and 3 to develop a bound on the solution δη of the complexified equation

δ2
ηpxq ` 4pλ` iηq2δηpxq “ σpxq “ S rδs pxq ` ppxq ` νpxq (150)

and its derivative on the interval p´8, as under the assumption that the function p is of small magnitude
on that interval. The proof proceeds via a standard “continuity” argument.

Lemma 4. Suppose that the hypotheses of Theorem 3 are satisfied, and that σ and ν are the functions
obtained by invoking it. Suppose further that η ą 0 and a are real numbers, that

λ ě max

"

4

µ
, 4Γ, 2η,

2

µ
log

ˆ

24Γ

η

̇

,
1

µ
log

ˆ

16Γ

µη2

̇*

, (151)

and that

|ppxq| ď
η2

16
for all x ď a. (152)

Suppose also that δη is defined via the formula

δηpxq “ Tη rσs pxq. (153)

Then

|δηpxq| ď
η

4λ
(154)

and
ˇ

ˇδ1
ηpxq

ˇ

ˇ ď
η

4
(155)

for all x ď a.

Proof. From the definition (97) of Tη and (153) we see that

δηpxq “
1

4pλ` iηqi

ż 8

´8

exp p2pλ` iηqi |x´ y|q σpyq dy

“
expp2λixq

4pλ` iηqi

ż x

´8

exp p´2η |x´ y|q expp´2λiyq σpyq dy

`
expp´2λixq

4pλ` iηqi

ż 8

x
expp´2η |x´ y|q expp2λiyq σpyq dy

(156)

for all x P R. By differentiating (156) we conclude that

δ1
ηpxq “

1

2

ż 8

´8

exp p2pλ` iηqi |x´ y|q signpx´ yq σpyq dy

“
expp2λixq

2

ż x

´8

exp p´2η |x´ y|q expp´2λiyq σpyq dy

´
expp´2λixq

2

ż 8

x
expp´2η |x´ y|q expp2λiyq σpyq dy

(157)
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for all x P R. We observe that
ż 8

x
expp´2η |x´ y|q expp2λiyq σpyq dy “

ż 8

´8

expp´2η |x´ y|q expp2λiyq σpyq dy

´

ż x

´8

expp´2η |x´ y|q expp2λiyq σpyq dy

(158)

for all x P R. By inserting (158) into (156), taking absolute values, and applying the triangle inequality
we obtain

|δηpxq| ď
1

2λ

ż x

´8

exp p´2η |x´ y|q |σpyq| dy

`
1

4λ

ˇ

ˇ

ˇ

ˇ

ż 8

´8

expp´2η |x´ y|q expp2λiyq σpyq dy

ˇ

ˇ

ˇ

ˇ

(159)

for all x P R. By inserting (158) into (157) and taking absolute values, we conclude that

ˇ

ˇδ1
ηpxq

ˇ

ˇ ď

ż x

´8

exp p´2η |x´ y|q |σpyq| dy

`
1

2

ˇ

ˇ

ˇ

ˇ

ż 8

´8

expp´2η |x´ y|q expp2λiyq σpyq dy

ˇ

ˇ

ˇ

ˇ

(160)

for all x P R. We now combine Lemma 3 with our assumption that

λ ě
2

µ
log

ˆ

24Γ

η

̇

. (161)

which is part of (151), to see that
ˇ

ˇ

ˇ

ˇ

ż 8

´8

expp´2η |x´ y|q expp2λiyq σpyq dy

ˇ

ˇ

ˇ

ˇ

ď
3Γ

2
exp

ˆ

´
µλ

2

̇

ď
η

16
(162)

for all x P R. We insert (162) into (159) and (160) in order to obtain the inequalities

|δηpxq| ď
1

2λ

ż x

´8

exp p´2η |x´ y|q |σpyq| dy `
η

64λ
for all x P R (163)

and
ˇ

ˇδ1
ηpxq

ˇ

ˇ ď

ż x

´8

exp p´2η |x´ y|q |σpyq| dy `
η

32
for all x P R. (164)

Now we define δ via the formula

δpxq “ T rσs pxq. (165)

From (78) and (165) we conclude that

σpxq “ S rδs pxq ` ppxq ` νpxq for all x P R. (166)

We combine conclusion (81) of Theorem 3 with the assumption that

λ ě
1

µ
log

ˆ

16Γ

µη2

̇

(167)

which is part of (151), in order to conclude that

}v}8 ď
Γ

µ
expp´µλq ď

η2

16
. (168)

We combine (152), (168) and the fact that
ż x

´8

expp´2η |x´ y|qdy “
1

2η
for all x P R (169)
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in order to conclude that
ż x

