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Abstract—Channel state information (CSI) plays a vital role in
scheduling and capacity-approaching transmission optimization
of massive MIMO communication systems. In frequency division
duplex (FDD) MIMO systems, forward link CSI reconstruction
at transmitter relies on CSI feedback from receiving nodes
and must carefully weigh the tradeoff between reconstruction
accuracy and feedback bandwidth. Recent application of re-
current neural networks (RNN) has demonstrated promising
results of massive MIMO CSI feedback compression. However,
the cost of computation and memory associated with RNN
deep learning remains high. In this work, we exploit channel
temporal coherence to improve learning accuracy and feedback
efficiency. Leveraging a Markovian model, we develop a deep
convolutional neural network (CNN)-based framework called
MarkovNet to efficiently encode CSI feedback to improve ac-
curacy and efficiency. We explore important physical insights
including spherical normalization of input data and deep learning
network optimizations in feedback compression. We demonstrate
that MarkovNet provides a substantial performance improvement
and computational complexity reduction over the RNN-based
work. We demonstrate MarkovNet’s performance under different
MIMO configurations and for a range of feedback intervals and
rates. CSI recovery with MarkovNet outperforms RNN-based
CSI estimation with only a fraction of computational cost.

I. INTRODUCTION

Massive MIMO wireless interface has been identified as
a critical radio technology at the physical layer capable of
substantially improving the bandwidth efficiency and deliv-
ering Gigabits/s services to many heterogeneous subscribers
simultaneously. The efficacy of such massive MIMO downlink
depends on the availability of accurate forward (down) link
CSI estimates at base station (BS) for transmission precoding.
Given the large number of antennas in massive MIMO and
potentially broad bandwidth, such downlink CSI estimation
and acquisition require a substantial amount of feedback
from each subscriber user equipment (UE). To support high
mobility UEs in modern mobile wireless, timely feedback
for time varying (i.e., fading) CSI estimates [1], [2] pose
critical challenges. Unnecessarily frequent reporting of CSI for
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massive MIMO coverage would consume too much network
bandwidth and UE power. The need for efficient CSI feedback
in massive MIMO networks strongly motivates many research
efforts aimed at downlink CSI compression, feedback, and
reconstruction.

The problem of CSI feedback and reconstruction in massive
MIMO has been an active research area recently. Traditional
vector quantization and codebook-based methods reduce feed-
back overhead by quantizing the CSI at the UE side [3]–[6].
However, the feedback overhead grows with the number of
antennas, often requiring large amount of uplink bandwidth or
low accuracy for practical massive MIMO wireless transmis-
sion. Compressive sensing (CS)-based approaches exploit the
sparsity channel property in some domain to lower the CSI
feedback overhead [7]–[9]. However, CS-based approaches
often hinge on strong channel sparsity conditions not strictly
satisfied in some domains. Moreover, iterative CS reconstruc-
tion methods may need a large amount of computation time
to accurately recover downlink CSI estimates.

There has been a surging wave of interest in applying
artificial neural networks for forward CSI estimation [10]–
[13]. The popularity and versatility of deep learning (DL)
have motivated a number of recent works [14]–[23] that
explored deep neural networks (DNN) for downlink channel
feedback compression and recovery, particularly for massive
MIMO wireless interface when traditional feedback consume
s substantial bandwidth. For example, CsiNet [14] is a convo-
lutional autoencoder which is trained to compress and recon-
struct downlink CSI under limited bandwidth. Subsequently,
variational autoencoders [18], multi-resolution convolutional
neural networks (CNNs) [16] and denoising modules [17] have
shown enhancement of CSI feedback performance. Besides
modifying the structure of CSI feedback network, other works
have demonstrated the benefit of leveraging additional side
information in DL such as bi-directional CSI correlation [15]
and temporal CSI correlation [19] to achieve more accu-
rate CSI feedback. Specifically, Recurrent Neural Networks
(RNNs) have exploited temporal CSI coherent for feedback
compression in massive MIMO systems [19]–[22]. RNNs use
hidden states in architectures such as long short-term memory
(LSTM) cells to exploit information of past inputs.

Existing works have demonstrated that RNNs can provide
efficient CSI feedback and reconstruction for time-varying
MIMO channels [19]–[22]. However, some open questions
remain:
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1) Complexity and Storage: The number of parameters
in RNN layers for CSI compression and reconstruction
of massive MIMO systems can be staggeringly large.
For example, RNN modules may add 108 additional
parameters [19], which strains storage and computation
resources. Although a fully connected layer-based au-
toencoder which can reduce computational complexity
and memory needs has been proposed for the CSI
feedback in time varying channels [23], the achieved
CSI recovery accuracy is less impressive in comparison
to [19]. Among other works attempting to reduce RNN
size [22], [23], the most competitive models still require
about 107 parameters per snapshot. Considering the
large RNN parameter count, it is hard to justify the
huge memory overhead for the limited performance im-
provement thus far. Furthermore, the works of [22], [23]
reported a significant drop of CSI recovery performance
for large compression ratios; this performance drop was
likely due to the same compression ratio being used
in successive time slots, making it difficult to obtain
accurate CSI estimates at the initial time slot.

2) Physical Insight: The success of RNNs in areas such
as video processing [24] and natural language process-
ing (NLP) [25], [26] has stimulated their applications
in forward CSI feedback and reconstruction. However,
despite the apparent similarities among time series, the
physical nature of underlying CSI in massive MIMO is
considerably different from those in video and image
data. Leveraging domain knowledge and physical char-
acteristics on mobile wireless channels can be beneficial.
For example, each LTE subframe spans 1ms of airtime
and permits CSI feedback intervals that are integer mul-
tiples of subframe duration. DNN-based CSI feedback
and recovery should consider the practical constraint of
how often such feedback can be transmitted and how
CSI of fading channels would vary due to the Doppler
effect.

In order to improve CSI recovery accuracy and reduce feed-
back payload, we develop a novel deep learning framework
based on Markovian learning model, MarkovNet. MarkovNet
systematically exploits temporal channel correlation charac-
teristics to achieve a much smaller model size, thereby sub-
stantially reducing computational complexity and memory
requirements.

Our contributions in this paper are summarized as follows:

• Instead of training an RNN as a black box to acquire
the underlying forward link CSI’s fading characteristics,
we develop a simple but effective Markovian model that
strongly motivates the differential CSI feedback frame-
work. We provide an information theoretic rationale for
MarkovNet based on the correlation between MIMO CSIs
at successive timeslots. We demonstrate the efficacy of a
simple low order auto-regressive model as one of simplest
form of Markovian models.

• To achieve high-accuracy initial CSI feedback as the prior
information for subsequent CSI estimates, we develop
a spherical CSI feedback framework [27] which can
regulate the input distribution and make the network’s
objective function (i.e., MSE) more suitable to the com-
monly adopted accuracy metric for CSI estimation (i.e.,
NMSE).

