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ABSTRACT
We consider the estimation problem in a regression settingwhere the outcome variable is subject to nonig-
norable missingness and identifiability is ensured by the shadow variable approach. We propose a versatile
estimation procedure where modeling of missingness mechanism is completely bypassed. We show that
our estimator is easy to implement and we derive the asymptotic theory of the proposed estimator. We
also investigate some alternative estimators under different scenarios. Comprehensive simulation studies
are conducted to demonstrate the finite sample performance of the method. We apply the estimator to a
children’s mental health study to illustrate its usefulness.
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1. Introduction

In statistical data analysis, the issue of missing values is a rule
rather than an exception. There are often many missing data
in biomedical and health related studies, social sciences, and
survey sampling. How to appropriately address missingness is
fascinating but challenging, and has drawn much attention to
statisticians in the past several decades.

In themissing data literature, themissingnessmechanism is a
key concept and a fundamental and useful taxonomy to distin-
guish different problems. The missingness is named ignorable
if it depends on the observed data only; otherwise, it is named
nonignorable. Rich literatures exist on handling ignorable miss-
ing data (Rubin 1987; Robins, Rotnitzky, andZhao 1994; Schafer
1997; Little and Rubin 2002; Tsiatis 2006; Kim and Shao 2013;
Molenberghs et al. 2014). However, inmany practical situations,
it is highly likely that the missingness actually also depends on
themissed variables themselves hence is nonignorable. Research
for nonignorable missing data is not yet as complete due to
its difficulties. Simply applying existing methods for ignorable
missing data to nonignorable onesmay lead to biased parameter
estimation, incorrect standard errors and, as a consequence,
incorrect statistical inference and conclusions.

One notorious issue for analyzing nonignorable missing data
is the model identifiability. Here, identifiability means that any
two different sets of parameters produce two different models.
To achieve identifiability, it is well known in the literature
(Robins and Ritov 1997) that assumptions are needed for
either the data generation process, or the mechanism model,
or both. In a multivariate analysis setting, Tang et al. (2003)
established a model identifiability condition when maximum
pseudo likelihood estimation was used, where they primarily
assumed that the missingness only depends on the missed
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variable. d’Haultfoeuille (2010) adopted some similar assump-
tion and proposed to solve the model identifiability issue
nonparametrically. By identifying an appropriate shadow
variable (Kott 2014), much more flexible nonignorable miss-
ingness mechanism can be adopted, such as Shao and Zhao
(2013), Wang, Shao, and Kim (2014), Zhao and Shao (2015),
etc. Although these earlier literature named the variable
nonresponse instrument, to avoid confusion with the literature
on instrumental variables for missing data (Newey and Powell
2003; Tchetgen Tchetgen and Wirth 2017; Sun et al. 2018),
in the current article, we follow the work of Miao and
Tchetgen Tchetgen (2016), Zhao and Ma (2018), and Miao
et al. (2019) and term it shadow variable. Shadow variable
is prevalent in survey sampling designs and is available in
many empirical studies (Kott 2014). Since the nonignorable
missingness mechanism is difficult to verify, the flexibility in
modeling the mechanism is highly appreciated in applications,
and the shadow variable approach provides one such possibility.
With a suitable shadow variable, the exact model identifiability
conditions still need to be investigated on a case-by-case basis.
More details of the use of the shadow variable strategy in this
article, the specific identifiability conditions, and the validity in
applications are presented in Section 2.

Provided that the model is identifiable, the other controver-
sial part in analyzing nonignorable missing data is on mod-
eling the missingness mechanism. Because of its dependence
on the unobserved data, it is nearly impossible to verify the
mechanism model in practice except for a few special scenarios
(d’Haultfoeuille 2010). In the literature, there aremanyparamet-
ric modeling attempts for the mechanism (Ibrahim and Lipsitz
1996; Rotnitzky and Robins 1997; Qin, Leung, and Shao 2002;
Chang and Kott 2008; Wang, Shao, and Kim 2014; Morikawa
and Kim 2016), but parametric mechanism model is generally
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considered to be restrictive. Kim and Yu (2011) and Shao and
Wang (2016) extended the parametric mechanism to a semi-
parametric framework which contains a more flexible nonpara-
metric component. However, these semiparametric mechanism
models are also confined to a special structure and can still be
misspecified.

Due to the difficulty in modeling the missingness mech-
anism, in this article we completely avoid this practice. We
propose a versatile estimation procedure which does not require
modeling or estimating the missingness mechanism. The key
idea of our proposal is to view the mechanism as a nuisance
parameter in a semiparametric model, and to project away its
effect via semiparametric treatment (Bickel et al. 1993; Tsiatis
2006). In the estimatorwe construct in this work, only aworking
model for the mechanism is needed in the implementation, and
the working model does not have to contain the true mecha-
nism.

Our procedure requires estimating integrals depending on
the probability density function (pdf) or probability mass func-
tion (pmf) of the covariate variable. Because covariates are fully
observed, this is a complete-data problem and many statistical
methods exist in the literatures.We propose to estimate the inte-
gral through empirical expectation if the integral can be viewed
as a marginal expectation, and to estimate it through nonpara-
metric regression technique, such as kernels, if the integral can
be converted into a conditional expectation. Our procedure is
more robust compared to parametric estimation of the pdf/pmf,
and is simpler to implement compared to nonparametric esti-
mation. It is also worthwhile to mention that it is technically
challenging to establish the asymptotic theory of the proposed
estimator, which requires extensive use of bilinear operators in
combination with semiparametric treatments.

Compared to the current literature, this work has the follow-
ing distinctive features hence makes novel contributions. First,
under the semiparametric modeling framework, we directly
work on the likelihood function and clearly pinpoint the con-
ditions under which the model is identifiable. Previous works
usually study some modified versions of the likelihood, such as
pseudo likelihood (Tang et al. 2003; Zhao and Shao 2015; Zhao
andMa 2018) or conditional likelihood (Zhao 2017, 2018; Zhao
and Shao 2017), and avoid treating the nonparametric compo-
nent by incorporating variousmodeling assumptions. Our tech-
niques to studying the semiparametric likelihood here are very
different. Second, we rigorously characterize the complete geo-
metric structure of our semiparametric model, which not only
produces the versatile estimation approach, but also portrays the
potential to create other types of estimators for the parameter of
interest. Third, despite the unknown nonignorable missingness
mechanism, our proposed approach completely overcomes the
hurdle of eithermodeling or estimating it. Our approach literally
encompasses a class of estimators, and it is practically conve-
nient to use in the sense that any arbitrary workingmodel of the
mechanism will always generate an asymptotically consistent
estimator. Fourth, it is not a standard exercise to develop the
asymptotic theory for the proposed estimator in this article.
We extensively use the semiparametric technique as well as the
properties of bilinear operators.

We also would like to point out that, our framework is
based on a correctly specified regression model, hence is most

appropriate for studying the association between outcome vari-
able and covariates. If the interest is different, for example, if
the interest is in studying the expectation of the outcome, other
modeling approaches need to be considered. For example, Miao
et al. (2019) studied identification and inference under a general
pattern mixture parameterization, so their approach does not
require a correctly specified parametric regression model. In
addition, Miao et al. (2019) proposed a set of identification
conditions in their framework that only involve the observed
data and hence are testable empirically.

The rest of the article is as follows. In Section 2, we clar-
ify notations and assumptions, describe the shadow variable
strategy and lay down the model identification conditions. In
Section 3, we study the situation where the whole covariate vec-
tor serves as the shadow variable. We derive the efficient score,
propose our estimator and establish the asymptotic theory. The
parallel results under the more general situation where part of
the covariate serves as the shadow variable is established in
Section 4. A few alternative estimators under different scenarios
are investigated in Section 5. In Section 6, we conduct com-
prehensive simulation studies to demonstrate the finite sample
performance of our proposedmethods under various situations.
In Section 7, we analyze a data concerning a children’s men-
tal health study. The article is concluded with a discussion in
Section 8.

2. Notations, Assumptions, and Identifiability

Consider the regression model fY|X(y, x;β), the conditional
probability density/mass function of Y given X, where β is a
p-dimensional unknown parameter to be estimated. Regres-
sion model of this type has been used to study the association
between an outcome variable Y and a set of covariates X in the
literatures. Indeed, when data are subject to missingness, the
model fY|X(y, x;β) continues to be used by scientific investi-
gators in various disciplines. Therefore, in the current article,
the estimation and inference of β is our primary scientific
interest, and our major statistical interest is to understand how
the missingness will affect the estimation and inference of β .

Throughout the article, the covariate X is fully observed and
let the pdf/pmf of X be fX(·). The outcome variable Y is subject
to missingness. Let the binary variable R be the missingness
indicator, with R = 1 for an observed Y and R = 0 for a missing
Y . Write the missingness mechanism as pr(R = 1 | Y ,X). We
observe N independent and identically distributed realizations
of (R,RY ,X), written as {(ri, riyi, xi)}, i = 1, . . . ,N.Without loss
of generality, we assume that the first n subjects are completely
observed, that is, ri = 1 for i = 1, . . . , n, while the remaining
N − n subjects have ri = 0 for i = n + 1, . . . ,N.

