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Abstract: We study how to conduct statistical inference in a regression model where the outcome

variable is prone to missing values and the missingness mechanism is unknown. The model we

consider might be a traditional setting or a modern high-dimensional setting where the sparsity

assumption is usually imposed and the regularization technique is popularly used. Motivated by

the fact that the missingness mechanism, albeit usually treated as a nuisance, is difficult to specify

correctly, we adopt the conditional likelihood approach so that the nuisance can be completely

ignored throughout our procedure. We establish the asymptotic theory of the proposed estimator

and develop an easy-to-implement algorithm via some data manipulation strategy. In particular,

under the high-dimensional setting where regularization is needed, we propose a data perturbation

method for the post-selection inference. The proposed methodology is especially appealing when

the true missingness mechanism tends to be missing not at random, e.g., patient reported outcomes

or real world data such as electronic health records. The performance of the proposed method is

evaluated by comprehensive simulation experiments as well as a study of the albumin level in the

MIMIC-III database.

Keywords: nuisance; post-selection inference; missingness mechanism; regularization; asymptotic

theory; unconventional likelihood

1. Introduction

A major step towards scientific discovery is to identify useful associations from various features

and to quantify their uncertainties. This usually warrants building a regression model for an outcome

variable and estimating the coefficient associated with each feature as well as the precision of

the estimator. Besides the traditional regression with a small dimensionality, with advances in

biotechnology, the modern high-dimensional regression usually posits a sparse parameter in the

model, and then applies regularization to select the significant features in order to recover the sparsity.

In particular, the post-selection inference could be challenging in a regularized regression framework.

In this paper, our main interest is to consider a regression model where the outcome variable is prone

to missing values. We study both the traditional setting where regularization is not needed and the

modern one with regularization.

The missing data issue is an inevitable concern for statistical analysis in various disciplines ranging

from biomedical studies to social sciences. In many applications, the occurrence of missing data is

usually not the investigator’s primary interest but complicates the statistical analysis. The validity

of any method devised for missing data heavily depends on the assumption of the missingness
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mechanism [1]. Unfortunately, those assumptions are largely unknown and difficult, if not infeasible,

to be empirically tested. Therefore, one prefers to concentrate on analyzing the regression model for the

outcome variable, while treating the mechanism model as a nuisance. A flexible assumption imposed

at the minimum level on the mechanism would provide protection against model misspecification at

this level.

While it is indeed promising to regard the missingness mechanism as a nuisance with a

flexible assumption, a potential issue is the model identifiability problem if the mechanism contains

missing-not-at-random cases, i.e., allowing the mechanism to depend on the missing values themselves.

In the past few years, researchers have made great progress on this topic by introducing a so-called

instrument. This instrument could be a shadow variable [2–7] or an instrumental variable [8,9].

Both approaches are reasonable and are suitable for different applications. In this paper, we adopt the

shadow variable approach as it facilitates the interpretability of the regression model for the outcome.

The details of the shadow variable approach will be articulated later throughout the paper.

Therefore, we proceed with a semiparametric framework where our primary interest is a

parametric regression, e.g., a linear model, where the statistical task is to estimate the parameter

of interest and conduct statistical inference (particularly post-selection inference for the setting with

regularization). For the nuisance missingness mechanism, we only impose a nonparametric assumption

without specifying a concrete form. We encode the shadow variable as Z, which is one component of

the covariate X. In general, a shadow variable with a smaller dimensionality allows more flexibility

of the missingness mechanism. Therefore, although it could be multidimensional, we only consider

univariate Z throughout the paper. With all of these ingredients, we analyze a conditional likelihood

approach which will eventually result in a nuisance-free procedure for parameter estimation and

statistical inference.

There are at least two extra highlights of our proposed method that are worth mentioning. The first

pertains to the algorithm and computation. Although it looks complicated at first sight, we show

that, via some data manipulation strategy, the conditional likelihood function can be analytically

written as the likelihood of a conventional logistic regression with some prespecified format. Therefore,

our objective function can be readily optimized by many existing software packages. This greatly

alleviates the computational burden of our procedure. Second, while the variance estimation under

the traditional setting is straightforward following the asymptotic approximation, it is challenging for

the setting with regularization. To resolve this problem, we present an easy-to-implement data-driven

method to estimate the variance of the regularized estimator via a data perturbation technique. It is

noted that the current literature on the inference procedure for regularized estimation in the presence of

missing values is very scarce. The authors of [10–12] all considered the model selection problem under

high dimensionality with missing data; however, none of them studied the post-selection inference in

this context.

The remainder of the paper is structured as follows. In Section 2, we first layout our model

formulation and introduce the shadow variable and the conditional likelihood. Section 3 details the

traditional setting without regularization. We present our algorithm of how to maximize the conditional

likelihood function, the theory of how to derive the asymptotic representation of our proposed

estimator and how to estimate its variance. In Section 4, we devote ourselves to the modern setting

where the sparsity assumption is imposed and the regularization technique is adopted. Both algorithm

and theory as well as the variance estimation through the data perturbation technique are presented.

In Section 5, we conduct comprehensive simulation studies to examine the finite sample performance

of our proposed estimator as well as the comparison to some existing methods. Section 6 is the

application of our method to the regression model for the albumin level which suffers from a large

amount of missing values in the MIMIC-III study [13]. The paper is concluded with a discussion in

Section 7.
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2. Methodology

Denote the outcome variable as Y and covariate X. We assume X = (U
T
, Z)

T
where U is

p-dimensional and Z univariate, with detailed interpretation later. We consider the linear model

Y = a + β
T
U + g Z + e , (1)

where β is also p-dimensional, a and g are scalars and the true value of g , g 0, is nonzero, e � N(0, s 2).

We consider the situation that Y has missing values while X is fully observed. We introduce a binary

variable R to indicate missingness: R = 1 if Y is observed and R = 0 if missing. To allow the greatest

flexibility of the missingness mechanism model, we assume

pr(R = 1 jY, X) = pr(R = 1 jY, U) = s(Y, U), (2)

where s(�)merely represents an unknown and unspecified function not depending on Z. We reiterate that,

as the assumption (2), in a nonparametric flavor, does not specify a concrete form of s(�), one does not

need to be worrisome of the mechanism model misspecification. Moreover, as it allows the dependence

on Y, besides missing-completely-at-random (MCAR) and many scenarios of missing-at-random (MAR),

the assumption (2) also contains various situations of missing-not-at-random (MNAR).

We term Z the shadow variable following the works in [5–7,14]. Its existence depends on whether

it is sensible that Z and R are conditionally independent (given Y and U) and that Y heavily relies

on Z (as g 0 6= 0). There are many examples in the literature documenting that the existence of Z is

practically reasonable. In application, a surrogate or a proxy of the outcome variable Y, which would not

synchronically affect the missingness mechanism, could be a good choice for the shadow variable Z.