• To further mitigate the deployment cost of DL-based
CSI feedback solutions, we tackle the high parameter
count of fully connected layers widely used in existing
CSI dimension compression and decompression modules,
and we propose a lightweight CNN-based DL module
with substantial complexity reduction without noticeable
performance loss.

• Applying a benchmark from an established RNN for CSI
estimation, we demonstrate that MarkovNet achieves bet-
ter recovery accuracy, lower computational complexity,
and less sensitivity to feedback quantization. We also
demonstrate the efficacy of MarkovNet for a variety of
channel configurations (i.e., indoor vs. outdoor, antenna
counts, feedback intervals).

• We uncovered a problem in previous works which only
measured CSI recovery error with respect to the truncated
CSI matrix in the delay domain. Such CSI recovery error
neglected the CSI recovery error due to the truncation
and artificially under-reported the estimation error at the
decoder. We assess the recovery error with respect to the
entire MIMO CSI matrix to accurately report the full CSI
estimation accuracy.

This paper is organized as follows. Section II describes the
massive MIMO system model commonly adopted in this and
similar works. Section III presents two approaches to exploit
CSI temporal coherence (RNNs and differential encoding) and
introduces our conditional entropy-based motivation for differ-
ential encoding. Section IV describes our proposed differential
encoding-based CSI feedback framework, MarkovNet, as well
as data pre-processing techniques to further improve CSI
recovery accuracy for individual channel snapshots such as
power-based spherical normalization. Section V introduces the
proposed CNN-based dimension compression and decompres-
sion module for model size and complexity reduction. Sec-
tion VI presents our experimental results, including analysis
of computational complexity and performance under feedback
quantization, for MarkovNet in comparison with a benchmark
RNN-based network. Section VII concludes this manuscript
and outlines directions for future work.

II. SYSTEM MODEL

A. Forward Link Channnel Estimation and Reconstruction

In this paper, we consider a massive MIMO BS known in 5G
as gNB equipped with Nb � 1 antennas to serve a number
of single-antenna UEs within its cell. We apply orthogonal
frequency division multiplexing (OFDM) in downlink trans-
mission over Nf subcarriers.
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To model the received signal of a UE, consider the m−th
subcarrier at time t. Let ht,m ∈ CNb×1 denote the channel
vector, wt,m ∈ CNb×1 denote transmit precoding vector,
xt,m ∈ C be the transmitted data symbol, and nt,m ∈ C be
the additive noise. Then the received signal of the UE on the
m−th subcarrier at time t is given by

yt,m = hHt,mwt,mxt,m + nt,m, (1)

where (·)H represents the conjugate transpose. The downlink
CSI matrix in the spatial frequency domain at time t is denoted
as H̃t =

[
ht,1, ...,ht,Nf

]H ∈ CNf×Nb . Based on the downlink
CSI matrix H̃t, the gNB can apply transmit precoding for each
subcarrier. However, since the CSI matrix size is Nf × Nb,
the CSI feedback payload by UE is large and consumes a
staggering amount of uplink bandwidth for massive MIMO
systems.

To reduce feedback overhead, we first exploit CSI sparsity
in the time domain delay space. Multipath effects cause short
delay spreads, resulting in sparse CSI matrices in the delay
domain [28]. With the help of 2D discrete Fourier transform
(DFT), CSI matrix Hf in spatial-frequency domain can be
transformed to be Hd in angular-delay domain using

FHd HfFa = Hd, (2)

where Fd and Fa denote the Nf ×Nf and Nb ×Nb unitary
DFT matrices, respectively. After 2D DFT of Hf , most
elements in the Nf × Nb matrix Hd are negligible except
for the first Rd rows that dominate the channel response
[14]. Therefore, we can approximate the channel by truncating
CSI matrix to the first Rd rows. Ht is utilized to denote
the first Rd rows of matrices after 2D DFT of H̃t. Using
Ht as a supervised learning objective, a DL based encoder
and decoder, which is often referred to as an autoencoder,
can be jointly trained and optimized to achieve efficient CSI
compression and reconstruction as shown in Fig. 1. Several
recent works that adopted this autoencoder structure [14] [15]
have reported notable successes.

To allow gNB to track the time-varying characteristics
of wireless fading channels, UEs need to periodically esti-
mate and feed back instantaneous CSI with high power and
bandwidth efficiency. Considering a time duration with T
successive time slots, the sequence of time-varying channel
matrix is defined as {Ht}Tt=1 = {H1,H2, · · · ,HT }.

B. High Efficiency CSI Feedback Encoding

To reduce feedback overhead, temporal coherence of the
radio fading channels can be exploited. Since RF channels
of mobile UEs are governed by physical scatterers, multi-
paths, bandwidth, and Doppler effect, the fading CSI exhibits
physically coherent characteristics including coherence time,
coherence bandwidth, and coherence space. For mobile users,
coherence time measures temporal channel variations and
describes the Doppler effect caused by UE mobility. For most
application scenarios, the massive MIMO channels do not vary

abruptly. By exploiting the channel coherence time, the UE
and the gNB can rely on their previously stored CSI estimates
to encode only the innovation components within the CSI.
Specifically, the UE can encode and feed back CSI variations
instead of the full CSI to substantially reduce feedback cost.
Accordingly, gNB can combine the new feedback with its
previously recovered CSI within coherence time to reconstruct
subsequent CSI estimates.
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Fig. 1: Illustration of the temporal correlation based CSI
feedback. (t > 1)

We can adopt a general first order Markovian channel model

p(Ht|Ht−1, · · · , H1) = p(Ht|Ht−1). (3)

Given knowledge of the CSI at the previous time slot, the
minimum mean square error (MMSE) estimator of Ht can be
defined as

φ(Ht−1) = E{Ht|Ht−1}. (4)

We define the MMSE estimation error as

Vt = Ht − E{Ht|Ht−1) = Ht − φ(Ht−1). (5)

Consider the scenario that, at time t− 1, the UE and the gNB
have successfully exchanged the CSI Ht−1. Then it would be
more efficient for the UE to compress and feed back the CSI
estimation error Vt to the gNB instead of the raw Ht.

Based on this CSI model, we can develop a novel DL
encoder and decoder architecture by exploiting a trainable neu-
ral network to learn the unknown MMSE estimation function
φ(Ht−1) = E{Ht|Ht−1}. This new DL encoder and decoder
architecture is shown in Fig. 1.