We adopt the shadow variable framework, that is, we assume
that the covariateX can be decomposed asX = (UT,ZT)T, such
that

fY|X(y, x) �= fY|X(y,u) and
pr(R = 1 | y, x) = pr(R = 1 | y,u) = π(y,u). (1)

The variable Z is termed the shadow variable. This implies
that part of the covariate, Z, is independent of the missingness
indicator R conditional on the outcome Y and the other part
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of the covariate U. Consequently, while Z appears in the model
fY|X(y, x), it does not in the model pr(R = 1 | Y ,X), hence is
shadowed out. Note that Z can be X, hence the whole covariate
X itself is the shadow variable, but Z cannot be empty, which
degenerates to the no shadow variable situation. The shadow
variable assumption is popularly used in the survey sampling
literature (Kott 2014) and the nonignorable missing data liter-
ature (Shao and Zhao 2013; Wang, Shao, and Kim 2014; Zhao
and Shao 2015; Miao and Tchetgen Tchetgen 2016; Zhao and
Ma 2018; Miao et al. 2019). It is often convenient to use in
applications. For example, in a children’s mental health study
(Ibrahim, Lipsitz, and Horton 2001), the teacher’s assessment of
the psychopathology status of the student, which suffered from
nonignorable missing data, was specified as the outcome vari-
able. Besides the teacher’s assessment, the dataset also included a
separate parent’s report about the psychopathology status of the
child. As indicated in Ibrahim, Lipsitz, and Horton (2001), the
teacher’s response rate may be related to her assessment of the
student but is unlikely to be related to a separate parent’s report
after conditioning on the teacher’s assessment and all other fully
observed covariates;moreover, the parent’s report is likely highly
correlatedwith that of the teacher (Miao et al. 2019). In this case,
the parent’s report constitutes a valid shadow variable.

As we discussed in Section 1, even when a shadow variable
is present, the model identifiability conditions still need to be
investigated on a case-by-case basis. In our situation, without
any extra conditions on fY|X(y, x;β), the joint distribution of
(R,Y ,X) depends on the unknown components β , π(y,u) and
fX(x), and may still be unidentifiable. The following example
illustrates this point.

Example 1. Let Y be a discrete variable with three possible
values 0, 1, 2. Let X = Z, which is also a discrete variable with
two possible values 0, 1. The missingness mechanism is pr(R =
1 | y) = π(y). Let fY|X(y, x;β) be the saturated model. Thus,
the model fY|X(y, x;β) contains four parameters, π(y) contains
three parameters, and pr(X = 1) contains one parameter. We
have a total of eight free parameters in the joint distribution of
(R,RY ,X).

Wewill show that it is impossible to identify the eight param-
eters. Consider the data generation process

pr(Y = 2 | X = 0) = 6
7
(1 + α), pr(Y = 1 | X = 0) = α,

pr(Y = 2 | X = 1) = 3
7
(1 + α), pr(Y = 1 | X = 1) = 7α,

π(y) = 7
32

{(1 − 3y + 2y2) − (13 − 32y + 12y2)α}−1,

pr(X = 1) = 1
2
,

where α is a constant in the range (1/32, 25/(13 × 32)). Now

π(y)fY|X(y, x;β) = 1
32

1I(y=2,x=1)2I(y=2,x=0)7I(y=1,x=1)

1I(y=1,x=0)4I(y=0,x=1)1I(y=0,x=0)

is free of α, hence the likelihood function is free of α. Therefore,
this model is unidentifiable.

Example 1 indicates that, to achieve the model identifiability,
one needs to impose further conditions. We show that the
completeness condition below will guarantee the identifiability.

Condition 1. For any function h(Y ,U) with finite mean,
E{h(Y ,U) | X} = 0 implies h(Y ,U) = 0 almost surely.

The completeness condition is widely used for model iden-
tifiability across various disciplines; to name a few, Newey and
Powell (2003), d’Haultfoeuille (2010), Hu and Shiu (2018), and
Miao et al. (2019). It is satisfied for many commonly used
models of fY|X(y, x). For example, in exponential families, where
fY|X(y, x) = s(y,u)t(x) exp{μ(x)Tτ (y,u)}, with s(y,u) > 0,
t(x) > 0, τ (y,u) is one-to-one in y, and the support of μ(x)
is an open set, then the completeness condition holds. This was
documented in classic textbook such as Lehmann and Romano
(2006, Theorem 4.3.1). Therefore, commonly seen regression
models, such as the linear regression for continuous Y and the
logistic regression for binary Y , satisfy the completeness condi-
tion. For the situation where both y and z are discrete with finite
support {y1, . . . , ys} and {z1, . . . , zt}, Newey and Powell (2003)
noted that, the completeness condition implicitly requires that
t ≥ s, that is, the shadow variable has a no smaller support
than the variable withmissing values. This also explains why the
model in Example 1 is unidentifiable.We state the identifiability
result in Lemma 1, with its proof in Appendix A.1.

Lemma 1. Under the shadow variable assumption (1) and Con-
dition 1, all unknown components β , π(y,u) and fX(x) are
identifiable.

In lieu of Condition 1, other conditions can be adopted to
achieve identifiability and are very specific to the particular
model. For example, Tang et al. (2003) considered a special
case of (1) and aimed at estimating β only. To achieve the
identification ofβ in a linear regressionwith normal errors, they
required the cardinality of the support of the shadow variable to
be at least three. Zhao and Shao (2015) considered a generalized
linear model fY|X(y, x;β) and devised different identifiability
conditions depending on whether the dispersion parameter is
known or not. The identification problem was solved fully non-
parametrically in Miao et al. (2019); furthermore, their condi-
tions only involved the observed data distribution and therefore
was testable empirically.

Given an identifiable model, we proceed to consider the
estimation problem. If we adopt a likelihood approach, even
though our sole interest is in estimating β , we cannot avoid the
estimation of both π(y,u) and fX(x). While the estimation of
fX(x) is a standard problem since there is no missing data in the
variable X, the estimation of π(y,u) is challenging. Due to the
missingness in Y , the π(·)model is usually unverifiable and can
be easily misspecified in practice.

Aware of this difficulty, we propose to estimate β while
avoiding modeling or estimating the missingness mechanism.
Instead, we only need to posit a working model for π(y,u),
which could be misspecified. We show that, using an arbitrary
working model π∗(y,u), our estimator of β is always consistent
and asymptotically normal, hence our procedure is robust to
mechanism misspecification.
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For ease of illustration, also with its own importance, in
Section 3, we first analyze a special case of (1) where the whole
covariate serves as the shadow variable, that is,X = Z, such that

fY|X(y, x) �= fY(y), and
pr(R = 1 | y, x) = pr(R = 1 | y) = π(y). (2)

Analysis under the general assumption (1), which turns out to be
statistically very different andmathematicallymore challenging,
is conducted in Section 4.

3. Proposed Estimator Under Special Assumption (2)

3.1. Estimation Procedure

Under (2), the joint pdf of (X,RY ,R) is

fX(x){fY|X(y, x;β)π(y)}r
{
1 −

∫
fY|X(t, x;β)π(t)dμ(t)

}1−r
.

Because β is the parameter of interest while fX(x) and π(y)
are nuisance, we take a semiparametric approach and derive
the nuisance tangent space, its orthogonal complement and the
efficient score with respect to β . In Appendix A.2, we first derive
that the nuisance tangent space � = �fX ⊕ �π , where

�fX = [a(x) : E{a(X)} = 0],
�π =

[
rb(y) − (1 − r)

∫
fY|X(t, x;β)b(t)π(t)dμ(t)∫
fY|X(t, x;β){1 − π(t)}dμ(t)

:

for all b(y)
]
,

where ⊕ stands for the addition of two spaces that are orthogo-
nal to each other. We also derive the orthogonal complement of
� to be

�⊥ =
[
a(x, r, ry) : E{a(x,R,RY) | x}

= 0,E
{
a(X, 1, y) − a(X, 0, 0) | y} = 0

]
.

The form of �⊥ permits many possibilities for constructing
estimating equations for β . Among all elements in�⊥, themost
interesting one is the efficient score, defined as the orthogonal
projection of the score vector Sβ onto �⊥, where

Sβ(x, r, ry,β) = r
fβ(y, x;β)

fY|X(y, x;β)

− (1 − r)
∫
fβ(t, x;β)π(t)dμ(t)∫

fY|X(t, x;β){1 − π(t)}dμ(t)
. (3)

Here fβ(y, x;β) ≡ ∂fY|X(y, x;β)/∂β is a vector of the same
dimension as β . In Appendix A.3, we show that

Seff (x, r, ry)

= rfβ(y, x;β)

fY|X(y, x;β)
− (1 − r)

∫
fβ(t, x;β)π(t)dμ(t)∫

fY|X(t, x;β){1 − π(t)}dμ(t)
− rb(y)

+ (1 − r)
∫
b(t)fY|X(t, x;β)π(t)dμ(t)∫

fY|X(t, x;β){1 − π(t)}dμ(t)
,

where b(y) is the solution to the integral equation∫ {
fβ(y, x;β) +

∫
fβ(t, x;β)π(t)dμ(t)

1 − ∫
fY|X(t, x;β)π(t)dμ(t)

fY|X(y, x;β)

}
(4)

× fX(x)dμ(x)

=
∫ {

b(y)fY|X(y, x;β)

+
∫
b(t)fY|X(t, x;β)π(t)dμ(t)

1 − ∫
fY|X(t, x;β)π(t)dμ(t)

fY|X(y, x;β)

}
fX(x)dμ(x).

Note that because Seff (x, 1, y) = fβ(y, x;β)/fY|X(y, x;β) − b(y)
and the efficient score exists and is unique, hence the solution
b(y) to (4) exists and is unique.

Despite of the results above, the efficient score Seff is not
readily implementable because it contains the unknown quan-
tities fX(x) and π(y). As we have pointed out, we aim to avoid
estimating or even modeling π(y). Thus, we propose to adopt
a working model of the mechanism, denoted π∗(y). We show
in Appendix A.4 that in the construction of Seff (x, r, ry), we can
adopt π∗(y) and the resulting “working model based efficient
score” S∗

eff (x, r, ry) still has mean zero. On the other hand, the
integrations in (4) can be viewed as expectations with respect to
the covariate X. Because X is fully observed, we recommend to
approximate the expectations using their corresponding empir-
ical versions. Combining these two aspects, we propose the
following flexible estimation procedure.

