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We review lattice studies of the color screening in the quark–gluon plasma. We put the
phenomena related to the color screening into the context of similar aspects of other
physical systems (electromagnetic plasma or cold nuclear matter). We discuss the onset
of the color screening and its signature and significance in the QCD transition region, and
elucidate at which temperature and to which extent the weak-coupling picture based
on hard thermal loop expansion, potential nonrelativistic QCD, or dimensionally-reduced
QCD quantitatively captures the key properties of the color screening. We discuss the
different regimes pertaining to the color screening and thermal dissociation of the static
quarks in depth for various spatial correlation functions that are studied on the lattice,
and clarify the status of their asymptotic screening masses. We finally discuss the
screening correlation functions of dynamical mesons with a wide range of flavor and
spin content, and how they conform with expectations for low- and high-temperature
behavior.
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1. Introduction

Whenever the interactions of particulate matter are described in terms of a field theoretical approach, these inter-
actions can be understood as the exchange of one or more excitations of the fields mediating these interactions. The
contribution to the potential from the exchange of n field excitations with mass m is V ∼ (e−mr/r)n. If the leading
contribution is due to the exchange of a single massless, classical field excitation, then the dominant contribution takes
the form of the classical Coulomb potential, i.e. VC ∼ 1/r and the force is FC ∼ 1/r2. If the leading contribution is due to
the exchange of a single massive, classical field excitation, then the dominant contribution takes the form of the famous
Yukawa potential [1], i.e. VY ∼ e−mr/r , and the force is FY ∼ (e−mr + mr)/r2 = FC (1 + O(rm)2). The Yukawa potential
is the textbook example of a screened interaction with the Debye–Hückel or screening length λ = 1/m [2]. The basic
features of the Coulomb or Yukawa forces are present in the classical limit of all known fundamental gauge forces of the
Standard Model of Particle Physics, they are present in the classical field theory of gravitation, and they are present in
most of the many-body effective field theories, too, e.g. in the chiral effective theory that describes the formation of nuclei
from individual nucleons, or in many condensed matter applications.

We generally speak of screening whenever the presence of mobile charges is the cause for the falloff of the leading
contribution to a potential being larger than the power law V ∼ 1/rn that would be expected for the exchange of n

massless, classical field excitations. This applies to the case of the quantum corrections due to the vacuum polarization,
and it applies to the case of the thermal screening inside of a plasma. We take a first look at the more simple case of the
electromagnetism and contrast it later with the more complicated case of the strong interactions.

Electromagnetism is an Abelian U(1) gauge theory. For this reason the electromagnetic fields themselves carry no
electromagnetic charge, and they couple to each other only indirectly by coupling to the same electromagnetically charged
matter. The Coulomb potential V ∼ αem/r in (classical) electromagnetism is a long-range interaction. Nevertheless, at
large but still finite distances the electromagnetic potential exhibits in many systems a dominant power-law behavior
1/rn, where n ≥ 2. This may be understood in a many-body picture by applying Gauss’s law to a case where multiple
opposite charges reside in the same local volume. They compensate each other when summed up to the total charge, which
may exactly cancel the leading Coulomb contributions to the force felt by another observing charge distribution at a far
distance. However, subleading contributions due to the higher moments of this local charge distribution are associated
with higher powers 1/rn, and are still relevant at large distances, if the observing charge distribution may accommodate
higher moments of the same kind. We think of the multipole expansion and the dipole radiation as well-known classical
examples of such a scenario. Since the dominant contribution exhibits a clean power-law falloff in such scenarios, this is
not an example of screening.

In a quantum field theory such as Quantum Electrodynamics (QED), the leading contribution to the Coulomb force
between an electron–positron pair at rest is mediated by the exchange of a single electric A0 photon. However, an
effect reminiscent to the aforementioned many-body picture plays out through the vacuum polarization, where each
individual electron (or positron) creates a polarized charge distribution of virtual electron–positron pairs from the
quantum fluctuations of the vacuum [3,4]. These lead to a larger charge αem(1/r) being felt by an observer at smaller
distances r , where less quantum fluctuations can contribute to the total charge [5]. The dependence of αem(1/r) is
logarithmic at distances much smaller than the electron’s Compton wave length λe = 1/me, such that the QED potential
behaves as V ∼ αem(1/r)/r ∼ log(r)/r for r ≪ λe, i.e. V does not exhibit the power-law falloff of the classical Coulomb
force! The same effect applies also to exchanges mediated by the emission of multiple (electric or magnetic) photons.
Although this effect of the QED vacuum polarization is a screening mechanism, it is quite different from the mechanisms
of the thermal screening inside of an electromagnetic plasma.

A surrounding electromagnetic plasma breaks the Poincaré symmetry of the local interactions and the energies of all
of the thermally equilibrated fields are discretized. On the one hand, the electric A0 photons are subject to the thermal
modification and acquire an effective thermal mass – the Debye mass – that amounts to m = eT/

√
3 (for a theory with
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only one massless fermion with charge e = √
4παem) at leading order [6]. Hence, inside the plasma the electric fields are

screened with the screening length λ = 1/m. On the other hand, the magnetic fields are not screened at all, and the electric
A0 photons can couple to magnetic photons through fermion loops. Hence, at large enough distances r ≫ λ, the leading
contribution to the potential between two electromagnetic charges is not of the (screened) Coulomb form V ∼ αeme

−mr/r
anymore, but instead it is dominated by the exchange of multiple magnetic photons, i.e. it is of the form V ∼ α6

em/r
6 for the

magnetic van-der-Waals interaction. Due to the smallness of the electromagnetic coupling αem, there is an intermediate
range, where the dominant contribution to the electromagnetic potential is still of the form V ∼ αeme

−mr/r , such that
the electromagnetic Debye mass m can be determined straightforwardly. However, at larger distances the van-der-Waals
contribution from the exchange of two magnetic photons is dominant, and thus the electromagnetic potential inside a
plasma exhibits the power-law behavior at large enough distances, see e.g. Ref. [7].

Regarding the strong interaction, the picture is very different. In the many-body field theoretical description of nuclei
and hypernuclei, the excitation and exchange of a single pion, kaon or eta meson is mediating the leading contribution
to the potential between the octet baryons V ∼ e−mr/r . Given the pion, kaon and eta masses of mπ = 135MeV,
mK = 496MeV, and mη = 548MeV the screening lengths are different for different processes and are of the order of
λ ∼ 1/mη ∼ 0.36 fm to 1/mπ ∼ 1.5 fm, which is about twice the charge radius of a charged octet baryon. The existence
of different screening lengths in different interaction channels is a feature of QCD that is also found for the screening
inside of a quark–gluon plasma.

At much shorter distances this picture of baryons and mesons is not appropriate, and the strong interactions have
to be described in terms of quarks and gluons in the Quantum Chromodynamics (QCD), which is a non-Abelian SU(3)
gauge theory. Due to the asymptotic freedom, the leading contribution to the force between two color charges at short
enough distances is again the exchange of a single massless gluon, and the potential has the Coulomb form V ∼ αs/r
(with quantum corrections). In contrast to the QED, each individual quark or gluon creates a polarized charge distribution
of virtual quark–antiquark pairs and virtual gluons from quantum fluctuations of the vacuum. While the former have a
screening effect as in the QED, the latter have an even stronger anti-screening effect [8,9]. These lead to a larger charge
αs(1/r) being felt by an observer at larger distances r , where more quantum fluctuations contribute to the total charge.
The dependence of αs(1/r) is logarithmic such that the QCD potential behaves as V ∼ αs(1/r)/r ∼ 1/(r log(r)), i.e. V does
not exhibit the classical power-law falloff [10].

At distances r ∼ 1/ΛMS, where ΛMS is the intrinsic scale of the QCD (in the MS scheme), the charge αs(1/r) would
actually diverge, indicating the breakdown of a description in terms of individual quarks and gluons. At such distances
the force approaches a constant, the QCD string tension, and the energy of this QCD string grows linearly with the
distance. This is the color confinement of the QCD [11]. Due to the presence of sea quarks this string eventually breaks
apart at a string-breaking distance λsb, where the total energy E(λsb) of the QCD string becomes sufficiently large for
creating a quark–antiquark pair q′q̄′ from the vacuum, see e.g. Refs. [12,13]. Two separate bound states with masses
mqq̄′ = mq′ q̄ ∼ mq + 1/λsb are formed by consuming this pair. For distances not too different from λsb the energy of
the quark–antiquark pair exhibits some characteristic features of the exponential screening of color charges, although the
underlying unscreened QCD potential includes the contribution from the QCD string as well.

Neither of these two screening mechanisms is the one of the color screening in the quark–gluon plasma at high
temperatures. As in the case of the electromagnetic plasma, the surrounding quark–gluon plasma breaks the Poincaré
symmetry of the local interactions and the energies of all of the thermally equilibrated fields are discretized. On the
one hand, inside such a quark–gluon plasma the electric A0 gluons are subject to the thermal modification and acquire a
Debye mass — that amounts to mD ∼ gT at leading order, where g = √

4παs. Hence, inside the quark–gluon plasma the
electric fields are screened with the screening length λ = 1/mD. However, in contrast to the QED, one has to deal in the
definition of the Debye mass with subtleties due to the gauge dependence of the vacuum polarization [14]. On the other
hand, the magnetic fields that are not screened at all are subject to the confining three-dimensional Yang–Mills theory.
Hence, the nonperturbative interactions among the magnetic gluons or with the electric A0 gluons lead to bound states
with masses at the associated confining scale g2T [7,15], which can be related to various inverse screening lengths of
in-medium correlation functions in the corresponding channels. Moreover, since the electric A0 gluons can couple directly
to the magnetic gluons due to the nontrivial structure of the gauge group SU(3), the dominant contribution from the
magnetic gluons is larger than in QED and does not require the presence of fermion loops at all [14].

At this point it is already evident that there are fundamental differences between the mechanisms of electric screening
in electromagnetic or color screening in quark–gluon plasma. The key aspects of the color screening can be understood
only within a proper quantum field theoretical framework. We give a brief overview of the quantum field theoretical
foundations of QCD and of the related thermal field theory in Section 2. In Section 3 we discuss the screening of the static
charges and of bound states of static charges in QCD. Later on, in Section 4 we discuss the interplay between screening
and dissociation for static and non-static mesons in QCD. Finally, we conclude with a concise summary in Section 5.

2. Field theoretical foundations

2.1. Partition function and Lagrangian

Nuclear matter and the strong interactions are realized on the fundamental level in the Standard Model in terms of
the Quantum Chromodynamics (QCD). The hadron spectrum, hadron structure and hadron reactions are – up to effects
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from the electroweak sector – completely described by the QCD partition function (in any finite or infinite volume V )

Z(V ) =
∫ ∏

µ

DAµ

∏

f

Dψ̄fDψf e
i
∫+∞
−∞ dt

∫
V dd−1x L[Aµ, ψ̄f , ψf ], (1)

which can be expressed in terms of a path integral over the Nf quark (and antiquark) fields (ψ̄f , ψf ) with f =
u, d, s, c, b, t (up, down, strange, charm, bottom, and top) and the gluon fields Aµ. This partition function implicitly

depends on the strong coupling g (or equivalently αs = g2

4π
) and the masses m = (mu,md,ms, . . .) of the quark flavors,

which are the only parameters of the classical QCD Lagrangian L[Aµ, ψ̄f , ψf ]. Since the top quark mass mt is significantly
larger than the electroweak scale MW , it decouples in most respects from nuclear matter at any lower scales and will be
omitted in the following. Observables can be calculated in QCD by expressing them through the fundamental fields and
evaluating the path integral

〈O〉 = 1

Z

∫ ∏

µ

DAµ

∏

f

Dψ̄fDψfO[Aµ, ψ̄f , ψf ]e iS[Aµ, ψ̄f , ψf ], (2)

where we use the QCD action S =
∫
ddx L and omit any explicit reference to the volume.

All interactions among these fundamental fields are encoded into the monomials of the QCD Lagrangian, which satisfies
a local symmetry under the gauge group SU(Nc), where Nc = 3 for QCD. Namely, the quark flavors (ψ̄a

f , ψ
a
f ) exist in Nc

copies (color indices a = 1, . . . , Nc) that transform in the fundamental representation of the gauge group, and the gluons

Ac
µ ≡ Aab

µ tcab, (3)

in N2
c − 1 copies (color indices c = 1, . . . , (N2

c − 1), a, b = 1, . . . , Nc) that transform in the adjoint representation of

the gauge group. Here, tcab are the generators of the Lie algebra su(Nc) normalized as tr (tc td) = 1
2
δcd. The classical QCD

Lagrangian has a gauge part and a matter part,

L[Aµ, ψ̄f , ψf ] = Lgauge[Aµ] + Lmatter[Aµ, ψ̄f , ψf ] (4)

= − 1

4g2
0

Fµνc (x)F c
µν(x) −

∑

f

ψ̄α a
f (x)

{
i/D

ab
αβ − m0f δαβδab

}
ψ
β b

f , (5)

where all indices are understood to be summed over. The Dirac or spin indices α = 1, . . . , d are indicated with Greek
characters. In the notation used in the following, color, flavor, and spin indices, and the space–time arguments x will be
generally omitted whenever this is appropriate. The matter part is restricted to the Nf quark flavors that are considered as
dynamical degrees of freedom. As such, the QCD Lagrangian explicitly depends on the bare gauge coupling g0, the number
Nf of dynamical quark flavors, and the Nf respective bare quark masses m0f as its only parameters.

The massless Dirac operator /D
ab
αβ is given in terms of the covariant derivative Dab

µ as

/D
ab
αβ =

∑

µ

γ αβµ Dab
µ , Dab

µ = i
(
δab∂µ − itabc Ac

µ

)
. (6)

The matter part of the QCD Lagrangian is locally gauge invariant under a transform

ψ(x) → Ω(x)ψ(x), ψ̄(x) → ψ̄(x)Ω†(x), Aµ(x) → Ω(x){Aµ(x) + iΩ†(x)∂µΩ(x)}Ω†(x) (7)

for any Ω(x) ∈ SU(Nc). The field strength tensor F a
µν(x) can be expressed in terms of the structure constants fabc of the Lie

algebra su(Nc), or in terms of commutators of Aµ or of covariant derivatives Dµ,

F c
µν(x) = ∂µA

c
ν − ∂νA

c
µ + fabcA

a
µA

b
ν = tcab

{
∂µA

ab
ν − ∂νA

ab
µ − i[Aµ, Aν]ab

}
= −itcab[Dµ,Dν]ab. (8)

The invariance of the gauge part follows immediately from Eq. (7). The gauge part on its own is also referred to as the
Yang–Mills or pure gauge Lagrangian. For mostly technical reasons this is still of particular relevance to lattice gauge
theory as will be explicitly addressed later on.