As shown in Fig. 1, the feedback for the CSI matrix
sequence can be divided into two phases: a) The feedback
of CSI at the first (initial) time slot (t = 1) without prior
information; b) The feedback of CSI in subsequent time slots
(t = 2, 3, ..., T ) given the prior CSI information. Denote
Ĥt as the reconstruction of CSI matrix Ht at time slot t.
Define the encoding and decoding function as fe(·) and fd(·),
respectively. For downlink CSI feedback architecture in the
first time slot, the encoder network and decoder network can
be denoted, respectively, by

s1 = fe,1(H1 − E{H1}), (6)

Ĥ1 = fd,1(s1) + E{H1} (7)
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This initial step assumes that the CSI mean is known
from training or past information. For downlink CSI feedback
architecture of subsequent time slot t (t ≥ 2), the encoder
network and decoder network can be executed, respectively,
by

st = fe,t(Ht − φ(Ĥt−1)), (8)

Ĥt = fd,t(st) + φ(Ĥt−1) (9)

Since the optimum function φ(Ĥt−1) is unknown, one direct
solution is to approximate the function with deep neural
network architecture trained by using a set of CSI samples.

III. EXPLOITING CHANNEL TEMPORAL COHERENCE

We now discuss two avenues for exploiting the temporal
coherence of CSIs at successive time-slots: a DNN architecture
that utilizes long-short term memory (LSTM) layers and an
information theoretic basis for differential encoding.

A. Recurrent Neural Networks

Recurrent neural networks (RNNs) include layers which
encode memory of previous states. Through backpropagation
training, recurrent layers learn whether to incorporate infor-
mation stored in memory in the layer’s output and whether
that information should be kept in memory [29]. The memory
incorporation enables RNNs to store, remember, and process
information that resides in past signals for long time periods.
RNNs can utilize past input sequence samples to predict future
states [30].

Ĥ2 ĤT
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Fig. 2: (a) A “stacked” LSTM network of depth 3 shown with
recurrent connections. (b) “Unrolled LTSM network” into T
timeslots. Training can use either full or quantized CSI.

RNNs have found wide applications in areas such as natural
language processing (NLP), including machine translation [25]
and sentiment extraction [26]. For NLP tasks, empirical results
have demonstrated the effectiveness of “deep” or “stacked”
RNNs, networks which use the outputs of hidden recurrent
layers as inputs to subsequent recurrent layers [31].

Prior works have investigated stacked RNNs for CSI esti-
mation. Several proposals have favored the use of Long Short
Term Memory (LSTM) cell [19]–[21], a recurrent unit that can

tackle the vanishing gradient problem inherent in recurrent
backpropagation [32]. Existing LSTM-based works in CSI
estimation have assumed that stacked LSTMs are better than
shallow LSTMs, presenting models which used LSTM cells of
depth 3 [19]. Fig. 2 demonstrates the principle of this LSTM
network for CSI feedback and estimation. This bias towards
deep RNNs is likely due to the aforementioned successes
in NLP, where deep recurrent layers are theorized to learn
hierarchical levels of semantic abstraction [26], [33].

This RNN approach has been recently proposed in [19].
In this work, we shall consider the proposed architecture of
[19] as the benchmark method. However, deep LSTMs can
be problematic, as the number of parameters per LSTM cell
can be quite large. If a parsimonious model is desired due
to memory constraints, then memory intensive RNNs can be
very costly.

B. CSI Entropy and Feedback Encoding

Despite the success of deep RNNs in CSI estimation and
recovery, several important research questions remain.
• First, what simplifications can be made to reduce com-

putational complexity while maintaining efficient CSI
feedback and accurate CSI recovery?

• Second, how much CSI feedback in terms of bitwidth per
CSI coefficient is sufficient?

• Third, how frequently should a UE provide CSI feedback
for gNB to update its CSI estimate?

It is therefore important to tackle these open questions that
hamper the practical application and efficacy of DL based CSI
estimation and recovery in massive MIMO networks.

Consider random channel matrix Ht that consists of com-
plex fading coefficients for the t-th timeslot. For joint proba-
bility density function p(Ht), the CSI entropy is

H(Ht) = −
∑
Ht

p(Ht) log p (Ht) (10)

where (10) is the sum over all realizations of r.v. Ht. The CSI
entropy of (10) describes the required number of bits for the
UE to feed back its CSI estimate to the gNB for reconstruction.
Denote the (i, j)-th CSI element within Ht as Ht,(i,j) at time
t. If all elements are independent, then we have a simple upper
bound on the entropy of the full CSI matrix as

H(Ht) ≤ HUB =
∑
i,j

H(Ht,(i,j)) (11)

This entropy bound HUB describes the approximate number
of total bits necessary for direct encoding of forward link CSI
for UE feedback.

Fortunately, in mobile wireless networks, CSI within a
coherence time exhibits strong correlation [34]. Therefore,
instead of constructing CSI independently by relying on CSI
feedbacks for individual time slots, the gNB can utilize this
CSI dependency by leveraging both previously reconstructed
CSIs and the current CSI feedback. In other words, the UE
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feedback should focus on providing information that is not
available at the gNB from CSIs of previous time slots.

Taking advantage of the Markovian CSI model, we can
investigate how much the gNB can benefit from the previ-
ous CSI. Given the Markovian channel model of (3), the
conditional CSI entropy quantifies the amount of information
needed to characterize the CSI matrix based on the available
CSIs from earlier reconstruction:

H(Ht|Ht−1, . . . ,H1) = H(Ht|Ht−1) (12)

= −
∑
Ht−1

∑
Ht

p(Ht) log p(Ht|Ht−1)

From the well known relationship of H(Ht|Ht−1) ≤ H(Ht),
it is clear that by utilizing the most recently reconstructed CSI,
the gNB would require less feedback bandwidth and improve
the UE feedback efficiency.

A stationary first order Markovian channel model is char-
acterized by the conditional probability density function of
p(Ht|Ht−1). In practice, such distribution information on CSI
is difficult to acquire analytically. To gain valuable insights
into the time-coherence between CSI at different feedback
intervals, we shall provide a numerical evaluation of typical
wireless channel models by comparing the entropy and the
conditional entropy of the forward link CSI parameters. Note
the following CSI entropy relationship at t and t− δ where δ
is the feedback interval:

H(Ht,(i,j)|Ht−δ) ≤ H(Ht,(i,j)|Ht−δ,(i,j)) ≤ H(Ht,(i,j)).
(13)

For practical purposes, we consider the empirical mean con-
ditional entropy of H(Ht,(i,j)|Ht−δ,(i,j)) averaged over all
coefficients in Ht,

Ĥ(Ht,(i,j)|Ht−δ) =
1

RdNb

Rd∑
i=1

Nb∑
j=1

H(Ht,(i,j)|Ht−δ,(i,j)).

(14)

Conditional entropy provides useful information on the degree
of CSI dependency in time.