Algorithm 1. Algorithm under special assumption (2)

Step 1. Posit a working model for π(y), denoted as π∗(y).
Step 2. Obtain b̂∗(y,β) by solving the integral equation

1
N

N∑
i=1

{
fβ(y, xi;β)

+
∫
fβ(t, xi;β)π∗(t)dμ(t)

1 − ∫
fY|X(t, xi;β)π∗(t)dμ(t)

fY|X(y, xi;β)

}
(5)

= 1
N

N∑
i=1

{
b(y)fY|X(y, xi;β)

+
∫
b(t)fY|X(t, xi;β)π∗(t)dμ(t)

1 − ∫
fY|X(t, xi;β)π∗(t)dμ(t)

fY|X(y, xi,β)

}
.

Step 3. Insert b̂∗(y,β) into the efficient score expression to
obtain

S∗
eff {x, r, ry,β , b̂∗(·,β)}

= rfβ(y, x;β)

fY|X(y, x;β)
− (1 − r)

∫
fβ(t, x;β)π∗(t)dμ(t)∫

fY|X(t, x;β){1 − π∗(t)}dμ(t)

− r̂b∗(y,β) + (1 − r)
∫
b̂∗(t,β)fY|X(t, x;β)π∗(t)dμ(t)∫

fY|X(t, x;β){1 − π∗(t)}dμ(t)
.

Step 4. Solve the estimating equation
∑N

i=1 S∗
eff {xi, ri, riyi,β ,

b̂∗(·,β)} = 0 to obtain the estimator β̂ .

In Step 2 of Algorithm 1, (5) is a Type II Fredholm integral
equation and has a unique solution, hence we obtain b̂∗(y,β)
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using the method proposed in Atkinson (1976). We point out
that if we choose π∗(y) = 0 regardless of the fact that π(y) is
not a constant, then Algorithm 1 is much simplified and it will
reduce to the pseudo likelihood estimator of Tang et al. (2003).

3.2. Theoretical Property

To theoretically analyze β̂ , the technical difficulties mainly stem
from quantifying the difference between the solutions of the
integral equations (4) and (5). To proceed, we first introduce
some notation. We define

u1(y) = E
{
fY|X(y,Xi;β)

} =
∫

fY|X(y, x;β)fX(x)dμ(x),

u2(t, y) = E
{

fY|X(y,Xi;β)fY|X(t,Xi;β)

1 − ∫
fY|X(t,Xi;β)π∗(t)dμ(t)

}
π∗(t),

v(y) = E
{
fβ(y,Xi;β) +

∫
fβ(t,Xi;β)π∗(t)dμ(t)

1 − ∫
fY|X(t,Xi;β)π∗(t)dμ(t)

fY|X(y,Xi;β)

}
,

and the linear operationA(·, y) on b(·) as
A(b)(y) ≡ b(y)u1(y) +

∫
b(t)u2(t, y)dμ(t).

Similarly, let

u1i(y) = fY|X(y, xi;β),

u2i(t, y) = fY|X(y, xi;β)fY|X(t, xi;β)

1 − ∫
fY|X(t, xi;β)π∗(t)dμ(t)

π∗(t),

vi(y) = fβ(y, xi;β)

+
∫
fβ(t, xi;β)π∗(t)dμ(t)

1 − ∫
fY|X(t, xi;β)π∗(t)dμ(t)

fY|X(y, xi;β).

Note that u1i, u2i, vi depend on the ith observation only through
xi. Also define

û1(y) = N−1
N∑
i=1

u1i(y), û2(t, y) = N−1
N∑
i=1

u2i(t, y),

v̂(y) = N−1
N∑
i=1

vi(y).

Similar toA, we define the linear operator

Ai(b)(y) ≡ b(y)u1i(y) +
∫

b(t)u2i(t, y)dμ(t),

Â(b)(y) ≡ N−1
N∑
i=1

Ai(b)(y).

We also introduce some regularity conditions.

(A1) 0 ≤ π∗(t) < 1− δ for all t, where 0 < δ < 1 is a constant.
(A2) The true parameter value of β belongs to a bounded

domain. The support sets of fX(x), fY(y),π(y) are com-
pact.

(A3) The functions u1i(y), u2i(t, y) are bounded and have
bounded derivatives with respect to y and t on their
support. The score function Sβ(x, y;β) ≡ fβ(y, x;β)/fY|X
(y, x;β) is bounded, hence its orthogonal projection b∗(y)
is also bounded.

Under these regularity conditions, the following result, with
its proof in Appendix A.5, guarantees that ‖A(b)‖∞ is bounded
above and below by a constant times ‖b‖∞, hence A is suffi-
ciently well behaved.

Lemma 2. Under the regularity conditions (A1)–(A3), there
exist constants 0 < c1 < c2 < ∞ such that c1‖b‖∞ ≤
‖A(b)‖∞ ≤ c2‖b‖∞.

Further, we have the following result, with its proof given in
Appendix A.6, concerning the asymptotic distribution of β̂ .

Theorem 1. For any choice of π∗(y), under conditions (A1)–
(A3), β̂ satisfies

√
N(β̂ − β) → N{0,A−1B(A−1)T},

in distribution when N → ∞, where

A = E
[dS∗

eff {Xi,Ri,RiYi,β , b∗(·,β)}
dβT

]
,

B = var[S∗
eff {Xi,Ri,RiYi,β , b∗(·,β)} − h(Xi)],

h(xi) =
∫ [

{π(y) − 1}{vi(y) − Ai(b∗)(y)}

+A−1{vi − Ai(b∗)}(y)u1(y)
]
dμ(y).

Here

dS∗
eff {Xi,Ri,RiYi,β , b∗(·,β)}

dβT

≡ ∂S∗
eff {Xi,Ri,RiYi,β , b∗(·,β)}

∂βT

+∂S∗
eff {Xi,Ri,RiYi,β , b∗(·,β)}

∂b∗T
∂b∗(·,β)

∂βT .

Remark 1. One can easily verify that E{vi − Ai(b∗)}(y) = 0
and EA−1{vi − Ai(b∗)}(y) = 0, hence h(xi) ∈ �fX . Thus,
if fortunately the working model π∗(y) is chosen as the true
mechanism π(y), then E(SeffhT) = 0 because Seff ∈ �⊥.
This means B in Theorem 1 can be further simplified to B =
var[Seff {Xi,Ri,RiYi,β , b(·,β)}] + var{h(Xi)} under this situa-
tion. Thus, we can view h(xi) as the additional term to account
for the cost from empirically approximating the integrals in (4).

4. Proposed Estimator Under General Assumption (1)

Under the general model (1), the joint pdf of (X,RY ,R) is

fX(u, z){fY|X(y,u, z;β)π(y,u)}r

×
{
1 −

∫
fY|X(t,u, z;β)π(t,u)dμ(t)

}1−r
,

where β is still the parameter of interest, and the functions fX(·)
and π(·) are the nuisance parameters. Because the mechanism
model π(y,u) now also depends on partial covariate u, the
situation is much different from that considered in Section 3.
We in fact show in Appendices A.7 and A.8 that the nuisance
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tangent space orthogonal complement in this case is

�⊥ = {
a(u, z, r, ry) : E{a(u, z,R,RY) | u, z} = 0,
E

[{a(u,Z, 1, y) − a(u,Z, 0, 0)} | y,u] = 0
}
,

and the efficient score for parameter β is

Seff (u, z, r, ry)

= rfβ(y,u, z;β)

fY|X(y,u, z;β)
− (1 − r)

∫
fβ(t,u, z;β)π(t,u)dμ(t)∫

fY|X(t,u, z;β){1 − π(t,u)}dμ(t)

−rb(y,u) + (1 − r)
∫
b(t,u)fY|X(t,u, z;β)π(t,u)dμ(t)∫

fY|X(t,u, z;β){1 − π(t,u)}dμ(t)
,

where fβ(y,u, z;β) ≡ ∂fY|X(y,u, z;β)/∂β , and b(y,u) satisfies
the integral equation∫ [ fβ(y,u, z;β)

fY|X(y,u, z;β)
− b(y,u)

+
∫
fβ(t,u, z;β)π(t,u)dμ(t)∫

fY|X(t,u, z;β){1 − π(t,u)}dμ(t)

−
∫
b(t,u)fY|X(t,u, z;β)π(t,u)dμ(t)∫
fY|X(t,u, z;β){1 − π(t,u)}dμ(t)

]
× fZ|U(z,u)fY|X(y,u, z;β)dμ(z) = 0. (6)

Similar to the complete shadow case in Section 3, the solution
b(y,u) exists and is unique. Note that we used the decom-
position fX(u, z) = fZ|U(z,u)fU(u) above. We can see that
the space �⊥ has slightly different form from its counterpart
in Section 3, caused by the additional inclusion of U in the
mechanismmodel. Nevertheless, in AppendixA.9 we verify that
a misspecified π(y,u) model, π∗(y,u), can be employed in the
construction of Seff (u, z, r, ry) and themean zero property of the
efficient score will still retain.

In an effort to construct an estimator similar in spirit to β̂ in
Section 3, we realize that wewould have to handle theU part and
theZ part of the covariates differently because they play different
roles. In fact, while we could be totally “empirical” with respect
to Z, we would have to remain “nonparametric” with respect
to U. Specifically, recognizing that the left hand side of (6) is a
conditional expectation, we approximate the integral equation
(6) by

1
N

N∑
i=1

[ fβ(y,u, zi;β)

fY|X(y,u, zi;β)
− b(y,u)

+
∫
fβ(t,u, zi;β)π∗(t,u)dμ(t)∫

fY|X(t,u, zi;β){1 − π∗(t,u)}dμ(t)

−
∫
b(t,u)fY|X(t,u, zi;β)π∗(t,u)dμ(t)∫
fY|X(t,u, zi;β){1 − π∗(t,u)}dμ(t)

]
× fY|X(y,u, zi;β)Kh(ui − u) = 0, (7)

utilizing the nonparametric regression technique, where
Kh(·) = K(·/h)/h, K(·) is a kernel function and h is a
bandwidth, with their conditions detailed later. Once b̂∗(t,u) is
obtained from solving (7), we can then proceed to construct the
estimating equation and obtain the estimator. For completeness,
we write out the algorithm.

