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Consider the regression setting where the response variable is subject to missing data 
and the covariates are fully observed. A nonignorable propensity score model, i.e., the 
probability that the response is observed conditional on all variables depends on the 
missing values themselves, is assumed throughout the paper. In such problems, model 
misspecification and model identifiability are two critical issues. A fully parametric 
approach can produce results that are sensitive to the model assumptions, while a fully 
nonparametric approach may not be sufficient for model identification. A new flexible 
semiparametric propensity score model is proposed where the relationship between 
the missingness indicator and the partially observed response is totally unspecified and 
estimated nonparametrically, while the relationship between the missingness indicator 
and the fully observed covariates is modeled parametrically. The proposed estimator 
is constructed via a semiparametric treatment and is proved to be semiparametrically 
efficient. Comprehensive simulation studies are conducted to examine the finite-sample 
performance of the estimators. While the naive parametric method leads to heavily 
biased estimator and poor coverage results, the proposed method produces estimator with 
negligible finite-sample biases and also correct inference results. The proposed method 
is further illustrated via an electronic health records (EHR) data application for the 
albumin level in the blood sample. The empirical analyses demonstrated that the proposed 
semiparametric propensity score model is more sensible than a purely parametric model. 
The proposed method could be very useful to uncover the unknown and possibly nonlinear 
dependence of the propensity score model to the albumin level, and is recommended for 
practical use.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Missing data are ubiquitous in many areas of scientific inquiry, especially in research involving human subjects, such 
as health related studies and sample surveys. Differentiating the different natures of missingness through the propensity 
score model (Rosenbaum and Rubin, 1983) is crucial in statistical analysis with missing data. The propensity score model, 
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i.e., the distribution of the missingness indicator conditional on all variables, is called ignorable if it does not depend on 
the missing values. Otherwise, it is called nonignorable, also known as missing not at random (Little and Rubin, 2002). 
Extensive literature exists on ignorable missing data (Rubin, 1978; Robins et al., 1994; Schafer, 1997; Little and Rubin, 2002; 
Tsiatis, 2006; Kim and Shao, 2013; Molenberghs et al., 2014), while nonignorable missingness is more challenging with less 
research on it.

The assumption on ignorable missingness can be violated in some applications. Specifically, in the electronic health 
record (EHR) data example that motivated our work, data are collected in a non-prescheduled fashion. Thus, data are only 
available when a patient seeks care or a physician orders care, therefore the visiting process is potentially reflective of a 
patient’s risk category. In other words, it is most likely that the propensity score will depend on the missing value itself. In 
such situation, missing value dependent propensity score models are needed for handling nonignorable missingness.

Many earlier literatures model the propensity score parametrically, see Ibrahim and Lipsitz (1996); Rotnitzky and Robins 
(1997); Qin et al. (2002); Chang and Kott (2008); Wang et al. (2014); Morikawa and Kim (2021). However, parametric model 
assumptions are generally restrictive and subject to model misspecification. On the other extreme, nonparametric propensity 
score is also considered in recent literatures (Tang et al., 2003; Shao and Zhao, 2013; Kott, 2014; Wang et al., 2014; Zhao 
and Shao, 2015; Zhao and Ma, 2021). Although nonparametric models avoid the risk of model misspecification, they also 
lose the ability to model any aspect of the model more specifically hence to improve subsequent inference results. A middle 
ground that encompasses the advantages of both parametric and nonparametric propensity scores is semiparametric models. 
To this end, Kim and Yu (2011) and Shao and Wang (2016) proposed a semiparametric logistic regression model for the 
propensity, where the relationship between the missingness indicator and the fully observed variables is left unspecified, 
while the relationship between the missingness indicator and the variable that contains missing values is parametrically 
modeled. While these works open the door to the semiparametric modeling of the propensity score, the particular strategy 
encounters two difficulties. First, it encounters a curse of dimensionality issue in handling the nonparametric component in 
the propensity score (Shao and Wang, 2016). Second, because the relationship between the variable subject to missingness 
and the missingness indicator is far more difficult to grasp than the relationship between fully observed variables and the 
missingness indicator, it is likely more sensible to allow more flexibility and consider a complement modeling strategy. In 
other words, the missingness indicator nonparametrically depends on the variable subject to missing, while parametrically 
depends on the fully observed variables. This is the propensity model we propose in this work.

Regardless the propensity is modeled parametrically, nonparametrically or semiparametrically, nonignorable missing data 
problems encounter a universal identification issue. It is known (Robins and Ritov, 1997; Miao et al., 2016) that if we assume 
that the missingness depends on both the variable subject to missingness and all fully observed variables, then the problem 
is not identifiable. Two types of additional assumptions are usually made to achieve identifiability, the instrumental variable 
approach (Tchetgen Tchetgen and Wirth, 2017; Sun et al., 2018) and the shadow variable approach (Shao and Zhao, 2013; 
Kott, 2014; Wang et al., 2014; Zhao and Shao, 2015). Here, we adopt the shadow variable approach, where we assume the 
missingness depends on the variable subject to missingness and only part of the fully observed variables. The part that has 
no involvement in the propensity score model is termed shadow variable.

The semiparametric propensity score with the variable subject to missingness modeled nonparametrically turns out chal-
lenging and interesting both methodologically and theoretically, because standard nonparametric procedures no longer apply. 
To tackle this problem, we devise a new asymptotically consistent likelihood-based estimation method for the nuisance 
functions in the presence of nonignorable missing data, followed by a nonstandard nonparametric estimation procedure. We 
show that the proposed estimator is semiparametrically efficient.

In Section 2, we present our model, and devise estimators for the parameters of interest in the parametric parts by 
deriving efficient scores. Details of implementation and algorithm are given in Section 2.3. In Section 3, we establish the 
asymptotic properties of the newly proposed semiparametrically efficient estimator. In Section 4, we examine the finite-
sample performance of our method through simulation studies. The application of our method to the motivating data is 
presented in Section 5. The paper is concluded with some discussions in Section 6.

2. Model and estimation

Consider N observations (xi, ri yi, ri), i = 1, . . . , N , which are independent and identically distributed realizations of 
(X, RY , R). Here X is a dx-dimensional fully observed covariate, R is a binary missingness indicator, and the scalar response 
Y is observed if and only if the indicator R = 1. Without loss of generality, assume that for i = 1, . . . , n, Ri = 1, while for 
i = n + 1, . . . , N , Ri = 0. Following the shadow variable approach, we write X = (UT, ZT)T, where U is du-dimensional and 
Z is (dx − du)-dimensional, dx > du ≥ 0. We term Z the shadow variable in the sense that, given the variables Y and U, 
the indicator R and the shadow variable Z are conditionally independent, i.e., pr(R = 1 | y, x) = pr(R = 1 | y, u). Thus, the 
shadow variable Z does not contribute to the propensity score model. The shadow variable assumption is widely adopted 
to achieve model identification in nonignorable missing data problems. We use a semiparametric model of the form

pr(R = 1 | y,u) = π(y,u;β, g) = expit{g(y) + h(u;β)}, (1)
2
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for the propensity score, where expit(·) = exp(·)/{1 + exp(·)}, β is a q-dimensional unknown parameter, h is a known 
function, and g is an unspecified function. For identification, we incorporate intercept into h(u; β) and require g(0) = 0. On 
the other hand, we use the familiar exponential family model to describe the fully observed data,

fY |X,R=1(y,x;α) = fY |Z,R=1(y, z;α) = exp{yη(z;α) + ρ(z;α) + τ (y;α)}, (2)

where α is a (p − q)-dimensional unknown parameter, and η, ρ and τ are all given functions satisfying ρ(z; α) =
−log[∫ exp{yη(z; α) + τ (y; α)}dy]. In Appendix A.1, we show that the model specified in (1) and (2) is identifiable. We 
summarize the result in Lemma 1.