In this experiment, we consider the link with Nb = 32
transmit antennas and 1 receive antenna over Nf = 1024
subcarriers. After applying the 2D DFT, Rd = 32 rows of
significant CSI elements in delay domain are retained in Ht.
Since the real and imaginary components of complex CSI
matrices are typically treated as separate real-valued inputs to
the neural network [14], [19]–[23], we consider the conditional
entropy of the CSI’s real and imaginary parts individually.
Fig. 3 demonstrates the estimated conditional entropy averaged
over the complex CSI matrix.

We generate 5,000 random indoor and outdoor channel
responses using the channel models given in [35] and [19].
Following the examples in [19], the indoor channel is in the
5.3 GHz band, with little or no mobility at velocity of 10−3

m/s. The outdoor channel is in the 300 MHz band, at velocity
of 0.9 m/s. The bandwidth for indoor and outdoor channels
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Fig. 3: Mean CSI conditional entropy per element for different
intervals (δ) in indoor and outdoor.

is 20 MHz. The conditional entropy is evaluated for different
lengths of feedback interval δ = 40ms, 80ms, 160ms, and
∞ (i.e., no feedback) using the k-nearest-neighbor entropy
estimator [36].

From Fig. 3, it is evident that the conditional entropy
increases with δ because of the limited CSI coherence time.
In addition, it is intuitive that the outdoor channel exhibits
higher conditional entropy since higher velocity corresponds
to shorter coherence time [37]. For both channel models,
the average entropy of the CSI elements without prior CSI
(δ = ∞) is approximately 8 bits. However, the conditional
entropy can be reduced based on prior CSI conditions, which
clearly motivates the development of CSI feedback models
based on the Markovian concept. For example, the outdoor
channel CSI exhibits an average entropy reduction of nearly
1/4 per CSI coefficient if CSI matrix from 80ms ago is made
available. Even more striking is the CSI dependency of low
mobility indoor channels. For δ = 80 ms, the conditional
entropy is approximately reduced by 7/8 from the original CSI
entropy. These examples from well known CSI channel models
support the development of a Markovian learning model for
efficient CSI feedback.

The entropy reduction under conditions of known prior
CSI knowledge motivates the idea of condition-based en-
coding such as differential encoding by the UE. Encoding
the difference between successive feedback instants, Ht and
Ĥt−δ , can reduce the number of UE feedback bits, facilitating
high degree of compression without loss of CSI estimation
performance [38].

IV. DIFFERENTIAL CSI ENCODING

A. A Simplified Markovian Model
In contrast to RNNs which, as a black box, would require

a large number of DL parameters to autonomously learn
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the underlying temporal correlation among channels of the
multiple timeslots, we leverage the practical insight into CSI in
terms of time dependency and conditional entropy to develop
a structured differential autoencoder which is based on a
simplified Markovian model. The first order Markovian CSI
model [39] is selected to leverage the temporal correlation
while reducing the complexity:

Ht = γHt−1 + Vt, (15)

where γ is a constant and Vt is a zero-mean i.i.d. random ma-
trix. Given ensemble samples of Ht−1 and Ht, the unknown
γ can be estimated via

γ̂ =
Trace(E{HtH

H
t−1})

E‖Ht−1‖2
. (16)

Based on this first order autoregressive (AR) model, we
formulate a low complexity encoder-decoder model for time
slot t (t ≥ 2) as

st = fe,t(Ht − γĤt−1), (17)

Ĥt = fd,t(st) + γĤt−1 (18)

Based on this simplified model, we propose a differential
encoding architecture, “MarkovNet,” for efficient CSI feed-
back and reconstruction in the massive MIMO systems. To
fully exploit the temporal CSI coherence, MarkovNet requires
accurate CSI at the initial time slot t1 to establish sufficient
baseline information for the CSI feedback in subsequent time
slots. To this end, the proposed MarkovNet framework shall
apply CSI pre-processing and improve the neural network
structure. Specifically,
• To pre-process CSI data, we use spherical normalization

which makes the objective function more applicable to
commonly adopted accuracy metric of NMSE [27].

• We propose a enhanced autoencoder, CsiNet-Pro, which
includes a deeper encoder with more convolutional layers
to better extract features of CSI and a symmetric decoder
for CSI decoding. The details are provided in Section
IV.C.

B. Transforming CSI Feedback in Spherical Coordinate

How to effectively apply DL techniques to exploit channel
data properties and optimization objects remains an open
research issue, as many existing DL based works mainly utilize
the deep learning architectures and optimization functions
successfully developed for other application areas. Direct
adoption of DL architectures without customization for CSI
data characteristics risks unsatisfactory performance. In par-
ticular, data processing methods and loss functions developed
for computer vision may not be well suited for CSI encoding
and reconstruction.

To begin, many existing DL-based CSI encoding-decoding
schemes conveniently view the 2D MIMO channel matrix
Ht as akin to an image such that the normalized elements
of the CSI matrix are utilized as image-like input to DL

networks in both training and testing. However, the distribution
of multipath fading MIMO channels differs substantially from
the distribution of 2D image data.

Among other differences, images are represented as ma-
trices of intensity pixel values. For color images, each color
channel corresponds to a 2D matrix of pixel values that are
unsigned integers, e.g., in the range between 0 and 255. By
normalizing these pixels, there can be strong benefit in prepar-
ing the images as inputs of the DL model. However, unlike
different images whose pixel values are mostly in the same
order of magnitude, the dynamic range of CSI data can be
much greater. For example, RF pathloss grows polynomially
with distance between gNB and UE [40]. As a result, CSI of
one UE can be different from CSI of another UE by several
orders of magnitude, depending on their respective distances
to gNB. A naive normalization can render CSIs of some UEs
too small for the DL networks to respond to. Another different
feature is that the baseband CSI parameters are complex
values, consisting of both magnitude and phase, whereas image
pixels are nonnegative real (with normalization).

In terms of learning objectives, several existing DL-based
CSI feedback works adopt the loss function similar to image
recovery for training the DL networks. Specifically, the objec-
tive is to minimize the mean square error (MSE):

MSE =
1

N

N∑
k=1

‖Hk − Ĥk‖2, (19)

where k and N are, respectively, the index and total number of
samples in the data set, and ‖·‖ denotes the Frobenius norm.
On the other hand, it is typically more meaningful in CSI
estimation to apply the normalized MSE (NMSE)

NMSE =
1

N

N∑
k=1

‖Hk − Ĥk‖2

‖Hk‖2
, (20)

to assess the accuracy of CSI recovery at the gNB [41] and
feedback efficiency [14], [15], [19]. By directly using MSE
as the loss function, the DL networks would be biased toward
the CSI accuracy of stronger MIMO channels.

Power
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Downlink CSI
32×32
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Fig. 4: Architecture of spherical CSI feedback in SphNet.