QCD has multiple inherently nonperturbative aspects such as the confinement, the spontaneous chiral symmetry
breaking, and the axial anomaly, all of which are directly reflected in the low-energy hadron spectrum and control the
key properties of nuclear matter. These key properties change quite dramatically as the external parameters such as the
temperature T , the volume V , or the quark flavor chemical potentials µ = (µu, µd, µs, . . .) are modified. Quark flavor
chemical potentials can be introduced by adding a source term

Lµ·n = µ · N [ψ̄f , ψf ] =
∑

f

µf ψ̄f γ0ψf , (9)

to the QCD Lagrangian of Eq. (4), where Nf = ψ̄f γ0ψf is the quark number density. A finite temperature can be introduced
through a compact imaginary time direction with periodic boundary conditions for the bosons (gluons) and antiperiodic
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Fig. 1. The conjectured QCD phase diagram in the plane of two external parameters: temperature and the baryon chemical potential. Possible reach

of the current and future heavy-ion collision experiments is indicated with orange and yellow arrows and symbols.

boundary conditions for the fermions (quarks). In practice this can be achieved by replacing the Minkowski space–time
through a Wick rotation t → −iτ with a Euclidean space–time with (anti-)periodic boundaries (in time). Thermally
equilibrated strongly interacting matter is then described by the grand canonical QCD partition function Z(T , V , µ),

Z(T , V , µ) =
∫ ∏

µ

DAµ

∏

f

Dψ̄fDψf e
−
∫ 1
T
0

dτ
∫
V dd−1xLE [Aµ, ψ̄f , ψf ], (10)

where LE is the classical QCD Lagrangian in Euclidean space–time. The definition of observables in a background of
thermally equilibrated nuclear matter follows from applying the same steps to Eq. (2). Since the matter part of the QCD
Lagrangian in Eqs. (4) and (9) is bilinear in the quark and antiquark fields, the quark degrees of freedom can be integrated
out in the path integral to obtain

Z(T , V , µ) =
∫ ∏

µ

DAµ

∏

f

det{D[Aµ](m0f , µf )} e −
∫ 1
T
0

dτ
∫
V dd−1xLgauge[Aµ]. (11)

Strongly interacting matter described by Eq. (10) has a rich phase structure, see Fig. 1, with many similarities to well-
studied condensed matter systems. In particular, QCD has a well-established hadron gas phase for small values of the
temperature T and the chemical potentials µ, and another well-established quark–gluon plasma phase for large values
of the temperature T . In the limit of massless quarks and vanishing chemical potentials, there is a sharp chiral phase
transition that takes place at the critical temperature T 0

c = 132+3
−6 MeV [16]. For small enough quark masses and small

enough chemical potentials µ, this transition is turned into a smooth crossover at a somewhat higher pseudo-critical
temperature [17–20], i.e. Tc = 156.5(1.5)MeV for physical quark masses, while being still sensitive to the sharp phase
transition. Recently, there have been hints [21] of a stringy-fluid phase with a spin-chiral symmetry at values of the
temperature slightly above this transition, although not much is known about this state so far. For a long time, there have
been speculations about a critical endpoint and phase transition line for larger values of the chemical potentials, but these
prove elusive despite major efforts in experimental or theoretical studies to date. For small temperatures and densities
around the average nuclear matter density, one encounters the larger nuclei of the elements in the periodic table, and – for
much larger densities – eventually neutron stars. While this regime is well-studied experimentally, theory calculations are
still challenging due to a sign problem (i.e. breakdown of stochastic importance sampling and/or exponentially decreasing
signal-to-noise ratio) in the partition function of Eq. (10).

2.2. Finite temperature field theory

The restriction of a quantum field theory to finite temperature has profound consequences that play out in QCD quite
similar as in most other quantum field theories. The energies of all fields become quantized and are restricted to the
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Fig. 2. Thermal QCD hierarchies for very high temperatures (left), and high (center) or low (right) temperatures in the phenomenologically interesting

range. The naïve hierarchy g2T ≪ gT between magnetic and electric scales is inverted for phenomenologically interesting temperatures. Eventually,

it is not even clear if the magnetic or even electric scales can be distinguished from the lowest non-static scales at all, if the coupling g(T ) becomes

too large.

Matsubara modes ωn, which are fixed for any bosons as ωn = 2n πT and for any fermions as ωn = (2n + 1) πT , where
n = 0, 1, . . .. Hence, the lowest bosonic Matsubara mode ω0 = 0 is the Matsubara zero mode or static Matsubara mode,
and is well-separated from all higher (bosonic or fermionic) Matsubara modes.

This scale separation entails an approximate decoupling of the static modes of the fields from their higher Matsubara
modes. Namely, the interactions between these different modes take place at the temperature scale, and the coupling
depends on the temperature. The most important interactions between the static modes and the higher Matsubara modes
induce (in the massless limit divergent) contributions that modify the large-distance behavior of the static modes. Namely,
the correlation lengths of the static modes may be temperature dependent and finite in the interacting theory, despite
being infinite at the tree level. The inverse of such a screening length can be rephrased in terms of a screening mass
that vanishes in the non-interacting or zero-temperature limits. While a similar screening mechanism affects the higher
Matsubara modes as well, it is generally subleading compared to the non-zero Matsubara frequencies ωn = (2n) πT for
n > 0. Since the lowest fermionic Matsubara mode is ω0 = πT , contributions from fermions are generally suppressed
similarly to the higher Matsubara modes, too.

In particular, the interactions of these static modes can be understood in terms of the three-dimensional effective field
theory [22,23], see [24] for a concise review. The higher Matsubara modes and the fermions are integrated out and are
manifest in the Wilson coefficients of suppressed higher order operators. In the case of QCD, there are a few key differences
between the vacuum field theory and the thermal field theory. First, the symmetry between the magnetic gluons and the
electric A0 gluons is broken in the thermal theory. Second, there are contributions at odd powers of the gauge coupling
g(T ), which are due to the screening of the electric A0 gluons. Third, perturbation theory has an infrared cutoff at order
∼ g2T , which leads to a complete breakdown of perturbation theory at order g6T 4 for the thermodynamic potentials [25].
These scales – T (or rather 2πT or πT ), g(T )T , and g2(T )T – are hierarchically ordered for very high temperatures. For
phenomenologically interesting temperatures not too far above the QCD scale ΛMS, this hierarchy might not be realized
at all in practice, since the coupling g(T & ΛMS) is large, see Fig. 2. Under these circumstances, the predictive power of
the weak-coupling approach may strongly vary between different quantities.

On the one hand, the interactions among the magnetic gluons can be described by a three-dimensional, i.e. confining
SU(Nc) pure gauge theory with the coupling g2

M ∼ g2T and the confinement radius ∼ 1/(g2T ) [7]. This effective field
theory is called the magnetostatic QCD (MQCD). The magnetic gluons themselves are not affected by the thermal screening,
although they have finite correlation lengths due the confinement radius ∼ 1/(g2T ) of the pure gauge theory. Accordingly,
these magnetic gluons combine to the same glue-ball spectrum as in the three-dimensional Yang–Mills theory at zero
temperature. The lowest-lying glue-ball masses m ∼ g2T correspond (for m ≪ 2πT ) to certain inverse correlation lengths
of long-range correlations between the static modes of the thermal QCD medium. These magnetostatic QCD contributions
to the correlation lengths in the thermal QCD medium cannot be determined using perturbation theory.

On the other hand, the large-distance correlations of the electric A0 gluons are severely impacted by the thermal
modifications. These modifications can be accounted for in terms of a thermal Debye mass, which is of the (leading) order
mD ∼ gT and affects only the electric A0 gluons. To the leading order the electric A0 gluons may be treated as a massive
adjoint scalar field with A4

0 self-interactions (with the coupling at the order λE ∼ g4T ), and with the minimal coupling

to the magnetic gluons using the charge g2
E ∼ g2T . This effective field theory is called the electrostatic QCD (EQCD). Its

spectrum also contains nonperturbative bound states of multiple electric A0 gluons or of electric A0 gluons with magnetic

gluons. These bound states, which are formed at the confinement scale ∼ g2T of the magnetostatic QCD, can be understood
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Fig. 3. The spectrum of electrostatic QCD as obtained in nonperturbative lattice simulations [26]. Open symbols correspond to states containing

electric A0 gluons, filled symbols correspond to genuine magnetic glue-balls. The naive hierarchy is inverted in all channels.

Source: From Ref. [26].

as a manifestation of the Linde problem [25]. Whether the lightest states with any given quantum numbers are purely
magnetic glue-balls or bound states involving electric A0 gluons depends on the value of the coupling g(T ), and therefore
on the temperature, see Fig. 3 for a glance on the spectrum of the electrostatic QCD [26].

In the weak-coupling approach a Debye mass can be defined order-by-order in terms of the pole position of the static

mode of the thermal gluon propagator. The higher Matsubara modes or the fermions contribute order-by-order only at
odd powers of the coupling, i.e. mD/T ∼ c1g + c2g

3 + · · ·. However, while this pole position is gauge invariant order-by-
order in perturbation theory, one cannot avoid using the gauge-dependent gluon propagator for its definition, and hence
it is dependent on a gauge-fixed approach. Moreover, contributions from the magnetic gluons yield a nonperturbative
contribution to mD that is of order ∼ g2T . This is yet another manifestation of the Linde problem [25]. The perturbative
expansion breaks down as soon as scales of order g2T contribute. For these reasons it is not obvious to which extent the
weak-coupling approach may yield a physically meaningful description of the screening of the electric A0 gluons at all [14].
Answers to this problem can be provided through the comparison between the results obtained in the weak-coupling
approach or in a direct nonperturbative calculation. We return to this point in Section 3.2.

2.3. Lattice regularization

Quantum effects are inherent to the properties and interactions of strongly interacting matter. As such the classical QCD
Lagrangian of Eq. (4) has physical significance only through its role inside of the path integral definition of the partition
function of Eqs. (1) or (10). Alas, this definition is not well-defined, but fraught with divergences. These are both of the
infrared kind due to the propagation of massless (the gluons) or almost massless modes (some of the quark flavors), or
of the ultraviolet kind due to the presence of quantum loops with infinite momenta. The former are only present in an
infinite space–time volume and eventually regulated by the nonperturbative phenomena at the QCD scale ΛMS, the latter
originate in the contributions from infinitesimally separated fields. Hence, Eq. (10) only permits the calculation of QCD
amplitudes if all of the divergences are regulated accordingly.

Any such regularization scheme introduces its particular variety of unphysical properties at intermediate stages of
a calculation. Eventually, physical predictions for the strong interactions are recovered only after the removal of this
regulator. A reformulation of QCD on a finite (hybercubic) lattice of Nd−1

σ × Nτ sites with the lattice spacing a is such
a regularization scheme that removes all of the divergences and explicitly enforces the local gauge symmetry. Here,
Nτ is the number of points along the time axis and Nσ the number of points along each spatial axis. Usually, periodic
boundary conditions are used for all axes (antiperiodic for fermions in the time direction), although use of open boundary
conditions in one of the directions has become more common in recent years.1 The path integral in lattice gauge theory
with (anti-)periodic boundary conditions in the time direction and a Euclidean metric automatically samples the partition
function of thermally equilibrated matter at temperature T = 1

aNτ
. Yet as long as this temperature is significantly smaller

than the most infrared scale, i.e. the pion mass, this partition function is practically indistinguishable from a true T = 0
result. These periodic boundaries of the spatial directions imply that the lattice is a finite volume regulator with the

1 The reasons why open boundary conditions may be more beneficial are related to sampling of the topology of the gauge fields but are too

technical to be discussed in this review.
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smallest nonzero spatial momentum being kµ = π
aNσ

. The finite lattice spacing enforces kµ = π
a
as the largest accessible

four-momenta, and thus provides an ultraviolet cutoff.
Any lattice regularization entails (at least) the explicit breaking of the rotational symmetry from O(d) to a discrete

symmetry of lattice rotations (typically a hypercubic symmetry Wd). Since there is no derivative operator on a lattice, it
has to be approximated through finite difference operators for any lattice regularization, i.e., in the simplest symmetric
form

∂µ =
∇µ + ∇∗

µ

2
+ O(a2), ∇µψ(x) = ψ(x + aµ̂) − ψ(x)

a
, ∇∗

µψ(x) = ψ(x) − ψ(x − aµ̂)

a
. (12)

Here and in the following aµ̂ denotes the vector of one lattice spacing a in the µ direction. Due to this lack of an exact
derivative operator, Eq. (7) cannot be realized on the lattice for arbitrary gauge transforms Ω . However, QCD can be
rephrased on a (hypercubic) lattice by substituting the gauge fields Aµ(x), which are elements of the Lie algebra su(Nc),
with the gauge links

Uµ,x = exp [iaAµ(x + a
2
µ̂)], Uµ,x → ΩxUµ,xΩ

†

x+aµ̂
, (13)

that transform as elements of the Lie group SU(Nc). Whereas the quark and antiquark fields are defined on the sites of the
lattice, the gauge fields on the lattice are placed on the links between the sites. Wilson lines are constructed by attaching
the gauge links as path-ordered segments of a continuous path, and the gauge invariance of the trace of any closed contour
follows from Eq. (13). There are two general classes of closed contours — the topologically trivial Wilson loops, which can
be deformed into a point (i.e., do not wrap around a boundary) and the topologically nontrivial Wilson loops, which can
be deformed into a line wrapping around the lattice. The smallest possible Wilson loop wrapping around one elementary
square is called the plaquette.

The covariant derivative can be expressed with the gauge links

Dµψ(x) =
Uµ,xψ(x + aµ̂) − U

†

µ,x−aµ̂
ψ(x − aµ̂)

2
+ O(a2). (14)

From Eq. (14) the gauge invariance of the matter part of the QCD Lagrangian is evident, too. It follows that Wilson lines
with a quark and an antiquark on their ends are also gauge invariant.

There are different possibilities for the discretization of the field monomials of the continuum QCD Lagrangian of
Eqs. (4) and (9) that differ only in terms of the discretization errors, i.e., unphysical effects of order a, a2, . . ., which vanish
as the regulator is removed in the continuum limit. Various formulations of lattice QCD present different regularization
schemes that are distinguished by the type and the magnitude of the unphysical effects that are introduced by the
regulator. These effects can always be systematically diminished in so-called improved actions, but never fully eliminated
without taking the continuum limit.

2.4. Renormalization and weak coupling

The fundamental charge g(ν) = √
4παs(ν) associated with the local gauge symmetry explicitly depends on the scale

ν, at which the respective interactions transpire. The evolution of the charge αs(ν) with the scale ν is controlled by the
QCD beta function [8,9]

dαs(ν)

d ln ν
= αs β(αs) = − α2

s

2π

∞∑

n=0

( αs

4π

)n
βn = −2αs

[
β0

αs

4π
+ β1

( αs

4π

)2
+ · · ·

]
, (15)

Only its first two coefficients are universal (independent of the regularization scheme)

β0 = 11

3
CA − 4

3
TFNf , β1 = 34

3
C2
A − 20

3
CANf TF − 4CFNf TF , (16)

with the color factors being

CF = N2
c − 1

2Nc

, CA = Nc, TF = 1

2
, (17)

where Nc is the number of colors. Nf has to be understood as the number of (approximately massless) quark flavors
contributing up to the scale ν. As such, the multiplicative factor 1/g2

0 that scales the gauge Lagrangian Lgauge has to be
understood as a bare gauge coupling that is related to the physical charge g(ν) at the scale ν through the QCD beta
function of Eq. (15). In a similar way, the bare quark masses m0f are related to renormalized quark masses mf (ν) at the
scale ν through the renormalization group flow.

In the lattice formulation, the lattice spacing is not an explicit input parameter. Instead it is related to the bare gauge
coupling g0 by the QCD beta function as

aΛlat =
(

1

β0g
2
0

) β1

2β2
0 e

− 1

2β0g
2
0 , (18)
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where Λlat ∼ ΛMS (parametrically) is a representation of the QCD Lambda parameter that is specific to the details of each
lattice regularization scheme. Any quantities with nontrivial mass dimension are given in units of the lattice spacing.
Namely, the bare quark masses are given as am0f . The lattice spacing is determined a posteriori by setting the scale using
an observable with nontrivial mass dimension that can be easily computed with high precision and has only a small
sensitivity to the discretization errors, i.e. higher powers in a. Keeping physical observables constant while approaching
the continuum limit requires that the bare gauge coupling g0 as well as the bare quark masses am0f are adjusted to smaller
values along lines of constant physics.

Due to the adjoint charge of the gluons (Aab
µ ) the gauge Lagrangian Lgauge contains anti-screening self-interactions,

which express themselves in the first, i.e., positive contributions to β0 and β1. These self-interactions give rise to the
emergent scale of QCD, ΛMS, at which Eq. (15) has a Landau pole, where the strong coupling αs(ν = ΛMS) diverges.
In fact, the confinement property of QCD at low values of the temperature implies that the energy density in strongly
interacting matter grows linearly with the separation. Hence, fields in any nontrivial representation of the gauge group
must be dressed in clouds of nuclear matter with typical energies E ∼ ΛMS, and may only propagate over very small
distances r ≪ 1/ΛMS. On longer times scales t & 1/ΛMS these fields have to aggregate into bound states that transform
in the trivial representation. For temperatures as high as T & ΛMS, the confinement property is lifted due to the color
screening of long-range forces in the quark–gluon plasma.