We assume independent and identically distributed observations fri, yi, ui, zig for i = 1, ..., N and

the first n subjects are free of missing data. Now we present a s(�)-free procedure via the use of the

conditional likelihood. Denote V = (Y, U
T
)

T
. We start with

n

∏
i= 1

p(vi jzi, ri = 1) =
n

∏
i= 1

s(vi)

g(zi)
p(vi jzi),

where g(zi) = pr(ri = 1 j zi) =
R

pr(ri = 1 j v)p(v j zi)dv and p(� j �) is a generic notation for

conditional probability density/mass function. If V were univariate, we denote A as the rank statistic

of fv1, ..., vng, then

n

∏
i= 1

p(vi jzi, ri = 1) = p(v1, ..., vn jz1, ..., zn, r1 = ���= rn = 1)

= p(A jv(1), ..., v(n), z1, ..., zn, r1 = ���= rn = 1)p(v(1), ..., v(n) jz1, ..., zn, r1 = ���= rn = 1). (3)

The conditional likelihood that we use, the first term on the right hand side of (3), is exactly

p(A jv(1), ..., v(n), z1, ..., zn, r1 = ���= rn = 1) =
p(v1, ..., vn jz1, ..., zn, r1 = ���= rn = 1)

p(v(1), ..., v(n) jz1, ..., zn, r1 = ���= rn = 1)

=
∏

n
i= 1 p(vi jzi, ri = 1)

Σw 2 Ω ∏
n
i= 1 p(vw (i) jzi, ri = 1)

=
∏

n
i= 1 p(vi jzi)

Σw 2 Ω ∏
n
i= 1 p(vw (i) jzi)

, (4)

where Ω represents the collection of all one-to-one mappings from f1, ..., ng to f1, ..., ng. Now (4) is

nuisance-free and can be used to estimate the unknown parameters in p(vi jzi).

Although V is multidimensional in our case, the idea presented above can still be applied and it

leads to

∏
n
i= 1 p(yi, ui jzi, ri = 1)

Σw 2 Ω ∏
n
i= 1 p(yw (i), uw (i) jzi, ri = 1)

=
∏

n
i= 1 p(yi, ui jzi)

Σw 2 Ω ∏
n
i= 1 p(yw (i), uw (i) jzi)

. (5)
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Furthermore, to simplify the computation, we adopt the pairwise fashion of (5) following the

previous discussion on pairwise pseudo-likelihood in [15], which results

∏
1� i< j� n

p(yi, ui jzi)p(yj, uj jzj)

p(yi, ui jzi)p(yj, uj jzj)+ p(yi, ui jzj)p(yj, uj jzi)
.

After plugging in model (1) and some algebra, the objective eventually becomes to minimize

L(θ) =

�
N

2

�  1

∑
1� i< j� N

f ij(θ) =

�
N

2

�  1

∑
1� i< j� N

rirj logf1 + Wij exp(θ
T
dij)g, (6)

where θ = (eg , eβ
T
)

T
, eg = g /s 2, eβ = eg β, dij = ( yinjzinj, u

T

inj
zinj)

T
, yinj = yi  yj, uinj = ui  uj,

zinj = zi  zj and Wij = p(zi juj)p(zj jui)/fp(zi jui)p(zj juj)g.

Denote the minimizer of (6) as bθ. By checking that

¶ 2f ij(θ)

¶ θ¶ θ
T

= rirjf1 + Wij exp(θ
T
dij)g

 2Wij exp(θ
T
dij)dijd

T

ij

is positive definite, bθ uniquely exists. To compute bθ, one also needs a model for Wij. Fortunately, this model

only depends on fully observed data xi and xj. Essentially any existing parametric, semiparametric,

or nonparametric modeling technique for p(z ju) can be used, and Wij can be estimated accordingly.

Throughout, we denote bWij as an available well-behaved estimator of Wij. Although our procedure stems

from p(y, u jz, r = 1), which only relies on the data fyi, xig with i = 1, it can be seen that, not only the data

fyi, xig with i = 1 are used to compute bθ, the data fxig with i = 0 are also used in the process of estimating

Wij. Therefore, all observed data, both from completely-observed subjects and from partially-observed

subjects, are utilized in our procedure.

One can notice that, due to the assumption (2) which allows the greatest flexibility of the

mechanism model and the adoption of the conditional likelihood, not all parameters a , β, g , and s 2

are estimable. Nevertheless, the parameter β, which quantifies the association between Y and U after

adjusting for Z and is of primarily scientific interest, can be fully estimable. The remainder of the paper

focuses on the estimation and inference of β, as well as the variable selection procedure based on β.

Before moving on, we give some comparison with the existing literature to underline the novel

contributions we make in this paper. Based on a slightly different but more restrictive missingness

mechanism assumption that pr(R = 1 j Y, X) = a(Y)b(X), Refs. [16–18] used the similar idea to

analyze non-ignorable missing data for a generalized linear model and a semiparametric proportional

likelihood ratio model, respectively. They focused on different aspects of how to use the conditional

likelihoods and their consequences such as the partial identifiability issue and the large bias issue.

In this paper, we focus on the linear model (1) and we just showed that the parameter β is fully

identifiable. It can be seen that the method presented in this paper can be applied to different models,

but their identifiability problems or some other relevant issues have to be analyzed on a case-by-case

basis. For instance, Ref. [19] studied the parameter estimation problem in a logistic regression model

with a low dimensionality under assumption (2). They showed that, different from the current paper,

all the unknown parameters are identifiable in their context. However, because of the complexity

of their objective function, the algorithm studied in [19] is trivial and cannot be extended to a high

dimensional setting.

3. Traditional Setting without Regularization

Computation. Directly minimizing L(θ) is feasible; however, it is very computationally involved.

From rearranging the terms in L(θ), we realize that it can be rewritten as the negative log-likelihood
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function of a standard logistic regression model. To be more specific, let k be the index of pair (i, j)

with k = 1, ..., K and K = (n
2). Then,

L(θ) =
1

K

K

∑
k= 1

log
n

1 + exp
�

skθ
T
tk + log bWk

�o
, (7)

where sk =  sign(zinj), tk = (jzinjjyinj,  jzinjju
T

inj
)

T
. Denote gk = Ifzinj > 0g, then one can show that

the summand in (7), log
n

1 + exp
�

skθ
T
tk + log bWk

�o
, equals,

 
h

gk

�
θ

T
tk + sk log bWk

�
 log

n
1 + exp

�
θ

T
tk + sk log bWk

�o i
,

which is the contribution of the k-th subject to the negative log-likelihood of a logistic regression with

gk as the response, θ as the coefficient, tk as the covariate, and sk log bWk as the offset term, but without

an intercept. Therefore, bθ can be obtained by fitting the aforementioned logistic regression model.

Algorithm 1 describes the steps for data manipulation and model fitting to estimate θ under this

traditional setting.

Algorithm 1 Minimization of (6) without penalization

1: Inputs: fyi, ui, zig, fyj, uj, zjg, bWij, for i = 1, ..., n and j = 1, ..., n

2: Initialize: k  0

3: for j 2 f2 : ng do

4: for i 2 f1 : (j  1)g do

5: k  k + 1

6: yinj  yi  yj, uinj  ui  uj, zinj  zi  zj, bWk  bWij

7: gk  Ifzinj > 0g

8: sk   sign(zinj)

9: tk  (jzinjjyinj,  jzinjju
T

inj
)

T

10: Fit logistic regression with response g, covariate t, offset s
T

log bW, and no intercept.

11: Outputs: bθ

Asymptotic Theory. The asymptotic theory of bθ involves a model of p(z j u), which does not

contain any missing values, and therefore any statistical model, either parametric, or semiparametric,

or nonparametric, can be used. For simplicity, we only discuss the parametric case here, and any

further elaborations will be rendered into Section 7. For a parametric model p(z ju; η), one can apply

the standard maximum likelihood estimate bη. Here, we simply assume

p
N (bη  η0) =  G  1

p
N

1

N

N

∑
i= 1

¶

¶ η
log fp(zi jui; η0)g + op(1), (8)

where G = E

�
¶ 2

¶ η¶ η
T log fp(z ju; η0)g

�

, Ek ¶ 2

¶ η¶ η
T log fp(z ju; η0)g k

2 < ∞, η0 is the true value of η,

and kMk =
p

trace(MMT) for a matrix M. With this prerequisite, we have the following result for bθ,

and its proof is provided in Appendix A.