Lemma 1. Under the model assumptions (1) and (2), the unknown components α, β and g(·) are all identifiable.

For the model described in (1) and (2), the likelihood function of one observation, which is the joint pdf/pmf of 
(X, RY , R), is given by

fX,RY ,R(x, ry, r) = fX(x){π(y,u;β, g) fY |X(y,x)}r
{∫

{1− π(y,u;β, g)} fY |X(y,x)dy
}1−r

= fX(x)w(x;β,α, g) fY |Z,R=1(y, z;α)r
{
1− w(x;α,β, g)

w(x;α,β, g)

}1−r

, (3)

where fX(x) is the pdf/pmf of x and

w(x;α,β, g) ≡ pr(R = 1 | X = x)

= 1

1+ exp{−h(u;β)}E[exp{−g(Y )} | z, R = 1] ,

and we used the fact that

fY |X(y,x) = fY |X,R=1(y,x)/π(y,u;β, g)∫
fY |X,R=1(y,x)/π(y,u;β, g)dy

= fY |Z,R=1(y, z;α)/π(y,u;β, g)∫
fY |Z,R=1(y, z;α)/π(y,u;β, g)dy

.

This likelihood is semiparametric where α and β are two unknown parameters, g(y) and fX(x) are two unknown func-
tions. Following the semiparametric convention, in our following derivation, we name θ = (αT, βT)T as the p-dimensional 
parameter of interest, and name fX(x) and g(y) as nuisance functions, although we provide estimation of g(y) as well.

In the following, we will take a semiparametric approach (Bickel et al., 1993; Tsiatis, 2006) and derive the nuisance tan-
gent space, and the efficient score with respect to θ , followed by constructing a regular and asymptotically linear estimator 
for θ . The estimator for g(y) is quite unusual due to the need of handling partially missing yi values, and will be provided 
as a by-product. For notation simplicity, we write w(x; θ , g) as w(x) and E(· | z, R = 1) as E(· | z, 1).

2.1. Nuisance tangent space and efficient score

Consider the Hilbert space H of all p-dimensional zero-mean measurable functions of the observed data with finite 
variance, equipped with the inner product

〈h1,h2〉 = E{hT1(X, RY , R)h2(X, RY , R)},
where h1, h2 ∈ H. Nuisance tangent space is defined as the mean squared closure of the nuisance tangent spaces of para-
metric sub-models spanned by the nuisance score vectors. By simple calculations, we can show that the nuisance tangent 
space for fX(x) is

� f = [a(x) ∈Rp : E{a(X)} = 0
]
,

and the nuisance tangent space for g(y) is

�g =
(
E[a(Y ){1 − π(Y ,u;β, g)} | x] r − w(x)

1− w(x)
: a(y) ∈Rp

)
=
(
E[a(Y ){π−1(Y ,u;β, g) − 1} | z,1]w(x){r − w(x)}

1− w(x)
: a(y) ∈Rp

)
.

The detailed derivation of �g is provided in Appendix A.2. Since E[{R − w(x)}/{1 − w(x)} | x] = 0, we can easily verify 
that � f ⊥ �g . Thus, the nuisance tangent space is � = � f ⊕ �g , where ⊕ stands for the addition of two spaces that are 
orthogonal to each other. Let �⊥ denote the orthogonal complement of �, then H = � f ⊕ �g ⊕ �⊥ .
3
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The efficient score is defined as the orthogonal projection of the score vector Sθ onto �⊥ . Let S(y, z; α) ≡
∂log fY |Z,R=1(y, z;α)/∂α. In Appendix A.3 we show that the score vector Sθ = (STα, STβ)T is given as

Sα(x, ry, r; θ , g) = rS(y, z;α) − E {S(Y , z;α) | x} r − w(x)

1 − w(x)
, and

Sβ(x, ry, r; θ , g) = h′
β(u;β){r − w(x)},

where h′
β(u; β) is the derivative of h(u; β) with respect to β . Since E{Sα(x, RY , R; θ , g) | x} = 0 and E{Sβ(x, RY , R; θ , g) |

x} = 0, it can be easily seen that, for any p × (p − q) constant matrix G1, G1Sα(x, ry, r; θ, g) ∈ �g ⊕ �⊥ , and for any p × q
constant matrix G2, G2Sβ(x, ry, r; θ, g) ∈ �g ⊕ �⊥ .

Define Sθ ,eff = (STα,eff, S
T
β,eff)

T, where Sα,eff(x, ry, r; θ, g) and Sβ,eff(x, ry, r; θ, g) are the projections of Sα(x, ry, r; θ, g) and 
Sβ(x, ry, r; θ, g) onto the space �⊥ , respectively. By simple calculations, we obtain

Sα,eff(x, ry, r; θ , g)

= rS(y, z;α) − r − w(x)

1− w(x)
(E {S(Y , z;α) | x} + E[a0(Y ){1− π(Y ,u;β, g)} | x])

= rS(y, z;α)

− r − w(x)

E[exp{−g(Y )} | z,1] (E[S(Y , z;α)exp{−g(Y )} | z,1] + E[a0(y)exp{−g(Y )} | z,1]) , (4)

where a0(y) satisfies

E

(
E[a0(Y ){1− π(Y ,U;β, g)} | X]w(X){1 − π(y,U;β, g)}

1− w(X)
| y
)

= −E

[
E {S(Y ,Z;α) | X} w(X){1 − π(y,U;β, g)}

1− w(X)
| y
]

. (5)

The efficient score for β is

Sβ,eff(x, ry, r; θ , g)

= r − w(x)

1− w(x)
({1− w(x)}h′

β(u;β) − E[a1(Y ){1− π(Y ,u;β, g)} | x])

= {r − w(x)}h′
β(u;β) − r − w(x)

E[exp{−g(Y )} | z,1] E[a1(Y )exp{−g(Y )} | z,1], (6)

where a1(y) satisfies

E

(
E[a1(Y ){1− π(Y ,U;β, g)} | X]w(X){1 − π(y,U;β, g)}

1− w(X)
| y
)

= E[w(X){1 − π(y,U;β, g)}h′
β(U;β) | y]. (7)

In Appendix A.4, we verify that Sα,eff(x, ry, r; θ, g) and Sβ,eff(x, ry, r; θ, g) given in (4) and (6) are projections of 
Sα(x, ry, r; θ, g) and Sβ(x, ry, r; θ, g) onto �⊥ , respectively.