Algorithm 2. Algorithm under general assumption (1)

Step 1. Posit a working model for π(y,u), denoted as π∗(y,u).
Step 2. Obtain b̂∗(y,u,β) by solving the integral equation (7).
Step 3. Insert b̂∗(y,u,β) into the efficient score expression to

obtain

S∗
eff {u, z, r, ry,β , b̂∗(·,u,β)}

= rfβ(y,u, z;β)

fY|X(y,u, z;β)
− (1 − r)

∫
fβ(t,u, z;β)π∗(t,u)dμ(t)∫

fY|X(t,u, z;β){1 − π∗(t,u)}dμ(t)
− r̂b∗(y,u,β)

+ (1 − r)
∫
b̂∗(t,u,β)fY|X(t,u, z;β)π∗(t,u)dμ(t)∫

fY|X(t,u, z;β){1 − π∗(t,u)}dμ(t)
.

Step 4. Solve the estimating equation
∑N

i=1 S∗
eff {ui, zi, ri, riyi,

β , b̂∗(·,ui,β)} = 0 to obtain the estimator for β . We still
denote as β̂ .

Like (5), (7) is also a Type II Fredholm integral equation and
has a unique solution, so it can also be solved by the method
proposed in Atkinson (1976). Note that only b̂∗(y,ui,β)’s
are needed in Algorithm 2, instead of the generic function
b̂∗(y,u,β). If we happen to select π∗(y,u) = 0, even though
we are aware that π(y,u) is not a constant, the computation
will be much simplified and the estimator degenerates to that in
Zhao and Shao (2015).

To study the theoretical property of β̂ , the technical difficul-
ties mainly stem from quantifying the difference between the
solutions of the integral equations (6) and (7). To proceed, we
first introduce some notation. We define

u1(y,u) = fU(u)E
{
fY|X(y,u,Zi;β) | U = u

}
= fU(u)

∫
fY|X(y,u, z;β)fZ|U(z,u)dμ(z),

u2(t, y,u) = fU(u)E{
fY|X(y,u,Zi;β)fY|X(t,u,Zi;β)

1 − ∫
fY|X(t,u,Zi;β)π∗(t,u)dμ(t)

| U = u
}

×π∗(t,u),

v(y,u) = fU(u)E
{
fβ(y,u,Zi;β)

+
∫
fβ(t,u,Zi;β)π∗(t,u)dμ(t)

1 − ∫
fY|X(t,u,Zi;β)π∗(t,u)dμ(t)

× fY|X(y,u,Zi;β) | U = u
}
,

and the linear operationA(·, y,u) on b(·) as

A(b)(y,u) ≡ b(y,u)u1(y,u) +
∫

b(t,u)u2(t, y,u)dμ(t).

Similarly, let

u1i(y,u) = Kh(ui − u)fY|X(y,u, zi;β),

u2i(t, y,u) = Kh(ui − u)
fY|X(y,u, zi;β)fY|X(t,u, zi;β)

1 − ∫
fY|X(t,u, zi;β)π∗(t,u)dμ(t)

× π∗(t,u),
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vi(y,u) = Kh(ui − u)

{
fβ(y,u, zi;β)

+
∫
fβ(t,u, zi;β)π∗(t,u)dμ(t)

1 − ∫
fY|X(t,u, zi;β)π∗(t,u)dμ(t)

× fY|X(y,u, zi;β)

}
.

Note that u1i, u2i, vi depend on the ith observation only through
xi. Also define

û1(y,u) = N−1
N∑
i=1

u1i(y,u),

û2(t, y,u) = N−1
N∑
i=1

u2i(t, y,u), v̂(y,u) = N−1
N∑
i=1

vi(y,u).

Similar toA, we define the linear operator

Ai(b)(y,u) ≡ b(y,u)u1i(y,u) +
∫

b(t,u)u2i(t, y,u)dμ(t),

Â(b)(y,u) ≡ N−1
N∑
i=1

Ai(b)(y,u).

We need the following conditions on the true functions,
kernel function and the bandwidth.

(B1) 0 ≤ π∗(t,u) < 1 − δ for all (t,u), where 0 < δ < 1 is a
constant.

(B2) The true parameter value of β belongs to a bounded
domain. The support sets of fZ|U(z,u), fY(y),π(y,u) are
compact.

(B3) The functions u1i(y,u), u2i(t, y,u) are bounded and
have bounded derivatives with respect to y and t on
their support. The score function Sβ(u, z, y;β) ≡
fβ(y,u, z;β)/fY|X(y,u, z;β) is bounded, hence its orthog-
onal projection b∗(y,u) is also bounded.

(B4) The univariate kernel function K(·) is bounded and
symmetric, has a bounded derivative and compact
support [−1, 1], and satisfies

∫
K(u)du = 1, μm =∫

umK(u)du �= 0,
∫
urK(u)du = 0 for r = 1, . . . ,m − 1.

Kh(u) = K(u/h)/h. The d-dimensional kernel function
is a product of d univariate kernel functions, that is,
K(u) = ∏d

j=1 K(uj), and Kh(u) = ∏d
j=1 Kh(uj) =

h−d ∏d
j=1 K(uj/h) for u = (u1, . . . , ud)T and bandwidth

h. Here d is the dimension of u.
(B5) The bandwidth h satisfies h → 0, Nh2d → ∞ and

Nh2m → 0.

Under these regularity conditions, we have the following
lemma to ensure that ‖A(b)‖∞ is bounded by ‖b‖∞. Its proof
is in Appendix A.10,

Lemma 3. Under the regularity conditions (B1)–(B3), there
exist constants 0 < c1 < c2 < ∞ such that c1‖b‖∞ ≤
‖A(b)‖∞ ≤ c2‖b‖∞.

The theoretical property of β̂ is summarized in Theorem 2,
with its proof in Appendix A.11.

Theorem 2. For any choice of π∗(y,u), under conditions (B1)–
(B5), β̂ satisfies

√
N(β̂ − β) → N{0,A−1B(A−1)T},

in distribution when N → ∞, where

A = E
[dS∗

eff {Xi,Ri,RiYi,β , b∗(·,β)}
dβT

]
,

B = var[S∗
eff {Xi,Ri,RiYi,β , b∗(·,β)} − h(Xi)],

h(xi) =
∫ [{π(y,u) − 1}{vi(y,u) − Ai(b∗)(y,u)}
+A−1{vi − Ai(b∗)}(y,u)u1(y,u)

]
dμ(y,u).

Here

dS∗
eff {Xi,Ri,RiYi,β , b∗(·,β)}

dβT

≡ ∂S∗
eff {Xi,Ri,RiYi,β , b∗(·,β)}

∂βT

+∂S∗
eff {Xi,Ri,RiYi,β , b∗(·,β)}

∂b∗T
∂b∗(·,β)

∂βT .

Remark 2. Theorem 2 has a similar h(xi) term as in Theo-
rem 1. Similar to Remark 1, this term can also be viewed as
the additional cost from replacing the integral in (6) with its
approximation in (7).

Remark 3. So far in this section, we have implicitly assumed
that U is continuous. When U contains discrete component,
we only need to stratify the data according to the different
discrete values, then construct the corresponding integral equa-
tions within each stratum according to either (5) or (7). Solving
these integral equations will then provide b̂∗(y,u,β) and the
remaining estimation procedures are completely identical to the
last two steps in Algorithm 2. Specifically, for discreteU, assume
that U can be u0k, k = 1, . . . ,K. Then, we replace (5) with

1
Nk

N∑
i=1,ui=u0k

[
fβ(y,u0k, zi;β)

fY|X(y,u0k, zi;β)
− b(y,u0k)

+
∫
fβ(t,u0k, zi;β)π∗(t,u0k)dμ(t)∫

fY|X(t,u0k, zi;β){1 − π∗(t,u0k)}dμ(t)

−
∫
b(t,u0k)fY|X(t,u0k, zi;β)π∗(t,u0k)dμ(t)∫
fY|X(t,u0k, zi;β){1 − π∗(t,u0k)}dμ(t)

]
× fY|X(y,u0k, zi;β) = 0,

whereNk = ∑N
i=1 I(ui = u0k), and solve it to obtain b̂

∗(y,u0k,β).
If U is a mix of discrete (Ud) and continuous (Uc) variables, say
U = (UT

d ,U
T
c )T. Assume that Ud can be u0dk, k = 1, . . . ,K. We

then replace (7) with

1
Nk

N∑
i=1,udi=u0dk

[
fβ(y,u0dk,uci, zi;β)

fY|X(y,u0dk,uci, zi;β)
− b(y,u0dk,uci)

+
∫
fβ(t,u0dk,uci, zi;β)π∗(t,u0dk,uci)dμ(t)∫

fY|X(t,u0dk,uci, zi;β){1 − π∗(t,u0dk,uci)}dμ(t)
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−
∫
b(t,u0dk,uci)fY|X(t,u0dk,uci, zi;β)π∗(t,u0dk,uci)dμ(t)∫

fY|X(t,u0dk,uci, zi;β){1 − π∗(t,u0dk,uci)}dμ(t)

]
× fY|X(y,u0dk,uci, zi;β)Kh(uci − uc) = 0,

where Nk = ∑N
i=1 I(udi = u0dk), and solve it to obtain

b̂∗(y,u0dk,uc,β).