´8

expp´2η |x´ y|q p|ppyq| ` |νpyq|q dy ď
η

16
(170)

for all x ď a. We combine Lemma 2 with (169) in order to conclude that
ż x

´8

exp p´2η |x´ y|q |S rδs pyq| dy ď
η

136
`

102λ2

50η
sup

´8ďyďx
|δηpyq|

2
`

1

4η
sup

´8ďyďx

ˇ

ˇδ1
ηpyq

ˇ

ˇ

2
(171)

for all x P R. By combining (166), (170) and (171) we conclude that
ż x

´8

expp´2η |x´ y|q |σpyq| dy ď
19η

272
`

102λ2

50η
sup

´8ďyďx
|δηpxq|

2
`

1

4η
sup

´8ďyďx

ˇ

ˇδ1
ηpxq

ˇ

ˇ

2
(172)

for all x ď a. Inserting (172) into (163) and (164) yields the inequalities

|δηpxq| ď
55η

1088λ
`

102λ

100η
sup

´8ďyďx
|δηpxq|

2
`

19

272ηλ
sup

´8ďyďx

ˇ

ˇδ1
ηpxq

ˇ

ˇ

2
(173)

and
ˇ

ˇδ1
ηpxq

ˇ

ˇ ď
9η

136
`

102λ2

50η
sup

´8ďyďx
|δηpxq|

2
`

1

4η
sup

´8ďyďx

ˇ

ˇδ1
ηpxq

ˇ

ˇ

2
, (174)

both of which hold for all x ď a.

We denote by Ω the set
!

x ď a : |δηpyq| ď
η

4λ
and

ˇ

ˇδ1
ηpyq

ˇ

ˇ ď
η

4
for all y P p´8, xs

)

. (175)

The continuity of δη and δ1
η imply that Ω is closed in the relative topology of p´8, as (that is, the

topology it inherits as a subset of R). Conclusion (110) of Lemma 1 implies that Ω is nonempty. We
let x˚ ă a denote an element of Ω. By inserting the inequalities

|δηpyq| ď
η

4λ
for all y ď x˚ (176)

and
ˇ

ˇδ1
ηpyq

ˇ

ˇ ď
η

4
for all y ď x˚ (177)

into (173) and (174) we conclude that

|δηpxq| ď
55η

1088λ
`

102η

1600λ
`

η

128λ
“

6643η

54400λ
ă

η

4λ
(178)

and
ˇ

ˇδ1
ηpxq

ˇ

ˇ ď
19η

272
`

102η

800
`

η

64
“

5693η

27200
ă
η

4
(179)

for all x ď x˚. The continuity of δη and δ1
η together with (178) and (179) imply an open neighborhood

of x˚ is contained in Ω. In other words, Ω is open in the relative topology of p´8, as. In fact, Ω must
be all of p´8, as since it is a nonempty set which is both open and closed in the relative topology of
the connected set p´8, as. The conclusions (154) and (155) follow immediately.

We now combine Lemmas 1, 2, 3 and 4 in order to establish the principal result of this section, which
is a bound on the restriction of the nonoscillatory solution δ of the nonlinear differential equation

δ2pxq ` 4λ2δpxq “ S rδs pxq ` ppxq ` νpxq (180)

to the interval p´8, as under the assumption that p is of small magnitude there.

Theorem 4. Suppose that the hypotheses of Theorem 3 are satisfied, and that σ and ν are the functions
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obtained by invoking it. Suppose further that C1 is the real number

C1 “ max

#

24Γ,

d

16Γ

µ

+

, (181)

and that

λ ě max

"

4Γ,
4

µ
,
Γ

4µ
,
2

µ
W0 pC1µq

*

. (182)

Suppose also that a is a real number, that

|ppxq| ď
C2
1

16
exp p´µλq for all x ď a, (183)

and that δ is defined via the formula

δpxq “ T rσs pxq. (184)

Then

|δpxq| ď
C1

2λ
exp

ˆ

´
µλ

2

̇

(185)

and
ˇ

ˇδ1pxq
ˇ

ˇ ď
C1

2
exp

ˆ

´
µλ

2

̇

(186)

for all x ď a.

Remark 2. In (182), W0 refers to the branch of the Lambert W function which is greater than or equal
to ´1 on the interval r´1{e,8q; see Section 2.5.