Theorem 1. Assume (8) as well as E










¶ 2 f ij(θ0,η0)

¶ θ¶ θ
T










2

< ∞. Denote θ0 the true value of θ. Then

p
N

�
bθ  θ0

�
d
 ! N

�
0, A  1

ΣA  1
�

,
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where A = E

�
¶ 2f ij(θ0,η0)

¶ θ¶ θ
T

�

, Σ = 4E
n

λ12(θ0, η0)λ13(θ0, η0)
T
o

, λij(θ0, η0) = BG 1Mij(η0)  Nij(θ0, η0),

B = E

�
¶ 2f ij(θ0,η0)

¶ θ¶ η
T

�

, Mij(η0) = 1
2

n
¶

¶ η log p(zi jui; η0)+
¶

¶ η log p(zj juj; η0)
o

, and Nij(θ0, η0) =

¶ f ij(θ0,η0)

¶ θ .

If one prefers the asymptotic result of bβ, we have

Corollary 1. Let C be a p � (p + 1)matrix such that Cθ = β, i.e.,

C =

0

B
B
B
B
@

0 1/eg 0 0 ��� 0

0 0 1/eg 0 ��� 0
...

...
...

. . .
...

0 0 0 ��� 1/eg 0

1

C
C
C
C
A

.

Denote β0 the true value of β. Then, following Theorem 1, we have
p

N
�
bβ  β0

�
d
 ! N

�
0, CA  1

ΣA  1C
T
�

.

Variance Estimation. With Theorem 1 and Corollary 1, the variance estimation is straightforward

using the plugging in strategy. Note that var(bθ) = 1
N A  1

ΣA  1, then one would have the estimate

cvar(bθ) = 1
N
bA  1bΣbA  1 where bA = (N

2)
 1

∑1� i< j� N
¶ 2 f ij(bθ,bη)

¶ θ¶ θ
T ,

bΣ = 4
N  1 ∑

N
i= 1

h
1

N  1 ∑
N
j= 1,j6= i

n
bBbG  1Mij(bη)  Nij(bθ, bη)

o i
 2
, bB = (N

2)
 1

∑1� i< j� N
¶ 2 f ij(bθ,bη)

¶ θ¶ η
T , and bG =

1
N ∑

N
i= 1

¶ 2

¶ η¶ η
T log fp(zi jui; bη)g.

4. Modern Setting with Regularization

In the past few decades, it has become a standard practice to consider the high-dimensional

regression model, where one assumes the parameter β is sparse and often uses the regularization

technique to recover the sparsity. While it is a prominent problem to analyze this type of model when

the data are prone to missing values, the literature is quite scarce primarily because it is cumbersome

to rigorously address the missingness under high dimensionality. Therefore, it is valuable to extend

the nuisance-free likelihood procedure proposed in Section 3 to the setting with regularization.

Computation. Regularization is a powerful technique to identify the zero elements of a sparse

parameter in a regression model. Various penalty functions have been extensively studied, such as

LASSO [20], SCAD [21], and MCP [22]. In particular, we study the adaptive LASSO penalty [23] with

the objective of minimizing the following function

Ll (θ) = L(θ)+
p

∑
j= 1

l
�
�
�
beb j

�
�
�
 1 ��

�eb j

�
�
�, (9)

where l > 0 is the tuning parameter. Following [23], beb j is a root-N-consistent estimator of eb j;

for example, one can use the estimator via minimizing the unregularized objective Function (6).

Obviously, the penalty term in (9) does not alter the numerical characteristic of L(θ) that we presented

in Section 3. The Ll (θ) is essentially the regularized log-likelihood of a logistic regression model with

the similar format as discussed in (7).

To choose the tuning parameter l , one can follow either the cross-validation method or various

information-based criteria. Fortunately, all of these approaches have been extensively studied in the

literature. In this paper, we follow the Bayesian information criterion (BIC) to determine l . Specifically,

we choose l to be the minimizer of the following BIC function
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BIC(l ) = 2L(θ)+ pl
log(n)

n
,

where pl is the number of nonzero elements in
beβl and the minimizer of (9) is encoded as

bθl = (beg l ,
beβ

T

l )
T. We summarize the whole computation pipeline as Algorithm 2 below.

Algorithm 2 Minimization of (9) with the ALASSO penalty

1: Inputs: fyi, ui, zig, fyj, uj, zjg, bWij, for i = 1, ..., n and j = 1, ..., n

2: Initialize: k  0

3: for j 2 f2 : ng do

4: for i 2 f1 : (j  1)g do

5: k  k + 1

6: yinj  yi  yj, uinj  ui  uj, zinj  zi  zj, bWk  bWij

7: gk  Ifzinj > 0g

8: sk   sign(zinj)

9: tk  (jzinjjyinj, jzinjju
T

inj
)

T

10: Fit logistic regression with response g, covariates t, offset s
T

log W, and no intercept.

11: Obtain beθ.

12: Fit logistic regression with ALASSO penalty.

13: Find l ? which minimizes the BIC.

14: Outputs: bθ(l ?) = bθl

Asymptotic Theory. Recall that θ = (eg , eβT)T. Without loss of generality, we assume the first p0

parameters in eβ are nonzero, where 1 � p0 < p. For simplicity, we denote θT = (eg , eb 1, ..., eb p0)
T as the

vector of nonzero components and θTc = (eb p0+ 1, ..., eb p)T as the vector of zeros.

In Theorem 1, we defined A = E

�
¶ 2 f ij(θ0,η0)

¶ θ¶ θ
T

�

, a (p + 1)� (p + 1)matrix. Now we assume it can

be partitioned as A =

 
A1 A2

A
T

2 A3

!

, where A1 is a (p0 + 1)� (p0 + 1) submatrix corresponding to θT .

Similarly, we defined Σ = 4E
n

λ12(θ0, η0)λ13(θ0, η0)
T
o

, and we also assume it can be partitioned as

Σ =

 
Σ1 Σ2

Σ
T

2 Σ3

!

, where Σ1 is a (p0 + 1)� (p0 + 1) submatrix corresponding to θT as well. We denote

the minimizer of (9), bθl , as bθl = (bθT
l ,T , bθT

l ,Tc)T, and its true value θ0 = (θT
0,T , θT

0,Tc)T.

Now, we present the oracle property pertaining to bθl , which includes the asymptotic normality for

the nonzero components and the variable selection consistency. The proof is provided in Appendix B.

Theorem 2. Assume (8), A1 is positive definite and Ek
¶ f ij(θ0,η0)

¶ θ k2 < ∞ for each θ in a neighborhood of θ0.

We also assume
p

Nl ! 0 and Nl ! ∞. Then,

p
N

�
bθl ,T  θ0,T

�
d
 ! N

�
0, A  1

1 Σ1A  1
1

�
.

In addition, let TN = fj 2 f1, ..., pg : beb j,l 6= 0g and T = fj 2 f1, ..., pg : eb j,0 6= 0g, then

lim
N! ∞

pr(TN = T) = 1.