5. Other Estimators

In Sections 3 and 4, we proposed estimator β̂ with minimum
assumption regarding estimating or modeling fX(x) and
fZ|U(z,u). If we are willing and able to adopt further modeling
and estimation procedures to assess fX(x) and fZ|U(z,u),
different estimators for β can be obtained. We illustrate two
alternative estimators.

First, instead of approximating the expectations empirically,
we can use nonparametric kernel method in both Sections 3
and 4. For example, in Section 3, we can approximate fX(·)
via f̂X(x) = N−1 ∑N

i=1 Kh(xi − x), then insert it into (4) to
form an approximate integral equation.We denote the resulting
estimator β̂non.We summarize its property below, with its proof
in Appendix A.12.

Theorem 3. For any choice of π∗(y), under conditions (A1)–
(A3), if Nh2m → 0, then β̂non satisfies

√
N(β̂non − β) → N{0,A−1

nonBnon(A−1
non)

T},
in distribution when N → ∞, where

Anon = E
[dS∗

eff {Xi,Ri,RiYi,β , b∗(·,β)}
dβT

]
,

Bnon = var[S∗
eff {Xi,Ri,RiYi,β , b∗(·,β)} − h(Xi)],

h(xi) =
∫ [{π(y) − 1}{vi(y) − Ai(b∗)(y)}
+A−1{vi − Ai(b∗)}(y)u1(y)

]
dμ(y).

Here

dS∗
eff {Xi,Ri,RiYi,β , b∗(·,β)}

dβT

≡ ∂S∗
eff {Xi,Ri,RiYi,β , b∗(·,β)}

∂βT

+ ∂S∗
eff {Xi,Ri,RiYi,β , b∗(·,β)}

∂b∗T
∂b∗(·,β)

∂βT .

Remark 4. Similar to Theorem 3, under the assumption (1) in
Section 4, a pure nonparametric kernel based estimator can also
be derived. We omit the details to avoid repetition.

Remark 5. Similar to the discussion in Section 4, in the above
analysis of β̂non, we have assumed that all components in X
are continuous. If X contains discrete components, say X =
(XT

c ,XT
d )T, where Xc consists of continuous variables and Xd

is the collection of discrete variables, then we need to slightly
adjust the procedure. Specifically, let Xd have values x0dk, k =
1, . . . ,K. We would stratify the data into K strata. Within each
stratum, we treat Xc as the new X variable and write the kernel

estimator f̂Xc|Xd=x0dk
as f̂Xc,k. The integral Equation (4) is then

approximated by

K∑
k=1

p̂k
∫ {

fβ(y, xc, xdk;β )̂fXc,k(xc)

+
∫
fβ(t, xc, xdk;β)π∗(t)dμ(t)

1 − ∫
fY|X(t, xc, xdk;β)π∗(t)dμ(t)

× fY|X(y, xc, xdk;β )̂fXc,k(xc)
}
dμ(xc)

=
K∑

k=1
p̂k

∫ {
b(y)fY|X(y, xc, xdk;β )̂fXc,k(xc)

+
∫
b(t)fY|X(t, xc, xdk;β)π∗(t)dμ(t)

1 − ∫
fY|X(t, xc, xdk;β)π∗(t)dμ(t)

× fY|X(y, xc, xdk,β )̂fXc,k(xc)
}
dμ(xc),

where p̂k is the empirical frequency of observations in the kth
stratum. After solving the integral equation, we still proceed to
the same estimating equation in Algorithm 1.

Second, we consider parametric estimation of fX(x) and
fZ|U(z,u), that is, fX(x; α̂) in Section 3 and fZ|U(z,u; α̂) in
Section 4. This scenario can arise in the situation when one is
confident to correctly specify a parametric model, using all fully
observed data. For convenience, we assume N1/2(̂α − α) =
N−1/2 ∑N

i=1 φ(xi;α) + op(1), which is the typical expansion
for most full data parametric estimators. For example, when
maximum likelihood estimator (MLE) is used, φ(xi;α) =
−[E{∂2 log fX(x;α)/∂α∂αT}]−1∂ log fX(xi;α)/∂α. We call the
corresponding estimator β̂par. For β̂par we have the following
asymptotic result and its proof is in Appendix A.13.

Theorem 4. For both the special assumption (2) with an arbi-
trary choice of π∗(y), and the general assumption (1) with an
arbitrary choice of π∗(y,u), the corresponding estimator β̂par
satisfies

√
N(β̂par − β) → N{0,A−1

parBpar(A−1
par)

T}

in distribution when N → ∞, where

Apar = E
[dS∗

eff {Xi,Ri,RiYi,β , b∗(·,β ,α)}
dβT

]
.

Under the special assumption (2),

Bpar = var
(
S∗
eff {Xi,Ri,RiYi,β , b∗(·,β ,α)}

+E
[
S∗
eff {Xi,Ri,RiYi,β , b∗(·,β ,α)}∂ log fX(Xi;α)

∂αT

]
×φ(Xi;α)

)
.

Under the general assumption (1), Bpar has the same form but
with ∂ log fX(Xi;α)/∂αT replaced by ∂ log fZ|U(Zi,Ui;α)/∂αT.
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Remark 6. In practice, a potential obstacle to using the para-
metric model and the result of Theorem 4 is the possible model
misspecification. Theorem 4 shows that, when this parametric
model is indeed correct, the variance of the estimator contains
an additional term, which resembles h(xi) in Theorems 1 and 2.
Furthermore, if the working model π∗ happens to be correctly
specified, this term is zero.

Remark 7. In the fortunate situation when the missingness
mechanism model π(y,u) in the partial shadow case in Sec-
tion 4 is correct, thenwe canmisspecify themodel fZ|U(z,u) and
our estimator based on S∗

eff {u, z, r, ry,β , b∗(·,u,β)} will remain
consistent. In fact, in this case, replacing b∗(·,u,β) with an
arbitrary function of (y,u) will lead to a consistent estimator.
This is because we can easily verify that

E{S∗
eff (u, z,R,RY) | x}

= E
[Rfβ(Y ,u, z;β)

fY|X(Y ,u, z;β)
− (1 − R)

∫
fβ(t,u, z;β)π(t,u)dμ(t)∫

fY|X(t,u, z;β){1 − π(t,u)}dμ(t)
−Rb∗(Y ,u)

+ (1 − R)
∫
b∗(t,u)fY|X(t,u, z;β)π(t,u)dμ(t)∫

fY|X(t,u, z;β){1 − π(t,u)}dμ(t)
| x

]
= 0

regardless of the form of b∗(y,u). Similar double robustness
property also holds for the complete shadow case in Section 3
when we simply eliminate the variable u from b∗(y,u) and
π(y,u).

6. Simulation Studies

We conduct comprehensive simulation studies to evaluate the
finite sample performance of our proposed estimators β̂ in The-
orems 1 and 2 and the alternative ones β̂non and β̂par presented
in Section 5. We compare them with the estimator derived
using all simulated data without missingness (FullData), and
the estimator derived using all completely observed subjects,
the so-called complete-case analysis (CC). We also compare
our proposed estimators with the pseudo likelihood estima-
tor (Pseudo) studied in Tang et al. (2003) under the special
assumption (2) and later inZhao and Shao (2015) under the gen-
eral assumption (1). Note that the pseudo likelihood estimators
are members of our proposed estimator family, corresponding
to the result of adopting a degenerated working mechanism
model π∗(y) = 0 or π∗(y,u) = 0. To evaluate the performance
against the theoretical optimal limit, we also implement the
oracle estimator β̂ora, obtained when the true fX(x) in (4), or
fZ|U(z,u) in (6), is used. We first present the results under
the special assumption (2), then the results under the general
assumption (1).

6.1. Scenarios Under Special Assumption (2)

We experiment two situations under the special assumption
(2). In each situation, we implement eight different methods,
where the working mechanism π∗(y) is correct or misspecified,
in combination with f̂X(x) being obtained by one of the four
approaches: its truth, the proposal in Section 3, and the two

alternatives in Section 5. In addition, we compare themwith the
FullDatamethod, the CCmethod, and the Pseudomethod
studied in Tang et al. (2003).

For the first situation, we generate X from a univariate nor-
mal distribution with mean 0.5 and variance σ 2 = 0.25. The
response Y is generated from the model Y = β0 + β1X + ε,
where the parameter of interest β = (β0,β1)T = (0.25,−0.5)T,
and ε follows the standard normal distribution. The true model
of the missingness mechanism is

pr(R = 1 | y) = π(y) = exp(1 + y)
1 + exp(1 + y)

.

This leads to about 1/3 subjects with missing response. The
misspecified working mechanism model is

π∗(y) = exp(1 − y)
1 + exp(1 − y)

.

In terms of numerical implementation, we use the Gauss–
Hermite quadrature with 15 points to approximate the inte-
grations. We adopt the Epanechnikov kernel function K(u) =
0.75(1 − u2)I(|u| ≤ 1) in the nonparametric density estima-
tion. We choose the bandwidth CN−1/3 with C = 1.5 in our
simulations. We find that the results are robust in the situations
where C ranges from 1 to 2.

We consider the total sample size N = 500 and the results
summarized in Table 1 are based on 1000 simulation replicates.
For each estimator, we compute its sample bias (bias), sample
standard deviation (std), estimated standard deviation using
the asymptotic distribution (ŝtd), and the coverage probability
(cvg) at the nominal level 95%.