In response to the domain-specific characteristics of data
and objective in CSI estimation, we propose to use a spherical
CSI data structure for feedback as shown in Fig. 4. The
spherical CSI feedback architecture splits the downlink CSI
matrix Hk into a power value pk and a spherical downlink
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CSI matrix Ȟk, where pk = ‖Hk‖ is the power of the CSI
matrix and Ȟk = Hk/‖Hk‖ is the the unit norm spherical
CSI. Note that the elements of Ȟk remain strictly inside or
on the surface of the unit hyper-sphere. The UE encodes and
sends back the power pk and the spherical CSI matrix Ȟk.

Spherical CSI feedback architecture presents numerical ad-
vantages. First, we can construct an encoder DL network
that focuses on compressing and encoding the spherical CSI
matrix Ȟk. The power of the CSI would be directly sent
back to the gNB separately since it contains little redundancy.
Thus, even for CSI matrices of different magnitudes, they
are equally important in training the encoder and decoder
networks. During training the gradients for UEs that are far
away from the gNB would no longer be negligible [42].
Moreover, the decoder will have a more limited domain for
more accurate CSI recovery under spherical normalization
[27].

As shown in Fig. 4, our joint CSI compression and recon-
struction architecture still utilizes the effective autoencoder
structure in which the encoder at the UE attempts to learn
a low-dimensional CSI representation for a relatively high-
dimensional dataset represented in the form of spherical CSI
matrices. The decoder at the gNB reconstructs the CSI matrix
based on feedback information extracted from the UE encoder
and the direct feedback of CSI magnitude pk.

C. CsiNet Pro: An Enhanced CSI Encoder-Decoder Network

We propose an efficient neural network structure, named
CsiNet Pro, for UE encoding and gNB decoding of CSI
in massive MIMO networks. The structure of CsiNet Pro
is illustrated in Fig. 5. In comparison with existing neural
networks such as those from [14] [19], CsiNet Pro provides a
deeper encoder that uses more convolutional layers to better
extract features of CSI. There is a corresponding decoder at
the gNB that also contains 4 convolution layers.

The design of encoder for dimension compression is crucial.
However, the encoders in [14], [15], [19] all utilized one
convolutional layer and one fully connected layer. As a major
departure, the encoder of CsiNet Pro utilizes 4 convolutional
layers for feature extraction and 1 fully connected layer
for dimension compression. Specifically, the 4 convolutional
layers apply 7 × 7 kernels to generate 16, 8, 4 and 2 feature
maps, respectively (see Fig. 5).

Another change in CsiNet Pro is the use of a different
normalization range and output activation function. Recall
that the decoder network utilizes 4 convolutional layers as
shown in Fig. 5. Unlike the nonnegative pixel values in image
reconstruction, CSI values contain both real and imaginary
parts that can be either positive or negative. Thus, unlike
previous works that normalize the CSI values to fall within
[0, 1] in order to use “sigmoid” or “ReLU” as the activation
function of the last layer, our proposed CsiNet Pro normalizes
the real and imaginary CSI values to the range [-1, 1] while
using “tanh” as its activation function in the last layer.

7 7 conv, 16

Reshape: 2048 1

FC: M 1

FC: 2048 1

Reshape: 32 32, 2

Input: 32 32, 2 

(Real + Imag)

Output: 32 32, 2

7 7 conv, 2

Encoder

Decoder

7 7 conv, 4

7 7 conv, 2

7 7 conv, 16

7 7 conv, 8

7 7 conv, 4

7 7 conv, 8

Fig. 5: Architecture of CsiNet Pro.

We integrate CsiNet Pro (Fig. 5) with the spherical CSI
feedback framework (Fig. 4) to provide enhanced CSI recovery
accuracy.

D. Differential CSI Encoding

Motivated by the simplified first order AR model for CSI,
we propose a differential CSI feedback framework MarkovNet
to improve bandwidth efficiency. Different from the RNN
based networks such as LSTM which relies on neural networks
to learn the required information sharing and correspond-
ing CSI compression simultaneously, MarkovNet proactively
leverages the simplified AR model (15) for CSI and encodes
the CSI prediction error as shown in (17) between two
successive time slots.

Recall that the difference based on first order estimation
of the CSI in two adjacent time slots Ht − γ̂Ht−1 is an
approximation of the innovation Vt. As shown in Fig. 6, for
time-slots beyond the initial time-slot, the linear prediction
difference Ht − γ̂Ht−1 is sent to the encoder network to
execute the encoding process of st = fe,t(Ht − γĤt−1)
given in (17). At the gNB receiver, the decoder network can
utilize the previously recovered CSI Ĥt−1 to reconstruct Ĥt

according to Ĥt = fd,t(st) + γĤt−1 as described in (18).
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Fig. 6: Illustration of the multi-stage, differential CSI feedback framework MarkovNet.

MarkovNet from t2 onward would employ the same network
architecture CsiNet Pro as shown in Fig. 5. Compared with
network for t1 which uses a larger compression ratio to ensure
the high recovery accuracy in the first timeslot, MarkovNet
from t2 can afford a smaller compression ratio to achieve a
higher bandwidth efficiency with the help of prior information.

MarkovNet exhibits several additional advantages in prac-
tical implementation. First, compared to RNN-based CSI
feedback, MarkovNet can exploit pretrained model as initial
neural network parameters for models used in later timeslots to
improve training efficiency since the CSI at adjacent time slots
share similar data features. Second, differential CSI matrices
tend to be more sparse, hereby enabling MarkovNet to achieve
a higher degree of compression during feedback. Third, for
most wireless network applications, both gNB and UEs have
limited power, computation, and storage resources. MarkovNet
simplifies the learning tasks of neural networks and is more
applicable in a wider variety of wireless deployment scenarios.

V. MODEL REDUCTION

Practical implementation of deep neural networks for CSI
feedback and recovery can be challenging to some mobile
devices. Because DL network architectures often use large
numbers of parameters, they require substantial computation
and memory resources. Unrolled RNN models, such as the
LSTM layers in Fig. 2 are particularly computationally expen-
sive. For example, CsiNet-LSTM [19] at a compression ratio
(CR) of 1/16 contains 1.19 × 108 parameters per timeslot.
One of the main advantages of MarkovNet (see Fig. 6) is its
relatively low parameter count, as a comparable version of
MarkovNet at a CR of 1/16 has 5.43 × 105 parameters per

timeslot, a reduction of three orders of magnitude relative to
CsiNet-LSTM.

Our proposed MarkovNet can clearly reduce the model size
by eliminating the repeated structure used to learn the from
the sequence data in RNN-style architecture. It is important to
note, however, the fully connected (FC) layers for dimension
compression and decompression in the current MarkovNet still
contains a large number of parameters. For example, there are
more than 106 parameters for the FC layers at CR = 1/8.