Variance Estimation. Although the above theory provides a rigorous justification for the asymptotic

property of bθl , in practice, however, it does not guide the standard error estimation. Here, we propose

a data perturbation approach for the variance estimation. Specifically, following [24], we generate a



Entropy 2020, 22, 1154 8 of 21

set of independent and identically distributed positive random variables Ξ = fx i, i = 1, ..., Ng with

E(x i) = 1 and var(x i) = 1, e.g., the standard exponential distribution. Since it is based on a U-statistic

structure, we perturb our objective function by adding k ij = x i x j to each of its pairwise terms. We first

obtain the estimator bθ? by minimizing the perturbed version of (6):

L?(θ) =

�
N

2

�  1

∑
1� i< j� N

k ijf ij(θ).

Then, we obtain the estimator bθ?l by minimizing the perturbed version of (9):

L?
l (θ) =

�
N

2

�  1

∑
1� i< j� N

k ijf ij(θ)+
p

∑
j= 1

l
�
�
�
�
beb
?

j

�
�
�
�

�
�
�eb j

�
�
�,

where the optimal l is also computed by the BIC. We repeat this data perturbation scheme a large

number of times, say, M.

Following the theory in [25,26], under some regularity conditions, one can first show that
p

N
�
bθ?l ,T  θ0,T

�
converges in distribution to N(0, A  1

1 Σ1A  1
1 ), the same limiting distribution of

p
N

�
bθl  θ0

�
. Furthermore, one can also show pr�

�
bθ?l ,Tc = 0

�
! 1, where pr� is the probability

measure generated by the original data X and the perturbation data Ξ. In addition, one can show

that the distribution of
p

N
�
bθ?l ,T  bθl ,T

�
conditional on the data can be used to approximate the

unconditional distribution of
p

N
�
bθl ,T  θ0,T

�
and that pr�

�
bθ?l ,Tc = 0 jX

�
! 1.

To achieve a confidence interval for q j, the j-th coordinate in θ, the lower and upper bounds

can be formed by bq ?l ,j,a /2 and bq ?l ,j,1  a /2, respectively, where bq ?l ,j,q represents the q-th quantile of
n
bq ?l ,j,m, m = 1, ..., M

o
.

5. Simulation Studies

We conduct comprehensive simulation studies to evaluate the finite sample performance of our

proposed estimators and also compare with some currently existing methods. We first present the

results under the model without regularization, then with regularization.

5.1. Scenarios without Regularization

For the proposed estimator studied in Section 3, we generate fRi, Yi, UT
i , Zig, i = 1, . . . , N,

independent and identically distributed copies of (R, Y, UT, Z), as follows. We first generate the

random vector U = (U1, . . . , Up)T with Ui � N(0.5, 1)and p = 4, and then generate Z = a z + ηTU + e z

with a z = 0.5, η = ( 0.5, 1,  1, 1.5)T, e z � N(0, 1). Afterwards, the outcome variable Y is generated

following the model (1) with a =  1, β = ( 0.5, 1,  1, 1.5)T, g = 0.5, and e � N(0, 1), and the

missingness indicator R is generated following pr(R = 1 jY, U) = I(Y < 2.5, U1 < 2, U2 < 2, U3 <

2, U4 < 2)which results in around 40% missing values. We examine two situations with sample size

N = 500 and N = 1000 respectively. Besides the estimator studied in Section 3 (Proposed), we also

implement the estimator using all simulated data (FullData) and the estimator using completely

observed subjects only (CC). Based on 1000 simulation replicates, for each of the three estimators,

we summarize the sample bias, sample standard deviation, estimated standard error, and coverage

probability of 95% confidence intervals in Table 1.
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Table 1. In Section 5.1, sample bias (Bias), sample standard deviation (SD), estimated standard error

(SE), and coverage probability (CP) of 95% confidence interval of the estimator of FullData (using all

simulated data), CC (using only completely observed subjects), and of the proposed estimator studied

in Section 3.

N Parameter Method Bias SD SE CP

500

eg
FullData 0.0026 0.0444 0.0450 0.9540

CC  0.0329 0.0564 0.0560 0.9100
Proposed 0.0174 0.0829 0.0789 0.9450

b 1

FullData 0.0022 0.0489 0.0503 0.9510
CC 0.0376 0.0670 0.0699 0.9300

Proposed 0.0164 0.1644 0.1607 0.9400

b 2

FullData  0.0017 0.0657 0.0635 0.9310
CC  0.0649 0.0851 0.0835 0.8680

Proposed  0.0399 0.2305 0.2239 0.9360

b 3

FullData 0.0022 0.0616 0.0635 0.9540
CC 0.0778 0.0871 0.0867 0.8430

Proposed 0.0462 0.2323 0.2298 0.9410

b 4

FullData  0.0045 0.0792 0.0810 0.9530
CC  0.0988 0.1007 0.1043 0.8550

Proposed  0.0672 0.3081 0.3047 0.9380

1000

eg
FullData  0.0012 0.0317 0.0317 0.9540

CC  0.0348 0.0396 0.0393 0.8510
Proposed 0.0068 0.0573 0.0555 0.9350

b 1

FullData 0.0011 0.0367 0.0355 0.9370
CC 0.0399 0.0490 0.0494 0.8840

Proposed 0.0154 0.1154 0.1138 0.9460

b 2

Full Data 0.0020 0.0448 0.0448 0.9500
CC  0.0649 0.0577 0.0588 0.8110

Proposed  0.0153 0.1531 0.1591 0.9590

b 3

Full Data  0.0015 0.0458 0.0449 0.9460
CC 0.0779 0.0605 0.0611 0.7490

Proposed 0.0135 0.1598 0.1634 0.9480

b 4

Full Data 0.0009 0.0564 0.0571 0.9540
CC  0.0949 0.0720 0.0734 0.7550

Proposed  0.0242 0.2091 0.2167 0.9430

Furthermore, we consider a similar simulation setting where the generation is the same as above

except for a logistic missingness mechanism model with logitfpr(R = 1 jY, U)g = 3  2Y + 0.5U1  

U2 + U3  1.5U4, which also results in around 40% missing values. We replicate the results, shown in

Table 2.

We can reach the following conclusions from Tables 1 and 2. For the estimator Proposed,

although its bias is slightly larger than the benchmark FullData, it is still very close to zero. The sample

standard deviation and the estimated standard error are rather close to each other. The sample

coverage probability of the estimated 95% confidence interval is also very close to the nominal

level. This observation well matches our theoretical justification in Theorem 1. On the contrary,

the estimator CC is clearly biased, resulting in empirical coverage far from the nominal level,

and therefore is not recommended to use in practice. It is also clear that, compared to the benchmark

FullData, the estimator Proposed has estimation efficiency loss to some extent. This is because the

proposed method uses the conditional likelihood approach and it completely eliminates the effect of

the nuisance.
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Table 2. In Section 5.1, sample bias (Bias), sample standard deviation (SD), estimated standard error

(SE), and coverage probability (CP) of 95% confidence interval of the estimator of FullData (using all

simulated data), CC (using only completely observed subjects), and of the proposed estimator studied

in Section 3, with a logistic missingness mechanism model.