At much higher scales ν ≫ ΛMS the strong coupling constant becomes small, and this asymptotic freedom explicitly
permits a weak-coupling expansion of the strong interactions. In an equivalent scheme that is particularly convenient for
a weak-coupling expansion the gauge fields are defined as Aµ = g0Aµ, i.e., the bare gauge coupling g0 explicitly multiplies
all three-point functions and g2

0 multiplies all four-point functions.
Processes at scales in the vicinity of ΛMS are inherently nonperturbative, i.e. a perturbative expansion in powers of

g (or αs) cannot describe such interactions at all. The lattice formulation lends itself to a nonperturbative calculation
of the QCD partition function. This is accomplished by performing a Wick rotation t → −iτ that trades Minkowski
space–time for Euclidean space–time and transforms the action as iSM → −SE . Thus, the exponential factors in Eqs. (10)
and (2) become real, and importance sampling can be applied for evaluating the path integral in a Markov Chain Monte
Carlo simulation in practice. Under these conditions the weak-coupling expansion is not necessary anymore and the
nonperturbative calculation is explicitly feasible.

The different quark flavors can be generally grouped into the two subsets of light or heavy quark flavors, which are
distinguished by the ordering of the respective quark masses mf and ΛMS. Namely, the light quark flavors f = u, d, s

have mf . ΛMS, while the heavy quark flavors f = c, b have mh ≡ mf ≫ ΛMS. These two different ordered hierarchies
may permit the use of the effective field theory (EFT) approach for QCD. The low-energy limit of QCD is rephrased in
terms of specific sets of low-energy degrees of freedom, and the high-energy modes above some matching scale ν are
integrated out and absorbed into the Wilson coefficients of the EFT. Suitable EFT approaches for the light quark flavors
are the chiral perturbation theory (for a review see, i.e. Refs. [27,28]) and chiral effective field theory (for a review see,
i.e. Refs. [29,30]), whose convergence is restricted to p ≪ ΛMS for all external momenta. The corresponding Wilson
coefficients are calculated at the scale ν ∼ ΛMS. Suitable EFT approaches for the heavy quark flavors take the nonrelativistic
limit of QCD, whose convergence is restricted to p ≪ mh for all external momenta. The corresponding Wilson coefficients
are calculated at the scale ν ∼ mh. Thus, whereas the interactions of the former necessitate nonperturbative approaches,
the latter can be addressed by means of the weak-coupling expansion.

2.5. Light quarks

On the one hand, since mf /ΛMS is a small quantity for the light quark flavors, these behave as almost massless in QCD,
and it is permissible to expand QCD amplitudes involving the light quark flavors in terms of mf /ΛMS. This introduces
a power counting even for large values of the coupling. The matter Lagrangian has an accidental, chiral symmetry in
the massless limit. This chiral symmetry is in part broken by the axial anomaly of the fermion measure (flavor singlet
chiral symmetry), and in part spontaneously broken for all states of the hadron spectrum due to the formation of a scalar
quark–antiquark condensate (chiral condensate) at low temperatures (all flavor nonsinglet chiral symmetries), and, finally,
explicitly broken by the nonzero light quark masses. As a consequence of the interplay between the nonzero light quark
masses and the spontaneous breaking of the chiral symmetry the associated Pseudo-Goldstone bosons (pion, kaon, eta)
acquire masses significantly below one unit of ΛMS for each contributing quark (or antiquark). These are the lightest
modes that transform in the trivial representation, and thus propagate over large distances in the hadronic phase and
induce the strongest sensitivity to effects of the finite spatial volume. A further consequence of the spontaneously broken
chiral symmetry is the absence of parity doubling in the hadron spectrum.

If the temperature or the density of a nuclear matter system is increased beyond a certain delimiting region in the
phase diagram, the description in terms of hadronic degrees of freedom breaks down. Instead, the bulk properties of the
strongly interacting matter system have to be understood in terms of the partonic (quark and gluon) degrees of freedom,
or in terms of a mix between hadronic and partonic degrees of freedom. The corresponding thermal expectation values
undergo violent thermal fluctuations when the system changes between the low and high temperature phases. The details
of these fluctuations and of the transition strongly depend on the number of light quark degrees of freedom and on the
values of the parameters (light quark masses and light quark chemical potentials) in the QCD partition function of Eq. (10).
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In the limit of pure gauge theory, where the matter part of Eq. (4) is absent (or, equivalently, where all quarks are
infinitely heavy), the QCD partition function has a Z(Nc) center symmetry that is manifest in the hadronic phase due to
the frequent tunneling between the Nc different sectors of the Z(Nc) center symmetry. In the quark–gluon plasma phase
this Z(Nc) center symmetry is broken spontaneously and the system becomes stuck in one of the Nc different sectors of
the Z(Nc) center symmetry for arbitrarily long times. For four-dimensional SU(Nc) pure gauge theory with Nc = 3, the
transition between the phases is of first order. The associated non-local order parameter is the Polyakov loop, namely,
the most simplest case of a topologically nontrivial Wilson loop wrapping around the periodic Euclidean time direction,
whose fluctuations diverge at the phase transition, see Section 3.1. Above the transition, the Polyakov loop assumes a
non-zero expectation value (in the infinite volume limit) due to the color screening.

In full QCD with dynamical light quark flavors this Z(Nc) center symmetry is explicitly broken by the presence of
the light quark flavors. Namely, the associated chiral condensate couples to the Polyakov loop and acts as a Z(Nc) center
symmetry breaking field already in the vacuum. Therefore, the Polyakov loop does not play the role of an order parameter
in full QCD with dynamical light quark flavors and is not related to the critical behavior in the chiral limit. Instead, the chiral

condensate is the order parameter of full QCD, and the partition function becomes singular at the chiral phase transition in
the limit of vanishing masses of the light quark flavors. The role of the symmetry breaking field in full QCD is thus played
by the finite masses of the light quark flavors. At higher temperatures, the thermal fluctuations of the chiral condensate

eventually become too large, and the thermal expectation value of the chiral condensate drops to zero. Depending on the
number of light quark flavors and their masses, the universality class and the details of the transition vary. For the physical
values of the quark masses, there is no sharp phase transition, but a smooth crossover. Nevertheless, the physical light
quark masses are small enough that the real world is quite sensitive to the chiral phase transition. The fluctuations of the
chiral condensate diverge in the massless limit at the critical temperature T 0

c = 132+3
−6 MeV [16], and reach a pronounced

maximum for physical light quark masses at the pseudo-critical temperature Tc = 156.5(1.5)MeV [17–19].
In the quark–gluon plasma phase at temperatures sufficiently above the chiral phase transition, namely for temperatures

at or above T & 2Tc ∼ ΛMS, the chiral condensate has already melted, all flavor nonsinglet chiral symmetries are restored,
and there are no associated Pseudo-Goldstone bosons accordingly. The masses of the thermalized light quark flavors
are much smaller than the lowest fermionic Matsubara frequency ω0 = πT . Hence, the bulk properties of the quark–
gluon plasma depend only mildly on the details of the dynamical light quark flavors for such temperatures. Nevertheless,
thermalized heavy quark flavors may become relevant at such high temperatures.

2.6. Heavy quarks

On the other hand, since ΛMS/mh is a small quantity for the heavy quark flavors, these behave as almost infinitely
heavy in QCD, and it is permissible to expand QCD amplitudes for the heavy quark flavors in terms of ΛMS/mh. In the
static limit the heavy quark flavors are treated as infinitely heavy (static quarks) and do not propagate in space. Such
immobile static quarks are test charges in the fundamental representation of SU(Nc), and one is able to define a potential,
or rather the quark–antiquark static energy E, which can be calculated on the lattice and in the weak-coupling approach,
reaching good agreement at small distances, see Fig. 4 (left). The typical scale of the gluons that contribute to this energy
is p ∼ 1/r . Due to the asymptotic freedom this energy has a Coulombic core E ∼ αs/r at short distances r ≪ 1/ΛMS.
Due to the confinement the energy also exhibits a linearly rising contribution E ∼ σ r at larger distances r ∼ 1/ΛMS, the
QCD string or QCD flux tube, where σ ∼ Λ2

MS
. The most simple potential model that features these two aspects is the

Cornell potential VCornell = −α/r + σ r . At even larger distances, r ∼ 1/mπ , the potential picture breaks down and the
QCD string rips apart and a light quark–antiquark pair is generated from the vacuum for the formation of two heavy–light

mesons, i.e. a pair of static D and D∗ mesons, see Fig. 4 (right). This string-breaking process can occur only if light quark
flavors are present in the sea, i.e., this mechanism is impossible with the pure gauge Lagrangian. Further terms (relativistic
corrections, Darwin-term, spin–orbit or spin–spin coupling, etc.) are included in the sophisticated nonrelativistic quark
models, which describe the spectra and transitions in heavy–heavy quark–antiquark bound states quite successfully.

Upon expansion about the static limit one obtains the nonrelativistic QCD (NRQCD) [33,34] for the heavy quark flavors.
The nonrelativistic heavy quarks and antiquarks decouple to leading order, namely, pair creation or annihilation are
suppressed, since typical gluon momenta are p ∼ ΛMS ≪ mh. The symmetry of the couplings between nonrelativistic
quarks (and antiquarks) to chromoelectric and magnetic gluons is broken by powers of ΛMS/mh. Eventually, heavy–heavy
bound states of quarks and antiquarks are small and compact objects, where the typical binding energies E ∼ mv2/2
are even smaller than the typical momenta p ∼ mv (with v ≪ c). Thus, there is another layer of the hierarchy
E ∼ αs/r ≪ p ∼ 1/r ≪ mh, which permits the multipole expansion of such amplitudes, see Fig. 5. The EFT obtained in
this manner is called potential nonrelativistic QCD (pNRQCD) [35,36]. pNRQCD has non-local Wilson coefficients, which
have the meaning of various potential or non-potential terms similar to those used in nonrelativistic quark models. In
pNRQCD, such potentials can be derived from first principles. For a review of NRQCD and pNRQCD see Refs. [37,38].

2.7. Implementation of QCD on the lattice

In lattice gauge theory, generally only the three light quark flavors, or additionally the charm quark, are considered as
thermalized degrees of freedom. Since the up or down quark masses mu or md are much smaller than the strange quark
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Fig. 4. The static energy in (2+1)-flavor QCD on the lattice. (Left) After removing the discretization errors at small distances from the lattice result

(with the HISQ action), the result is well-described by the N3LO result for αs(MZ ) = 0.1167 (with resummation of leading ultrasoft logarithms, LL)

up to r ∼ 0.10 fm [31]. (Right) In full QCD (with improved Wilson fermions) the string-breaking disrupts the QCD string [32]. There are two avoided

level crossings due to the two non-degenerate quark masses of the sea, where the horizontal lines correspond to the twice static-light (lower) or

static–strange (higher) meson masses.

Source: From Ref. [32].

Fig. 5. Nonrelativistic QCD hierarchies for the bottom quark (left), and the charm quark (right).

mass ms, QCD is very often approximated in the isospin limit, where instead of up and down quarks two degenerate
light quarks with an average light quark mass ml = (mu + md)/2 are considered. For this scenario the terms (2+1)- or
(2+1+1)-flavor QCD are commonly used.

The most simple lattice action for the gauge fields is the Wilson plaquette action, i.e. a sum of the trace of all elementary
1 × 1 Wilson loops, which has leading discretization errors of order a2. The breaking of rotational symmetry is less
pronounced for the improved gauge actions, namely the tree-level (or one-loop) Symanzik gauge action, which includes
all elementary 1 × 2 (or also 1 × 1 × 1) Wilson loops, too, and has discretization errors of order a4 and αsa

2 (or α2
s a

2).
Local link distributions in lattice simulations tend to suffer from violent UV fluctuations at short separations, which

can be ameliorated through the use of a variety of iterative link smoothing techniques. Typical link smoothing algorithms
are the APE smearing [39], the HYP (hypercubic) smearing [40], stout smearing [41] or the Wilson flow [42,43]. These
techniques can be applied to subsets of the links, i.e. typically only to spatial links or to all links, and with or without
mixing links at different times. Any of these link smoothing techniques tend to distort the physics at small temporal
and/or spatial separations, while suppressing the UV divergences of lattice operators. For this reason, the appropriate
amount and type of smoothing is problem specific in lattice simulations.

Quarks on the lattice are more complicated. The naïve lattice derivative of Eq. (14) has discretization errors of order a2,
but produces 2d degenerate lattice fermions. Hence, it is not directly suitable for QCD, since the continuum limit of such a
discretization does not produce a theory with correct number of dynamical degrees of freedom. There are two commonly
used approaches2 to remedy this problem: Wilson and staggered.

2 The more recent, overlap [44] and domain-wall [45] fermions realize an exact or almost exact chiral symmetry with the correct axial anomaly

on the lattice and also have discretization errors of order a2 , but are substantially more computationally expensive. As such, we will not discuss

these formulations here.
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The Wilson fermion approach [11] includes a momentum-dependent mass term at order a – the Wilson term – which
breaks chiral symmetry explicitly even in the limit m0f → 0, and introduces the additive mass renormalization (due to the
different renormalization of the two parts of the Wilson term). An improved formulation of Wilson fermions introduces the
so-called Clover term to achieve discretization errors of order a2 [46], but all individual quark bilinears using (improved)
Wilson fermions require additional corrections for the order a errors.

The staggered fermion approach [47], which is derived from the naïve discretization, has the same discretization errors
of order a2. For even number of dimensions d the corresponding 2d/2 spinor components are decoupled through a unitary
transform and 2d/2 − 1 of these are omitted. The staggered discretization still has a reduced doubling problem with 2d/2

degenerate fermions that can only be accounted for by taking the (2d/2)th root of the staggered quark determinant. The
components of the fermions become distributed over 2d lattice sites and the 2d hyperquadrants of the Brillouin zone. Due
to couplings between the 2d hyperquadrants in the interacting field theory, the discretization errors are numerically large.
Various formulations of improved staggered fermions have reduced discretization errors of order a4 and αsa

2, and suppress
the coupling between the hyperquadrants, namely, the AsqTad [48] and HISQ (highly improved staggered quarks) [49]
formulations, whereas the stout formulation [41] simply reduces the a2 and a4 errors substantially. Staggered fermions
are the most popular quark discretization for QCD at finite temperature.

In practice the evaluation of the quark determinant det{D[Aµ](m0f , µf )} (using stochastic estimators) is the most
expensive part of the Markov Chain Monte Carlo algorithm, in particular, if the sea quark masses are small. At each lattice
site det{D[Aµ](m0f , µf )} in Eq. (11) is sensitive to the gauge fields on all links of the entire lattice, whereas the gauge
part of the QCD Lagrangian contains only small Wilson loops, and thus, very localized couplings. For this reason, lattice
QCD simulations are often performed with a light quark mass that is larger than the physical value, or even without sea
quarks at all, in the so-called quenched approximation, where the quark determinant is approximated by 1 and purely
local updating can be used. It needs to be stressed that the Markov Chain that is generated in the quenched approximation
samples the partition function of SU(Nc) pure gauge theory.

3. Screening of static charges

Before introducing the observables related to the properties of the medium and screening effects in a non-Abelian
gauge theory, such as QCD, let us recall some of the important features of the well-studied, both on classical and quantum
level, Abelian gauge theory — Quantum Electrodynamics.