In the second situation, we consider a higher dimensional
X and we generate X from a three-dimensional multivariate
normal distribution withmean zero and covariancematrix� =
(0.5|i−j|)1≤i,j≤3, and generate Y from the linear model Y =
β0 + β1X1 + β2X2 + β3X3 + ε. Here β = (β0,β1,β2,β3)

T =
(0, 0.1,−0.2,−0.3)T and ε has the standard normal distribution.
We adopt the same missingness mechanism model as in the
univariate X case and it also leads to around 1/3 missingness.
We use the same misspecified working mechanism model and
the kernel function. In implementing the multivariate Gauss–
Hermite quadrature (Liu and Pierce 1994) to approximate the
integrations, we adopt 6 quadrature points in each dimension
which generates 63 = 216 points in total. We set the bandwidth
to 2N−2/7, and find the results robust if the constant 2 varies
between 1.5 and 2.5.We consider sample sizeN = 1000 and the
results summarized in Table 2 are also based on 1000 simulation
replicates.

We reach the following conclusions from summarizing the
results in Tables 1 and 2. First, for all the eight estimators that
we propose in each scenario, the biases are very close to zero, the
sample standard deviation and the estimated standard deviation
are rather close to each other, and the sample coverage rates of
the estimated 95% confidence intervals are close to the nominal
level. Hence, regardless of how fX(x) is estimated and whether
the working mechanism model π∗(y) is specified correctly or
not, our methodology always produces consistent estimator
and the inference results based on the asymptotic results are
sufficiently precise. Second, the CC method is clearly biased,
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Table 1. Under assumption (2), one-dimensional X .

Method fX(x) π(y) Measure β0 β1

FullData

bias −0.0105 −0.0038
std 0.0838 0.0905
ŝtd 0.0817 0.0996
cvg 0.9490 0.9500

CC

bias 0.1307 0.0942
std 0.2059 0.1534
ŝtd 0.2030 0.1628
cvg 0.6880 0.7310

Pseudo

bias 0.0287 −0.0156
std 0.3427 0.2526
ŝtd 0.3535 0.2359
cvg 0.9580 0.9370

β̂ora True

Correct

bias −0.0186 −0.0040
std 0.2033 0.1217
ŝtd 0.1943 0.1240
cvg 0.9530 0.9500

Incorrect

bias −0.0198 −0.0049
std 0.2089 0.1281
ŝtd 0.2079 0.1274
cvg 0.9520 0.9460

β̂ Empirical

Correct

bias −0.0156 −0.0040
std 0.2088 0.1271
ŝtd 0.2121 0.1289
cvg 0.9530 0.9510

Incorrect

bias −0.0185 −0.0052
std 0.2210 0.1362
ŝtd 0.2176 0.1408
cvg 0.9580 0.9560

β̂non Nonparametric

Correct

bias −0.0180 −0.0044
std 0.2067 0.1257
ŝtd 0.2109 0.1308
cvg 0.9530 0.9520

Incorrect

bias −0.0136 −0.0042
std 0.2248 0.1433
ŝtd 0.2201 0.1439
cvg 0.9580 0.9680

β̂par Parametric

Correct

bias −0.0177 −0.0045
std 0.1968 0.1253
ŝtd 0.2015 0.1226
cvg 0.9510 0.9450

Incorrect

bias −0.0140 −0.0057
std 0.2365 0.1481
ŝtd 0.2355 0.1357
cvg 0.9560 0.9370

NOTE: Sample bias (bias), sample standard deviation (std), estimated standard
deviation (ŝtd), and coverage probability (cvg) of 95% confidence interval of
FullData (the estimator using all simulated data), CC (the estimator using only
completely observed subjects), Pseudo (the estimator proposed in Tang et al.
(2003)), as well as the oracle estimator β̂ora, the mainly proposed estimator β̂

studied in Theorem1, the estimator β̂non studied in Theorem3, and the estimator
β̂par studied in Theorem 4.

resulting in empirical coverage far from the nominal level. The
Pseudo method which completely eschews the missingness
mechanism model, is much less efficient than any of the eight
proposed estimators. The FullData method, which is not
realistic in applications, is merely used here as a benchmark.
Third, among the eight proposed estimators, in each of the
scenarios considered, although the estimatorwith amisspecified
mechanism π∗(y) is less efficient than its counterpart with the
true π(y), the inflation of the standard deviation is not large.
This indicates a certain robustness of ourmethod to theworking

mechanism model in terms of estimation efficiency, in addition
to the established estimation consistency. This seems to be an
added advantage of our estimator because the true form of π(y)
is difficult to obtain in practice. Our observation here helps
to alleviate the burden of extensive efforts to identify a proper
missingness mechanism description π(y) to reach sufficiently
small estimation variability. Last but not least, when the true
π(y) is used, all estimators have similar numerical performance,
especially in the p = 3 case. Similar phenomenon is also
observed when π(y) is misspecified. Therefore, considering
the possible model misspecification of fX(x) in β̂par and the
potential difficulty of nonparametric estimation in implement-
ing β̂non, we highly recommend the use of β̂ in practice.

6.2. Scenarios Under General Assumption (1)

Under the general assumption (1), we perform three different
simulation studies to examine the finite sample performance of
our proposed estimators.

In the first study, we consider a two-dimensional X where
bothU and Z are univariate and are continuous variables so the
theory established in Theorem 2 applies. We consider treating
the conditional expectation related to the unknown quantity
fZ|U(x) via nonparametric regression, parametric modeling or
adopting the truth, in combination with the mechanism model
being correct or misspecified. Thus, we implement six differ-
ent estimators. We also compare them with the FullData
method, the CC method, and the Pseudo method studied in
Zhao and Shao (2015).

The data generation process is as follows. We first generate
X from a bivariate normal distribution with mean zero and
covariance matrix � = (0.5|i−j|)1≤i,j≤2. Then we generate the
outcome Y from

logit{pr(Y = 1 | u, z)} = β0 + β1u + β2z

with the parameter of interest β = (β0,β1,β2)T = (0, 0.3,
−0.3)T. The missing data indicator R is generated from

pr(R = 1 | y, u) = π(y, u) = exp(1 + y + u)
1 + exp(1 + y + u)

,

which yields approximately 20%missingness inY . We adopt the
misspecified working mechanism model as

π∗(y, u) = exp(1 − y − u)
1 + exp(1 − y − u)

.

With the total sample size N = 1000, we implement the esti-
mator β̂ following Algorithm 2 in Section 4 and the estimators
β̂ora and β̂par following the discussion in Section 5. We adopt
the Epanechnikov kernel in (7). Similar to Section 6.1, we use
the Gauss–Hermite quadrature with 15 bases to approximate
the integrals. The bandwidth is chosen as CN−1/3 with C = 2.
Results based on 1000 simulation are summarized in Table 3.

In the second study, we consider a three-dimensionalX with
a bivariateU and a univariateZ, to gauge the complexity brought
by the increasing dimensionality of the covariate X. Similar to
the first study, we implement six different proposed estima-
tors, as well as the FullData, CC and Pseudo estimators.
Specifically, we first generate U1 and U2 independently from
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Table 2. Under assumption (2), three-dimensional X.

Method fX(x) π(y) Measure β0 β1 β2 β3

FullData

bias −0.0019 0.0027 0.0082 −0.0088
std 0.0585 0.0539 0.0559 0.0651
ŝtd 0.0555 0.0564 0.0613 0.0544
cvg 0.9478 0.9526 0.9489 0.9431

CC

bias 0.1885 −0.2628 −0.1718 0.0855
std 0.1034 0.0955 0.0871 0.0923
ŝtd 0.0919 0.0965 0.0941 0.0923
cvg 0.2590 0.4877 0.3859 0.8166

Pseudo

bias −0.0118 0.0159 0.0271 0.0144
std 0.2014 0.1855 0.2371 0.2519
ŝtd 0.2278 0.1945 0.2388 0.2611
cvg 0.9397 0.9379 0.9618 0.9573

β̂ora True

Correct

bias −0.0053 −0.0018 −0.0038 0.0079
std 0.0892 0.0776 0.0750 0.0835
ŝtd 0.0905 0.0742 0.0768 0.0863
cvg 0.9541 0.9613 0.9469 0.9541

Incorrect

bias 0.0249 0.0006 0.0070 0.0081
std 0.0982 0.0857 0.0935 0.0924
ŝtd 0.0846 0.1010 0.1035 0.0954
cvg 0.9558 0.9573 0.9624 0.9639

β̂ Empirical

Correct

bias −0.0028 −0.0024 −0.0035 0.0047
std 0.0951 0.0872 0.0802 0.0854
ŝtd 0.0886 0.0781 0.0855 0.0877
cvg 0.9566 0.9586 0.9519 0.9494

Incorrect

bias 0.0167 0.0076 0.0018 0.0024
std 0.1085 0.1011 0.1043 0.0946
ŝtd 0.0958 0.1038 0.1010 0.1017
cvg 0.9604 0.9624 0.9586 0.9543

β̂non Nonparametric

Correct

bias −0.0060 −0.0087 −0.0028 0.0081
std 0.0909 0.0981 0.0814 0.1013
ŝtd 0.0823 0.0975 0.0855 0.1046
cvg 0.9652 0.9675 0.9530 0.9617

Incorrect

bias 0.0275 0.0043 0.0019 0.0070
std 0.1043 0.1075 0.0970 0.1033
ŝtd 0.1085 0.1132 0.1067 0.1052
cvg 0.9659 0.9692 0.9670 0.9626

β̂par Parametric

Correct

bias −0.0018 −0.0031 −0.0016 0.0052
std 0.0833 0.0761 0.0779 0.0815
ŝtd 0.0796 0.0748 0.0779 0.0802
cvg 0.9426 0.9464 0.9559 0.9447

Incorrect

bias 0.0249 0.0044 0.0021 0.0097
std 0.1049 0.1011 0.0981 0.0921
ŝtd 0.0949 0.1033 0.0909 0.0900
cvg 0.9650 0.9556 0.9540 0.9492

NOTE: Sample bias (bias), sample standard deviation (std), estimated standard deviation (ŝtd), and coverage probability (cvg) of 95% confidence interval of FullData (the
estimator using all simulated data), CC (the estimator using only completely observed subjects), Pseudo (the estimator proposed in Tang et al. (2003)), as well as the
oracle estimator β̂ora, the mainly proposed estimator β̂ studied in Theorem 1, the estimator β̂non studied in Theorem 3, and the estimator β̂par studied in Theorem 4.

the uniform(−1, 1) distribution, then generate Z following Z =
0.3U1 + 0.3U2 + ε where ε is a normal error with mean zero
and standard deviation 0.1. The response variableY is generated
from

Y = β0 + β1U1 + β2U2 + β3Z + ε,

with β = (β0,β1,β2,β3)
T = (0,−1,−1, 2)T and ε is the noise

following the standard normal distribution. The missing data
indicator R is generated from

pr(R = 1 | y,u) = π(y,u) = exp(2 − y + 0.5u1 + 0.5u2)
1 + exp(2 − y + 0.5u1 + 0.5u2)

,

which yields approximately 20%missingness inY . We adopt the
misspecified working mechanism model as

π∗(y,u) = exp(2 + y − 0.5u1 − 0.5u2)
1 + exp(2 + y − 0.5u1 − 0.5u2)

.