N Parameter Method Bias SD SE CP

500

eg
FullData  0.0011 0.0464 0.0451 0.9410

CC  0.0306 0.0567 0.0567 0.9200
Proposed 0.0100 0.0822 0.0787 0.9380

b 1

FullData  0.0004 0.0509 0.0503 0.9520
CC 0.0440 0.0636 0.0637 0.8930

Proposed 0.0146 0.1308 0.1236 0.9420

b 2

FullData 0.0013 0.0639 0.0637 0.9520
CC  0.0871 0.0828 0.0821 0.8190

Proposed  0.0173 0.1824 0.1753 0.9430

b 3

FullData  0.0030 0.0655 0.0636 0.9400
CC 0.0876 0.0847 0.0821 0.8030

Proposed 0.0214 0.1840 0.1756 0.9440

b 4

FullData 0.0023 0.0845 0.0812 0.9390
CC  0.1307 0.1083 0.1061 0.7560

Proposed  0.0331 0.2533 0.2384 0.9360

1000

eg
FullData 0.0004 0.0315 0.0317 0.9490

CC  0.0286 0.0396 0.0398 0.8950
Proposed 0.0060 0.0568 0.0555 0.9390

b 1

FullData 0.0007 0.0362 0.0354 0.9420
CC 0.0442 0.0451 0.0447 0.8410

Proposed 0.0079 0.0910 0.0859 0.9290

b 2

FullData  0.0004 0.0450 0.0448 0.9390
CC  0.0879 0.0571 0.0576 0.6640

Proposed  0.0044 0.1277 0.1220 0.9420

b 3

FullData  0.0009 0.0450 0.0448 0.9450
CC 0.0880 0.0588 0.0577 0.6660

Proposed 0.0114 0.1309 0.1222 0.9380

b 4

FullData  0.0005 0.0576 0.0572 0.9510
CC  0.1342 0.0755 0.0745 0.5740

Proposed  0.0191 0.1757 0.1661 0.9370

5.2. Scenarios with Regularization

For the estimator studied in Section 4, the independent and identically distributed samples

are generated as follows. The variable U = (U1, . . . , Up)T is generated from MVN(0, Σu)

with Σu = (0.5ji  jj)1� i,j� p and p = 8. Then, the shadow variable Z is generated following

Z = a z + ηTU + e z with a z = 0, η = ( 0.5, 0.5,  1, 1,  0.5, 0.5,  1, 1)T and e z � N(0, 1). The outcome

variable Y is generated from model (1) with a = 0, β = (3, 1.5, 0, 0, 2, 0, 0, 0)T, g = 3, e � N(0, s 2)

and s = 3. The distribution of the missingness indicator follows from logitfpr(R = 1 jY, U)g =

5 + 5Y + 0.2U1 + 0.2U7, which results in about 45% missing values. Similar to Section 5.1, we also

examine two situations with sample size N = 500 and N = 1000 respectively, and we implement

three estimators FullData, CC, and Proposed. When the estimator Proposed is implemented, we

perform M = 500 perturbations in order to obtain the confidence interval for the unknown parameter.

The results summarized below are based on 1000 simulation replicates.

Figure 1 shows the L1, L2, and L∞ norms of the bias for the three different estimators. As sample

size increases, there is no doubt that the estimation bias is getting smaller for any method. It is also

clear that the bias of the Proposed estimator is larger than the benchmark FullData, but much smaller

than the method CC.
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Figure1.InSection5.2,L1(1stcolumn),L2(2ndcolumn),andL∞ (3rdcolumn)normsoftheestimation

biasoftheestimatorofFullData(usingallsimulateddata),CC(usingonlycompletelyobserved

subjects),andoftheproposedestimatorstudiedinSection4.

We presentthestatisticalinferenceresultsin Table 3forN = 500and Table4for

N=1000,respectively,includingsamplebias,samplestandarddeviation,estimatedstandarderror,

coverageprobability,andlengthof95%confidenceintervalforthethreedifferentmethods.Forthe

nonzeroβ’saswellasγ,similartoSection5.1,themethodCCclearlypromptscoverageprobability

farfromthenominallevelhenceisnotreliable.ForthemethodProposed,itsestimationbiasisquite

closetozero,anditssamplestandarddeviationandestimatedstandarderrorarequiteclosetoeach

other.Thecoverageprobabilityoftheconfidenceintervalconvergestothenominallevel95%asthe

samplesizegetslarger.Forthenoisyzeroβ’s,thecoverageprobabilitiesinthethreemethodsareall

closeto1,reflectingthevariableselectionconsistencyintheoracleproperty,evenfortheCCmethod.

Furthermore,averynicefinitesamplepropertyofourproposedestimatoristhatitproducesthe

confidenceintervalwiththeshortestlength,whichcanbeclearlyseenfrombothTables3and4.
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Table 3. In Section 5.2, with sample size N = 500, sample bias (Bias), sample standard deviation

(SD), estimated standard error (SE), coverage probability (CP), and length (Length) of 95% confidence

interval of the estimator of FullData (using all simulated data), CC (using only completely observed

subjects) and of the proposed estimator studied in Section 4.

Parameter Method Bias SD SE CP Length

eg
FullData 0.0001 0.0120 0.0132 0.9480 0.0515

CC  0.0729 0.0180 0.0183 0.0370 0.0716
Proposed  0.0423 0.0500 0.0498 0.8200 0.1926

True Nonzero

b 1

FullData 0.0021 0.1686 0.1649 0.9400 0.6415
CC  0.6547 0.2207 0.2114 0.1460 0.8233

Proposed 0.0354 0.4698 0.4746 0.9320 1.8513

b 2

Full Data  0.0275 0.1692 0.1791 0.9440 0.6952
CC  0.3501 0.2227 0.2174 0.6180 0.8471

Proposed  0.2654 0.5843 0.5609 0.8940 1.9237

b 5

Full Data  0.0172 0.1576 0.1756 0.9650 0.6826
CC  0.4478 0.2172 0.2161 0.4370 0.8418

Proposed  0.1251 0.4037 0.4611 0.9330 1.8063

True Zero

b 3

FullData 0.0085 0.1567 0.1890 0.9960 0.7184
CC 0.0063 0.2067 0.2304 0.9890 0.8890

Proposed 0.0109 0.0988 0.1690 1.0000 0.4398

b 4

Full Data  0.0019 0.1581 0.1900 0.9940 0.7206
CC  0.0017 0.2097 0.2307 0.9900 0.8914

Proposed 0.0126 0.1112 0.1447 1.0000 0.3668

b 6

Full Data 0.0045 0.1212 0.1606 0.9980 0.6146
CC  0.0053 0.1749 0.1953 0.9900 0.7560

Proposed 0.0034 0.0664 0.1160 1.0000 0.2555

b 7

Full Data 0.0014 0.1351 0.1839 0.9980 0.7063
CC  0.0055 0.1870 0.2245 0.9950 0.8717

Proposed 0.0024 0.0386 0.1115 1.0000 0.2538

b 8

Full Data  0.0072 0.1295 0.1748 0.9990 0.6653
CC  0.0062 0.1795 0.2125 0.9940 0.8251

Proposed 0.0016 0.0741 0.1066 1.0000 0.2284

Table 4. In Section 5.2, with sample size N = 1000, sample bias (Bias), sample standard derivation

(SD), estimated standard error (SE), coverage probability (CP), and length (Length) of 95% confidence

interval of the estimator of FullData (using all simulated data), CC (using only completely observed

subjects) and of the proposed estimator studied in Section 4.