One of the simplest questions one can ask when encountering a new force of nature is what is the force between two
static point-like objects capable of interacting through that force. For macroscopic electromagnetism the answer to this
question has been experimentally established in 18th century with the discovery of Coulomb’s law. As is well known
today, the force between two static probe charges q1 and q2 is long-range and falls of as F ∼ q1q2/r

2 with the distance
between the charges, which corresponds to the Coulomb-type potential V ∼ αem/r . If the test charges are embedded in
an electromagnetically interacting medium, such as an electromagnetic plasma, this long-range force gets screened and the
range of interaction (excluding the van-der-Waals force that arises due to the polarization of the medium) becomes finite,
governed by the screening length. The potential becomes of a Yukawa type e−mr/r , where rD = 1/m— is the Debye–Hückel
length [2]. Thus, studying the force between static probe charges, one learns about the properties of the medium, and the
nonperturbative lattice QCD approach follows a very similar strategy as discussed in the following sections.

Another ingredient that helps to set up the stage for QCD is the Aharonov–Bohm effect [50] in electrodynamics. Namely,
while propagation of a charged particle on the classical level is completely determined by the electric and magnetic fields,
on the quantum level it is sensitive to the phase induced by the electromagnetic potential Aµ, even if the particle is
propagating through the regions of space where the electric and magnetic fields are zero. This phase, acquired by the
particle propagating in the gauge field background plays a fundamental role in the discussion of the thermodynamic
properties of the strongly interacting medium.

3.1. The Polyakov loop and related quantities

3.1.1. Wilson line and the polyakov loop

For a non-Abelian gauge theory the analog of the path-dependent phase in the Aharonov–Bohm effect is the gauge

connection or Wilson line:

W (y, x) = P exp

{
i

∫ y

x

Aµ(z)dz
µ

}
. (19)

where the integral is understood as a line integral along the path connecting y and x and P represents path ordering. The
latter plays an important role for a non-Abelian case, since local Aµ fields at different points generally do not commute,
as clear from Eq. (3). The discussion is still in the continuum, but one can easily recognize that the gauge link variables
introduced in Eq. (13) are the shortest possible Wilson lines that can be resolved on a lattice with spacing a.

A Wilson loop is a Wilson line over a closed path. Such a construction is gauge invariant, and lattice observables built
of only gauge fields need to be always formulated in terms of Wilson loops traced over the color indices. A Wilson line
running in the temporal direction represents the phase acquired by a static probe charge whose position in space remains
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fixed. A flat Wilson loop of size, e.g. Lx × Lt in (x, t) plane represents a static quark–antiquark pair (since the temporal

Wilson lines have to run in the opposite direction when going over the loop, thus, naturally representing a particle and

anti-particle). Wilson loops or correlators of spatially separated temporal Wilson lines are therefore natural objects to

study the force between static probe charges.

While planar loops that do not wind around the lattice can be contracted to a point, there are also non-trivial Wilson

loops that are closed paths due to the periodic boundary conditions. A special kind of a loop represented by a temporal

Wilson line that forms a closed path by connecting to itself through the periodic boundary in the temporal direction is

called the Polyakov loop:

L(r) = 1

Nc

tr P exp

{
i

∫ β

0

A0(t, r)dt

}
. (20)

We refer to this object as a thermal Wilson line if the trace is not taken. On the lattice Eq. (20) is particularly simple, it

amounts to taking the trace of a product of gauge links going in the temporal direction to obtain the bare Polyakov loop:

Lbare(x) = 1

Nc

tr

aNτ∏

τ=a

U0,(τ , x). (21)

It is customary in lattice QCD calculations to take advantage of the translational invariance and define quantities summed

over the whole lattice. This self-averaging often significantly improves the signal-to-noise ratio, even though the nearby

points are strongly correlated. The lattice-averaged Polyakov loop is

L = 1

V

∑

x

L(x). (22)

The expectation value of the Polyakov loop in the sense of Eq. (2) is related to the difference in free energy between the

medium and the medium with a single static charge inserted into it:

〈L〉 = exp

{
−Fq

T

}
. (23)

On the one hand, in a pure gauge theory (i.e. with dynamical gauge fields but no dynamical fermions) the Polyakov loop is

a (non-local) order parameter for the confinement–deconfinement transition, similar to the magnetization in spin systems.

As discussed in Ref. [51], the Polyakov loop is associated with the center symmetry, Z(Nc). In the symmetric, confined

phase its expectation value is zero, which is interpreted as an infinite free energy Fq associated with insertion of a static

probe color charge in the fundamental representation. This also hints that a concept of an isolated color charged object

is not consistent with the confinement property of non-Abelian gauge theories. Namely, it is rigorously impossible to

combine any number of gluons, which transform in the adjoint representation of the group, and one quark that transforms

in the fundamental representation into an object that transforms in the trivial representation that would be allowed by

the confinement. On the contrary, some higher representations of the Polyakov loop do not vanish in the confined phase,

and may be related to the glue-balls. The Polyakov loop has been studied in higher representations in the SU(3) pure

gauge theory [52] and in the (2+1)-flavor QCD [53]. Some of its higher representations can be defined (with L3 ≡ L) as

〈L6〉 = 1

6
(〈(3L3)2〉 − 〈3L∗

3〉), 〈L8〉 = 1

8
(〈|3L3|2〉 − 1), . . . , (24)

where 〈L8〉 is the expectation value of the Polyakov loop in the adjoint representation. In the broken, deconfined phase

〈L〉 has a non-zero value, corresponding to finite Fq. Viewed from this perspective the high-temperature phase of a SU(Nc)

pure gauge theory is a phase with spontaneously broken center symmetry, similar to e.g. a low-temperature phase of a

ferromagnet. On the other hand, in a theory with dynamical fermions the quark condensate acts as a symmetry-breaking

field, and the expectation value of the Polyakov loop in the fundamental representation does not go to zero in the low

temperature phase.

Since the physics in the low-temperature phase of QCD and around the confinement–deconfinement transition is

nonperturbative, a fully nonperturbative approach, such as lattice QCD is necessary to study the behavior of the Polyakov

loop with full theoretical control. Indeed, the Polyakov loop has been a subject of study on the lattice since the earliest

days of lattice gauge theory [54,55] until today [56].

For computational reasons simulations with dynamical fermions were hardly affordable in 1980s and 1990s and studies

of the qualitative features of QCD were performed in SU(2) and SU(3) pure gauge theory. The finite temperature phase

transition in SU(2) is of the second order and in SU(3) is of the first order. In the pure gauge theory the Polyakov loop

susceptibility

χL = VT 3
(
〈|L|2〉 − 〈|L|〉2

)
= VT 3

(
1

9
+ 8

9
〈L8〉 − 〈L3〉2

)
(25)
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can be used to unambiguously define the transition temperature in the continuum and thermodynamic limit.3 In full QCD
with fermions this is not such a simple issue, since the Polyakov loop susceptibility mixes different representations.

3.1.2. The static quark potential and the renormalized Polyakov loop
While the temperature Tχ where χL becomes infinite defines the confinement–deconfinement phase transition

temperature in pure gauge theory, in full QCD the transition is a smooth crossover and one needs to understand the
quantitative behavior of the Polyakov loop and the associated free energy across the transition and in the deconfined
phase.

The bare free energy as calculated on the lattice contains a linear divergence which makes the bare Polyakov loop
vanish in the continuum limit. Renormalization of non-local operators such as Wilson loops was considered first in
perturbation theory [57,58] and later nonperturbatively on the lattice [59,60]. A common procedure to renormalize the
Polyakov loop is to first consider the free energy of a static quark–antiquark pair. The ultraviolet divergence in this quantity
is temperature independent and is already present at zero temperature where the free energy coincides with the static
quark–antiquark energy.

On the lattice the zero-temperature static quark–antiquark energy E(r) can be extracted from the expectation value
of the temporal Wilson loop of size r × τ or a correlator of temporal Wilson lines of length τ separated by a distance r
in a fixed gauge (the Coulomb gauge is an especially convenient choice)

W bare(τ , r; g2
0 ) = 1

Nc

〈
∑

x

tr
[
W (τ + τ0, x; τ , x)W (τ , x + r; τ + τ0, x + r)

]〉gf

= exp [−Ebare(r; g2
0 )τ ]

(
A0(r) +

∞∑

i=1

Ai(r) exp [−∆i(r)τ ]
)
, (26)

where ∆i(r) ∼ ΛMS are the positive energy differences between the ground state Ebare(r) and the excited states. The bare
gauge coupling g0 is an input parameter of lattice QCD simulations and here we explicitly emphasize that we refer to
a quantity evaluated at non-zero lattice spacing. Non-perturbative renormalization of the static quark–antiquark energy
then amounts to choosing a renormalization condition that the renormalized energy

Eren(r) = Ebare(r; g2
0 ) − C(g2

0 ) (27)

is equal to a prescribed value at some fixed distance r̃ , for instance,

Eren(r̃) = 0. (28)

The chosen renormalization condition, e.g. Eq. (28), determines the additive shift C(g2
0 ), which is twice the self-energy of

a static quark in the lattice scheme.
The renormalized Polyakov loop can then be defined as

Lren(T ) = Lbare(T ; g2
0 )e

Nτ C(g
2
0
)/2. (29)

An alternative renormalization procedure for the Polyakov loop is possible [53] with using recently introduced gradient
flow [42]. In any case, the renormalized Polyakov loop has a well defined continuum limit g0 → 0, or equivalently, a → 0.

The behavior of the renormalized Polyakov loop Lren(T ) in SU(2), SU(3) pure gauge theory and in (2+1)-flavor QCD is
shown in Fig. 6. One can observe that in full QCD the renormalized Polyakov loop is smooth across the transition. It may
be tempting [17,61] to interpret the inflection point of the renormalized Polyakov loop as a location of the confinement–
deconfinement transition, however, Eq. (29) shows that the exact details of the temperature dependence of Lren depend
on C(g2

0 ) and thus on the renormalization prescription. Such an approach typically yields a transition temperature above
170 MeV, about 15 MeV higher than the chiral crossover temperature at Tc = 156.5 MeV. See Section 2 for brief remarks
on the chiral crossover.

The renormalization of the Polyakov loops in the higher representations 〈LR〉 is a somewhat different case. The
renormalization constant can be obtained from the static energy only in the fundamental representation (〈L3〉 ≡ 〈L〉). For
all other representations, one has to rely on other procedures, such as the direct renormalization [52,56] or the gradient
flow renormalization [53]. For temperatures below about twice the chiral crossover temperature, i.e. T < Tc = 300 MeV in
(2+1)-flavor QCD, the Polyakov loop exhibits a large violation of the Casimir scaling between the different representations,
which begin at the four-loop order in the weak-coupling expansion [62].

3.1.3. Static quark free energy and entropy
In contrast to the Polyakov loop, the renormalization of the static quark free energy Fq, Eq. (23), is additive like the

static quark potential, and it is therefore a more robust observable to describe the transition region. The temperature

3 Given that numerical simulations are always done with a finite number of degrees of freedom, proper finite-size scaling techniques are employed

to extrapolate to the thermodynamic limit and rigorously determine the order of the phase transition.

14



A. Bazavov and J.H. Weber Progress in Particle and Nuclear Physics 116 (2021) 103823

Fig. 6. The renormalized Polyakov loop in SU(2) and SU(3) pure gauge theory (zero values in the confined phase are not shown) and in (2+1)-flavor

QCD with the HISQ and stout action. The chiral crossover temperature in QCD is Tc = 156.5 MeV.

Fig. 7. The renormalized static quark free energy Fq in (2+1)-flavor QCD extrapolated to the continuum limit. The details of the extrapolations are

given in Ref. [56].

dependence of the continuum extrapolated renormalized free energy in (2+1)-flavor QCD is shown in Fig. 7. At the

lowest temperature in the confined phase T = 120 MeV accessible in the lattice calculation it is about 500 MeV, rapidly

decreasing to 400 MeV at the chiral crossover at the pseudo-critical temperature Tc = 156.5 MeV and then gradually

dropping by an order of magnitude in the deconfined phase in the temperature range from 156.5 to 400 MeV, or Tc —

2.5Tc . The color screening effects of the medium in QCD kick in slowly. This is quite different from the rapid drop of the

static quark free energy associated with the first order phase transition in SU(3) pure gauge theory.

Nevertheless, it is still meaningful to consider the inflection point in the static quark free energy as one of the

quantitative measures of the crossover into the deconfined phase. For this purpose we first define the entropy shift due

to adding a static quark to the medium [63,64] as

Sq(T ) = −∂Fq(T )
∂T

. (30)

The inflection point of Fq(T ) corresponds to the location of the peak in the static entropy

∂Sq

∂T
= 0. (31)
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Fig. 8. The static quark entropy Sq in (2+1)-flavor QCD extrapolated to the continuum limit (solid red curve) compared with earlier calculations at

finite cutoff and heavier than physical light quark masses or in pure gauge theory. Because of the different particle content the numerical value of

the transition temperature Tc and thus the temperature scale is presented in units of Tc corresponding to TS = 153 for (2+1)-flavor QCD (see text),

Tχ = 193 MeV and Tχ = 200 MeV for the Nf = 3 and Nf = 2 results and TL = 270 MeV for the pure gauge (Nf = 0) case.

The static quark entropy in the transition region for (2+1)-flavor QCD at the almost physical light quark mass4 and at larger

light quark masses [64,65] is shown in Fig. 8. Again, one can observe that the temperature dependence of the static entropy

in the real-world QCD is smoother in the transition region than in the theories with larger quark masses. The location of

the maximum of Sq can be interpreted as the deconfinement transition temperature. The numerical result of Ref. [56] is

TS = 153+6.5
−5 MeV which matches within the uncertainties the latest determination of the chiral crossover temperature

Tc = 156.5±1.5 MeV [19,20]. One has to bear in mind that while the latter is related to the critical behavior of QCD in the

two-flavor chiral limit (masses of the up- and down-quark set to 0), the former comes from the observables that are not

related to any singular behavior in the chiral limit. It may be that this agreement is incidental for the real-world QCD.5

In the chiral limit the chiral crossover turns into an actual phase transition whose temperature T 0
c = 132+3

−6 MeV [16] is

about 20 MeV below the chiral crossover temperature at the physical light quark masses. One may wonder whether or

not the transition temperature defined from the static quark entropy TS would decrease further when going towards the

chiral limit, since, on the one hand, it has little obvious sensitivity to the chiral critical behavior, but, on the other hand,

has been found to follow the chiral crossover temperature Tχ closely in terms of the quark mass dependence and the

discretization effects. This open question however requires further theoretical investigation.

While the physics of the strongly interacting medium is nonperturbative in the vicinity of the transition, one expects

that at high temperatures weak-coupling expansions may be reliable. The static quark free energy was recently calculated

to next-to-next-to leading order (NNLO) in Ref. [62]. Direct comparison of free energies between the lattice and weak-

coupling calculations is complicated because the calculations are performed in different renormalization schemes. They

can be related by matching the temperature independent shift, e.g. C(g2
0 ) arising from renormalizing the static quark–

antiquark energy, Eq. (27). However, the most straightforward way to perform the comparison is to consider the entropy

where this shift is eliminated by the derivative with respect to temperature, Eq. (30). A challenge for lattice QCD

calculations is however to reach very high temperatures, since this requires very fine lattices which are computationally

expensive. Ref. [67] calculated Sq in the continuum limit up to temperature T ∼ 2.2 GeV, shown in Fig. 9. The bands

shown in the figure correspond to scale variation from µ = πT to 4πT . At the highest temperature the lattice results and

the NNLO results agree within the uncertainties. At temperatures below 1.5 GeV the lattice results are closer to the LO

weak-coupling results. The rather poor convergence at the level of the NLO calculation and its apparent inconsistency with

the lattice result can be understood from the observation that this is an expansion in g as required for the static Matsubara

4 Although the pion mass in calculations of Ref. [56] is about 160 MeV, this deviation of about 20 MeV from the physical value plays no role

within the statistical precision that can be reached on the thermodynamic observables.
5 It is worth pointing out that ratios of properly renormalized Polyakov loop susceptibilities as suggested in Ref. [66], i.e.