Proof. We let

η “ C1 exp

ˆ

´
µλ

2

̇

. (187)

From our assumption that

λ ě
2

µ
W0 pC1µq , (188)

which is part of (182), and the inequality (46) of Section 2.5 we conclude that

λ ě 2C1 exp

ˆ

´µλ

2

̇

“ 2η. (189)

Moreover, by inserting (181) into (189) and using the inequality (46) we obtain

η ď 24Γ exp

ˆ

´µλ

2

̇

. (190)

and

η2 ď
16Γ

η
exp p´µλq . (191)

It follows immediately from (190) and (191) that

λ ě max

"

2

µ
log

ˆ

24Γ

η

̇

,
1

µ
log

ˆ

16Γ

µη2

̇*

. (192)

Together (187), (192) and (182) ensure that the hypothesis (151) of Lemma 4 is satisfied. From (187)
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and (183), we conclude that

|ppxq| ď
η2

16
, (193)

so the hypothesis (152) of Lemma 4 is satisfied as well. By invoking Lemma 4 we see that

|δηpxq| ď
η

4λ
(194)

and
ˇ

ˇδ1
ηpxq

ˇ

ˇ ď
η

4
(195)

for all x ď a. Inserting (187) into (194) and (195) gives the inequalities

|δηpxq| ď
C1

4λ
exp

ˆ

´
µλ

2

̇

(196)

and
ˇ

ˇδ1
ηpxq

ˇ

ˇ ď
C1

4
exp

ˆ

´
µλ

2

̇

, (197)

which hold for all x ď a. We combine the hypotheses (76) of Theorem 3, and conclusions (113) and
(114) of Lemma 1 to obtain

|δpxq ´ δηpxq| ď
3Γη

πµλ2
ď

3

16π
C1 exp

ˆ

´
µλ

2

̇

. (198)

Similarly, from (182) and conclusions (113) and (114) of Lemma 1 we obtain

ˇ

ˇδ1pxq ´ δ1
ηpxq

ˇ

ˇ ď
3Γη

µ2πλ2
ď

3

16π
C1 exp

ˆ

´
µλ

2

̇

. (199)

We combine (198) with (196) to obtain (185), and (199) with (197) to obtain (186).

3.4. A continuity result

Theorem 4 implies that when the magnitude of the function p is sufficently small on the interval p´8, as,
the values of δpaq and δ1paq are on the order of

exp

ˆ

´
1

2
µλ

̇

. (200)

Moreover, the magnitude of the function ν appearing in (86) is on the order of

exp p´µλq . (201)

The following theorem follows from these observations and standard results regarding the continuity of
ordinary differential equations with respect to the perturbation of initial values and coefficients (see,
for instance, [5] or [26]).

Theorem 5. Suppose that the hypotheses of Theorem 3 are satisfied, that σ and ν are the functions
obtained by invoking it, and that δ is the function defined via the formula

δpxq “ T rσs pxq (202)

so that δ solves the equation

δ2pxq ` 4λ2δpxq “ S rδs pxq ` ppxq ` νpxq for all x P R. (203)

Suppose also that η : ra, bs Ñ R is a continuously differentiable function, and that there exists a constant
C ą 0 such that

|ηpxq| `
ˇ

ˇη1pxq
ˇ

ˇ ď C exp

ˆ

´
µλ

2

̇

(204)
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for all a ď x ď b. Then there exist a constant C 1 ą 0 and a twice continuously differentiable function
δ0 : ra, bs Ñ R such that δ0 solves the initial value problem

$

’

&

’

%

δ2
0pxq ` 4λ2δ0pxq “ S rδ0s pxq ` ppxq ` ηpxq for all x0 ď x ď x1

δ0paq “ 0

δ1
0pbq “ 0,

(205)

and

|δpxq ´ δ0pxq| `
ˇ

ˇδ1pxq ´ δ1
0pxq

ˇ

ˇ ď C 1 exp

ˆ

´
µλ

2

̇

(206)

for all a ď x ď b.

That the difference between the solution r2 of the boundary value problem (19) and the nonoscillatory

solution r of (16) is on the order of exp
´

´
µλ
2

¯

follows easily from Theorem 5.

4. Numerical algorithm

In this section, we describe an algorithm for the solution of the boundary value problem
$

’

&

’

%

y2ptq ` λ2qptqyptq “ 0 for all a ď t ď b

c1ypaq ` c2y
1paq “ α

c3ypbq ` c4y
1pbq “ β.

(207)

where c1, c2, c3, c4, α, β and λ ą 0 are real numbers, and q is strictly positive on the interval ra, bs and
analytic in an open set containing the interval ra, bs. It can be easily modified to address, inter alia,
initial value problems.