2.2. Nuisance function estimation

Despite of the results above, the efficient score Sθ ,eff is not readily implementable because it contains the unknown 
quantities fX(x) and g(y). For fX(x), due to the key observations

E{R − w(x) | x} = 0 and E{RS(Y , z;α) | x} = 0,

any working model f ∗
X(x) can be used to construct estimating equations and the mean-zero property retains. On the other 

hand, the estimation of fX(x) does not involve any missing data, and it only appears in conditional expectations in (5) and 
(7). Therefore, we recommend to simply approximate those expectations using their corresponding empirical versions. This 
corresponds to employing the empirical estimator f̂X(x).

For g(y), we opt a local constant approximation; i.e., at a fixed y0, we employ γ to replace g(y0). Specifically, for any 
fixed y0, we have

π(y0,u;β, γ ) ≡ pr(R = 1 | X = x, Y = y0) = expit{γ + h(u;β)}, and

w(x, y0) ≡ pr(R = 1 | X = x) = expit{γ + h(u;β)}.

4
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The score function for γ is given as

Sγ (x, ry0, r;β, γ ) = r − w(x, y0) = r − π(y0,u;β, γ ).

One intuitive way to estimate γ , i.e., g(y0), is to solve the following estimating equation

1

N

N∑
i=1

{ri − π(y0,ui;β, γ )}Kh(yi − y0) = 0,

where Kh(·) is a kernel function with bandwidth h, i.e. Kh(·) = K (·/h)/h, K (·) is a kernel function and h is a bandwidth. It 
is equivalent to

N−1
n∑

i=1

{1− π(y0,ui;β, γ )}Kh(yi − y0) = N−1
N∑

i=n+1

π(y0,ui;β, γ )Kh(yi − y0). (8)

However, yi is missing when i = n + 1, . . . , N . We use fX|R(x, r) to denote the conditional pdf/pmf of X given R and the 
right-hand-side of (8) can be approximated by

pr(R = 0)E
{
π(y0,U;β, γ )Kh(Y − y0) | R = 0

}
= pr(R = 0)E [π(y0,U;β, γ )E {Kh(Y − y0) | X, R = 0} | R = 0]

≈ N−1
N∑

i=n+1

E[Kh(Y − y0)exp{−g(Y )} | zi,1]
E[exp{−g(Y )} | zi,1][1 + exp{−γ − h(ui,β)}] .

Hence, the approximate estimating equation for γ is

N−1
n∑

i=1

1

1+ exp{γ + h(ui;β)} Kh(yi − y0)

= N−1
N∑

i=n+1

E[Kh(Y − y0)exp{−g(Y )} | zi,1]
E[exp{−g(Y )} | zi,1][1 + exp{−γ − h(ui,β)}] .

We propose to estimate g(y) on L distinct points (d1, . . . , dL) approximately evenly distributed in the range of Y . Then 
estimate other g(y) values by polynomial interpolation with degree m − 1. Note that L goes to infinity when N goes to 
infinity, but L � N . Let γ = (γ1, . . . , γL)

T = {g(d1), . . . , g(dL)}T, and we use ĝ(y; γ ) to denote the approximate function. 
Employing the idea of profiling, at any θ , the L-dimensional vector γ (θ) can be solved from the approximate estimating 
equation set that consists of L equations

N−1
N∑

i=1

Sg{xi, ri yi, ri; θ, γ̂ (θ)} = 0, (9)

where the l-th component of Sg{xi, ri yi, ri; θ , ̂γ (θ)} is

ri Kh(yi − dl)

1+ exp{γl + h(ui;β)} + (ri − 1)E[Kh(Y − y0)exp{−ĝ(Y ;γ )} | zi,1]
E[exp{−ĝ(Y ;γ )} | zi,1][1 + exp{−γl − h(ui,β)}] .

2.3. Implementation and algorithm

Based on the methodology presented above, we now summarize the algorithm below, followed by some elaborations.
In each iteration of step (b) of Algorithm 1, we need to solve integral equations (5) and (7) to obtain a0(y) and a1(y), re-

spectively. Note that E[a(X, Y ){1 −π(Y , U; β, g)} | Y ] = 0 is equivalent to E[a(X, Y ) exp{−h(U; β)} | Y , 1] = 0 for any function 
a(x, y), as well as the facts that fX|R=1(x, 1) = fX(x)w(x)/pr(R = 1), and

fX|Y ,R=1(x, y) = fY |Z,R=1(y, z;α) fX(x)w(x)∫
fY |Z,R=1(y, z;α) fX(x)w(x)dx

,

then (5) can be written as
5
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Algorithm 1
Input: data (ui , zi , ri yi , ri), i = 1, . . . , N; parameter initial value θ0; error ε > 0.
t ← 0;
while ‖θ t+1 − θ t‖ > ε do

(a) solve the approximate estimating equation set (9) to obtain γ̂ (θ t ) = {̂g(d1; θ t ), . . . ĝ(dL ; θ t )}T;
(b) solve for the functions ̂a0(y) and ̂a1(y) from the following integral equations

L(a0, f̂X; θ t , ĝ)(y) = φ0( f̂X; θ t , ĝ)(y), and

L(a1, f̂X; θ t , ĝ)(y) = φ1( f̂X; θ t , ĝ)(y);
(c) solve the estimating equation

N∑
i=1

Ŝθ,eff[xi , ri yi , ri; θ , ĝ{·; γ̂ (θ)}] = 0, (10)

to obtain θ t+1, where ̂Sθ,eff[xi , ri yi , ri; θ, ̂g{·; ̂γ (θ)}] is Sθ ,eff[xi , ri yi , ri; θ, ̂g{·; ̂γ (θ)}] with a0(y) and a1(y) replaced by ̂a0(y) and ̂a1(y), respectively;
(d) t ← t + 1;

end while
θ̂ ← θ t+1;
Output: ̂θ .

L(a0, fX; θ, g)(y) = φ0( fX; θ , g)(y), (11)

where L is a bilinear operator defined as

L(a0, fX; θ, g)(y) =
∫∫

w2(x) fY |Z,R=1(t, z;α) fY |Z,R=1(y, z;α)

exp{h(u;β)}E[exp{−g(Y )} | z,1] exp{−g(t)}a0(t) fX(x)dtdx,

and

φ0( fX; θ, g)(y)

= −
∫

E[S(Y , z;α)exp{−g(Y )} | z,1] w2(x) fY |Z,R=1(y, z;α)

exp{h(u;β)}E[exp{−g(Y )} | z,1] fX(x)dx.

Similarly, (7) can be written as

L(a1, fX; θ , g)(y) = φ1( fX; θ , g)(y), (12)

where

φ1( fX; θ , g)(y) =
∫ h′

β(u;β)w2(x)

exp{h(u;β)} fY |Z,R=1(y, z;α) fX(x)dx.

In practice, we discretize (11) and (12), and solve for a0(y) and a1(y) by solving two linear systems, respectively.

3. Theoretical property

In this section, we establish the asymptotic properties of θ̂ , which is constructed with f̂X . To facilitate the proof, we 
assume that f̂X is independent of the data used to estimate θ and g(y). Sample splitting can be used to create the inde-
pendence. Specifically, we randomly split the data into two subsets D1 and D2, where Dk contains Nk observations and nk
out of Nk observations’ responses are not missing. For simplicity, assume nk/NK = n/N , k = 1, 2. We use Ik to denote the 
indices of observations in the k-th subset. Subset D1 is used to estimate fX(x), while D2 is used to estimate θ and g(y).