RT = 〈(ImL)2〉
〈|L|2〉 − 〈L〉2

due to 〈ImL〉 = 0, (32)

show smooth crossover behavior in full QCD [56]. Due to the mixing between different representations, these ratios can only be calculated with

controlled uncertainties in the gradient flow renormalization at large enough flow time.
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Fig. 9. The static quark entropy Sq calculated on the lattice [67] and in a weak-coupling expansion [62] up to the next-to-next-to-leading order.

modes, which still misses the leading correction from an expansion in αs = g2/(4π ) for the non-static Matsubara modes

and the fermions.

3.2. Polyakov loop correlators

It was noted quite early in the considerations concerning thermal field theories that a single, isolated probe charge

cannot be considered as a physically meaningful concept in a confining theory such as the non-Abelian SU(Nc) pure

gauge theory [68]. In other words the physical meaning of the Polyakov loop is not evident in the confined phase of

Yang–Mills theory. In fact, only after combining the charges into even representations of the gauge group one may obtain

states that are consistent with confinement. If the probe charges transform in the (anti-)fundamental representation like

the static (anti-)quarks, then confinement demands that the most simple states are obtained by combining fields in the

fundamental and anti-fundamental representations as Nc ×Nc = 1+ (N2
c −1) into states in either the trivial or the adjoint

representations. Given the importance of SU(3) as the gauge group of QCD, it is customary to speak of the color singlet

and color octet independent of the actual Nc . Nevertheless, in the case of full QCD, a single, isolated static quark can be

complemented in the confined phase by drawing an antiquark out of the vacuum and combining the two charges into an

even representation.

Hence, correlation functions of paired static quarks and antiquarks were considered already in the earliest numerical

studies [54,69], i.e. in the simplest case the correlation function of a single static quark–antiquark pair in SU(2) pure gauge

theory. Representing each static quark by a Polyakov loop as in Eq. (20), one arrives at the Polyakov loop correlator, which

is related to the difference in free energy between a system with and without the static quark–antiquark pair,

Cbare
L (T , r) = 1

N2
c

〈
∑

x

L(x)L†(x + r)

〉
= exp

{
−

F bare
qq̄ (T , r)

T

}
. (33)

For infinite separation CL approaches the limit of 〈L〉2, i.e. the static quark and antiquark decouple from each other, either

due to the string breaking in the vacuum or due to the color screening in the high temperature phase. For this reason it is

clear that the multiplicative renormalization factor of Cbare
L is just the square of the renormalization factor of 〈Lbare〉. Hence,

the ratio CL/〈L〉2 does not require renormalization and defines a subtracted free energy F sub
qq̄ (T , r) = Fqq̄(T , r)−2Fq(T ) that

vanishes for infinite separation. Results for the free energy Fqq̄ ≡ F ren
qq̄ with the renormalization scheme of Eq. (29) from

a recent lattice calculation are shown in Fig. 10.

Before embarking on the further discussion of the properties of CL in a non-Abelian gauge theory let us begin again

with a brief look at the Abelian case, namely Quantum Electrodynamics. We consider the thermal correlation function

of an electron–positron pair, which can only combine to a state in the trivial representation. Hence, the associated

free energy and potential are both Coulomb-like. For infinite separation only two isolated charges are left due to the

cluster decomposition, thus giving physical meaning to the notion of a single, isolated electron. Although the electric

field between the two probe charges is screened inside of an electromagnetic plasma, there are unscreened contributions

from the magnetic fields that contribute at higher loop orders and eventually lead to the takeover by a power-law falloff

instead [14].
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Fig. 10. The continuum limit of the free energy Fqq̄ . The black band and symbols show the T = 0 QCD static energy E and the light gray band shows

the singlet free energy FS at high temperatures and very short distances, where finite temperature effects are smaller than the statistical errors. The

subtraction of T ln 9 is required for matching to the static energy at short distances due to the normalization convention used for Fqq̄ . The horizontal

bands outline the r → ∞ limit of Fqq̄ , i.e. , 2Fq − T ln 9.

Fig. 11. The thermal expectation values of cyclic Wilson loops (center) are obtained from the thermal expectation values of non-cyclic Wilson loops

(left) by collapsing the two spatial Wilson lines to the same time Euclidean time across the periodic temporal boundary. Cyclic Wilson loops mix

with the Polyakov loop correlator (right).

Source: From Ref. [70].

3.2.1. Singlet and octet free energies
Now let us juxtapose this to the case of the non-Abelian pure gauge theory. The SU(Nc) Fierz identity permits rewriting

Eq. (33) in terms of the sum of the color singlet and octet contributions

CL(T , r) = exp

{
−Fqq̄(T , r)

T

}
= 1

N2
c

exp

{
−FS(T , r)

T

}
+ N2

c − 1

N2
c

exp

{
−FO(T , r)

T

}
. (34)

For infinite separation, both FS and FO share the same limit 2Fq, since the two color charges are decoupled entirely. For
this reason it is convenient to define subtracted singlet and octet free energies F sub

S,O ≡ FS,O − 2Fq just as in the case for
the Polyakov loop correlator.

A direct operator representation for the singlet or octet correlation functions or free energies is less straightforward
than for the Polyakov loop correlator. The former two are mixed under renormalization, and only Eq. (34) or the difference

exp {−FS/T } − exp {−FO/T } = N2
c

N2
c − 1

(exp {−FS/T } − CL) (35)

are renormalized multiplicatively [71]. The difference in Eq. (35) is multiplicatively renormalizable at short distances,
where the weak-coupling expansion is reliable.

The singlet or octet free energies require two color charges fixed with respect to each other at a finite distance between
them. Any thermal correlation function CS,O ≡ exp

{
−FS,O/T

}
involving the Hermitian conjugate for one of its two thermal

Wilson lines defines a scheme for one among the free energies FS,O. Its counterpart in the same scheme is automatically
given by Eq. (35). We note that any choice of the scheme only reshuffles the individual contributions between the color
singlet and octet configurations, but cannot modify the energies and hierarchies for any of these states.

Such a scheme may be realized in a manifestly gauge-invariant manner in the form of a single closed contour – a
thermal or cyclic Wilson loop WC , see Fig. 11 – which introduces multiple types of UV divergences that are not contained
in the Polyakov loop. These divergences have to be suppressed through suitable link-smoothing techniques in lattice
simulations (see Sec. 2 for details), i.e. the spatial Wilson lines W̃ making up the cyclic Wilson loops

W bare
C (T , r) = 1

Nc

〈
∑

x

tr
[
W (aNτ , x; 0, x)W̃ (aNτ , x + r; aNτ , x)W (0, x + r; aNτ , x + r)W̃ (0, x; 0, x + r)

]〉
(36)
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Fig. 12. The continuum limit of the singlet free energy FS defined with Wilson line correlators in Coulomb gauge. The black band and symbols show

the T = 0 QCD static energy E. The horizontal bands outline the r → ∞ limit of FS , i.e. , 2Fq .

Fig. 13. The logarithm of the singlet screening function −rF sub
S defined in terms of the Coulomb gauge Wilson line correlator or the gauge-invariant

cyclic Wilson loop with appropriate amount of spatial hypercubic (HYP) link smearing show the quantitatively very similar screening behavior [67].

At shorter distances small differences can be seen.

have to be drawn from a modified thermal distribution.
Alternatively, these singlet and octet free energies may be realized in terms of thermal Wilson line correlation functions

that are evaluated in a suitably fixed gauge such that the spatial Wilson lines can be omitted altogether,

Cbare
S (T , r) = 1

Nc

〈 ∑

x

tr
[
W (aNτ , x; 0, x)W (0, x + r; aNτ , x + r)

]〉gf

= exp {−F bare
S /T }. (37)

We have to stress the key difference between the thermal Wilson line correlation function and the Polyakov loop
correlator. Namely, the thermal Wilson lines are traced individually in Eq. (33), while the trace of the product of two
separated Wilson lines is taken in Eq. (37), which requires the fixing of a gauge. Coulomb gauge is particularly useful,
since the free energies are finite in Coulomb gauge and the renormalization is particularly simple [71], see Fig. 12. While
both alternative definitions of the singlet free energy exhibit different UV behavior [71], they are found to be consistent
at intermediate and large distances within statistical errors in direct (2+1)-flavor QCD lattice simulations [67,72] using
staggered (HISQ) quarks, see Fig. 13.

Lastly, using the weak-coupling approach and pNRQCD it is possible to define gauge-invariant thermal singlet and octet
correlators. Their expectation values are the exponentiated pNRQCD singlet or octet free energies fs and fo [73], whose
linear combination formally recombines to CL as in Eq. (34). Key relations between fs and fo that have been tested are
found to be reproduced quite well by FS and FO defined in terms of the Coulomb gauge Wilson line correlation function
on the lattice [67].
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Fig. 14. Lattice and weak-coupling results for E − FS [67]. The weak-coupling results are shifted by a small constant to match them to the lattice

results at the shortest distance to account for an matching constant of order g6 . The dotted line corresponds to the renormalization scale µ = 2πT ,

while the band corresponds to its variation from πT (solid) to 4πT (dashed).

Fig. 15. The subtracted free energy F sub
qq̄ multiplied by −r2T calculated on an Nτ = 16 lattice (squares, using 1 step of 4D hypercubic (HYP)

smearing [40] for r ≥
√
6/a ≈ 0.15/T ) and compared to the reconstruction based on pNRQCD (bands) at T = 500MeV (the fully reconstructed

result is in magenta, while the blue band ignores the Casimir scaling violating contributions to the octet potential and the green one ignores the

octet contribution).

3.2.2. Vacuum-like regime and vacuum physics
The singlet or octet free energies FS or FO are given to leading order g2 by the corresponding zero temperature

Coulomb-like potentials Vs,o = cs,o αs/r with cs = −CF or co = +CF/(N
2
c − 1). At very short distances r ≪ αs/T , the

running of the coupling αs(1/r) is controlled by the inverse distance as in the vacuum. The two Coulomb-like potentials
with opposite signs become large, and thus the repulsive octet contribution can be neglected. In other words, at such
short distances, the free energy behaves in the non-Abelian case up to a temperature dependent shift +T ln(N2

c ) due
to the color factors and the different running coupling (i.e. different beta function) just as in the Abelian case, namely
Fqq̄ = FS +T ln(N2

c ) = Vs+T ln(N2
c ) at leading order. We recall that the singlet potential Vs and the static energy E coincide

at leading order. The former relation (between Fqq̄ and FS or E) has been observed for nonperturbative lattice calculations
in (2+1)-flavor QCD using staggered (HISQ) quarks at shorter and shorter distances up to temperatures T . 0.5GeV [67],
while the latter relation (between FS and E) even holds at larger distances r . 0.3/T for much higher temperatures
T . 2GeV [31]. The corresponding thermal corrections are small due to a partial cancellation between the contributions
from non-static gluons or sea quarks, and from the static gluons, see Fig. 14. In particular, as the contributions from the
former are restricted to even powers of the gauge coupling g starting at g4, while the latter are restricted to odd powers
of the gauge coupling g starting at g5, it is clear that this partial cancellation is effective only in a limited temperature
window which happens to coincide with phenomenologically interesting temperatures.

In particular, the Polyakov loop correlator at distances up to r . 0.3/T is determined to good accuracy in terms of the
singlet and octet zero temperature potentials and the adjoint Polyakov loop as predicted in pNRQCD [73], see Fig. 15.
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For all larger distances we have to distinguish between the vacuum and the thermal medium at high temperatures. Let
us first take a closer look at CL in the vacuum, i.e. in the confining phase. At larger distances r ∼ 1/ΛMS, the Coulomb-like
interaction is not dominant anymore. Instead, the singlet and octet free energies are dictated to a large extent by the
energies of the respective lowest states, i.e. the QCD string or the excited QCD string, which both behave as ∼ σ r ∼ ΛMS.
As a consequence, the free energy behaves in pure SU(Nc) gauge theory up to details of the normalization similar to the
quark–antiquark static energy. This can be clearly resolved only at the shortest distances that are accessible in lattice
gauge theory, see Fig. 10 for the case of full (2+1)-flavor QCD. In full QCD, the thermal Wilson lines can decouple via
string breaking, since each thermal Wilson line – being a closed contour – can combine with a sea (anti-)quark into
the trivial representation of the gauge group. For this reason, screening due to the string-breaking mechanism in the
vacuum modifies the (singlet) free energy already in the vacuum phase of QCD. However, due to the severe signal-to-
noise problem, the free energies cannot be studied in the string-breaking regime at low temperatures without extensive
application of noise-reduction techniques, see Ref. [74] for preliminary work in this direction.

3.2.3. Thermal dissociation and the free energy

In the high temperature phase without confinement the free energy behaves rather differently. Let us consider
distances r ≪ 1/T , for which the running of the coupling αs(T ) is controlled by the temperature T , which is the lowest
scale. If – on top of that – the hierarchy αs/T ≪ r ≪ 1/T is satisfied, then thermal gluons are sufficiently energetic
to overcome the spectral gap between the singlet and octet configurations and the singlet states begin to dissociate and
recombine again. Whereas the dissociation and recombination are dynamical processes that cannot be resolved directly in
an imaginary time approach, the thermally equilibrated distribution that is their consequence is resolved by the Polyakov
loop correlator! Due to αs/(rT ) ≪ 1, the exponential functions in Eq. (34) can be expanded in the gauge coupling, and
the color factors lead to a cancellation of the leading Coulomb-like terms between the singlet and octet contributions. In
this hierarchy the subtracted free energy is given at leading order as

F sub
qq̄ (T , r) = −N2

c − 1

8N2
c

(αs

r

)2
, (38)

with a non-Coulombic (αs/r)
2 behavior. This behavior clearly indicates that the leading interaction between the two

Polyakov loops at such distances is the emission of two electric A0 gluons, which have to be in a color singlet config-
uration. The Polyakov loop correlator has been calculated in the weak-coupling approach up to order g7 in the small
r expansion [71] and found to be compatible with the nonperturbative lattice calculation for (2+1)-flavor QCD using
staggered (HISQ) quarks for 0.2/T . r . 0.3/T at temperatures T & 1GeV [67], see Fig. 16.

3.2.4. Chromoelectric screening

At larger distances the quark–antiquark system enters the scale hierarchy r ∼ 1/mD, which is associated with the
electric screening that is controlled by the mass parameter of the adjoint scalar field associated with electric A0 gluons in
EQCD, which is often called the (perturbative) Debye mass. It is given to leading or next-to-leading order [23] as

m2
D|LO (ν) = 2Nc + Nf

6
g2(ν)T 2, (39)

m2
D|NLO(ν) = m2

D|LO(ν)
(
1 + αs(ν)

4π

[
2β0

(
γE + ln

ν

4πT

)
+ 5Nc

3
+ 2Nf

3
(1 − 4 ln 2)

])
− CFNf α

2
s (ν)T

2, (40)

where typical values of the scale ν are of the order of 2πT , i.e. of the order of the lowest nonstatic Matsubara mode.
The next-to-next-to-leading order contribution to the Debye mass has been calculated so far only in pure Yang–Mills
theory [75]. The N2LO Debye mass lies between the central values of NLO and LO, but has a much smaller scale dependence.
Since the effect of the Nf quarks on the Debye mass is rather mild ∼ 20% to 30%, similar results are to be expected for
the full QCD calculation. The regime of electric screening is mixed up with the previous regime of thermal dissociation,
since the hierarchies are not well separated (separate regimes would require αs(ν)mD(ν) & T , i.e. g(ν) & 2.5). To leading
order the free energy and singlet free energy are given in the regime of electric screening by

F sub
qq̄ |LO(T , r, ν) = −N2

c − 1

8N2
c

(
αs(ν)e

−mD(ν)r

r

)2

, (41)

F sub
S |LO(T , r, ν) = −CF

αs(ν)e
−mD(ν)r

r
. (42)

After including the full next-to-leading order corrections [71] quantitative consistency with (2+1)-flavor QCD lattice
simulations using staggered (HISQ) quarks could be shown for T > 300MeV and 0.3/T . r . 0.6/T [67], see Fig. 17. In
particular, the interaction between Polyakov loops and adjoint Polyakov loops is predominantly mediated in the electric
screening regime by the emission of two electric A0 gluons in a color singlet configuration with one unit of the perturbative
Debye mass each. On the contrary, the interaction between thermal Wilson lines and adjoint thermal Wilson lines is
predominantly mediated in the electric screening regime by the exchange of one electric A0 gluon with one unit of charge
in the adjoint representation and one unit of the perturbative Debye mass.
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Fig. 16. The subtracted free energy F sub
qq̄ multiplied by −9r2T evaluated for T = 1600MeV and compared with the N3LO weak-coupling expression

(lines) [67]. The upper line corresponds to µ = πT , the middle one to µ = 2πT , and the lower line corresponds to µ = 4πT .