FC layers for dimension compression and decompression,
as shown in Fig. 7(a), have often been adopted in deep learning
based CSI feedback [14], [15], [19]–[21]. However, elements
of the CSI matrix only exhibit strong correlation with its
neighbors in angular-delay domain. Thus, we recognize that
the FC layers, though effective and popular, still contain a large
fraction of non-essential connections with very weak weight
parameters. This realization presents another opportunity for
model reduction. To further reduce model size, we propose
a CNN-based latent structure to replace the FC layers for
dimension compression. As shown in Fig. 7(b), we slice the
two square feature maps into 64 feature maps of dimension
1 × 32. We then design M CNN kernels of length 1 × 7 to
compress the codewords dimension. The integer M is adaptive
in accordance with the encoder compression ratio denoted by
M
64 . Through this feature processing, connections between CSI
elements that are far apart in the angular-delay domain are
removed. Strongly correlated features of CSI matrix across
the angular-delay domain can effectively be captured by the
small CNN kernels.

To illustrate the effect of the proposed model size reduction,
we summarize the number of parameters and the floating point
operations (FLOPs) in Table I. This information provides a
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Dimension Compression Dimension Decompression

2 32 322 32 32

a Fully connected layer based dimension compression

b CNN based dimension compression

Reshape

Reshape
Feedback

Dimension Compression Dimension Decompression
2 32 32 2 32 32

64 1 32 64 1 32

M 1 32 M 1 32

Reshape

Fig. 7: Proposed CNN-based dimension compression and decompression module.

TABLE I: Number of parameters and FLOPs comparison for
FC-based and proposed CNN-based dimension compression
and decompression module. M: million, K: thousand.

Number of parameters FLOPs

FC-based Proposed FC-based Proposed

CR=1/4 2.1 M 14.4 K 4.2 M 0.9 M

CR=1/8 1.1 M 7.2 K 2.1 M 0.5 M

CR=1/16 0.5 M 3.7 K 1.0 M 0.2 M

comparison of the storage size and computational complexity
between the use of FC-layer and proposed CNN-layer in CSI
compression module and the corresponding decompression
module. As shown in Table I, the proposed CNN-based
dimension compression and decompression module reduces
the number of parameters by over 100 times and the number
of FLOPs by at least 4 times. The comparison results demon-
strate that our new CNN design for CSI compression and
decompression represents an important step in broadening the
range of practical applications for effectively deploying deep
learning based CSI encoding, feedback, and reconstruction
in massive MIMO wireless systems. MarkovNet using CNN-
based dimension compression and decompression module is
named as MarkovNet-CNN.

VI. PERFORMANCE EVALUATION

We assess the performance of both RNN-based CsiNet-
LSTM [19] and MarkovNet for two different massive MIMO
scenarios generated from the well known COST 2100 model
[35] through a range of experiments. Section VI-A defines
the parameters for the simulations and hyperparameters used
in evaluations. Section VI-B discusses the single-timeslot per-
formance of MarkovNet (Section VI-B1), the overall perfor-
mance of MarkovNet (Section VI-B2) and MarkovNet-CNN
(Section VI-B3), and the performance of MarkovNet for larger

antenna arrays (Section VI-B4). Section VI-C compares the
computational complexity and parameter count of MarkovNet
with CsiNet-LSTM. Section VI-D shows the performance of
MarkovNet and CsiNet-LSTM under feedback quantization.
Section VI-E demonstrates the performance of MarkovNet
under different feedback intervals.

A. Evaluation Parameters
For the COST2100 model, we generate data for two dif-

ferent channel environments which are typically used for
assessing the performance of CSI estimation techniques [14],
[18], [19]:

1) Indoor channels using a 5.3GHz downlink at 0.001 m/s
UE velocity, served by a gNB at center of a 20m×20m
coverage area.

2) Outdoor channels using a 300MHz downlink at 0.9 m/s
UE velocity served by a gNB at center of a 400m×400m
coverage area.

We give Nb = 32 antennas to the gNB to serve single
antenna UEs randomly distributed within the coverage area.
We use Nf = 1024 subcarriers and truncate the delay-domain
CSI matrix to include the first Rd = 32 rows.

The gNB uses antennas arranged in a uniform linear ar-
ray (ULA) with half-wavelength spacing. UEs are randomly
positioned within the coverage area such that their CSIs are
random. For each indoor/outdoor environment, we generate a
dataset of 105 sample channels and divide them into 7.5 · 104

and 2.5 · 104 for training and testing sets, respectively. The
batch size for the training of MarkovNet is 200. MarkovNet at
t1 was trained for 1000 epochs using MSE as the loss function.
For the MarkovNet after t2, only 150 epochs are used with
the help of initialization using the pretrained model of the
previous time slot to reduce training expenses. We utilize the
Adam optimizer with default learning rate 10−3. For CsiNet-
LSTM, we utilize the hyperparameters outlined in the original
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paper [19] with the exception of the batch size, which was
reduced from 200 to 100 due to memory constraints.

To compare the recovery accuracy of different networks,
the NMSE metric is adopted. Unless noted otherwise, all
evaluations in this section report the NMSE of the entire CSI
matrix (NMSEall) rather than the NMSE of the truncated CSI
matrix (NMSEtruncate). Denote the dropped CSI elements of
the k-th channel sample as Hk,drop. NMSEall is given as

NMSEall =
1

N

N∑
k=1

‖Hk − Ĥk‖2 + ‖Hk,drop‖2

‖Hk‖2 + ‖Hk,drop‖2
. (21)

Observe that (21) is similar to (20) with the only difference
being the ‖Hk,drop‖2 terms. Since prior works in CSI estima-
tion [14], [19] are used to estimate the truncated CSI matrix
of size (Rd×Nb), these works report only NMSEtruncated (i.e.,
(20)) in their numerical results. Since NMSEall accounts for
the error due to setting low-magnitude values of full CSI
matrices to zero, NMSEall is a better indicator of the CSI
estimator’s performance than NMSEtruncated. For the Outdoor
(Indoor) network, NMSEall represents an average increase of
2.5× 10−2 (7.0× 10−3) relative to NMSEtruncated on a linear
scale.

B. MarkovNet

1) Performance evaluation at t1: To enable efficient differ-
ential CSI feedback, high accuracy CSI feedback is required
at t1 to provide a good starting CSI condition for subsequent
timeslots. Here, we demonstrate that our proposed spherical
CSI feedback framework improves the CSI recovery accuracy
for a single time slot compared to different CSI feedback
frameworks.

Fig. 8 compares the performance of channel reconstruc-
tion from the use of CsiNet [14], CsiNet-Sph (CsiNet with
spherical feedback), CsiNet Pro, and SphNet (CsiNet Pro with
spherical feedback). As shown in Fig. 8, SphNet achieves the
best performance in single shot feedback for CSI recovery
without relying on prior CSI knowledge, which means that
SphNet can improve the accuracy of prior information for the
MarkovNet. On the one hand, CsiNet Pro outperforms CsiNet
at all CR in both channel environments, which means the
enhanced network structure is effective. On the other hand,
we can observe that spherical feedback can provide the most
noticeable performance gain to both CsiNet and CsiNet Pro.
This establishes the strength of spherical normalization to
efficiently capture the CSI data feature.