We further need the following regularity conditions.

(C1) Let N1 = CNδ , where δ ∈ [0.5, 1) and C is a positive constant. Then N2 = N − CNδ .
(C2) The degree of the polynomial interpolation is m − 1, where m ≥ 2.
(C3) Let L = ch−a , where c is a positive constant and 0 < a < 2. The bandwidth h = o(1) satisfies Nh4a+2 → ∞, Nh8−4a → 0, 

Nh4am−4a → 0, and Nh2am → 0.
(C4) Let A0(z) = E[a0(y) exp{−g(y)} | z, 1], and A1(z) = E[a1(y) exp{−g(y)} | z, 1], both of which are functionals of fX . 

Assume that the Fréchet derivative of A0(z) with respect to fX and the Fréchet derivative of A1(z) with respect to fX
are bounded.

(C5) Function g(y) ∈ Cm−1 is bounded, and its (m − 1)th derivative is Lipschitz continuous.
6
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Remark 1. To guarantee that (C1), (C2) and (C3) hold simultaneously, by simple calculations, we need m ≥ 4, and

1

m − 2
< a <

3

4
.

We set m = 4 in implementation, which means that cubic interpolation is employed.

The asymptotic normality of ̂θ is stated in Theorem 1, and the detailed proof can be found in Appendix A.5.

Theorem 1. Assume that Conditions (C1) - (C5) hold. Let

Q ≡ E

{
∂Sθ,eff(X, RY , R; θ0, g)

∂θT
0

}
= −var{Sθ,eff(X, RY , R; θ0, g)}.

Then

N1/2(̂θ − θ0) = −Q−1N−1/2
∑
i∈I2

Sθ ,eff(xi, ri yi, ri; θ0, g) + op(1).

Consequently, N1/2(̂θ − θ0) → Normal(0, V) in distribution when N → ∞, where

V = Q−1var{Sθ,eff(X, RY , R; θ0, g)}(Q−1)T = [E{Sθ,eff(X, RY , R; θ0, g)
⊗2}]−1.

Remark 2. Typically, estimating nuisance parameters will alter, often inflate, the variance of the estimator for the parameter 
of interest. However, in our construction, this is not the case. In other words, even if we knew the true functions g(y)
and fX(x) and used them in the estimating equation (10), the variance of θ̂ would not be further reduced. Indeed, the 
asymptotic variance of our ̂θ achieves the optimal estimation variance bound, and thus, it is semiparametrically efficient.

4. Simulation studies

In this section, we conduct simulation studies to evaluate the finite sample performance of our proposed method, as 
well as its comparison with some naive method. We consider the following data generating process. We first generate U
from a uniform distribution on (0, 1), then given U = u, we generate Z from Normal(u, 0.52). The conditional distribution 
of Y given Z = z and R = 1 is Normal(αz, 1) with α = 2. We then generate R by pr(R = 1 | y, u) = expit{g(y) + h(u; β)}, 
where g(y) = 3expit(y), a commonly used bounded smooth function, and h(u; β) = βu with β = −1. We use the rejection 
sampling method (Gilks and Wild, 1992) to generate the independent and identically distributed data (xi, ri yi, ri), i =
1, . . . , N . This results around 20% missingness. We implement the Algorithm 1 in Section 2.3, where the nuisance function 
is estimated on 12 distinct points, i.e., the dimension of γ is 12.

We compare the proposed method to the approach with a purely parametric propensity score model (Little and Rubin, 
2002), where g(y) is parameterized as a specified value g0, and the same fY |Z,R=1 model is adopted. In this naive method, 
we estimate α, the unknown parameter in fY |Z,R=1, by the ordinary least squares based on the complete cases, and estimate 
g0 and β by logistic regression using ri and ui , i = 1, . . . , N .

In addition to estimating model parameters, we also estimate E(Y ) under different model settings to further illustrate 
the performance of our method. Under the same data generating process, we generate 106 observations and use the average 
response as the true value of E(Y ). We consider two methods to estimate E(Y ) corresponding to the two comparison 
approaches above. Under the proposed approach, we estimate E(Y ) using

1

N

N∑
i=1

{
ri yi + (1 − ri)

Ê[Y exp{−ĝ(Y )} | zi,1]
Ê[exp{−ĝ(Y )} | zi,1]

}
.

The detailed derivations of the above procedure are given in Appendix A.6. Under the parametric approach, we estimate 
E(Y ) using N−1∑N

i=1 ri yi/π(ui; ̂β, ̂g0).
In our analysis, we consider both N = 1000 and N = 2000. Based on 1000 simulation replications, we summarize the 

estimation and inference results of parameters of interest in Table 1, the estimation results of g(y) or g0 in Fig. 1, and 
the estimation results of E(Y ) in Table 2. In Table 1, we can see that, the estimation and inference results for β using our 
proposed method are satisfactory. Specifically, the biases of β̂ are much smaller than those using the parametric method, 
the means of the estimated standard deviations closely approximate the empirical ones, and the empirical coverages of the 
estimated 95% confidence intervals are close to the nominal level. To the contrary, the naive parametric method produces 
tremendous estimation biases, especially for β̂ , so that the coverage probability is not reliable at all. In Fig. 1, our estimates 
for g(y) also match with the true curve very well. With a larger sample size N = 2000, the 95% confidence band of 
ĝ(y) becomes narrower. Finally, Table 2 clearly demonstrates that the estimate of E(Y ) using the proposed approach is 
asymptotically unbiased; however, the parametric approach, which estimates the function g(y) as a constant, is heavily 
biased. Hence, the parametric method should be used with great caution.
7
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Table 1
Estimation and inference results of the parameters of interest.

Parametric Method Proposed Method

N=1000 N=2000 N=1000 N=2000

α β α β α β α β

Bias -0.0006 1.0749 -0.0008 1.0639 -0.0005 0.0368 -0.0008 0.0138
SD 0.0449 0.2646 0.0305 0.1963 0.0449 0.3148 0.0306 0.2278
ŜD 0.0399 0.2674 0.0282 0.1889 0.0452 0.3114 0.0319 0.2195
cvg 91.2% 1.9% 93.1% 0.0% 94.9% 95.2% 96.1% 94.4%

In Table 1, “SD” denotes the empirical standard deviation of 1000 estimates; “ŜD” denotes the 
mean of 1000 estimated asymptotic standard deviations; “cvg” denotes empirical coverage of the 
estimated 95% CI.

Fig. 1. The three dotted curves (red, green and blue) represent the estimations of function g(y) (estimate, 2.5% quantile and 97.5% quantile) using the 
proposed approach, respectively. The three dashed horizontal lines (red, green and blue) represent the estimations of constant g0 (estimate, 2.5% quantile 
and 97.5% quantile) using the parametric approach, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

Table 2
Comparison of different E(Y ) estimates (true value 
equals 0.8879).

Parametric Method Proposed Method

N=1000 N=2000 N=1000 N=2000

Bias 0.2190 0.2192 0.0051 0.0028
SD 0.0529 0.0360 0.0513 0.0360

In Table 2, “SD” denotes the empirical standard devia-
tion of 1000 estimates.