Fig. 17. The screening functions of the subtracted free energy F sub
qq̄ or singlet free energy F sub

S , i.e. F sub
qq̄ is multiplied by −9r2T or F sub

S is multiplied

by −r/CF , see [67] for details of the calculation. The bands represent the NLO (solid) results, where the scale has been varied as µ = πT , 2πT ,

and 4πT (solid, dotted, and dashed lines). Data are calculated on an Nτ = 16 lattice using 1 step of 4D hypercubic (HYP) smearing [40] for

r ≥
√
6/a ≈ 0.15/T . (Left) The separate dash-dotted lines correspond to the LO result evaluated at µ = 4πT . (Right) The hashed bands correspond

to the LO result evaluated at µ = πT , 2πT , and 4πT (solid, dotted, and dashed lines).

3.2.5. Asymptotic screening

The color screening at asymptotically large distances cannot be understood in terms of the perturbative Debye mass

defined in terms of the pole position of the electric A0 gluon propagator in EQCD. This is most easily understood in the

dimensionally-reduced effective field theory (magnetostatic QCD) picture, where the three-dimensional SU(Nc) pure gauge

theory of the magnetic gluons gives rise to a confinement radius r ∼ 1/(g2T ). At distances of the order of this magnetic

confinement radius, the nonperturbative interaction between the electric A0 gluons and the magnetic gluons becomes too

strong. The electric A0 gluons have to be dressed with compensating charges in order to obtain bound states that transform

in the trivial representation of SU(Nc) with binding energies ∼ g2T . Thus, the magnetic confinement scale acts as the

infrared cutoff for the electric A0 gluons. It is not evident whether a gauge-dependent electric A0 gluon propagator could

even be employed for defining an order-by-order (odd powers of g) gauge-independent pole mass in a nonperturbative

framework, or whether the notion of a single electric A0 gluon at such scales is physically meaningful at all. On this basis

the perturbative definition of the Debye mass in Eq. (40) is inadequate for describing the asymptotic screening.

Instead, the interactions between the electric A0 gluons and the fluctuating magnetic fields entail the additive,

nonperturbative renormalization of the leading-order Debye mass ∼ gT at the magnetic confinement scale ∼ g2T , and

yields the expression for the nonperturbative Debye mass

mD|NP(ν) = mD|LO(ν) + Nc

4π
g2(ν)T ln

(
mD|LO(ν)
g2(ν)T

)
+ cNc g

2(ν)T + O(g3T ). (43)
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Here, cNc is a constant that has to be determined numerically using lattice simulations,6 while the leading logarithmic
contribution can be determined in one-loop resummed perturbation theory [14,77]. When counting the second term into
the perturbative contribution (i.e. that is calculable with perturbative methods), then the nonperturbative contribution due
to cNc (only the third term) significantly exceeds the perturbative contribution (the first two terms) for phenomenologically
interesting temperatures and remains quantitatively important even at asymptotically high temperatures.

In principle it is possible to fix an appropriate gauge and calculate the longitudinal and transverse components of
the gluon propagator or form factor nonperturbatively. In the spatial gluon correlation functions access to the magnetic
gluons is permitted by the transverse modes of the propagator, while access to the electric A0 gluons is permitted by its
longitudinal modes. The first, pioneering studies were completed for the gauge group SU(2) [78–82]. The functional form
of the nonperturbative inverse magnetic or electric screening lengths and their ratio, i.e. 1/λM ∼ g2T or 1/λE ∼ gT and
λE/λM ∼ g(T ) respectively as predicted in the weak-coupling picture, can be verified already at temperatures as low as
T ∼ 2Tc in SU(2) [78–80]. The electric A0 gluon screening length λE is indeed still dominated by large nonperturbative
effects at temperatures as high as T ∼ 104Tc , and the singlet free energy in Landau gauge, i.e. Eq. (37), in the SU(2)
(pure gauge) Yang–Mills theory has the same asymptotic screening length, λE [79]. Further lattice studies comparing the
four-dimensional theory and the dimensionally reduced effective field theory (EQCD) indicate that the individual gluon
propagators are consistent between both formulations [82]. The propagator of electric A0 gluons exhibits a strong gauge
dependence in its UV part, but its decay is consistent with a gauge- and volume-independent pole mass. This is not true
at all for the propagator of magnetic gluons, which is infrared suppressed and strongly volume dependent, thus excluding
a pole mass as a possible cause of its exponential decay. For large momenta the magnetic gluon propagator becomes
negative in Landau gauge, while being bounded in absolute value by its universally positive counterpart in maximal
Abelian gauge [81]. Contrary to naive expectations from the weak-coupling picture it is the symmetric, namely, confining
phase of EQCD that corresponds to the deconfined phase of the four-dimensional Yang–Mills theory [80]. There is very
little sensitivity of the purely magnetic glue-balls on the adjoint scalar field representing the electric A0 gluons, namely,
EQCD and three-dimensional Yang–Mills theory have the same glue-ball spectrum. While the bound state masses of EQCD
are compatible with a constituent model picture, there is no apparent connection between the bound states of the electric

A0 gluons and the inverse screening length 1/λE of the electric gluon propagator. The qualitative features carry over from
SU(2) to SU(3) [83]. Whereas the transverse form factor related to the magnetic gluons remains almost featureless through
the phase transition, the longitudinal form factor exhibits the features of an order parameter (using Landau gauge) in SU(3)
Yang–Mills theory [84]. In particular, the overlap factor between the electric A0 gluon state and a massive quasi-particle
state as well as the infrared mass scale associated with such a state expose unambiguous critical behavior. Both gluon
screening lengths in the confined and deconfined phases are consistent with a running gluon mass picture that is natural
in the Dyson–Schwinger equation framework. For temperatures above T & 400MeV the electric A0 gluon screening length
is largely consistent with the weak-coupling expectation, if a temperature independent nonperturbative contribution is
permitted.

The strongest correlations in the high temperature phase are not mediated by the exchange of individual gluons at
asymptotic distances, but by the exchange of the lightest bound states available in each channel of EQCD, i.e. the three-
dimensional SU(Nc) pure gauge theory coupled to the adjoint scalar representing the electric A0 gluons. This is similar
to the nuclear force in the vacuum, which is mediated at the largest distances by the exchange of the lightest hadrons,
i.e. the pions. In the case of thermal QCD, this role is fulfilled by either the purely magnetic glue-balls with masses at
the confinement scale ∼ g2T , or by the bound states of electric A0 gluons (with individual masses ∼ mD and the binding
energy at the confinement scale ∼ g2T ). These states are classified by their quantum numbers JPC

R
, where J is spin, P

is parity, C is charge conjugation, and R is Euclidean time reflection. In particular, the even or odd sectors R = ±1
under Euclidean time reflection have been referred to as magnetic or electric in an unfortunately misleading convention.
The magnetic sector (R = +1) includes any bound states with even numbers of electric A0 gluons (including the purely
magnetic glue-balls), while the electric sector (R = −1) includes any bound states with odd numbers of electric A0 gluons.

For phenomenologically interesting temperatures, the naïve hierarchy is inverted in all channels (at least for spin
J = 0 or J = 1), i.e. bound states with 2n electric A0 gluons are found to be systematically lighter than glue-balls made
from 2n magnetic gluons (irrespective of the quantum numbers JPC

R
, or the numbers of the dynamical quark flavors) [26],

see Fig. 3. In general, the mixing between the bound states with different electric A0 gluon content is rather weak. This
inverted hierarchy is not particularly surprising, since the QCD coupling g(ν) with ν ∼ 2πT is typically larger than 1 for
such temperatures. In the following we refer to the lightest bound state with given JPC

R
simply as m(JPC

R
) irrespective of

the hierarchy. It has been suggested to define the inverse nonperturbative Debye mass mD|NP as the largest correlation
length of any correlation function constructed from local, gauge-invariant operators that are odd under Euclidean time

6 cNc has been determined from the exponential falloff ∼ exp [−mW r] of an adjoint Wilson line in the lattice regularization (Wilson plaquette

action) between a suitable discretization of the magnetic field strength tensor [76]. Matching between the lattice regularization and the continuum

result in dimensional regularization yields at one loop order [14]

cNc = mW

g2T
+ Nc

4π

(
ln
(
g2
)
− 1

)
. (44)

Specifically, for SU(2) or SU(3) the coefficients c2 = 1.14(4), or c3 = 1.65(6) were calculated using three-dimensional SU(Nc ) + adjoint Higgs

theory [76].
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Fig. 18. The continuum limit of the screening masses associated with the correlation function of the real (red) or imaginary parts (blue) of the

Polyakov loops [85].

reflection [14], i.e. to define the Debye mass asmD|NP≡ min(m(JPC− )). This resolves the issues associated with a perturbative
definition of the Debye mass. The lightest bound state in the R = −1 sector has been obtained in the dimensionally-
reduced QCD for operators involving each one electric A0 gluon and one magnetic field strength [26],7 the minimal field
content to achieve gauge invariance in the R = −1 sector.

The asymptotic screening masses of the Polyakov loop correlators are given in terms of the lightest bound state
masses with which they mix. The Polyakov loop may be split into its real or imaginary parts L(Ex) = Re L(Ex) + i Im L(Ex),
which transform as even or odd under Euclidean time reflection, i.e. they correspond to quantum numbers JPC

R
= 0++

+ or
JPC
R

= 0+−
− . Thus, even if the correlation function of the imaginary part is separated, this channel is not suitable for studying

the nonperturbative Debye mass, because the quantum numbers of Im L(Ex) are 0+−
− instead of 0++

− for the lowest state in
the R = −1 sector. On the one hand, the screening mass m(0++

+ ) of the correlation function of the real part is either the
mass of the lightest scalar bound state consisting of two electric A0 gluons, ∼ 2mD +E(2A0) in the inverted naïve hierarchy
at phenomenologically interesting temperatures (such that g & 1), or the mass of the lightest magnetic glue-ball ∼ g2T

in the naïve hierarchy at asymptotically high temperatures (such that g ≪ 1). On the other hand, the screening mass
m(0+−

− ) of the correlation function of the imaginary part is the mass of the lightest bound state consisting of three electric

A0 gluons, ∼ 3mD + E(3A0), or the mass of the bound state of one electric A0 gluon and two magnetic gluons. Here, the
binding energies of these states E(2A0) and E(3A0) are parametrically of order ∼ g2T (the confinement scale), whereas the
dominant contribution to mD is parametrically of order ∼ gT . As the mass of the lightest (R = +1) state is typically much
smaller than the nonperturbative Debye mass or the mass of the lightest (R = −1) state, i.e. m(0++

+ ) < m(0++
− ) ≤ m(0+−

− ),
the free energy F sub

qq̄ obtained from the (full) Polyakov loop correlation function in the asymptotic screening regime is
dominated by the contribution from the real parts of the Polyakov loops.

For temperatures up to T . 3Tc the screening masses of the correlation functions of the real and imaginary parts of the
Polyakov loop have been determined in (2+1)-flavor QCD lattice simulations at the physical point [85] using the stout-
smeared staggered fermions and link smoothing techniques (4D hypercubic (HYP) smearing [40]), see Fig. 18. Previous
results from 2-flavor QCD lattice simulations using improved Wilson fermions and two unphysically large values of
the sea quark mass [86] are quantitatively similar, and verified, in particular, the consistency of the screening masses
associated with the full Polyakov loop correlator and the real part correlator. The screening masses in the full QCD
lattice calculation were found to be in fair agreement with the results obtained in the dimensionally-reduced QCD lattice
simulations [26]. For T ≈ 2Tc the ratio between the corresponding masses is reported to be m(0+−

− )/m(0++
+ ) = 1.76(17) in

the dimensionally-reduced QCD and m(0+−
− )/m(0++

+ ) = 1.63(8) in the QCD calculation [85]. The screening masses show
a slightly decreasing trend for higher temperatures. (2+1)-flavor QCD lattice simulations using staggered (HISQ) quarks
have shown that the asymptotic screening mass of F sub

qq̄ is only slightly larger than the corresponding expectation in a

constituent model of two electric A0 gluons, 2mD|NLO [67], see Fig. 19, suggesting that the binding energy E(2A0) ∼ g2T

leads to a quantitative compensation of the nonperturbative dressing ∼ g2T of the two electric A0 gluons to a large extent.
The case of the color singlet correlation function in the asymptotic screening regime is still more intricate. First of

all, the interaction that is dominant in the electric screening regime is mediated by the emission of one electric A0

gluon, which carries one unit of charge in the adjoint representation. Hence, due to its charge this exchanged electric

A0 gluon cannot mix on its own with the bound states of the three-dimensional SU(Nc) pure gauge theory, which have to
transform in the trivial representation for any confining gauge theory. As a consequence, this mode of emission can only
accumulate the nonperturbative dressing ∼ g2T , and thus one would naively suppose that it should be screened with

7 In the four-dimensional QCD language this bound state has the quantum numbers JPC
R

= 0++
− . The quantum numbers JPC

R
= 0−+

− given for this

state in the dimensionally-reduced QCD make use of a redefined parity that reflects only a single spatial direction [26].
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Fig. 19. The screening mass associated with the free energy Fqq̄ [67].

the nonperturbative Debye mass mD|NP, or with some operator-dependent screening mass that receives contributions
both ∼ gT and ∼ g2T (due the definition of the nonperturbative Debye mass, operator-dependent screening masses for
R = −1 cannot be smaller than mD|NP). Whether or not this mode could propagate at asymptotically large distances may
also depend on the details of the operators, i.e. the gauge-fixed thermal Wilson line correlator or the path-dependent
spatially-smeared cyclic Wilson loop. In the former case, the Coulomb gauge gives rise to a dimension-two magnetic gluon

condensate
〈
A2
〉
. The electric A0 gluon may scatter on the magnetic gluons of this condensate and acquire contributions from

the confinement scale ∼ g2T of the three-dimensional SU(Nc) pure gauge theory. In the latter case, the spatial Wilson
lines involve spatially-extended operators, by which the emitted electric A0 gluon may couple to magnetic gluons in a
gauge-invariant multi-particle state of the three-dimensional SU(Nc) pure gauge theory. For either correlation function,
such states must have the quantum numbers R = −1 and P = +1. Calling the energy of the lowest accessible state
m(X+

− ), we note that it cannot have a lower energy than the lowest bound state with the same quantum numbers, namely
m(X+

− ) & mD|NP. Arguing from the rationale of the quantitative similarity between the cyclic Wilson loops with spatial
smearing and the Wilson line correlators in Coulomb gauge in the asymptotic screening regime, see Fig. 13, it appears
as if these two operator-dependent singlet correlation functions may have access to the same set of screening lengths,
which would suggest that the state X+

− could be in fact operator independent.
Yet this is not the whole story. The nonperturbative Debye mass is larger than m(0++

+ ), i.e. the mass of the lightest
bound state with R = +1 (whether this is a bound state of two electric A0 gluons or a magnetic glue-ball is irrelevant in
this regard). Just like the Polyakov loops, the untraced Wilson line operators in the singlet correlators making up Eqs. (36)
or (37) have separable real or imaginary parts, too, that each have well-defined behavior under Euclidean time reflection.
In fact, the thermal Wilson lines also couple directly to two or three electric A0 gluons through their real or imaginary
parts, respectively, although these couplings are formally suppressed by two or four powers of the coupling g . On the
one hand, the singlet correlation function of the real parts of the thermal Wilson lines receives contributions from the
R = +1 bound states of the three-dimensional SU(Nc) pure gauge theory. The contribution from the emission of one
electric A0 gluon is screened in the asymptotic regime with m(X+

− ) & mD|NP, while the contribution from the emission of
two electric A0 gluons in a color singlet configuration mixes with the lightest bound state of the three-dimensional SU(Nc)
pure gauge theory with mass m(0++

+ ) satisfying m(0++
+ ) < mD|NP for all thermal hierarchies. Hence, the latter contribution

with screening length 1/m(0++
+ ) has to dominate the singlet correlation function of the real parts eventually. On the other

hand, the singlet correlation function of the imaginary parts of the thermal Wilson lines, however, mixes the contribution
from the emission of one electric A0 gluon with the contribution from the emission of three electric A0 gluons. Although the
latter mixes with the 0+−

− bound states of the three-dimensional SU(Nc) pure gauge theory, all of these masses are larger
than the nonperturbative Debye mass mD|NP. Hence, in the end, either the potentially operator-dependent screening mass
m(X+

− ) & mD|NP or the mass of the lightest scalar bound state consisting of three electric A0 gluons in the three-dimensional
SU(Nc) pure gauge theory, ∼ 3mD + E(3A0), may be the smallest inverse correlation length for the correlation function of
the imaginary parts of the Wilson lines. Since the latter exchange mode is suppressed by four powers of g , this channel
may actually be well-suited to a determination of the operator-dependent screening mass m(X+

− ) & mD|NP even with a
possibly small mass difference between the X+

− and 0+−
− screening masses.