The algorithm exploits the analytical appparatus developed in Section 3 in order to construct a solution
r2 of the logarithm form of Kummer’s equation

r2
2ptq ´

1

4
pr1

2ptqq2 ` 4λ2 pexppr2ptqq ´ qptqq “ 0 for all a ď t ď b. (208)

Once the function r2 has been obtained, we construct a phase function α via the formula

αptq “ γ

ż t

0
exp

ˆ

r2puq

2

̇

du. (209)

It has the property that the functions u, v defined by the formulas

uptq “
cospαptqq

|α1ptq|
1{2

(210)

and

vptq “
sinpαptqq

|α1ptq|
1{2

(211)

form a basis in the space of solutions of the ordinary differential equation

y2ptq ` λ2qptqyptq “ 0 for all a ď t ď b. (212)

We compute real numbers d1 and d2 such that the function

yptq “ d1uptq ` d2vptq (213)

satisfies the boundary conditions

c1ypaq ` c2y
1paq “ α

c3ypbq ` c4y
1pbq “ β

(214)
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by solving the system of two linear algebraic equations in the two unknowns d1, d2 obtained by inserting
(213) into (214).

In addition to the value of λ and a routine for evaluating the function q at any point on the interval
ra, bs, the user supplies as inputs to the algorithm an integer m ą 0 and a partition

a “ ξ0 ă ξ1 ă ξ2 ă ¨ ¨ ¨ ă ξn “ b (215)

of the interval ra, bs. For each j “ 1, . . . , n, the restrictions of the functions r and α to rξj´1, ξjs are
represented by their values at the points

xj,0, xj,1, xj,2, . . . , xj,m, xj,m (216)

of the pm ` 1q-point Chebyshev grid on the interval rξj´1, ξjs (see Section 2.6). The assumption is, of
course, that the restrictions of these functions to each subinterval are well-approximated by polynomials
of degree m. Note that for each j “ 1, . . . , n ´ 1, the last Chebyshev point in the interval rξj´1, ξjs
coincides with the first Chebyshev point in the interval rξj , ξj`1s; that is,

xj,m “ ξj`1 “ xj`1,0 (217)

for all j “ 1, . . . , n´ 1.

The output of the algorithm consists of the values of α and α1 at each of the the nm` 1 points

x1,0, . . . , x1,m, x2,0, . . . , x2,m, . . . xn,0, . . . , xn,m (218)

(there are nm`1 points rather than npm`1q points because x1,m “ x2,0, x2,m “ x3,0, etc.). Using this
data, the value of the solution y0 of the boundary value problem (207) can be computed at any point
t in ra, bs. More specifically, to evaluate y0ptq at the point t, we calculate αptq and α1ptq via Chebyshev
interpolation (as discussed in Section 2.6), then evaluate uptq and vptq using formulas (210) and (211),
and finally insert the values of uptq and vptq into (213) in order to obtain y0ptq.

Our algorithm calls for solving a number of stiff ordinary differential equations. In our implementation,
we used the spectral deferred correction method described in [9]. It was chosen for its excellent stability
properties; however, any standard approach to the numerical solution of stiff ordinary differential
equation can be substituted for the algorithm of [9].

We now describe the procedure for the construction of the phase function α in detail. It consists of the
following four phases.

Phase 1: Construction of the Windowed Problem

In the first phase of the algorithm we construct a windowed version q̃ of the function q using the
following sequence of steps:

1. We let

ψptq “

1 ´ erf
´

13
b´a

`

t´ a`b
2

˘

¯

2
(219)

so that ψptq « 1 for all t near a and ψptq « 0 for all t near b. Note that the constant 13 in (219)
was chosen to be the smallest positive integer such that the quantities |1 ´ ϕpaq| and |ϕpbq| are
less than machine precision.

2. We define the function q̃ by the formula

q̃ptq “ ψptq ` p1 ´ ψptqqqptq (220)

so that q̃ptq « 1 when t is close to a and q̃ptq « qptq when t is close to b. We refer to q̃ as the
windowed version of q.

23



Phase 2: Solution of the windowed problem

In this phase, we solve the initial value problem
$

&

%

r2
1ptq ´

1

4

`

r1
1ptq

˘2
` 4λ2 pexppr1ptqq ´ q̃ptqq “ 0 for all a ď t ď b

r1paq “ r1
1paq “ 0,

(221)

with the windowed function q̃ is in place of the original function q. We denote by r̃ the nonoscillatory
solution of the logarithm form of Kummer’s equation obtained by applying Theorem 3 to the second
order ordinary differential equation

y2ptq ` λ2q̃ptqyptq “ 0. (222)

According to the discussion in Section 3,

|r1ptq ´ r̃ptq| `
ˇ

ˇr1
1ptq ´ r̃1ptq

ˇ

ˇ “ O
ˆ

exp

ˆ

´
λµ

2

̇̇

(223)

for all t close to b. Assuming that λ is sufficiently large, the difference between r1 and the nonoscillatory
function r̃ is well below machine precision and r1 can be treated as nonoscillatory for the purposes of
numerical computation.