5. Real data application

In this section, we analyze a data set from a publicly available electronic health records (EHR) database (Johnson et al., 
2016), the Medical Information Mart for Intensive Care III (MIMIC-III). This database comprises de-identified health-related 
data associated with intensive care unit patients with rich information including demographics, vital signs, laboratory test, 
medications, among others.

When we analyze this database, we encounter different types of missing values for laboratory test biomarkers. As we 
explained in Section 1, it is very plausible that these missing data are nonignorable (Hu et al., 2017; Li et al., 2018). 
Therefore, we would like to investigate what the corresponding propensity score models look like and what are the effective 
factors in those models. In this application, we focus on the setting that the response Y is the albumin level in the blood 
sample, a highly indicative biomarker associated with different types of diseases (Phillips et al., 1989).

For illustrative purpose and to control the effect of race and marital status, our analysis concentrates on a subgroup of 
the whole data set, where the subjects are white and divorced, with sample size N = 1476 in which 537 samples (around 
36%) have missing values in the albumin level. Our data set consists of six fully observed covariates. One of them, the 
calcium level in the blood sample, has been shown in the biomedical literature to have high correlation with the albumin 
level (Katz and Klotz, 1953; Butler et al., 1984; Hossain et al., 2015); therefore, we adopt the calcium level as the shadow 
variable Z following the literature (Zhao and Chen, 2020). Five other variables comprise the vector U, which are age, gender, 
8
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Table 3
Estimation and inference results of parameters of interest in the parametric method and in the proposed 
method.

Parametric Method Proposed Method

Estimate ŜD p-value Estimate ŜD p-value

α1 -2.1801 0.2710 < 0.0001 -2.1492 0.2966 < 0.0001
α2 0.6394 0.0321 < 0.0001 0.6348 0.0349 < 0.0001
α3 0.5378 0.0124 < 0.0001 0.5739 0.0146 < 0.0001

β1 (age) -0.0019 0.0017 0.2739 -0.0005 0.0017 0.7564
β2 (gender) 0.2347 0.1107 0.0339 0.2168 0.1107 0.0503
β3 (systolic blood pressure) 0.0039 0.0036 0.2778 0.0091 0.0037 0.0145
β4 (body temperature) 0.3149 0.1166 0.0069 0.3928 0.0471 < 0.0001
β5 (SpO2) 0.1278 0.0355 0.0003 0.0855 0.0174 < 0.0001

In Table 3, “ŜD” denotes the estimated asymptotic standard deviation.

systolic blood pressure, body temperature, and peripheral capillary oxygen saturation (SpO2). The assumption in (2) that Y
is conditionally independent of U given Z and R = 1, can be empirically validated. In our analysis, there is no statistically 
significant evidence that we can reject this null hypothesis. The kernel-based conditional independence test (Heinze-Deml 
et al., 2018) gives us p-value as 0.5670.

We use a linear regression model with homoscedastic normal regression error as fY |Z ,R=1, i.e.,

Yi = α1 + α2 Zi + εi,

where εi is i.i.d from Normal(0, α2
3), and consider the following nonignorable propensity score model

π(y,u;β, g) = expit{g(y) + βTu},
where function g(y) is unknown and β ∈R5.

Similar to Section 4, we compare our approach to a parametric propensity score method, where the same fY |Z,R=1 model 
is used but the propensity is assumed to be

π(u;β, g0) = expit(g0 + βTu).

We estimate α = (α1, α2, α3)
T by the ordinary least squares method based on the complete cases, and estimate g0 and β

by logistic regression using ri and ui , i = 1, . . . , 1476.
The estimation and inference results of parameters of interest in both methods are summarized in Table 3. We can see 

that the results for α̂, the unknown parameter in the model fY |Z,R=1, are quite close to each other. This is not surprising. 
In contrast, the results for β are generally different. The variable age (β1) is insignificant, whereas the variables body 
temperature (β4) and SpO2 (β5) are both significant, based on either of the two methods. The variable gender (β2) is 
significant based on the parametric method but only marginally significant based on the nonparametric method. More 
importantly, the variable systolic blood pressure (β3) is insignificant according to the parametric method but becomes 
statistically significant based on the nonparametric method.

Finally, using the proposed method, we provide the estimated curve of g(y) as well as its 95% bootstrapped confidence 
band in Fig. 2. Although ĝ(y) does not change drastically over the range of albumin level (from 3g/dL to 5g/dL), it is clear 
that ĝ(y) decreases when the albumin level changes from 4.3g/dL to 5g/dL. This demonstrates that naively assuming g(y)
is a constant hence the propensity score model does not depend on the albumin level is unrealistic and should be avoided 
in applications. Instead, our proposed nonparametric method can be very useful to uncover the unknown and possibly 
nonlinear dependence of the propensity score model to the albumin level, and should be recommended for use in practice.

6. Discussion

In this paper, we propose a new nonignorable propensity score model where the relationship between the missingness 
indicator and the partially observed response is totally unspecified and estimated nonparametrically. This new propensity 
is flexible in modeling the dependence of the missingness indicator on the partially observed response, and avoids the 
use of the multivariate kernel estimation which suffers from the curse of dimensionality. By employing a semiparametric 
treatment, our estimator for the parameters of interest is not only asymptotically unbiased but also semiparametrically 
efficient. In terms of estimating the nuisance function, we devise a new likelihood-based consistent estimator when the 
input variable of the nuisance function is subject to missing data.

The proposed method in this paper can be applied to any regression settings where the response variable is subject 
to nonignorable missing data, the covariates are fully observed, and the choice of the shadow variable is appropriate. Our 
simulation studies and a real data application to modeling the albumin level in the blood sample have demonstrated that 
the proposed method could be very useful to uncover the unknown and possibly nonlinear dependence of the missingness 
9
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Fig. 2. The estimation of the unknown function g(y) with 95% bootstrapped confidence band.

indicator on the partially observed response in the propensity score model. Our programming code has been provided online 
https://github .com /MengyanLi1992 /Efficient -Estimation -in -a -Partially-Specified -Nonignorable -Propensity-Score -Model, and is 
ready to be used in other similar applications.

Due to an unspecified function g(y) in the propensity score model, model identifiability is challenging to achieve. Mo-
tivated by the real data application in Section 5 where a shadow variable has been identified in the literature (Zhao and 
Chen, 2020), we establish our model identifiability based on the existence of a shadow variable and a testable conditional 
independence assumption about the model fY |X,R=1. The shadow variable assumption is standard in the literature of non-
ignorable missing data and is commonly used in practice (Shao and Zhao, 2013; Kott, 2014; Wang et al., 2014; Zhao and 
Shao, 2015; Zhao and Ma, 2018, 2021). Empirically, we identify the shadow variable based on the domain knowledge and 
then check the conditional independence assumption using the observed data. In some applications where covariates are 
from different sources, there may exist a natural determination of U and Z. In the simulation studies of this paper, we con-
sider the “ideal setting” where all the assumptions of our method are fully met. In more extended numerical studies, it is 
worth studying the performance of our method when the assumptions are not fully met. Additionally, to use the proposed 
method in other applications, it might also be helpful, if the choice of the shadow variable is not certain from the domain 
knowledge, to consider different choices of shadow variable and regard as a sensitivity analysis.