2) Overall performance evaluation of MarkovNet: Every
instance of MarkovNet contains two different compression
ratios for practical implementation. For the first time slot, we
initialize MarkovNet with CR=1/4 at timeslot t1 to provide
an accurate starting CSI. For all subsequent timeslots (t2 to
t10), MarkovNet maintains the same CR. For example, in
Fig. 9 that follows, “MarkovNet, CR=1/16” uses CR=1/16
at timeslots t2 through t10 and CR=1/4 at timeslot t1. To
evaluate MarkovNet’s performance under different levels of
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Fig. 8: NMSE of different networks in the first time slot over
varying compression ratios (CR).

compression, we vary the second CR used in timeslots t2 to
t10 from 1/4 to 1/64 and train each network.

Fig. 9 compares the performances of MarkovNet and
CsiNet-LSTM. The benefit of differential CSI encoding in
MarkovNet can be seen from its improved CSI recovery
accuracy at different compression ratios beyond t2. MarkovNet
utilizes a structured approach and consistently achieves higher
CSI accuracy than the blackbox CsiNet-LSTM at every CR
level. For the indoor channels, MarkovNet can deliver reliable
CSI accuracy NMSEall of −20dB even for CR = 1/32, a
3dB improvement over CsiNet-LSTM. Although the outdoor
scenario continues to be more challenging, our results show
that CR ∈ [1/4, 1/8] can achieve NMSEall of −13dB and
−11dB, respectively, much lower than the NMSE of −8dB
and −6.5dB from CsiNet-LSTM, respectively.

To demonstrate the difference between NMSEtruncated and
NMSEall, Fig. 9 (c) and (d) show the performance comparsion
using the metric NMSEtruncated used in [14], [16], [18], [19]. On
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Fig. 9: NMSE comparison of MarkovNet and CsiNet-LSTM at various compression ratios (CR).

the one hand, MarkovNet at a given CR consistently achieves
higher CSI accuracy than CsiNet-LSTM at the same CR. On
the other hand, compared with NMSEtruncated, the performance
improvement in the NMSEall is much slower, which means
that it is not necessary to insist on optimizing the neural
networks to reduce the NMSEtruncated under the influence of
truncation error. Note that in the following subsections, all
results reporting NMSE correspond to NMSEall.

A related metric, i.e., the cosine similarity defined in [19]
is also calculated for comparison

ρ = E

 1

T

1

Nf

T∑
t=1

Nf∑
n=1

∣∣∣ĥHt,mht,m

∣∣∣∥∥∥ĥt,m∥∥∥ ‖ht,m‖
 , (22)

where ĥt,m ∈ CNb×1 denotes the channel vector of the m−th
subcarrier at time t. When the gNB uses vt,m = ĥt,m/

∥∥∥ĥt,m∥∥∥

as a beamforming vector (i.e., as in zero-forcing precoding),
cosine similarity can be used to indicate the beamforming gain.
Table II compares the cosine similarity for CsiNet-LSTM and
MarkovNet. As shown in Table II, and consistent with the
NMSE results, MarkovNet achieves higher cosine similarity
at every CR level.

TABLE II: Cosine similarity of MarkovNet and CsiNet-LSTM
for indoor and outdoor environments at various compression
ratios (CR).

Indoor Outdoor

CR CsiNet-LSTM MarkovNet CsiNet-LSTM MarkovNet
1
4

0.991 0.993 0.914 0.967
1
8

0.990 0.992 0.885 0.955
1
16

0.990 0.992 0.871 0.934
1
32

0.989 0.992 0.831 0.911
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Fig. 10 displays the magnitude of the reconstructed CSI un-
der CR = 1/4 in comparison with the original CSI for a single
Outdoor channel sample from the test set. Both MarkovNet
and CsiNet-LSTM networks can learn to encode the two major
peak magnitude regions of the CSI, but MarkovNet is able to
recover a third peak magnitude region where CsiNet-LSTM
fails.

3) Performance and Complexity Trade-off of MarkovNet-
CNN: Fig. 11 shows the performance comparison between
MarkovNet and MarkovNet-CNN at different meaningful com-
pression ratios. Since the variations of CSI accuracy over time
are similar, we focus on the performance from t1 to t7. For
the first time slot t1, we initialize MarkovNet and MarkovNet-
CNN with CR=1/4 to provide an accurate CSI startup for
subsequent time slots. Both MarkovNet and MarkovNet-CNN
achieve comparable CSI accuracy at t1, demonstrating that
our proposed CNN layer for compression and decompression
is not only more efficient in memory and computation, but
also delivers similar CSI accuracy. MarkovNet maintains the
same CR for all subsequent timeslots (t2 to t7). Interestingly,
MarkovNet-CNN achieves modestly higher accuracy beyond
t2, for indoor channels when CR=1/8 and 1/16 as shown
in Fig. 11(a). This slight edge by MarkovNet-CNN for the
indoor channels likely arises from the substantial reduction
of redundant weights from the FC layer and the number of
local minima, capable of exploiting the more sparse indoor
CSI matrices [14]. For outdoor channels, MarkovNet-CNN
achieves CSI accuracy comparable to MarkovNet for com-
pression ratio of 1/8 and 1/16 while exhibiting a modest loss
of accuracy at CR=1/4. Because CSI of outdoor channels is
more complex and less sparse relative to indoor channels,
networks estimating outdoor CSI could benefit more from
a higher number of connectivity in compression and feature
extraction layers.

4) Performance under larger antenna counts: We demon-
strate the performance of MarkovNet for 48 antennas in the
Outdoor channel environment (see Fig. 12). We only conduct
tests for the Outdoor network since larger antenna arrays are
impractical for most realistic indoor channel environments.
These results suggest that a larger antenna count does not
negatively impact MarkovNet’s estimation performance.

C. Model Size and Computational Complexity

We demonstrate that latent convolutional layers require
significantly fewer parameters than FC-layers without loss
of performance. Table III compares the model size and
computational complexity (respectively) of CsiNet-LSTM,
MarkovNet, and MarkovNet-CNN associated with a single
timeslot. Among the tested compression ratios, MarkovNet
uses 1

60 of the parameters in comparison to CsiNet-LSTM.
More importantly, MarkovNet-CNN further reduces the num-
ber of parameters to 1

3000 of what is needed by CsiNet-LSTM
while achieving similar or better CSI recovery accuracy. We
further provide the parameters of several related networks that

do not exploit temporal correlation (CsiNet [14], CRNet [16],
and Deep AE [23]) in Table III for a more comprehensive
comparison. We observe MarkovNet uses similar number of
parameters, whereas MarkovNet-CNN requires significantly
fewer parameters with the help of the proposed CNN-based
dimension compression and decompression modules.