Parameter Method Bias SD SE CP Length

eg
FullData  0.0005 0.0073 0.0088 0.9690 0.0344

CC  0.0730 0.0126 0.0130 0.0000 0.0507
Proposed  0.0213 0.0311 0.0334 0.8700 0.1293

True Nonzero

b 1

FullData  0.0005 0.1186 0.1170 0.9300 0.4547
CC  0.6655 0.1568 0.1507 0.0090 0.5864

Proposed 0.0211 0.2911 0.2969 0.9300 1.1631

b 2

Full Data  0.0321 0.1175 0.1249 0.9550 0.4861
CC  0.3387 0.1477 0.1534 0.3960 0.5972

Proposed  0.0979 0.2907 0.3383 0.9230 1.3115

b 5

Full Data  0.0225 0.1051 0.1206 0.9590 0.4698
CC  0.4485 0.1478 0.1534 0.1770 0.5964

Proposed  0.0621 0.2351 0.2526 0.9290 0.9871
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Table 4. Cont.

Parameter Method Bias SD SE CP Length

True Zero

b 3

FullData  0.0007 0.0621 0.1162 1.0000 0.4253
CC 0.0023 0.1414 0.1614 0.9920 0.6180

Proposed 0.0044 0.0581 0.0910 1.0000 0.2091

b 4

Full Data 0.0020 0.0632 0.1170 1.0000 0.4271
CC  0.0005 0.1333 0.1608 0.9930 0.6207

Proposed 0.0063 0.0584 0.0887 1.0000 0.2107

b 6

Full Data 0.0013 0.0571 0.1010 1.0000 0.3670
CC  0.0034 0.1159 0.1378 0.9950 0.5313

Proposed 0.0012 0.0281 0.0688 1.0000 0.1430

b 7

Full Data  0.0028 0.0599 0.1144 1.0000 0.4231
CC  0.0033 0.1243 0.1584 0.9970 0.6131

Proposed 0.0016 0.0288 0.0698 1.0000 0.1421

b 8

Full Data 0.0039 0.0589 0.1080 1.0000 0.3970
CC 0.0028 0.1256 0.1497 0.9940 0.5752

Proposed 0.0000 0.0333 0.0644 1.0000 0.1314

6. Real Data Application

The Medical Information Mart for Intensive Care III (MIMIC-III) is an openly available electronic

health records (EHR) database, developed by the MIT Lab for Computational Physiology [13],

comprising de-identified health-related data associated with intensive care unit patients with rich

information including demographics, vital signs, laboratory test, medications, and more.

Our initial motivation for this data analysis is to understand the missingness mechanism for some

laboratory test biomarkers in this EHR system. As for the EHR database, since the data are collected in

a non-prescheduled fashion, i.e., only available when the patient seeks care or the physician orders

care, the visiting process could be potentially informative about the patients’ risk categories. Therefore,

it is very plausible that the data are missing not at random, or a mix of missing not at random and

missing at random [27,28]. When we first conducted the data cleaning process briefly, an interesting

phenomenon we observe is that, compared to most biomarkers which usually have < 3% missing

values, the albumin level in the blood sample, a very indicative biomarker associated with different

types of diseases [29], has around 30% missingness.

To further understand this phenomenon, we concentrate on a subset of the data with sample size

N = 1359 in which 421 samples have missing values in the albumin level but all other variables are

complete. We aim to apply the proposed method to the study of the albumin level (Y). The calcium level

in the blood sample, free of missing data, has been shown in the biomedical literature that it has high

correlation with the albumin level [30–32]; therefore, we adopt the calcium level as the shadow variable

Z. Seventeen other variables comprise the vector U, which are either demographics (age and gender),

chart events (respiratory rate, glucose, heart rate, systolic blood pressure, diastolic blood pressure,

and temperature), other laboratory tests (urea nitrogen, platelets, magnesium, hematocrit, red blood

cell, white blood cell, and peripheral capillary oxygen saturation (SpO2)), or aggregated metrics

(simplified acute physiology score (SAPS-II) and sequential organ failure assessment score (SOFA)).

We implement the proposed estimator studied in Section 4 to achieve both variable selection and

post-selection inference. We also compare it with the CC method which naively fits the regularized

linear regression with the ALASSO penalty. For each of the methods, we apply the data perturbation

scheme presented in Section 4 with M = 500 for standard error estimation. The results are summarized

in Table 5. The solution path of the Proposed method, as the tuning parameter l varies, is also provided

in Figure 2.
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Table5.InSection6,theparameterestimate(Estimate),standarderror(SE),andconfidenceinterval

(CI)oftheestimatorofCC(usingonlycompletelyobservedsubjects)andoftheproposedestimator

studiedinSection4inthe MIMIC−IIIstudy.

Effect
CC Proposed

Estimate SE CI Estimate SE CI

Calcium(shadow) 0.7707 0.0691 [0.6532,0.9153] 1.5271 0.1796 [1.1815,1.8835]

RedBloodCell 0.6491 0.0514 [0.5337,0.7257] 0.7545 0.1631 [0.3594,1.0109]
Magnesium 0.0000 0.0686 [−0.2073,0.0000] 0.2731 0.2452 [0.0000,0.6609]
SOFA −0.2720 0.0268 [−0.3135,−0.2099] −0.1852 0.1040 [−0.3467,0.0000]
Temperature −0.0360 0.0351 [−0.0883,0.0659] 0.0000 0.0964 [0.0000,0.3132]
WhiteBloodCell −0.0245 0.0123 [−0.0416,0.0000] 0.0000 0.0025 [0.0000,0.0000]
Age 0.0000 0.0008 [0.0000,0.0000] 0.0000 0.0017 [0.0000.0.0000]
Gender 0.0000 0.0240 [−0.0477,0.0662] 0.0000 0.1320 [−0.4025,0.0000]
RespiratoryRate 0.0000 0.0034 [−0.0141,0.0000] 0.0000 0.0008 [0.0000,0.0000]
Glucose 0.0000 0.0000 [0.0000,0.0000] 0.0000 0.0005 [0.0000,0.0000]
HeartRate 0.0000 0.0025 [−0.0091,0.0000] 0.0000 0.0004 [0.0000,0.0000]
SystolicBP 0.0000 0.0045 [−0.0139,0.0000] 0.0000 0.0000 [0.0000,0.0000]
DiastolicBP 0.0000 0.0072 [0.0000,0.0223] 0.0000 0.0000 [0.0000,0.0000]
UreaNitrogen 0.0000 0.0004 [0.0000,0.0000] 0.0000 0.0000 [0.0000,0.0000]
Platelets 0.0000 0.0000 [0.0000,0.0000] 0.0000 0.0000 [0.0000,0.0000]
Hematocrit 0.0000 0.0027 [0.0000,0.0000] 0.0000 0.0000 [0.0000,0.0000]
SpO2 0.0000 0.0145 [−0.0479,0.0000] 0.0000 0.0162 [0.0000,0.0000]
SAPS-II 0.0000 0.0106 [−0.0051,0.0269] 0.0000 0.0000 [0.0000,0.0000]
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Figure2.InSection6,astuningparameterλvaries,thesolutionpathoftheproposedestimatorinthe

MIMIC-IIIstudy.Theoptimal λ,λ∗,equals1.0030andlogλ∗=0.0030.