For each j “ 1, . . . , n, we compute the solution of (221) at the points

xj,0, . . . , xj,m (224)

of the pm` 1q-point Chebyshev grid on rξj´1, ξjs. If j “ 1, then the initial conditions are taken to be

r1paq “ r1
1paq “ 0. (225)

If, on the other hand, j ą 1, then we enforce the conditions

r1 pxj,1q “ r pxj´1,mq (226)

and

r1
1 pxj,1q “ r1

1 pxj´1,mq ; (227)

that is, we require that r1 and its first derivative agree at the left endpoint of the interval with the
value and derivative of the solution at the right endpoint of the previous interval.

Phase 3: Solution of the original problem

In this phase, we solve the problem
$

’

’

&

’

’

%

r2
2ptq ´

1

4

`

r1
2ptq

˘2
` 4λ2 pexppr2ptqq ´ qptqq “ 0 for all a ď t ď b

r2pbq “ r1pbq

r1
2pbq “ r1

1pbq

(228)

The intervals are processed in decreasing order: the nth interval rξn´1, ξns is the first to be processed,
then rξn´2, ξn´1s, and so on. Boundary conditions are imposed at the left end point of each interval;
in particular, when processing the nth interval we require that

r2 pξnq “ r1 pξnq

r1
2 pξnq “ r1 pξnq

(229)

and while processing each of the subsequent intervals rξj´1, ξjs we require that

r2 pxj,mq “ r2 pxj`1,0q

r1
2 pxj,mq “ r1

2 pxj`1,0q .
(230)
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According to the discussion in Section 3,

|rptq ´ r2ptq| “ O
ˆ

exp

ˆ

´
µλ

2

̇̇

(231)

for all a ď t ď b. As in the case of r1, (231) implies that in the high-frequency regime, the difference
between r2 and the nonoscillatory solution r of the logarithm form of Kummer’s equation associated with
the coefficient q is much smaller than machine precision. Consequently, we regard r2 as nonoscillatory
for the purposes of numerical computation.

Phase 4: Preparation of the output

In this final phase, the values of the functions α and α1 are tabulated at each of the points (218) via
the following sequence of steps:

1. We compute the values of α1 at the points (218) using the formula

α1ptq “ λ exp

ˆ

r1
2ptq

2

̇

. (232)

2. For each j “ 1, . . . , n, we apply the spectral integration matrix of order m (see Section 2.6) to
the vector

¨

˚

˚

˚

˝

α1 pxj,0q

α1 pxj,1q
...

α1 pxj,mq

˛

‹

‹

‹

‚

(233)

in order to obtain the values

αj pxj,0q , αj pxj,1q , . . . , αj pxj,mq (234)

of an antiderivative αj of the restriction of α1 to the interval rξj´1, ξjs at the nodes of the pm`1q-
point Chebyshev grid on that interval. Note that the value of αjpξjq is not necessarily consistent
with the value of αj`1pξjq. This problem is corrected in the following steps.

3. For each j “ 1, . . . , n, we define a real number γj as follows
#

γj “ α pξ1,0q if j “ 1

γj “ α pξj´1,mq if j ą 1
(235)

4. For each j “ 2, . . . , n and each i “ 0, . . . ,m, the value of the phase function α at the point xj,i is
computed via the formula

α pxj,iq “ αj pxj,iq ´ αj pxj,0q ` γj . (236)

The output of the algorithm consists of the values of α1 at the nodes (216) computed in Step 1 of Phase
4 and the values of α at the nodes (216) computed in Step 4 of Phase 4.