Based on the sample size N = 2000 and 1000 simulation
replicates, the results for this setting are summarized in Table 4.
The ingredients during the estimator implementation are sim-
ilar to the first study, except that we adopt the fourth order
Epanechnikov kernel functionK(t) = 45

32 (1− 7
3 t

2)(1−t2)I{|t|≤1},
and the bandwidth is chosen as CN−1/5 with C = 3.

The third simulation study is designed to mimic the real
data example presented in Section 7. We first generate binary
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Table 3. Under assumption (1), two-dimensional X.

Method fZ|U(z, u) π(y, u) Measure β0 β1 β2

FullData

bias −0.0149 0.0158 0.0083
std 0.0526 0.0859 0.0692
ŝtd 0.0508 0.0953 0.0727
cvg 0.9480 0.9550 0.9510

CC

bias 1.2571 −0.3069 0.0305
std 0.3516 0.2877 0.2681
ŝtd 0.3367 0.2910 0.2583
cvg 0.0000 0.2674 0.9316

Pseudo

bias 0.0349 −0.0255 0.0203
std 0.2057 0.2751 0.2893
ŝtd 0.1949 0.2684 0.2700
cvg 0.9290 0.9530 0.9610

β̂ora True

Correct

bias −0.0179 0.0167 0.0045
std 0.0813 0.1214 0.1175
ŝtd 0.0751 0.1288 0.1209
cvg 0.9520 0.9460 0.9580

Incorrect

bias −0.0134 0.0089 0.0036
std 0.0901 0.1287 0.1195
ŝtd 0.0974 0.1335 0.1107
cvg 0.9490 0.9510 0.9530

β̂ Empirical

Correct

bias −0.0158 0.0123 0.0043
std 0.0825 0.1231 0.1147
ŝtd 0.0800 0.1189 0.1161
cvg 0.9500 0.9450 0.9530

Incorrect

bias −0.0167 0.0155 0.0055
std 0.0916 0.1262 0.1200
ŝtd 0.0979 0.1283 0.1240
cvg 0.9480 0.9510 0.9530

β̂par Parametric

Correct

bias −0.0140 0.0150 0.0064
std 0.0910 0.1281 0.1164
ŝtd 0.0875 0.1310 0.1294
cvg 0.9600 0.9520 0.9560

Incorrect

bias −0.0156 0.0077 0.0038
std 0.1096 0.1307 0.1340
ŝtd 0.0984 0.1284 0.1259
cvg 0.9610 0.9540 0.9570

NOTE: Sample bias (bias), sample standard deviation (std), estimated standard
deviation (ŝtd), and coverage probability (cvg) of 95% confidence interval of
FullData (the estimator using all simulated data), CC (the estimator using only
completely observed subjects), Pseudo (the estimator proposed in Zhao and Shao
(2015)), as well as the oracle estimator β̂ora, the mainly proposed estimator β̂

studied in Theorem 2, and the estimator β̂par studied in Theorem 4.

covariateU fromaBernoulli distributionwith pr(U = 1) = 0.5.
Then we generate Z following

logit{pr(Z = 1 | u)} = −1.5 + 0.2u.

The outcome variable Y is generated from

logit{pr(Y = 1 | u, z)} = β0 + β1u + β2z

with β = (β0,β1,β2)
T = (−0.5, 0.2, 0.7)T. We then generate

the missing data indicator R following

pr(R = 1 | y, u) = π(y, u) = exp(1 − 2y + 0.3u)
1 + exp(1 − 2y + 0.3u)

.

We use the working model

π∗(y, u) = exp(1 + 2y + 0.3u)
1 + exp(1 + 2y + 0.3u)

as the misspecified mechanism model. We also implement the
six different estimators, respectively, β̂ , β̂ora, and β̂par in combi-
nation with a correct or misspecified mechanismmodel, as well
as the FullData, CC, and Pseudo estimators. Results based
on sample size N = 2000 and 1000 simulation replications are
provided in Table 5.

The conclusions from summarizing Tables 3–5 are also very
clear. First, similar to Section 6.1, among the six implemented
estimators that we propose, regardless of how fX(u, z) is esti-
mated and whether π(y,u) is specified correctly or not, our
methods always produce consistent estimators and the inference
results based on the asymptotic results are sufficiently precise.
Second, the CC estimator is severely biased, and the Pseudo
estimator is clearly less efficient than any of our proposed esti-
mators even with a highly misspecifiedmechanismmodel. Both
estimators should be avoided based on their performance. The
FullData estimator is of course not available in application
and only serves as a benchmark. Third, among the six proposed
estimators, in each of the scenarios considered, the estimator
with an incorrect π(y,u) is less efficient than its counterpart
with the correct π(y,u) model, while the efficiency loss is not
large. Finally, when the trueπ(y,u)model is used, the estimators
β̂ and β̂par perform similarly and they are both slightly less
efficient than β̂ora. The same phenomenon is observed when
the misspecified π(u,u) model is used. All of these phenom-
ena reflect our theory investigated in Sections 4 and 5 very
closely.

7. Real Data Analysis

Ibrahim, Lipsitz, and Horton (2001) analyzed a dataset of
mental health of children in Connecticut (Zahner et al. 1992,
1993; Zahner and Daskalakis 1997), where the binary outcome
of interest is the teacher’s report of the psychopathology status
of the student (a score of 1 indicates borderline or clinical
psychopathology, and a score of 0 indicates normal). The
three covariates of interest are father, the parental status
of the household (0 indicates father figure present, and 1 no
father figure present), health, the physical health of the
child (0 means no health problems, and 1 means fair or poor
health, a chronic condition or a limitation in activity), and
parent’s report, the psychopathology status of the child
reported from the parent (a score of 1 indicates borderline or
clinical psychopathology, and a score of 0 indicates normal). In
this study, a child’s possibly unobserved psychopathology status
may be related to missingness because a teacher is more likely
to fill out the psychopathology status when the teacher feels
that the child is not normal. Hence it is highly suspected that
the missingness mechanism is nonignorable. There are 2486
subjects in this dataset and 1061 of them have missing outcome
values. The dataset is available in Ibrahim, Lipsitz, and Horton
(2001).

As discussed in Miao et al. (2019), the missing indicator
of the teacher’s report may be related to her assessment of
the student but is unlikely to be related to a separate parent’s
report after conditioning on the teacher’s assessment and all
other fully observed covariates; moreover, the parent’s report
is likely highly correlated with that of the teacher. In this case,
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Table 4. Under assumption (1), three-dimensional X.

Method fZ|U(z, u) π(y, u) Measure β0 β1 β2 β3

FullData

bias −0.0054 0.0008 0.0007 0.0015
std 0.0556 0.0582 0.0544 0.0353
ŝtd 0.0559 0.0600 0.0585 0.0469
cvg 0.9480 0.9530 0.9630 0.9540

CC

bias −0.1636 0.0537 −0.0853 −0.0420
std 0.0869 0.0905 0.0972 0.0638
ŝtd 0.0795 0.0887 0.0920 0.0575
cvg 0.4830 0.8180 0.7420 0.8780

Pseudo

bias −0.0044 0.0043 0.0058 0.0097
std 0.1035 0.0878 0.1059 0.0655
ŝtd 0.1058 0.0979 0.0823 0.0772
cvg 0.9530 0.9490 0.9560 0.9500

β̂ora True

Correct

bias −0.0055 −0.0027 0.0034 0.0029
std 0.0744 0.0711 0.0826 0.0510
ŝtd 0.0729 0.0794 0.0727 0.0505
cvg 0.9500 0.9390 0.9480 0.9600

Incorrect

bias −0.0008 −0.0019 −0.0030 0.0010
std 0.0879 0.0868 0.1017 0.0621
ŝtd 0.0856 0.0965 0.1129 0.0617
cvg 0.9430 0.9520 0.9530 0.9530

β̂ Empirical

Correct

bias −0.0025 0.0053 −0.0027 0.0015
std 0.0784 0.0738 0.0869 0.0515
ŝtd 0.0802 0.0793 0.0934 0.0627
cvg 0.9450 0.9550 0.9510 0.9630

Incorrect

bias 0.0016 −0.0030 −0.0050 0.0011
std 0.0809 0.0979 0.1042 0.0553
ŝtd 0.0976 0.1096 0.1033 0.0562
cvg 0.9440 0.9470 0.9460 0.9520

β̂par Parametric

Correct

bias 0.0040 −0.0056 −0.0005 −0.0016
std 0.0779 0.0724 0.0869 0.0411
ŝtd 0.0798 0.0759 0.0853 0.0438
cvg 0.9530 0.9570 0.9510 0.9460

Incorrect

bias −0.0030 −0.0001 0.0016 −0.0030
std 0.0822 0.1063 0.0953 0.0540
ŝtd 0.0812 0.1062 0.1014 0.0660
cvg 0.9450 0.9440 0.9350 0.9450

NOTE: Sample bias (bias), sample standard deviation (std), estimated standard deviation (ŝtd), and coverage probability (cvg) of 95% confidence interval of FullData (the
estimator using all simulated data), CC (the estimator using only completely observed subjects), Pseudo (the estimator proposed in Zhao and Shao (2015)), as well as the
oracle estimator β̂ora, the mainly proposed estimator β̂ studied in Theorem 2, and the estimator β̂par studied in Theorem 4.

parent’s report constitutes a valid shadow variable in
our context.