Ingeneral,bothmethodsachievethegoalofvariableselectionandpost-selectioninferenceby

leveragingtheregularizationtechniquecoupledwiththedataperturbationstrategy,andidentify

manyvariablesasnoisewithzerocoefficients.Inparticular,the Proposedmethodprovideslarger

effectsforthecalciumlevel(theshadowvariable)andtheredbloodcellcount,whereasasmaller

effectfortheaggregatedSOFAscore.TheProposedmethodsimplifiesthebodytemperatureandthe

whitebloodcellcountasnonsignificantvariables,whichareidentifiedasnonzerobutwithavery

smalleffectusingtheCCmethod.ItisalsoworthwhiletomentionthattheProposedmethodsignifies
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the magnesium level with a quite significant coefficient, which was extensively investigated in the

scientific literature [33–35].

7. Discussion

In this paper, we provide a systematic approach for parameter estimation and statistical inference

in both traditional linear model where the regularization is not needed and the modern regularized

regression setting, when the outcome variable is prone to missing values and the missingness

mechanism can be arbitrarily flexible. A pivotal condition rooted in our procedure is the shadow

variable Z, which overcomes the model identifiability problem and enables the nuisance-free

conditional likelihood process.

Certainly any method would have its own limitations and could be potentially improved.

One needs a model p(z ju) to implement the proposed estimator in Sections 3 and 4. As its modeling

does not involve any missing data, we simply use the parametric maximum likelihood estimation in

our algorithm as well as in the theoretical justification. Indeed, any statistical or machine learning

method can be used for modeling p(z ju). For instance, if one would like to consider a semiparametric

model [36], e.g.,

p(z ju; η, F) =
exp(ηTuz)f (z)

R
exp(ηTuz)dF(z)

,

where η = (h 1, ..., h p)
T

is a vector of unknown parameters and f (z) is the density of an unknown

baseline distribution function F with respect to some dominating measure n . With this model fitted,

Wij can be simplified to Wij = exp( zinjη
T
uinj). Therefore, a similar conditional likelihood approach

can be used to estimate η without estimating the nonparametric component f (z).
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Appendix A. Proof of Theorem 1

Proof. Note that bθ is obtained by setting estimating equation
¶ L(bθ,bη)

¶ θ = 0, which is equivalent to

(
¶ L(bθ, bη)

¶ θ
 

¶ L(θ0, bη)

¶ θ

)

+

�
¶ L(θ0, bη)

¶ θ
 

¶ L(θ0, η0)

¶ θ

�

+
¶ L(θ0, η0)

¶ θ
= 0. (A1)

Specifically,

¶ L(bθ, bη)

¶ θ
 

¶ L(θ0, bη)

¶ θ
=

¶ 2L(θ0, bη)

¶ θ¶ θ
T

�
bθ  θ0

�
+ op

�
N  1

2

�
, (A2)

by Taylor expansion. Similarly,

¶ L(θ0, bη)

¶ θ
 

¶ L(θ0, η0)

¶ θ
=

¶ 2L(θ0, η0)

¶ θ¶ η
T (bη  η0)+ op

�
N  1

2

�
. (A3)

With (A2) and (A3) plugging into (A1), we can obtain the following equation,

p
N

¶ 2L(θ0, bη)

¶ θ¶ θ
T

�
bθ  θ0

�
+
p

N
¶ 2L(θ0, η0)

¶ θ¶ η
T (bη  η0)+

p
N

¶ L(θ0, η0)

¶ θ
+ op(1) = 0. (A4)

As
p

N (bη  η0) =  G  1
p

N 1
N ∑

N
i= 1

¶
¶ η log fp(zi jui; η0)g + op(1) from the asymptotic property of bη,

(A4) is equivalent to
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p
N
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where
¶ 2L(θ0,η0)

¶ θ¶ θ
T

p
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T

p
 ! B = E

�
¶ 2 f ij(θ0,η0)

¶ θ¶ η
T

�

. In addition, we need to

form a projection of 1
N ∑

N
i= 1

¶
¶ η log fp(zi jui; η0)g in (A5) through

1

N

N

∑
i= 1

¶

¶ η
log fp(zi jui; η0)g =

�
N

2

�  1

∑
1� i< j� N

1

2

�
¶

¶ η
log fp(zi jui; η0)g +

¶

¶ η
log

�
p(zj juj; η0)

	
�

,

and
¶ L(θ0, η0)

¶ θ
=

�
N

2

�  1

∑
1� i< j� N

¶ f ij(θ0, η0)

¶ θ
.

To sum up, (A5) can be formed as

p
N

�
bθ  θ0

�
= A  1

p
N

�
N

2

�  1

∑
1� i< j� N

n
BG  1Mij(η0)  Nij(θ0, η0)

o
+ op(1),

where Mij(η0) =
1
2

h
¶

¶ η log fp(zi jui; η0)g +
¶

¶ η log
�

p(zj juj; η0)
	i

and Nij(θ0, η0) =
¶ f ij(θ0,η0)

¶ θ .

Appendix B. Proof of Theorem 2

Proof. Define function

qij(θ) = f ij

�

θ0 +
θ

p
N

, bη

�

 f ij(θ0, bη)  

�
θ

p
N

� T
¶ f ij(θ0, bη)

¶ θ
= Op

�
1

N

�

, (A6)

and we can form a U-statistic based on qij(θ)as

QN(θ) =
2

N(N  1) ∑
1� i< j� N

qij(θ)

= L

�

θ0 +
θ

p
N

�

 L(θ0)  
1

p
N

�
2

N(N  1)
θ

T

∑
1� i< j� N

¶ f ij(θ0, bη)

¶ θ
.

The variance of QN(θ) is bounded by var fQN(θ)g � 2
N var

�
qij(θ)

	
, from Corollary 3.2 of [37].

Meanwhile, 2
N var

�
qij(θ)

	
= 2

N

h
E
�

qij(θ)
2
	
 E

�
qij(θ)

	2
i

� 2
N E

�
qij(θ)

2
	

, as E
�

qij(θ)
	2

� 0.

As f ij(θ, bη) is convex, that is, differentiable at θ0, we can conclude
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f ij

�

θ0 +
θ

p
N

, bη

�

 f ij (θ0, bη) �

�
θ

p
N

� T
¶ f ij(θ0, bη)

¶ θ
, (A7)

from which we can obtain qij(θ) � 0. Similarly,

f ij

�

θ0 +
θ

p
N

, bη

�

 f ij (θ0, bη) �

�
θ

p
N

� T ¶ f ij

�
θ0 +

θp
N

, bη
�

¶ θ
. (A8)

From (A6)–(A8), we can conclude

0 � qij(θ) �

�
θ

p
N

� T
8
<

:

¶ f ij

�
θ0 +

θp
N

, bη
�

¶ θ
 

¶ f ij (θ0, bη)

¶ θ

9
=

;
.

Therefore, we can bound

2

N
E
n

qij(θ)
2
o
�

2

N

�
1

p
N

� 2

E

�

θ
T
�

¶

¶ θ
f ij

�

θ0 +
θ

p
N

, bη

�

 
¶ f ij(θ0, bη)

¶ θ

� �2

.