5. Numerical experiments

In this section, we describe numerical experiments performed to evaluate the performance of the al-
gorithm of Section 4. Our code was written in Fortran and compiled with the Intel Fortran Compiler
version 13.1.3. All calculations were carried out on a desktop computer equipped with an Intel Xeon
X5690 CPU running at 3.47 GHz. Unless otherwise noted, double precision (Fortran REAL*8) arith-
metic was used.
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5.1. Comparison with a standard solver

We measured the performance of the algorithm of this paper by applying it to the initial value problem
$

’

&

’

%

y2ptq ` λ2qptqyptq “ 0 for all ´ 1 ď t ď 1

yp´1q “ 0

y1p´1q “ λ,

(237)

where q is defined by the formula

qptq “ 1 ´ t2 cosp3tq, (238)

for seven values of λ. A reference solution was obtained by executing the spectral deferred correction
method of [9] in extended precision (Fortran REAL*16) arithmetic. The interval r´1, 1s was partitioned
into 10 equispaced subintervals and the 16 point Chebyshev grid was used to represent the nonoscillatory
phase function on each subinterval. For each value of λ, the obtained solution was compared to the
reference solution at 1000 randomly chosen points on the interval r´1, 1s.

The results of this experiment are reported in Table 1. Each row there corresponds to one value of λ
and reports the time required to construct the nonoscillatory phase function, the average time required
to evaluate the solution of (237) using this nonoscillatory phase function, and the maximum absolute
error which was observed. We see that the time required to solve (237) was independent of the value of
the parameter λ, and that the obtained accuracy decreased as λ increased. This loss of precision was
incurred when the sine and cosine of large arguments were calculated in the course of evaluating the
functions u, v defined via formulas (2), (3).

Plots of the function q defined by (238) and the windowed version of q constructed as an intermediate
step by the algorithm of Section 4 are shown in Figure 1. Plots of the solution r of the logarithm form
of Kummer’s equation when λ “ 107 and the windowed version r1 of r constructed as an intermediate
step by the algorithm of Section 4 are shown in Figure 2.

5.2. Phase functions for Chebyshev’s equation

Chebyshev’s equation

p1 ´ t2qy2ptq ´ ty1ptq ` λ2yptq “ 0 for all ´ 1 ď t ď 1 (239)

admits an exact nonoscillatory phase function which can be represented via elementary functions. More
specifically,

α0ptq “ λ arccosptq (240)

is a nonoscillatory phase function for the second order equation

ψ2ptq `

˜

2 ` t2 ` 4λ2
`

1 ´ t2
˘

4 p1 ´ t2q
2

¸

ψptq “ 0 for all ´ 1 ď t ď 1 (241)

obtained by introducing

ψptq “ p1 ´ t2q1{4yptq (242)

into (239). For each λ “ 10, 20, . . . , 1000, we applied the algorithm of Section 4 to (241) and compared
the resulting phase function to (240). Figure 3 displays a plot of the relative difference

}α ´ α0}8

}α0}8

(243)

between the exact phase function α0 and the phase function α obtained via the algorithm of Section 4
as a function of λ. We observe that as λ increases, the difference between the phase function obtained
via the algorithm and the function λ arccosptq decays at an exponential rate.
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5.3. Evaluation of Bessel functions.

We compared the cost of evaluating Bessel functions of integer order via the standard recurrence relation
with that of doing so using a nonoscillatory phase function.

We denote by Jν the Bessel function of the first kind of order ν. It is a solution of the second order
differential equation

t2y2ptq ` ty1ptq ` pt2 ´ ν2qyptq “ 0, (244)

which is brought into the standard form

ψ2ptq `

ˆ

1 ´
λ2 ´ 1{4

t2

̇

ψptq “ 0 (245)

via the transformation

ψptq “
?
t yptq. (246)

An inspection of (245) reveals that Jν is nonoscillatory on the interval
ˆ

0,
1

2

a

4ν2 ´ 1

̇

(247)

and oscillatory on the interval
ˆ

1

2

a

4ν2 ´ 1,8

̇

. (248)

In addition to being a solution of a second order differential equation, the Bessel function of the first
kind of order ν satisfies the three-term recurrence relation

Jν`1ptq “
2ν

t
Jνptq ´ Jν´1ptq. (249)

The recurrence (249) is numerically unstable in the forward direction; however, when evaluated in the
direction of decreasing index, it yields a stable mechanism for evaluating Bessel functions of integer
order (see, for instance, Chapter 3 of [20]). These and many other properties of Bessel functions are
discussed in [25].

For each of 8 values of n, we obtained an approximation of the Bessel function Jn via the algorithm
of Section 4 and compared its values to those obtained through the recurrence relation at a collection
of 1000 randomly chosen points in the interval r12

?
4n2 ´ 1, 10ns. The results of this experiment are

shown in Table 2. The phase function produced by the algorithm of Section 4 when n “ 104 is shown
in Figure 4.

5.4. Evaluation of Legendre functions

We used the algorithm of this paper to evaluate Legendre functions of the first kind of various orders
on the interval r´1, 1s.