Finally, as a first attempt to study the proposed semiparametric propensity score model where the dependence on 
the partially observed variable is nonparametric, many directions warrant further research. For example, one might like to 
consider other regression families instead of the simple exponential family, or more sophisticated structure in the propensity 
score model instead of the additive structure considered in this paper. Multivariate response or high dimensional covariates 
can also be of interest to explore. Additionally, if the choice of the instrumental variable (Tchetgen Tchetgen and Wirth, 
2017), instead of the shadow variable, is clear from the domain knowledge, it will be interesting and worthwhile to study 
the model identifiability with the instrumental variable.
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Appendix A

A.1. Proof of Lemma 1

Proof. Since X is fully observed, then fX(x) is identifiable. Since when R = 1, both X and Y are fully observed, then α is 
identifiable. We need to show that β and g(y) are identifiable. Note that w(x) is identifiable by (3), and

w(x)−1 = 1+ exp{−h(u;β)}E[exp{−g(Y )} | z,1].
We only need to show that for any x, if

exp{−h(u;β)}E[exp{−g(Y )} | z,1] = exp{−h(u; β̃)}E[exp{−g̃(Y )} | z,1],
then β = β̃ and g(·) = g̃(·). There exists a constant c such that

exp{−h(u;β)}˜ = E[exp{−g̃(Y )} | z,1]
E[exp{−g(Y )} | z,1] = c, ∀u, z,
exp{−h(u;β)}
10
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because the left hand side is a function of u only while the right hand side is a function of z only. Then h(u; β) = h(u; ̃β) −
log(c) for all u, and g̃(y) = g(y) − log(c) for all y due to the invertibility of the Laplace transform. Taking into account the 
requirement that g(0) = 0, we obtain c = 1. Hence, β and g are also identifiable. �
A.2. Derivation of �g

Consider a parametric sub-model g(y) = g(y; ζ ). Then the score vector w.r.t ζ is given as Sζ (θ , ζ ; x, ry, r) ≡
∂log{fX,RY ,R(x, ry, r; θ, ζ )}/∂ζ , where fX,RY ,R(x, ry, r; θ, ζ ) is the likelihood function in (3) with g(y) replaced by g(y; ζ ). 
Since

∂w(x)

∂ζ
= w2(x)E

[
∂ g(Y ; ζ )

∂ζ
{π−1(Y ,u;β, ζ ) − 1} | z,1

]
,

then

Sζ (x, ry, r; θ , ζ ) = E

[
∂ g(Y ; ζ )

∂ζ
{π−1(Y ,u;β, ζ ) − 1} | z,1

]
w(x){r − w(x)}

1− w(x)
,

where ∂ g(y; ζ )/∂ζ can be any function of y. Note that �g is the mean squared closure of nuisance tangent spaces of 
parametric sub-models spanned by the corresponding nuisance score vectors. Then

�g =
(
E[a(Y ){π−1(Y ,u;β, g) − 1} | z,1]w(x){r − w(x)}

1− w(x)
: a(y) ∈Rp

)
.

A.3. Derivation of score functions

The log-likelihood function is

l(α,β, g;x, ry, r) = log{ f X (x)} + rlog{ fY |Z,R=1(y, z;α)} + rlog{w(x)} + (1− r)log{1− w(x)}.
Since

∂w(x)

∂β
= w2(x)

∫
fY |Z,R=1(t, z;α)exp{−g(t) − h(u;β)}h′

β(u;β)dt

= w2(x)
∫

fY |Z,R=1(t, z;α){π−1(t,u;β, g) − 1}h′
β(u;β)dt

= w(x){1− w(x)}h′
β(u;β),

∂w(x)

∂α
= −w2(x)

∂

∂α

∫
fY |Z,R=1(t, z;α)[1 + exp{−g(t) − h(u;β)}]dt

= −w2(x)exp{−h(u;β)}E [S(Y , z;α)exp{−g(Y )} | z,1] ,
then

Sβ(x, ry, r;β,α, g) = ∂w(x)

∂β

r − w(x)

w(x){1 − w(x)}
= {r − w(x)}h′

β(u),

and

Sα(x, ry, r;β,α, g)

= rS(y, z;α) + ∂w(x)

∂α

r − w(x)

w(x){1 − w(x)}
= rS(y, z;α) − E [S(Y , z;α)exp{−g(Y )} | z,1] w(x){r − w(x)}

1− w(x)
exp{−h(u;β)}

= rS(y, z;α) − E
[
S(Y , z;α){π−1(Y ,u;β, g) − 1} | z,1] w(x){r − w(x)}

1 − w(x)

= rS(y, z;α) − E
[
S(Y , z;α)π−1(Y ,u;β, g) | z,1] w(x){r − w(x)}

1− w(x)

= rS(y, z;α) − E {S(Y , z;α) | x} r − w(x)
.

1− w(x)

11
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A.4. Efficient score

Proof. Recall that Sθ is in �g ⊕ �⊥ . It is obvious that Sθ − Sθ,eff ∈ �g . We only need to verify that Sθ ,eff is in �⊥ . With 
a0(x) and a1(x) satisfying (5) and (7), respectively, it is easy to show that

E

(
Sθ ,eff(X, RY , Y ; θ , g)TE[a(Y ){1− π(Y ,U;β, g)} | X] R − w(X)

1− w(X)

)
= 0, ∀a(Y ) ∈Rp .

In other words, Sθ ,eff is orthogonal to �g . Hence, Sθ,eff is in �⊥ and is the projection of Sθ onto �⊥ . �
A.5. Proof of Theorem 1

Proof. Let oi = (xi, ri yi, ri). Define fX,RY ,R(oi; θ0, γ 0) as the likelihood of a parametric submodel with true parameters θ0

and γ 0. Note that any parametric submodel contains the true model, which implies that

fX,RY ,R(oi; θ0,γ 0) = fX,RY ,R(oi; θ0, g).

For term ̂θ − θ , we expand the estimating equation (10) as a function for θ and γ about the truth θ0 and γ 0 to obtain

0 = N−1/2
2

∑
i∈I2

Ŝθ ,eff[oi; θ̂, ĝ{·; γ̂ (̂θ)}]

= N−1/2
2

∑
i∈I2

Ŝθ ,eff{oi; θ0, ĝ(·;γ 0)} + N−1
2

∑
i∈I2

∂ Ŝθ,eff{oi; θ̃, ĝ(·; γ̃ )}
∂ θ̃

T N1/2
2 (̂θ − θ0)

+N−1
2

∑
i∈I2

∂ Ŝθ,eff{oi; θ̃, ĝ(·; γ̃ )}
∂γ̃ T N1/2

2 {γ̂ (̂θ) − γ 0},

where ̃θ is on the line connecting ̂θ and θ0. We will show that under regularity conditions (C1), (C2), (C3) and (C4)