We first follow Ibrahim, Lipsitz, andHorton (2001) to imple-
ment a parametric EM algorithm (the method parEM) where
the mechanism is a logistic regression model. Then we imple-
ment the proposed estimator β̂ , and the estimator β̂par where
fZ|U(·) is modeled as

logit{pr(parent’s report=1 | health,father)}
= −2.106 + 0.890 health + 0.623 father.

The posited missingness mechanism model π∗(y,health,
father) used in both β̂ and β̂par is

logit{pr(R = 1 | y,health,father)}
= 1.058 − 2.037 y + 0.298 health − 0.002 father,

the same as found in the method parEM. For comparison,
we also implement the naive method using only completely
observed subjects (the method CC), and the pseudo likelihood
estimator of Zhao and Shao (2015) (the method Pseudo). For

each parameter, we report the estimate, its standard error, and
the corresponding z-statistic and p-value from the five methods
in Table 6.

Interestingly all methods produce roughly the same coeffi-
cient estimate for the shadow variable parent’s report,
while the estimator β̂ has the smallest standard error hence
is the most efficient. The primary differences among the five
methods occur in the coefficients of intercept, health,
and father. The method CC which only uses completely
observed subjects and the method parEM which is confined
to a purely parametric model specification are both highly sus-
pected to result in estimation biases. The estimator β̂par where
the parametric fZ|U(·) model could be misspecified, and the
estimator Pseudo where the nonignorable missingness mech-
anism model is bypassed or is set to zero, provide very similar
estimates as the estimator β̂ . However, both β̂par and Pseudo
have relatively larger standard errors. In contrast, the estimator
β̂ takes into account the effect of the missingness mechanism
model and is not prone to any possible fZ|U(·) model misspec-
ification, hence is much more efficient than the estimators β̂par
and Pseudo in this application.
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Table 5. Under assumption (1), two-dimensional X (discrete U).

Method fZ|U(z, u) π(y, u) Measure β0 β1 β2

FullData

bias 0.0254 −0.0015 0.0088
std 0.0733 0.0795 0.0494
ŝtd 0.0705 0.0808 0.0554
cvg 0.9500 0.9520 0.9430

CC

bias 1.0641 −0.6033 0.0270
std 0.3046 0.3240 0.3146
ŝtd 0.2898 0.3139 0.2963
cvg 0.0000 0.5200 0.9320

Pseudo

bias 0.0397 −0.0224 0.0170
std 0.3157 0.2837 0.2417
ŝtd 0.3034 0.2729 0.2293
cvg 0.9480 0.9460 0.9560

β̂ora True

Correct

bias 0.0302 −0.0020 0.0108
std 0.1188 0.1250 0.0975
ŝtd 0.1258 0.1194 0.1024
cvg 0.9460 0.9580 0.9460

Incorrect

bias 0.0459 0.0134 0.0121
std 0.1371 0.1387 0.1069
ŝtd 0.1429 0.1495 0.1091
cvg 0.9570 0.9670 0.9680

β̂ Empirical

Correct

bias 0.0215 −0.0022 0.0091
std 0.1194 0.1266 0.1037
ŝtd 0.1205 0.1231 0.0975
cvg 0.9510 0.9520 0.9610

Incorrect

bias 0.0533 0.0185 0.0081
std 0.1327 0.1455 0.1003
ŝtd 0.1395 0.1438 0.0994
cvg 0.9490 0.9600 0.9590

β̂par Parametric

Correct

bias 0.0247 −0.0018 0.0097
std 0.1143 0.1288 0.1018
ŝtd 0.1209 0.1265 0.0905
cvg 0.9610 0.9540 0.9630

Incorrect

bias 0.0386 0.0097 0.0089
std 0.1475 0.1487 0.1121
ŝtd 0.1382 0.1547 0.1094
cvg 0.9620 0.9580 0.9640

NOTE: Sample bias (bias), sample standard deviation (std), estimated standard
deviation (ŝtd), and coverage probability (cvg) of 95% confidence interval of
FullData (the estimator using all simulated data), CC (the estimator using only
completely observed subjects), Pseudo (the estimator proposed in Zhao and Shao
(2015)), as well as the oracle estimator β̂ora, the mainly proposed estimator β̂

studied in Theorem 2, and the estimator β̂par studied in Theorem 4.

8. Discussion

In this article, to bypass the difficulty of correctly specifying and
directly estimating the nonignorable missingness mechanism,
we propose a class of estimators which only need a working
mechanism model. Our procedure guarantees a consistent esti-
mator for the parameter of interest regardless of the working
model being correct or not.

In practice, a working model for the missingness mechanism
closer to the truth is likely beneficial. To obtain such a model,
one can first adopt a rich yet pure parametric mechanismmodel
and use maximum likelihood estimator via the EM algorithm
to determine the parameters in it. This allows us to identify
a plausible nonignorable missingness mechanism model. This
mechanism model can then be used as the working model
π∗(y,u) in our procedure. Further, when the working model is
sufficiently rich or even nonparametric, the resulting estimator
from our procedure is likely efficient. While intuitively sensible,

Table 6. Comparison of the real data analysis results in the children’smental health
study.

parent’s
Method Measure intercept health father report

CC

estimate −1.9307 −0.0516 0.3652 1.4621
standard error 0.1132 0.1480 0.1690 0.1583

z-statistic −17.0618 −0.3487 2.1608 9.2380
p-value 0.0000 0.7273 0.0307 0.0000

parEM

estimate −1.7938 −0.0641 0.1610 1.4538
standard error 0.1258 0.2213 0.1380 0.1646

z-statistic −14.2591 −0.2897 1.1667 8.8323
p-value 0.0000 0.7721 0.2433 0.0000

Pseudo

estimate −1.3750 −0.9814 −0.0699 1.4687
standard error 0.2867 0.3622 0.4460 0.1366

z-statistic −4.7966 −2.7098 −0.1567 10.7523
p-value 0.0000 0.0067 0.8755 0.0000

β̂

estimate −1.3585 −0.9817 −0.0718 1.4623
standard error 0.1823 0.1470 0.1320 0.1194

z-statistic −7.4520 −6.6782 −0.5439 12.2471
p-value 0.0000 0.0000 0.5865 0.0000

β̂par

estimate −1.3624 −0.9703 −0.0728 1.4651
standard error 0.2654 0.3221 0.3372 0.1378

z-statistic −5.1334 −3.0124 −0.2159 10.6321
p-value 0.0000 0.0026 0.8291 0.0000

NOTE: CC is the method using only completely observed subjects. parEM is the
method using the EM algorithm with a purely parametric model specification.
Pseudo is the method proposed in Zhao and Shao (2015). β̂ is the mainly pro-
posed estimator studied in Theorem 2. β̂par is the estimator studied in Theorem 4
but with possible fZ|U(·)model misspecification.

the issue of how to achieve and rigorously prove the optimal
efficiency requires more in-depth investigation.

To achieve identifiability, a major assumption in our estima-
tion procedure is the existence of the shadow variable Z. From
the example we show in this article and some other similar
situations, the existence of such a variable is clinically reasonable
and practically useful. How to statistically validate a shadow
variable is also of interest and it warrants further research.

We also would like to point out that a correct specification
or estimation of the conditional pdf/pmf of fZ|U(x), which only
involves completely observed data, is needed in our implemen-
tation. When the dimension of X is relatively small, one can
use kernel estimation or other types of nonparametric tech-
niques. When the dimension becomes larger, because of the
curse of dimensionality issue, one might need to concentrate on
parametric or semiparametric specification. In principle, since
there is no missing data involved in this step, any available
statistical methods can be explored and investigated. Finally,
despite of a few investigation in Fang and Shao (2016) and Zhao,
Yang, and Ning (2018), the issue of high dimensionality in the
nonignorable missing data context remains a challenging topic
and worth further research.

It is worth emphasizing that our framework is based on a
correctly specified regression model fY|X(y | x;β), hence is
suitable for studying the relation between Y and X. In practice,
the research interest may be different. For example, one may
be interested in learning E(Y) or some other summary of the
outcome. In this case, one can choose to construct models
differently and proceedwith the statistical analysis. For example,
Miao et al. (2019) chose to model the odds ratio function
OR(y,u) ≡ {f (R = 0 | Y ,U)f (R = 1 | Y = 0,U)}/{f (R =
1 | Y ,U)f (R = 0 | Y = 0,U)} and one of f (Y ,Z | R = 1,U)



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 15

and f (R | Y = 0,U), hence by pass the direct modeling of
fY|X(y | x;β). These two modeling approaches are suitable in
their respect context, and are complementary to each other. In
applications, one can use the suitable approach depending on
the practical need.

Supplementary Materials

The supplementary materials contain all the detailed technical derivations
and proofs.
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