For each real number ν, we denote by Pν the Legendre function of the first kind of order ν. It is the
solution of Legendre’s equation

p1 ´ t2qy2ptq ´ 2ty1ptq ` νpν ` 1qyptq “ 0 for all ´ 1 ď t ď 1 (250)

which is regular at the origin. Letting

ψptq “
a

1 ´ t2 yptq (251)

in Equation (250) yields

ψ2ptq `

ˆ

1

p1 ´ t2q2
`

ν

1 ´ t2
`

ν2

p1 ´ t2q2

̇

ψptq “ 0 for all ´ 1 ď t ď 1, (252)

which is in a suitable form for the algorithm of Section 4.
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We observe that the coefficient in equation (252) is singular at ˘1, which means that phase functions
for Legendre’s equation are singular at ˘1 as well. Accordingly, in this experiment we used as input to
the algorithm of Section 4 a partition of the form

´ ξ´k ă ´ξ´k`1 ă . . . ă ξ´1 ă ξ0 ă ξ1 ă . . . ξk´1 ă ξk, (253)

where k “ 50 and ξj is defined by the formula

ξj “ 1 ´ 2´|j|. (254)

The set tξju is a “graded mesh” whose points cluster near the singularities ˘1 of the coefficient in
(252). Note that (253) is not a partition of the entire interval r´1, 1s but rather a partition of r´b, bs,
where

b “ 1 ´ 2´50. (255)

Functions were represented using 16th order Chebyshev expansions on each of the intervals rξj , ξj`1s.

For each of 11 values of ν, the algorithm of this paper was applied to Equation (252) and the solution
evaluated at a collection of 1000 randomly chosen points on the interval r´1, 1s. In order to assess the
the error in each obtained solution, we constructed a reference solutions by performing the calculations
a second time using extended precision (Fortran REAL*16) arithmetic. The results are reported in
Table 3. Each row corresponds to one value of ν and reports the time required to construct the
nonoscillatory phase functions, the average time required to evaluate the Legendre function of the first
kind of order ν using this nonoscillatory phase function, and the maximum observed absolute error.
Figure 5 depicts the solution of the logarithm form of Kummer’s equation obtained by the algorithm
of this paper when ν “ π ¨ 105.

5.5. Evaluation of prolate spheroidal wave functions

We used the algorithm of Section 4 to evaluate prolate spheroidal wave functions of order 0 and we
compared its performance with that of the Osipov-Rokhlin algorithm [21].

Suppose that c ą 0 is a real number. Then there exists a sequence

0 ă χc,0 ă χc,1 ă χc,2 ă ¨ ¨ ¨ (256)

of positive real numbers such for each nonnegative integer n, the second order differential equation

p1 ´ t2qψ2ptq ´ 2tψ1ptq ` pχc,n ´ c2t2qψptq “ 0 (257)

has a continuous solution on the interval r´1, 1s. These solutions are the prolate spheroidial wave
functions of order 0 associated with the parameter c. We denote them by

ψc,0ptq, ψc,1ptq, ψc,2ptq, . . . . (258)

The monograph [22] contains a detailed discussion of the prolate spheroidal wave functions of order 0.

By introducing the function

φptq “ ψptq
a

1 ´ t2 (259)

into (257), we bring it into the form

φ2ptq `

ˆ

1

p1 ´ t2q2
`

χc,n

1 ´ t2
´ c2t2

̇

φptq “ 0. (260)

An inspection of (260) reveals that the coefficient in (260) is nonnegative on the interval r´1, 1s when
χn ě c2.

For several values of c and χn,c ą c2, we evaluated the prolate spheroidial wave function ψc,n at a
collection of 100 randomly chosen points in the interval r´1, 1s by applying the algorithm of Section 4
to (260) and via the Osipov-Rokhlin algorithm. Table 4 presents the results and Figure 6 shows a plot
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of αptq ´ ct, where c “ 105, n “ 63769, χc,n “ 1.00060408908491 ˆ 1010 and α is the nonoscillatory
phase function for Equation (260) produced by the algorithm of Section 4.
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Figure 1: The function q defined by formula (238) in Section 5.1 (left) and the windowed version q̃ of q (right).
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Figure 2: Plots of the solution r of the logarithm form of Kummer’s equation associated with the ordinary differential
equation (237) in Section 5.1 when λ “ 107 (left) and the function r1 constructed as an intermediate step by the algorithm
of Section 4 (right).