N−1
2

∑
i∈I2

∂ Ŝθ,eff{oi; θ̃, ĝ(·; γ̃ )}
∂γ̃ T N1/2

2 {γ̂ (̂θ) − γ 0} = op(1),

element-wise.
First, for j = 1, . . . , p and k = 1, . . . , L we have

N−1
2

∑
i∈I2

[
∂ Ŝθ,eff{oi; θ̃, ĝ(·; γ̃ )}

∂γ̃ T

]
j,k

= N−1
2

∑
i∈I2

[
∂ Ŝθ,eff{oi; θ0, g(·;γ 0)}

∂γ T
0

]
j,k

+ O p{‖̂θ − θ0‖1 + ‖γ̂ − γ 0‖1 + hmL }

= E

⎛⎝[∂ Ŝθ,eff{Oi; θ0, g(·;γ 0)}
∂γ T

0

| D1

]
j,k

⎞⎠+ O p{‖̂θ − θ0‖1 + ‖γ̂ − γ 0‖1 + hmL + N−1/2
2 }. (A.1)

Note that in Ŝθ ,eff{oi; θ0, g(·; γ 0)}, â0(y) and â1(y) are estimated at the true θ0 and g(·). Then â0(·) and â1(·) are deter-
ministic conditional on D1. The first equality holds because

‖E
[

∂

∂θ0

∂ Ŝθ,eff{Oi; θ0, g(·;γ 0)}
∂γ T

0

| D1

]
‖max and ‖E

[
∂

∂γ 0

∂ Ŝθ,eff{Oi; θ0, g(·;γ 0)}
∂γ T

0

| D1

]
‖max

are bounded, and

L∑
l=1

N−1
2

∑
i∈I2

∂

∂γ0,l

[
∂ Ŝθ,eff{oi; θ0, g(·;γ 0)}

∂γ T
0

]
j,k

(γ̂l − γ0,l) (A.2)

=
L∑

l=1

⎧⎨⎩E

⎛⎝ ∂

∂γ0,l

[
∂ Ŝθ,eff{Oi; θ0, g(·;γ 0)}

∂γ T
0

| D1

]
j,k

⎞⎠+ O p(N
−1/2
2 )

⎫⎬⎭ (γ̂l − γ0,l)

= O p(‖γ̂ − γ 0‖1).

12
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Further, since the dimension of ̂θ is fixed, then any norm of ̂θ − θ0 is of the same order.
We can also show that

E

[
∂ Ŝθ,eff{Oi; θ0, g(·;γ 0)}

∂γ T
0

| D1

]

=
∫

∂ Ŝθ,eff{oi; θ0, g(·;γ 0)}
∂γ T

0

fX,R,RY (oi; θ0, g)doi

=
∫

∂ Ŝθ,eff{oi; θ0, g(·;γ 0)}
∂γ T

0

fX,R,RY (oi; θ0,γ 0)doi

= ∂

∂γ T
0

∫
Ŝθ ,eff{oi; θ0, g(·;γ 0)} fX,R,RY (oi; θ0,γ 0)doi

−
∫

Ŝθ ,eff{oi; θ0, g(·;γ 0)}
∂ fX,R,RY (oi; θ0,γ 0)

∂γ T
0

doi

= −
∫

Ŝθ ,eff{oi; θ0, g(·;γ 0)}
∂ fX,R,RY (oi; θ0,γ 0)

∂γ T
0

doi

= −E

[̂
Sθ ,eff{Oi; θ0, g(·;γ 0)}

∂ log{ fX,R,RY (Oi; θ0,γ 0)}
∂γ T

0

| D1

]

= −E

[
Sθ ,eff{Oi; θ0, g(·;γ 0)}

∂ log{ fX,R,RY (Oi; θ0,γ 0)}
∂γ T

0

]

−E

([̂
Sθ ,eff{Oi; θ0, g(·;γ 0)} − Sθ ,eff{Oi; θ0, g(·;γ 0)}

] ∂ log{ fX,R,RY (Oi; θ0,γ 0)}
∂γ T

0

| D1

)

= −E

([̂
Sθ ,eff{Oi; θ0, g(·;γ 0); } − Sθ,eff{Oi; θ0, g(·;γ 0)}

] ∂ log{ fX,R,RY (Oi; θ0,γ 0)}
∂γ T

0

| D1

)
= O p(N

−1/2
1 ),

element-wise. Due to fX-robustness, we have∫
Ŝθ ,eff[oi; θ , g{·;γ (θ)}] fX,R,RY {oi; θ ,γ (θ)}doi = 0

for any parameters θ and γ (θ). So the fourth equality holds. The seventh equality holds because Sθ ,eff is orthogonal to the 
nuisance tangent space �g and the nuisance score for γ of any parametric submodel is in �g . For the last equality, we 
have

E

[
{̂Sβ,eff(Oi; θ0, g) − Sβ,eff(Oi; θ0, g)}∂ log{ fX,R,RY (Oi; θ0,γ 0)}

∂γ T
0

| D1

]

= E

(
w3(Xi)

1− w(Xi)
exp{−2h(Ui;β0)}E

[
exp{−g(Y ;γ 0)}

∂ g(Y ;γ 0)

∂γ 0
| Zi,1

]
{̂A1(Zi) − A1(Zi)} | D1

)
,

where

A1(Zi) = E[a1(Y )exp{−g(Y )} | Zi,1], and Â1(Zi) = E [̂a1(Y ; θ0, g)exp{−g(Y )} | Zi,1].
By (C4), we know that given D1, there exists a positive constant c such that

‖[A1(z)]k − [̂A1(z)]k‖2 ≤ cN−1/2
1 , k = 1, . . . , p.

Hence,

E

[
{̂Sβ,eff(Oi; θ0, g) − Sβ,eff(Oi; θ0, g)}∂ log{ fX,R,RY (Oi; θ0,γ 0)}

∂γ T
0

| D1

]
= O p(N

−1/2
1 ).

Similarly, we can show that
13
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E

[
{̂Sα,eff(Oi; θ0, g) − Sα,eff(Oi; θ0, g)}∂ log{ fX,R,RY (Oi; θ0,γ 0)}

∂γ T
0

| D1

]
= O p(N

−1/2
1 ).

Therefore, by (A.1) we have

N−1
2

∑
i∈I2

[
∂ Ŝθ,eff{oi; θ̃ , ĝ(·; γ̃ )}

∂γ̃ T

]
j,k

= O p{‖̂θ − θ0‖1 + ‖γ̂ − γ 0‖1 + hmL + N−1/2
2 + N−1/2

1 }. (A.3)

Second, we consider the term γ̂ (̂θ) − γ 0. Since for any θ , we have

N−1
2

∑
i∈I2

Sg{oi; θ, γ̂ (θ)} = 0,

then

∂γ̂ (θ)

∂θT = −{T11(θ)}−1T12(θ),

where

T11(θ) = N−1
2

∑
i∈I2

∂Sg{oi; θ , γ̂ (θ)}
∂γ̂ (θ)T

, and T12(θ) = N−1
2

∑
i∈I2

∂Sg(oi; θ , γ̂ )

∂θT .