The term θ
T
n

¶
¶ θ f ij

�
θ0 +

θp
N

, bη
�
 

¶ f ij(θ0,bη)

¶ θ

o
p
 ! 0 as N ! ∞. Thus, var fN �QN(θ)g

p
 ! 0

and consequently

N �QN(θ)  N �EfQN(θ)g
p
 ! 0. (A9)

Meanwhile, E fQN(θ)g = E
n

f ij

�
θ0 +

θp
N

, bη
�o

 E
�

f ij(θ0, bη)
	

. Eventually from (A9) we have

N

�

L

�

θ0 +
θ

p
N

�

 L (θ0)

�

 θ
Tp

N
2

N(N  1) ∑
1� i< j� N

¶ f ij(θ0, bη)

¶ θ

 N

�

E

�

f ij

�

θ0 +
θ

p
N

, bη

� �

 E
�

f ij(θ0, bη)
	
�

p
 ! 0. (A10)

The third term on the left side of (A10) has convergence properties

N

�

E

�

f ij

�

θ0 +
θ

p
N

, bη

� �

 E
�

f ij(θ0, bη)
	
�

= N

"

E

(

f ij(θ0, bη)+

�
θ

p
N

� T
¶ f ij(θ0, bη)

¶ θ
+

1

2

�
θ

p
N

� T
¶ 2f ij(θ0, bη)

¶ θ¶ θ
T

θ
p

N
+ op

�
1

N

� )

 E
�

f ij(θ0, bη)
	�

p
 !

1

2
θ

T
Aθ.

By CLT for U-statistics,

p
N

"
2

N(N  1) ∑
1� i< j� N

¶ f ij(θ0, bη)

¶ θ

#
d
 ! N(0, Σ).

Using Slutsky’s theorem, we can simplify (A10) as

N

�

L

�

θ0 +
θ

p
N

�

 L(θ0)

�
d
 !

1

2
θ

T
Aθ + θ

T
W,

where W � N(0, Σ). Based on convexity [38], for every compact set K � R
p+ 1, we have
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�

N

�

L

�

θ0 +
θ

p
N

, bη

�

 L(θ0, bη)

�

: θ 2 K

�
d
 !

�
1

2
θ

T
Aθ + θ

T
W : θ 2 K

�

. (A11)

Now we develop large sample properties on the penalty term in objective function with adaptive

LASSO penalty. We modify the penalty term as

N
p

∑
j= 1

l
�
�
�
beb j

�
�
�

�
�
�
�
�
eb j,0 +

eb j
p

N

�
�
�
�
�
 N

p

∑
j= 1

l
�
�
�
beb j

�
�
�

�
�
�eb j,0

�
�
�.

From Theorem 1, we have already obtained
p

N
�
beb j  

eb j,0

�
= Op(1). Meanwhile, Nl ! ∞ and

p
Nl ! 0. If eb j,0 6= 0, then

p
Nl /

�
�
�
beb j

�
�
�

p
 ! 0 and

�
�
�
p

Neb j,0 + eb j

�
�
�  

�
�
�
p

Neb j,0

�
�
�! sign(eb j,0)eb j. Eventually

N
l
�
�
�
beb j

�
�
�

 �
�
�
�
�
eb j,0 +

eb j
p

N

�
�
�
�
�
 

�
�
�eb j,0

�
�
�

!

=
p

N
l
�
�
�
beb j

�
�
�

��
�
�
p

Neb j,0 + eb j

�
�
�  

�
�
�
p

Neb j,0

�
�
�
�

p
 ! 0.

If eb j,0 = 0, then
p

Nl /
�
�
�
beb j

�
�
�= Nl /

�p
N

�
�
�
beb j

�
�
�
�

p
 ! ∞, consequently

N
l
�
�
�
beb j

�
�
�

 �
�
�
�
�
eb j,0 +

eb j
p

N

�
�
�
�
�
 

�
�
�eb j,0

�
�
�

!

=
p

N
l
�
�
�
beb j

�
�
�

�
�
�eb j

�
�
�

p
 !

(
0, if eb j = 0,

∞, if eb j 6= 0.

Therefore, we can summarize

N
p

∑
j= 1

l
�
�
�
beb j

�
�
�

 �
�
�
�
�
eb j,0 +

eb j
p

N

�
�
�
�
�
 

�
�
�eb j,0

�
�
�

!
p
 !

(
0, if eβ = (eb 1, ..., eb p0 , 0, ..., 0),

∞, otherwise.

We have infinity in the limit function, so we cannot use standard argumentation relating

to uniform convergence in probability on compacts [39]. However, we can apply slightly more

complicated epi-convergence. Thus, based on the works in [23,40,41], we have

N

�

L

�

θ0 +
θ

p
N

�

 L (θ0)

�

+ N
p

∑
j= 1

l
�
�
�
beb j

�
�
�

 �
�
�
�
�
eb j,0 +

eb j
p

N

�
�
�
�
�
 

�
�
�eb j,0

�
�
�

!
e  d
  ! V(θ), (A12)

and

V(θ) =

(
1
2 θ

T

TA1θT + θ
T

TWT , if θ = (eg , eb 1, ..., eb p0 , 0, ..., 0),

∞, otherwise.

and WT � N(0, Σ1). Specifically, the left side of (A12) is minimized if θ =
p

N
�
bθl  θ0

�
and

V(θ) has a unique minimizer
�
 (A  1

1 WT)
T
, 0

T
�T

by setting
¶ V(θ)

¶ θ = 0. Therefore, convergence of

minimizers [40] can be concluded from (A12):

p
N

�
bθl ,T  θ0,T

�
d
 !  A  1

1 WT and
p

N
�
bθl ,Tc  θ0,Tc

�
d
 ! 0. (A13)

For j 2 T,

pr (j /2 TN) = pr
�
beb j,l = 0

�
! 0.

Thus, pr (T � TN) ! 1. In addition, bθl minimizes the convex objective function Ll (θ) so that

0 2 ¶ Ll (bθl ). As Ll (θ)might be nondifferentiable and gradient of Ll (θ)does not exist for some θ, we
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use ¶ Ll (θ) to represent an arbitrary selection of the subgradient of Ll (θ). By taking the subgradient

of the objective function with adaptive LASSO penalty, we can obtain

¶ Ll (bθl ) = ¶ L(bθl )+ ¶

0

B
@

p

∑
j= 1

l
�
�
�
beb j

�
�
�

�
�
�
beb j,l

�
�
�

1

C
A .

For j /2 T, pr (j 2 TN) can be upper bounded by

pr

0

B
@ ¶ jL(bθl )+

l
�
�
�
beb j

�
�
�
sign

�
beb j,l

�
= 0

1

C
A � pr

0

B
@
p

N
�
�
�¶ jL(bθl )

�
�
�=

p
N

l
�
�
�
beb j

�
�
�

1

C
A , (A14)

where ¶ j is the j-th coordinate of subgradient and
p

Nl /
�
�
�
beb j

�
�
�

p
 ! ∞ as j /2 T.

We can expand the subgradient
p

N¶ L(bθl )as

p
N¶ L(bθl ) =

p
N

n
¶ L(bθl )  ¶ L(θ0)  A

�
bθl  θ0

�o
+
p

N¶ L(θ0)+
p

NA
�
bθl  θ0

�
, (A15)

where
p

N¶ L(θ0) is bounded in probability,
p

NA
�
bθl  θ0

�
D
 !

p
NW which is bounded in

probability as well. By Theorem 1 of the work in [42],

sup
jbθl  θ0j� M/

p
N

�
�
�¶ L(bθl )  ¶ L(θ0)  A

�
bθl  θ0

��
�
�= op

�
1

p
N

�

.

Therefore,
p

N
n

¶ L(bθl )  ¶ L(θ0)  A
�
bθl  θ0

�o
p
 ! 0. Finally,

p
N

�
�
�¶ jL(bθl )

�
�
� is bounded and

the right side of (A14) converges to 0, which proves pr(j 2 TN) ! 0 for j /2 T.
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