Table III also presents the average number of floating point
operations (FLOPs) associated with a single timeslot for each
learning model [43], [44]. MarkovNet and MarkovNet-CNN
can reduce the computation load by more than 8

9 and 9
10 in

FLOPs, respectively, in comparison with the CsiNet-LSTM for
each compression ratio. We also include the FLOPs of CsiNet,
CRNet and Deep AE which do not exploit temporal correlation
in Table III. We observe that both MarkovNet and MarkovNet-
CNN use 6-10 times FLOPs in comparison to the above three
networks owing to the sizable CNN kernel. Practically, a
number of works have examined the computation complexity
of CNN, including convolution factorization [45], depth-wise
separable convolution [46], etc. Since MarkovNet focuses on
exploiting channel temporal coherence more efficiently, we
leave the optimization of CNN factorization part to our future
work.

We note that when deploying MarkovNet and MarkovNet-
CNN as a cooperative learning mechanism at both UE and
gNB, 50% additional parameters and FLOPs are required in
comparison with the training phase. This is because the trained
decoder must be duplicated at the UE side to generate the
decoded CSI for the previous time slot used by the encoder.
Despite this additional cost, both MarkovNet and MarkovNet-
CNN still can reduce the number of parameters by orders
of magnitude, and save over 5

6 FLOPs in comparison with
CsiNet-LSTM.

D. Network Performance Under Feedback Quantization

To understand the effect of feedback quantization, we apply
µ-law companding to the encoded layer of both tested net-
works. µ-Law companding uses a logarithmic transformation
that emphasizes lower magnitude samples. For signal value x,
the compression portion of the µ-law scheme is written as

f(x) =
sgn(x) ln(1 + µ|x|)

ln(1 + µ)
, 0 ≤ |x| ≤ 1. (23)

Uniform quantization is applied to the compressed signal.
For signal value x, the quantization/dequantization operation
produces a value x̂, which can be written as x̂ = ∆

⌊
f(x)
∆

⌉
for fixed step size ∆. After the quantized feedback is received,
then we expand the result using the inverse of (23),

F (x̂) =
sgn(x̂)((1 + µ)|x̂| − 1)

µ
, −1 ≤ y ≤ 1. (24)

Fig. 13(a) and Fig. 13(b) show the performance of
MarkovNet and CsiNet-LSTM with µ-law companding and
fixed quantization step size at two different quantization levels,
6 bits and 4 bits, in comparison to the non-quantized network
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Fig. 10: Ground truth CSI (H), MarkovNet estimates (ĤMarkov), and CsiNet-LSTM estimates (ĤLSTM) across five timeslots
(T1 through T5) on one outdoor channel sample from the test set, using CR = 1

4 . MarkovNet is able to recover a fine-grained
region as highlighted by the green arrow while CsiNet-LSTM fails to recover the same region as highlighted by the red arrow.
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Fig. 11: NMSE comparison between MarkovNet and MarkovNet-CNN over varying CR.

(i.e., 32 bit floating point). The networks with quantized
feedback use 8 bit quantization at the first timeslot to es-
tablish good intial CSI estimates. Note that the networks
are not re-trained or fine-tuned after applying quantization.
MarkovNet is more robust to feedback quantization noise
than CsiNet-LSTM. For the Indoor environment, MarkovNet
maintains NMSE better than -15 dB for 4 bit quantization
while CsiNet-LSTM error is above -15 dB. For the Outdoor
network, MarkovNet’s performance at CR = 1

32 is close to
CsiNet-LSTM’s performance at CR = 1

4 , meaning MarkovNet

can achieve the same performance under 8 times as much
compression.

E. Compression Ratio vs. Conditional Entropy

Based on the conditional entropy Ĥ(Ht|Ht−δ) for different
feedback intervals, δ, it is intuitive that larger δ leads to higher
conditional entropy, requiring a lower level of CSI compres-
sion feedback. Similarly, indoor channels of lower mobility
exhibit smaller conditional entropy Ĥ(Ht|Ht−δ) than outdoor
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TABLE III: Model size and computational complexity of tested networks (CsiNet-LSTM, MarkovNet, MarkovNet-CNN) and
comparable networks which do not exploit temporal correlation (CsiNet, CRNet, Deep AE). M: million, K: thousand.

Parameters

CsiNet-LSTM MarkovNet MarkovNet-CNN CsiNet CRNet Deep AE

CR= 1
4

132.7 M 2.1 M 34.9 K 2.1 M 2.1 M 3.2 M

CR= 1
8

123.2 M 1.1 M 27.8 K 1.1 M 1.1 M 2.9 M

CR= 1
16

118.5 M 0.5 M 24.2 K 0.5 M 0.5 M 2.8 M

CR= 1
32

116.1 M 0.3 M 22.4 K 0.3 M 0.3 M 2.7 M

FLOPs

CsiNet-LSTM MarkovNet MarkovNet-CNN CsiNet CRNet Deep AE

CR= 1
4

412.9 M 44.5 M 41.2 M 7.8 M 7.7 M 6.3 M

CR= 1
8

410.8 M 42.4 M 40.7 M 5.7 M 5.6 M 5.8 M
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Fig. 12: Influence of antenna number on the CSI feedback
performance of MarkovNet.

channels of higher mobility for the same δ (see Fig. 3). For
this reason, MarkovNet demonstrates higher accuracy in CSI
recovery for indoor channels than for outdoor channels. In the
following example of Fig. 14, we can clearly see that for δ =
40ms MarkovNet generates substantially smaller NMSE than
for larger δ = 80ms. The results are consistent for various
compression ratio of 1

4 , 1
8 , 1

16 , and 1
32 .

In future works, we expect that the conditional entropy can
provide more valuable design guidelines when selecting the
compression ratio and feedback rate for CSI estimation. Nat-
urally, this requires a much more elaborate entropy encoding
of the feedback coefficients by the UE.

VII. CONCLUSION

To better exploit temporal channel coherence, we provide
an information theoretic basis for efficient feedback in for-
ward link CSI estimation. We propose MarkovNet, a CNN-
based CSI feedback deep learning framework that leverages
conditional entropy in differential encoding, which achieves
superior estimation accuracy and lowers computational com-
plexity relative to over-parameterized LSTM approach. We
demonstrate that MarkovNet achieves accurate forward link
CSI estimates despite a high degree of compression and quan-
tization errors. MarkovNet achieves a substantial reduction in
computation power and memory, making it a strong candidate
for deployment on low cost mobile devices. In future work, we
intend to explore more advanced estimation frameworks (e.g.,
Kalman filter, extended Kalman filter), different deep learning
architectures, and entropy encoding to further reduce feedback
payloads and enhance CSI recovery.
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