(2+1)-flavor QCD lattice simulations using staggered (HISQ) quarks show that the local screening mass associated with
F sub
S defined in terms of Wilson line correlation functions in Coulomb gauge, see Eq. (37), is only slightly larger than
mD|NLO for r ∼ 1/mD|NLO [67]. This screening mass becomes systematically larger with increasing distances, and seems to
saturate quite close to 2mD|NLO for r ≫ 1/T , see Fig. 20, as in the case of the correlator of the real parts of two Polyakov
loops.
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Fig. 20. The screening mass associated with the singlet free energy FS [67]. (Left) The local screening mass associated with the singlet free energy

defined in Eq. (37) increases at larger distances. The horizontal lines to the left indicate the perturbative Debye mass mD|NLO , and the horizontal lines

to the right indicate twice the perturbative Debye mass, 2mD|NLO . Available results are obtained with Nτ = 4 and may be affected by substantial

discretization effects. (Right) The screening mass associated with the singlet free energy has a similar temperature dependence than the perturbative

Debye mass mD|NLO .

This screening mass also exhibits a similar temperature dependence as mD|NLO for temperatures T > 300MeV. The
unambiguous, quantitative analysis of the asymptotic screening of the singlet correlation function is still lacking and
requires the use of link-smoothing techniques to overcome the severe signal-to-noise problem of static quark correlation
functions, see e.g. Ref. [74] for preliminary results of ongoing work along these lines.

At temperatures that correspond to the vacuum phase, the asymptotic screening mass m(0++
+ ) due to the lowest

JPC
R

= 0++
+ bound state of the dimensionally-reduced QCD smoothly connects to the screening mass due to the string

breaking in the vacuum phase of QCD, i.e. the energy difference between the static quark–antiquark energy and the mass
of two static-light mesons.

3.2.6. Screening in different representations

In the deconfined phase of SU(Nc) gauge theory (with or without quarks) the notion of diquarks, which transform
non-trivially under the gauge group, appears to be quite natural. In the vacuum, heavy–heavy diquarks seem to play an
important role for the formation of heavy–light tetraquark systems, see e.g. Ref. [87]. In particular, it must be expected that
– if diquarks exist at all as individual objects – heavy–heavy diquarks are still quite strongly bound at temperatures slightly
above Tc . In the following we apply again the terminology for Nc = 3, i.e. use anti-triplet (3) for the anti-fundamental

representation and sextet (6) for the (N2
c − Nc)-dimensional representation arising from Nc × Nc = Nc + (N2

c − Nc). The
most simple objects related to the screening of the static diquarks are the Polyakov loops in other representations, which
have been studied in the SU(3) pure gauge theory [52] and in the (2+1)-flavor QCD [53,56]. Key results for single Polyakov
loops in different representations are briefly discussed in Sec. 3.1. Correlation functions of Polyakov loops and thermal
Wilson lines in suitable representations correspond to spatially extended diquarks.

Thus, correlation functions of diquarks transforming in the anti-triplet or sextet representations can be studied with
the lattice approach, e.g. after fixing Coulomb gauge through

C3(T , r) = 1

2Nc

{〈
∑

x

L(x)L(x + r)

〉
−
〈
∑

x

tr W (aNτ , x; 0, x)W (aNτ , x + r; 0, x + r)

〉gf


 , (45)

C6(T , r) = 1

4Nc

{〈
∑

x

L(x)L(x + r)

〉
+
〈
∑

x

tr W (aNτ , x; 0, x)W (aNτ , x + r; 0, x + r)

〉gf


 . (46)

In particular, SU(Nc) pure gauge theory, or 2-, or (2+1)-flavor QCD lattice studies using improved Wilson fermions [88–90]
found that the different channels with two thermal Wilson lines in the singlet, octet, anti-triplet and sextet representation

satisfy the naive Casimir scaling with the Casimir factors CR = 〈∑N2
c −1

c=1 tc(x)tc(x + r)〉
R
for representations R as

C1 = −N2
c − 1

2Nc

, C8 = 1

2Nc

, C3 = 1

Nc

, C6 = 1 − Nc

Nc

(47)

in the asymptotic regime to a good approximation for temperatures higher than T & 300MeV. 2-flavor QCD lattice
simulations [91] with improved staggered fermions indicate consistent results. On the basis of the preceding discussion
that the asymptotic screening length is determined in all of these cases by the inverse mass 1/m(0++

+ ) of the same lightest
scalar state, to which the real parts of the Wilson lines couple through the emission/absorption of two electric A0 gluons

this is hardly surprising.
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Fig. 21. The screening mass associated with the singlet free energy FS at imaginary chemical potential [92]. Available results are obtained with

Nτ = 4.

Fig. 22. The screening masses m1/T and m2/T associated with the diagonalized components of the correlation matrix of the real and imaginary

parts of the Polyakov loop at imaginary chemical potential [93]. Available results are obtained with Nτ = 8.

3.2.7. Screening at finite chemical potential
Nonperturbative studies at finite chemical potential are challenging due to the sign problem associated with quark

or baryon chemical potential in the lattice approach. One has to resort to either reweighting methods, or to the Taylor
expansion in µ/T , or to analytical continuation of results obtained at imaginary chemical potential µI = iµ. Within
their limited radii of applicability these approaches yield consistent results for the dependence of the free energies on
the chemical potential [92]. Available results are obtained with Nτ = 4 and may be affected by significant discretization
effects.

On the one hand, the singlet or octet correlation functions (as well as CL, see Eq. (34)) are even functions of µ/T ,
while, on the other hand, the anti-triplet and sextet correlation functions, Eqs. (45) and (46) contain the nontrivial odd
contributions in the expansion in µ/T [89]. The coefficients at higher orders in the Taylor expansion are suppressed by
an order of magnitude against the µ = 0 result. The Taylor expansion coefficients associated with even powers (µ/T )2n

in the expansion of the asymptotic screening mass (i.e. the mass of the lightest scalar m(0++
+ )) are found to be positive,

and about 10% of the µ = 0 result for temperatures T ≈ 2Tc , see Fig. 21.
At finite chemical potential charge conjugation and Euclidean time reflection R cease to be good quantum numbers,

since the number density operator in Eq. (9) breaks the symmetries under charge conjugation and Euclidean time
reflection. Hence, mixing between the bound states with even or odd numbers of electric A0 gluons may eventually become
quite strong in the medium at finite density, which implies that the real or imaginary parts of the Polyakov loop cannot
fluctuate independently. Yet the mass m(0+

+) of the lightest scalar state has been found to be still significantly smaller
than the masses of all other states in dimensionally-reduced QCD lattice simulations [26] with an increase of only about
10% at µ/T = 1 and about 20% at µ/T = 2. For this reason, the correlation functions that primarily couple to this state
are expected to be only mildly affected. On the contrary, however, the screening lengths in the R = −1 channels such
JP
R

= 0+
− are expected to increase quite dramatically towards the screening lengths associated with some scalar JP

R
= 0+

+
channel.

The correlation functions of real and imaginary parts of the Polyakov loops are indeed mixed, i.e. there is a nontrivial
cross-correlator, and the 2×2 correlation matrix has to be diagonalized. (2+1)-flavor QCD lattice simulations at imaginary
chemical potential [93] have verified this behavior. On the one hand, the smaller screening mass m1/T in the diagonalized
basis is found to be only marginally (∼ 10%) larger than for the correlation function of the real part, whereas, on the other
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Fig. 23. The screening masses mm/T (JPC
R

= 0++
+ ) and mE/T (JPC

R
= 0+−

− ) associated with the correlation function of the real or imaginary parts of

the Polyakov loops in an external magnetic field [95]. Available results are obtained with Nτ = 8.

hand, the larger screening mass m2/T in the diagonalized basis increases by about 20% compared to the µ = 0 result

for temperatures sufficiently above the Roberge–Weiss transition up to T . 2Tc . Note that the behavior in Fig. 22 is the

opposite, since the horizontal axis represents squared imaginary chemical potential.

3.2.8. Screening in external magnetic fields

It has been known for some time that external magnetic fields modify the properties of the QCD crossover transition.

In particular, the presence of the magnetic fields leads to the anisotropy of the quark–antiquark interaction for different

orientations with respect to the magnetic field. For vanishing magnetic field the free energy Fqq̄ is for temperatures well

below Tc and r . 1/ΛMS or for distances much smaller than the inverse temperature (r ≪ 1/T ) up to the trivial change of

normalization +T ln(N2
c ) almost indistinguishable from the quark–antiquark static energy. In an external magnetic field

the screening behavior of Fqq̄ is evident for temperatures much lower than Tc , whereas the chiral condensate still does

not show signs of inverse magnetic catalysis [94].

For this reason an influence of the magnetic fields on the thermal screening masses has to be expected. A calculation

in (2+1)-flavor QCD lattice simulations [95] indicated that the screening masses of the correlation function of the real

and imaginary parts of the Polyakov loops are increased in strong magnetic fields. While the ratio between the screening

masses in the JPC
R

= 0+−
− and JPC

R
= 0++

+ is rather mildly affected, the individual masses increase quite strongly for a
rising external magnetic field. The modified screening masses scale with |e|B/T 2, see Fig. 23. Whereas the 0+−

− channel
is similarly affected for both alignments with regard to the external magnetic field, the 0++

+ channel has to be aligned

perpendicular to the external magnetic field for the largest modification.

4. Interplay between screening and dissociation

Shortly after the first conjectures of quark–gluon plasma as the state of nuclear matter at high temperature and the

beginning of the era of heavy-ion collision experiments as tools for studies of the QCD phase diagram, the idea was brought

up in Ref. [96] that color screening causes rearrangements of the in-medium bound states leading to the sequential melting

of quarkonia. The relative yields from the various in-medium quarkonia produced in heavy-ion collisions would then serve

the role of an experimentally accessible probe for the temperature of the plasma. However, over the years this static

picture has been replaced by a dynamical picture, in which both dissociation and recombination take place inside of the

plasma, too. See e.g. Ref. [97] for a discussion of this paradigm change. These processes may be too rapid for permitting

the restructuring of the bound states as demanded in the static picture and may even regenerate already depleted bound

states. In this case, the in-medium quarkonia have to be considered as an open quantum system and treated in a real-time

approach. While there are indeed indications that this is the case, the questions of color screening and dissociation in a

realistic scenario cannot be treated separately. In the following, we will discuss the interplay between both for the static

quarks that we have discussed so far and relax the infinite mass limit taking a look at relativistic heavy and light quarks

as well.

We discuss the basic ideas about extracting real-time information from Euclidean lattice correlators through the

spectral functions in Section 4.1. We outline the key differences between how temporal and spatial meson correlators

can provide information. After discussing the relatively simpler case of the real-time dynamics of static quark–antiquark

pairs in Section 4.2, we turn our attention to heavy–heavy or heavy–light systems beyond the static limit in Section 4.3.

We close this discussion after comparing these results to the case of light–light systems in Section 4.4.
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4.1. Euclidean correlation functions and spectral functions

Earlier we discussed how screening properties of the deconfined medium can be studied theoretically by looking at
the response of the medium to insertion of static probe charges. We now turn to the discussion on screening properties of
systems with dynamical quarks. Ultimately, we are interested in how the deconfined medium affects the QCD spectrum,
i.e. various bound states and resonances composed of light (u, d, s) and heavy (c , b) dynamical quarks. We focus our
discussion on mesons — hadrons composed of quark and antiquark.

4.1.1. Temporal correlation functions

The information on how the thermal medium, quark–gluon plasma modifies hadrons and eventually leads to the
their dissolution at high temperatures is encoded in spectral functions. The latter are Fourier transforms of the real-time
correlation functions which are, however, not directly accessible in lattice QCD. Instead, one can compute the Euclidean
correlation functions. A Euclidean temporal meson correlation function projected to a given spatial momentum p has the
following form:

G(τ , p, T ) =
∫

d3xeip·x〈JH (τ , x)JH (0, 0)〉 , (48)

where JH = q̄ΓHq is a meson operator and ΓH = 1, γ5, γµ, γ5γµ, γµγν projects onto a channel with given quantum
numbers.

Taking into account the periodicity in the temporal direction one can relate the Euclidean correlation functions to the
spectral functions ρ(ω, p, T ):

G(τ , p, T ) =
∫ ∞

0

dωρ(ω, p, T )K (ω, τ , T ), (49)

K (ω, τ , T ) = cosh(ω(τ − 1/(2T )))

sinh(ω/(2T ))
. (50)

The temperature dependence of ρ(ω, p, T ) shows how the deconfined medium screens the interactions and at what
temperatures the mesons dissolve.

Ideally, one would like to calculate the spectral functions nonperturbatively in lattice QCD. However, in the Euclidean
lattice formalism Eq. (49) has then to be considered as an integral equation from which the spectral function ρ(ω, p, T )
needs to be reconstructed. Eq. (49) poses a very ill-defined inverse problem. There are several fundamental features
that make it particularly hard in practice. First, the temporal extents of finite-temperature lattices, where G(τ , p, T ) is
evaluated, are of O(10) data points. while the spectral function ρ(ω, p, T ) has typically a rich structure, requiring hundreds
of frequency points to be resolved. Right from the start the problem is very underdetermined. Second, the kernel of the
transformation K (ω, τ , T ) falls off exponentially with the frequency ω, suppressing the features of the spectral function.
This exponential loss of information leads to very little sensitivity of G(τ , p, T ) to thermal modification of the spectral
function. And, third, all correlation functions are determined from Monte Carlo sampling and, thus, feature significant
statistical fluctuations.

If we restrict ourselves to a static quark–antiquark pair instead of a relativistic quark–antiquark pair, as we will be doing
in Section 4.2, we will encounter a milder version of this inverse problem. In this case, the transformation kernel K (ω, τ , T )
simplifies to the Laplace kernel exp(−ωτ ) and sheds its explicit temperature dependence. Moreover, the Laplace kernel
is not symmetric under τ → 1/T − τ , such that the full range of the correlation function provides useful information.