λ
Phase function Avg. phase function Maximum

construction time evaluation time error

101 7.25 ˆ 10´02 1.55 ˆ 10´06 6.93 ˆ 10´14

102 9.17 ˆ 10´02 1.58 ˆ 10´06 5.39 ˆ 10´13

103 6.74 ˆ 10´02 1.55 ˆ 10´06 3.01 ˆ 10´12

104 6.73 ˆ 10´02 1.55 ˆ 10´06 4.82 ˆ 10´11

105 6.72 ˆ 10´02 1.59 ˆ 10´06 3.23 ˆ 10´10

106 6.66 ˆ 10´02 1.64 ˆ 10´06 5.15 ˆ 10´09

107 8.60 ˆ 10´02 1.61 ˆ 10´06 3.64 ˆ 10´08

Table 1: The accuracy and running time of the algorithm of this paper when applied to the initial value problem (237)
of Section 5.1.
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Figure 3: A plot of the base-10 logarithm of the relative difference between phase function obtained by applying the
algorithm of this paper to Chebyshev’s equation (241) and the well-known nonoscillatory phase function λ arccosptq for
Chebyshev’s equation.

n
Phase function Avg. phase function Avg. recurrence Maximum

construction time evaluation time evaluation time error

101 1.70ˆ10´02 secs 2.24ˆ10´07 secs 1.40ˆ10´06 secs 1.58ˆ10´14

102 2.27ˆ10´02 secs 2.06ˆ10´07 secs 6.17ˆ10´06 secs 1.75ˆ10´14

103 1.62ˆ10´02 secs 2.23ˆ10´07 secs 4.60ˆ10´05 secs 4.62ˆ10´14

104 1.65ˆ10´02 secs 2.24ˆ10´07 secs 4.29ˆ10´04 secs 3.52ˆ10´13

105 1.62ˆ10´02 secs 2.29ˆ10´07 secs 4.12ˆ10´03 secs 4.70ˆ10´13

106 1.66ˆ10´02 secs 2.65ˆ10´07 secs 4.20ˆ10´02 secs 1.66ˆ10´12

107 2.94ˆ10´02 secs 2.69ˆ10´07 secs 4.22ˆ10´01 secs 3.88ˆ10´11

108 6.42ˆ10´01 secs 6.39ˆ10´07 secs 4.33ˆ10`00 secs 3.91ˆ10´11

Table 2: A comparison of the time required to evaluate the Bessel function Jn using the standard recurrence relation
with that required to evaluate it using a nonoscillatory phase function. The recurrence relation approach scales as Opnq

in the order n while the time required by the phase function method is Op1q.
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Figure 4: A plot of the nonoscillatory phase function for Bessel’s equation (244) when n “ 104.

ν
Phase function Avg. phase function Maximum

construction time evaluation time error

π ¨ 104 2.92ˆ10´03 secs 3.13ˆ10´07 secs 1.32ˆ10´13

π ¨ 105 2.60ˆ10´03 secs 3.84ˆ10´07 secs 3.24ˆ10´13

π ¨ 106 2.46ˆ10´03 secs 4.63ˆ10´07 secs 1.09ˆ10´12

π ¨ 107 2.97ˆ10´03 secs 3.67ˆ10´07 secs 3.21ˆ10´12

π ¨ 108 2.53ˆ10´03 secs 3.61ˆ10´07 secs 1.35ˆ10´11

?
2 ¨ 104 5.61ˆ10´03 secs 3.20ˆ10´07 secs 7.22ˆ10´13

?
2 ¨ 105 5.43ˆ10´03 secs 3.54ˆ10´07 secs 3.32ˆ10´12

?
2 ¨ 106 2.49ˆ10´03 secs 4.26ˆ10´07 secs 1.13ˆ10´12

?
2 ¨ 107 2.61ˆ10´03 secs 3.84ˆ10´07 secs 2.79ˆ10´12

?
2 ¨ 108 5.43ˆ10´03 secs 3.67ˆ10´07 secs 8.65ˆ10´12

?
2 ¨ 109 4.94ˆ10´03 secs 3.95ˆ10´07 secs 2.85ˆ10´11

Table 3: The results obtained by applying the algorithm of Section 4 to Legendre’s differential equation (250). We
observe that the running time is independent of ν, but that some accuracy is lost when evaluating Legendre functions of
large orders.
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Figure 5: A plot of the nonoscillatory solution of the logarithm form of Kummer’s equation associated with Legendre’s
differential equation (250) when ν “ π ¨ 105. This function has singularities at the points ˘1 and is represented using a
graded mesh which becomes dense near them.
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Figure 6: A plot of the function αptq ´ ct, where α is nonoscillatory phase function associated with equation (260),
c “ 105, n “ 63769 , and χn,c “ 1.00060408908491 ˆ 1010.
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