By Taylor expansion we have

γ̂ (̂θ) − γ̂ (θ0) = ∂γ̂ (̃θ)

∂ θ̃
T (̂θ − θ0) = −{T11(̃θ)}−1T12(̃θ)(̂θ − θ0),

where ̃θ is between ̂θ and θ0. Further,

γ̂ (θ0) − γ 0 = −{T21(θ0)}−1T22(θ0),

where

T21(θ0) = N−1
2

∑
i∈I2

∂Sg{oi; θ0, γ̃ (θ0)}
∂γ̃ (θ0)T

, and T22(θ0) = N−1
2

∑
i∈I2

Sg(oi; θ0,γ 0),

and γ̃ (θ0) is in the line connecting γ̂ (θ0) and γ 0. We first consider the order of T22(θ0). Since

sup
y

|̂g(y;γ 0) − g(y)| = O p(h
m
L ),

then we have

E[exp{−ĝ(Y ;γ 0)} | zi,1] = E[exp{−g(Y )} | zi,1] + O p(h
m
L ).

Due to the local linear approximation, we have

‖T22(θ0)‖∞ = O p{hmL + h2 + (n2h)−1/2}.
Then we consider the order of off-diagonal elements in matrices T11(θ) and T21(θ0). For j �= l, we have

N−1
2

∑
i∈I2

∂ Sg,l(oi; θ̂ , γ̂ )

∂γ̂ j

= N−1
2

∑
i∈I2

(ri − 1)exp(−γ̂l) fY |Z,R=1(dl, zi; α̂)E[exp{−ĝ(Y ; γ̂ )}{∂ ĝ(Y ; γ̂ )/∂γ̂ j} | zi,1]
[1+ exp{−γ̂l − h(ui; β̂)}](E[exp{−ĝ(Y ; γ̂ )} | zi,1])2

= O p(hL).

The last equality holds because

∂ ĝ(y; γ̂ )

∂γ̂ j
≡ 0, for y /∈ (d j−m+1,d j+m−1),

where m − 1 is the degree of polynomial interpolation. Then we have

‖γ̂ (̂θ) − γ 0‖∞ = O p{hm + h2 + (n2h)−1/2}.
L

14
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Under conditions (C1), (C2) and (C3), by (A.3), we have

N−1
2

∑
i∈I2

∂ Ŝθ,eff{oi; θ̃ , ĝ(·; γ̃ )}
∂γ̃ T N1/2

2 {γ̂ (̂θ) − γ 0}

= O p(LN
1/2
2 [L{hmL + h2 + (n2h)−1/2} + N−1/2

1 + N−1/2
2 ]{hmL + h2 + (n2h)−1/2})

= O p[L2N1/2
2 {hmL + h2 + (n2h)−1/2}2 + L(N1/2

2 N−1/2
1 + 1){hmL + h2 + (n2h)−1/2}]

= op(1).

Hence, we have

N−1/2
2

∑
i∈I2

Ŝθ,eff{oi; θ̃, ĝ(·; γ̃ )} + N−1
2

∑
i∈I2

∂ Ŝθ,eff{oi; θ̃ , ĝ(·; γ̃ )}
∂ θ̃

T N1/2
2 (̂θ − θ0) = op(1).

Note that

N−1
2

∑
i∈I2

∂ Ŝθ,eff{oi; θ̃ , ĝ(·; γ̃ )}
∂ θ̃

T

= N−1
2

∑
i∈I2

∂ Ŝθ,eff{oi; θ0, g(·;γ 0)}
∂θT

0

+ O p(‖̂θ − θ0‖1 + ‖γ̂ − γ 0‖1 + hmL )

= E

[
∂ Ŝθ,eff{Oi; θ0, g(·;γ 0)}

∂θT
0

| D1

]
+ O p(‖̂θ − θ0‖1 + ‖γ̂ − γ 0‖1 + hmL + N−1/2

2 )

= E

{
∂Sθ,eff(Oi; θ0, g)

∂θT
0

}
+ O p(‖̂θ − θ0‖1 + ‖γ̂ − γ 0‖1 + hmL + N−1/2

2 + N−1/2
1 )

= E

{
∂Sθ,eff(Oi; θ0, g)

∂θT
0

}
+ op(1).

Further, under conditions (C1), (C2) and (C3), we have

N−1/2
2

∑
i∈I2

Ŝθ,eff{oi; θ0, ĝ(·;γ 0)} = N−1/2
2

∑
i∈I2

Ŝθ,eff{oi; θ0, g(·;γ 0)} + O p(N
1/2
2 hmL )

= N−1/2
2

∑
i∈I2

Sθ,eff(oi; θ0, g) + O p(N
−1/2
1 ) + O p(N

1/2
2 hmL )

= N−1/2
2

∑
i∈I2

Sθ,eff(oi; θ0, g) + op(1).

The second equality holds because E{R − w(X) | X} = 0 and

N−1/2
2

∑
i∈I2

{̂Sθ,eff(oi; θ0, g) − Sθ ,eff(oi; θ0, g)}

= N−1/2
2

∑
i∈I2

ri − w(xi)

1− w(xi)
w(xi)exp{−h(ui;β0)}

(
A0(zi) − Â0(zi)
A1(zi) − Â1(zi)

)
= O p(N

−1/2
1 ),

element-wise, where

A0(zi) = E[a0(Y )exp{−g(Y )} | zi,1], and Â0(zi) = E [̂a0(Y ; θ0, g)exp{−g(Y )} | zi,1].
Then we obtain that

N1/2
2 (̂θ − θ0) = −

[
E

{
∂Sθ,eff(Oi; θ0, g)

∂θT
0

}]−1

N−1/2
2

∑
Sθ,eff(oi; θ0, g) + op(1). �
i∈I2

15
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A.6. Estimation of E(Y )

We have

E(Y ) = E{E(Y | R)}
= E(Y | R = 1)pr(R = 1) + E(Y | R = 0)pr(R = 0)

= E(Y | R = 1)pr(R = 1) + E{E(Y | X, R = 0) | R = 0}pr(R = 0)

= E(Y | R = 1)pr(R = 1) + pr(R = 0)
∫

E(Y | X = x, R = 0)pr(X = x | R = 0)dx

= E(Y | R = 1)pr(R = 1)

+pr(R = 0)
∫ ∫

ypr(R = 0 | Y = y,X = x) fY |X(y,x)dy∫
pr(R = 0 | Y = y,X = x) fY |X(y,x)dy

pr(X = x | R = 0)dx

= E(Y | R = 1)pr(R = 1)

+pr(R = 0)
∫ ∫

y{π(y,u)−1 − 1} fY |X(y,x)π(y,u)dy∫ {π(y,u)−1 − 1} fY |X(y,x)π(y,u)dy
pr(X = x | R = 0)dx

= E(Y | R = 1)pr(R = 1)

+pr(R = 0)
∫ ∫

y{π(y,u)−1 − 1} fY |X,R=1(y,x)dy∫ {π(y,u)−1 − 1} fY |X,R=1(y,x)dy
pr(X = x | R = 0)dx

= E(Y | R = 1)pr(R = 1)

+pr(R = 0)
∫

E{Y {π(Y ,U)−1 − 1} | X = x, R = 1}
E{π(Y ,U)−1 − 1 | X = x, R = 1} pr(X = x | R = 0)dx

= E(Y | R = 1)pr(R = 1)

+pr(R = 0)
∫

E[Y exp{−g(Y )} | Z = z, R = 1]
E[exp{−g(Y )} | Z = z, R = 1] pr(X = x | R = 0)dx.
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