To deal with the inverse problem (49) Bayesian methods, such as the Maximum Entropy Method, are often em-
ployed [98]. Despite almost two decades of effort in the lattice QCD community starting with the pioneering work of
Refs. [99–101], determination of spectral functions with fully quantified uncertainties remains an open problem. A recent
comprehensive review on the status of the field of calculating spectral functions in perturbative approaches and lattice
QCD for heavy quarkonia can be found in [97].

4.1.2. Spatial correlation functions

Given all the complications of extracting the information from the temporal correlation functions, one could consider
mesonic spatial correlation functions, as was first pointed out in Refs. [102,103]:

G(z, T ) =
∫ 1/T

0

dτ

∫
dxdy〈JH (τ , x, y, z)JH (0, 0, 0, 0)〉. (51)

They are related to the same spectral function as the temporal correlation functions but in a slightly more involved way:

G(z, T ) =
∫ ∞

0

2dω

ω

∫ ∞

−∞
dpze

ipz zρ(ω, pz, T ). (52)

However, unlike for the temporal direction, the separation is not limited to inverse temperature. Thus, the spatial
correlation functions are more sensitive to the in-medium modification effects, since they can be studied at larger quark–
antiquark separation. Moreover, absence of the temperature-dependent kernel, as apparent from comparing Eq. (52) with
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(49), means that the temperature dependence of the spatial correlation function comes entirely from the spectral function.
Thus, one can directly study the temperature dependence of G(z, T ) without the need of reconstructing ρ(ω, pz, T ).
Deviations of the spatial correlation function at finite temperature from its vacuum form directly signal in-medium
modification of the corresponding hadronic state.

At large distances the spatial correlation functions decay exponentially

G(z, T ) ∼ exp(−M(T )z), (53)

where the fall-off is governed by the temperature-dependent screening mass, or inverse screening length, M(T ). At small
enough temperatures where a well-defined mesonic bound state exists, the spectral function has a δ-like peak

ρ(ω, pz, T ) ∼ δ(ω2 − p2z − M2
0 ) (54)

and M(T ) coincides with the propagator pole mass M0.
At high enough temperatures where the mesonic state is dissociated, the spatial correlation function describes

propagation of a free quark–antiquark pair. In this case the screening mass is [104]

Mfree =
√
m2

q1
+ (πT )2 +

√
m2

q2
+ (πT )2 , (55)

where mq1 and mq2 are the pole masses of the quark and antiquark that form the meson. As was shown in Ref. [104], and
was also argued earlier in Ref. [105] for the case of massless quarks, the appearance of the lowest fermionic Matsubara
frequency mode πT in the meson screening mass is a direct consequence of the anti-periodic temporal boundary
conditions for fermions. Thus, a crossover from one limiting behavior, Eq. (54) to the other, Eq. (55), would indicate
that the mesonic state dissociates in the plasma and the lowest-order contribution to the screening mass comes from
two independently propagating fermionic degrees of freedom.

4.2. The complex static energy

The quark–antiquark static energy E(T , r) in the thermal medium is modified, too. In particular, in the deconfined phase
E(T , r) acquires a nonzero imaginary part and exhibits the color screening. However, contrary to the T = 0 situation, lattice
studies of the complex in-medium static energy E(T , r) are fraught with profound difficulties that we can illustrate only
briefly in this review.

In the following, we begin by juxtaposing the zero and finite temperature cases, beginning with the more simple
situation at T = 0. In the vacuum the static energy E(r) can be defined in terms of the infinite time limit of the logarithm
of the real-time Wilson loop W (t, r), i.e.

E(r) = lim
t→∞

i

t
lnW (t, r), W (t, r) =

〈
P exp

{
i

∮

W (t,r)

dzµAµ

}〉
, (56)

or similarly in Euclidean space–time after t → −iτ . As before, P represents the path ordering. The Wilson loops have a
spectral decomposition in the vacuum (using Euclidean space–time)

W (τ , r) =
∫ ∞

0

dωρW (r)(ω)e
−ωτ , ρW (r)(ω) =

∞∑

n=0

Anδ(En(r) − ω), (57)

where the spectral function ρW (r)(ω) is a weighted sum of delta functions that gives rise to the weighted sum of
exponentials mentioned in Eq. (26).

Eq. (56) can be directly evaluated on the lattice in the vacuum phase, see Eq. (26), since the length of the Euclidean
time direction can be as large as technically affordable such that only the first delta function in the sum in Eq. (57) that is
associated with the ground state contributes. If the Euclidean time direction is periodic with period aNτ , then the Wilson
loop must be evaluated at sufficiently large values of τ < aNτ such that excited state contributions are quantitatively
irrelevant or can be included in a robust fit.

In the perturbative expansion E(r) and F (r) = ∂rE(r) are known analytically to next-to-next-to-next-to-leading order,
and at next-to-next-to-next-to-leading logarithmic accuracy [106]. To leading order the static energy is given by the
leading order singlet potential

E(r) = −CF

αs

r
= Vs(r). (58)

Higher order contributions are proportional to the LO result and involve higher powers of αs, and – starting at three loops
– ln(αs). The latter are due to an interplay between the contribution from the singlet potential and from the ultrasoft
contribution. The latter is due to transitions between color-singlet and octet configurations on internal lines, starts at N3LO,
and includes contributions from coupling to the nonperturbative QCD condensates. With the exception of the ultrasoft
contribution that is absent in Abelian gauge theories, this result is in all respects formally quite similar to the QED result.
Comparison to lattice simulations shows that the N3LO result describes the static energy very well up to r . 0.15 fm [31].
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Since there is no closed loop in the time direction, there cannot be any overlap with states involving (static) D mesons,
and thus the screening of the static energy due to the string breaking in the vacuum cannot be resolved without explicitly
including other operators that overlap with the pair of (static) D mesons and solving a generalized eigenvalue problem,
see Ref. [32] for a recent calculation. This is evidently different from the free energy in the vacuum, where the string
breaking explicitly contributes.

On the contrary, the spectral function of the finite temperature Wilson loops representing a static quark–antiquark
pair in the thermal medium,

W (τ , T , r) =
∫ ∞

0

dωρW (T ,r)(ω)e
−ωτ , (59)

is a sum of smeared delta peaks that may be shifted away from their zero temperature frequencies and a high frequency
continuum that is due to the fully dissociated states. If there is a well-defined lowest peak that is clearly separable from the
rest of the spectral function, then one can interpret its position as the real part of E(T , r) and its width as the imaginary part
of E(T , r). However, as different peaks may merge with each other or into the encroaching high frequency continuum for
increasing temperature, it is not completely obvious whether there actually are well defined peaks at all and if the notion
of a finite temperature static energy E(T , r) is physically appropriate at all. Moreover, the time direction is physically
fixed to the inverse temperature aNτ = 1/T in a lattice setup at finite temperature, and thus the limit τ → ∞ in which
the ground state could be isolated is completely out of reach in practical lattice simulations. For this reason, one has to
deal with the excited state contamination, the early-time dynamics, and the bound state formation. It follows from very
general considerations that the contribution from the complex static energy E(T , r) to the spectral function takes the form
of a skewed Breit–Wigner peak, where the skewing is due to the early time dynamics of the bound state formation [107].
However, it is not a priori clear how much this spectral feature is distorted by the rest of the spectral function. The real-
time static energy at finite temperature has been calculated to next-to-leading order [108,109] using the HTL approach.
E(T , r) has been found to exhibit an imaginary part in the electric screening regime r ∼ 1/mD,

E(T , r) = −CFαs(ν)

{
e−mD(ν)r

r
+ mD(ν) + iTφ(rmD(ν))

}
, φ(x) = 2

∫ ∞

0

dz z

(z2 + 1)2

{
1 − sin(zx)

zx

}
, (60)

where φ(x) is a strictly monotonically increasing function. While the imaginary term appears already in the vacuum-like
regime r ≪ 1/T [109], the result is parametrically quite different as

E(T , r) = −CFαs(1/r) +
[{

#1

∆V

T
+ #2

m2
D

T 2
+ #3

m3
D

T 3

}
+ i

{
#4

∆V 2

T 2
+ #5

m2
D

T 2

}]
g2r2T 3, (61)

with coefficients #i, i = 1, . . . , 5 given in Ref. [109]. It is understood that the origin of the imaginary part (in both
regimes) is in part due to the dissipative scattering (Landau damping) of the emitted gluons with the various degrees
of freedom in the thermal medium, and in part due to transitions between the color-singlet and octet configurations of
the static quark–antiquark pair. Beyond NLO these two dynamical processes cannot be separated anymore. These weak-
coupling results for two different regimes indicate that the notion of the finite temperature static energy E(T , r) is at least
justified for sufficiently small distances and sufficiently high temperatures such that the weak-coupling approach applies.
Whether or not this concept is suitable at phenomenologically interesting temperatures and at distances relevant to the
melting or survival of in-medium quarkonium bound states must be addressed using nonperturbative methods. Whereas
the real part Re E(T , r) agrees with the singlet free energy FS(T , r) at order g3 both in the vacuum-like regime r ≪ 1/T
and in the electric screening regime r ∼ 1/mD, they differ at order g4 due to different UV contributions. However, FS(T , r)
is screened already in the vacuum of full QCD (with sea quarks) due to the string breaking, whereas E(T , r) defined in
terms of the large time limit of the Wilson loop cannot couple directly to states involving static D mesons.8 Hence, any
screening mass associated with a nonperturbative analog of Eqs. (60) or (61) must necessarily vanish in the vacuum phase
at T < Tc .

These different sources of information, i.e. the dissociative imaginary part from the perturbative HTL result in Eq. (60),
and the real part from the zero temperature lattice calculation were used to construct a maximally binding, minimally
dissociative model potential with ad hoc exponential screening in Ref. [110]. It could be shown that the dominant source
for in-medium quarkonium melting is the dissociation even in such a simplistic model.

In order to calculate E(T , r) directly, the real-time formalism is required, since the imaginary part arises due to
dynamical real-time processes. However, the real-time formalism introduces a sign problem in the QCD path integral, and
thus prevents the application of the importance sampling in the Markov Chain Monte Carlo algorithm employed in lattice
simulations. Nevertheless, both the real-time and the imaginary-time Wilson loop are related to the same underlying
spectral function ρW (T ,r)(ω) through analyticity,

W (t, T , r) =
∫ +∞

−∞
dωe−iωtρW (T ,r)(ω) real time, (62)

8 This applies to a definition in terms of the large time limit of Wilson line correlators in Coulomb gauge as well.
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Fig. 24. Charmonium in-medium spectral functions from a continuum corrected in-medium heavy quark potential with AsqTad action [113].

W (τ , T , r) =
∫ +∞

−∞
dωe−ωτρW (T ,r)(ω) imaginary time, (63)

where W (τ , T , r) is directly calculable on the lattice, at most with O(10) data points for a thermal correlation function.
However, any reliable reconstruction of narrow spectral features and some continuum requires covering hundreds of
frequency values. This makes the inverse problem of reconstructing ρW (T ,r)(ω) from the imaginary-time Wilson loop
W (τ , T , r) ill-posed, and solutions to it are beyond the scope of this review. One has to resort to model assumptions
on the form of the spectral function, or Bayesian analysis that incorporates prior knowledge. Even a brief discussion of
the various Bayesian techniques that have been developed for solving this problems exceeds the scope of this review,
see [97,111,112] for an overview of the current state of the art. Upon assuming that the spectral function ρW (T ,r)(ω) has
been determined using a nonperturbative lattice simulation, i.e. see Fig. 24 for results obtained from (2+1)-flavor lattice
simulations using the AsqTad action, the complex, real-time static energy follows from its lowest peak structure.

SU(3) pure gauge theory [115] or (2+1)-flavor QCD lattice simulations using the AsqTad action [116] have been
employed to calculate Eq. (63), while tackling the inverse problem through the Bayesian reconstruction method [111].
The solution of the inverse problem in the analysis of more precise correlators from (2+1)-flavor QCD lattice simulations
using the HISQ action proved to be more difficult due to the smaller statistical errors, and has led to somewhat unclear,
preliminary results so far, whether by using rescaled results from HTL calculations [117], fits to the moments of the lattice
correlators [118], or by using the analytic continuation of Padé fits or the BR method [114], see Fig. 25 for the current state
of the art result from (2+1)-flavor QCD lattice simulations with the HISQ action. In particular, a reliable determination of
Im E(T , r) in QCD has proved elusive so far. Very recently exciting new results in SU(Nc) pure gauge theory indicate that
an elegant solution to the inverse problem may have finally been identified [119], see Fig. 26.

All present results indicate that at the level of the somewhat large systematic uncertainties the relation between
Re E(T , r) and FS(T , r) at order g3 seems to be approximately realized in the nonperturbative calculation with relatively
mild differences. Furthermore, the screening mass parameter that has been extracted from the real part of the static
energy Re E(T , R) seems to be consistent with going to zero at Tc and in the vacuum. For this reason, an increase of the
difference at larger distances has to be expected even at the lowest temperatures.

4.3. Meson screening masses for heavy and heavy–light mesons

To illustrate the utility of Eq. (52) we start the discussion with the spatial Euclidean correlation functions as calculated
on the lattice. A ratio of the Euclidean correlation function at non-zero temperature to its zero-temperature counterpart
directly probes thermal modification of the spectral function. Ref. [120] calculated the correlation functions in various
channels using staggered fermions up to temperature of 250 MeV which is about 1.6Tc in (2+1)-flavor QCD with the
physical light quark masses.

A complication with staggered fermions is that mesonic correlation functions contain contributions from excitations
with opposite parity eigenvalues, where one causes a non-oscillating and the other causes an oscillating contribution:

G(z) = A2
NO

(
e−MNOz + e−MNO(Nσ−z)

)
− (−1)zA2

O

(
e−MOz + e−MO(Nσ−z)

)
. (64)
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Fig. 25. The real part of the potential obtained from Padé reconstructed spectral functions of the Wilson line correlation function in Coulomb gauge

on 483 × 12, and 643 × 16 lattices in (2+1)-flavor QCD with HISQ action [114]. The values are shifted by hand in y-direction for better readability

from the lowest temperature T = 151MeV on top to the highest temperature T = 1248MeV at the bottom. The gray data represent the color singlet

free energy in Coulomb gauge calculated on the same lattices.

Fig. 26. (Left) Detailed comparison of Re E(T , r) and FS in SU(3) pure gauge theory indicate small differences between the quantities that become

larger in the asymptotic screening regime. (Right) Im E(T , r) obtained in SU(3) pure gauge theory lattice simulations increases faster than the HTL

result, and also faster than the imaginary parts obtained with various forms of medium permittivity, see [119] for details.

These contributions need to be separated before comparing to zero-temperature results. This is possible by constructing
effective mass correlators as described in Ref. [120].

From the point of view of the static picture of color screening it is to be expected that axial-vector mesons – being in a
P-wave, and thus being larger – are dissociated already at lower temperatures than the corresponding vector mesons. The
tightly bound pseudoscalars are expected to behave similarly to the vector mesons, whereas the scalar mesons ought to
exhibit a pattern more akin to the axial-vector states. Moreover, due to the smaller quark masses involved in open heavy-
flavor mesons leading to a larger size of the bound states, the thermal modification is expected to be more pronounced
and at lower temperatures even in the static picture. Since dynamical processes certainly enhance these trends, any
observation of these patterns does not lead to a statement whether the static color screening or the dynamic dissociation
and recombination is the dominant cause of the thermal modification.

On the one hand, the ratio of the positive parity contribution to the spatial Euclidean axial-vector correlation function
at finite temperature to the one at zero temperature is shown in Fig. 27 (left) for cc̄ and Fig. 27 (right) for sc̄ mesons.
At zero temperature the ground states in these channels are, respectively, χc1 or Ds1 mesons. For the ratios in the χc1

channel significant thermal modifications of the ground state are seen at temperatures below T ∼ 200MeV only at large
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Fig. 27. The oscillating (positive parity) parts of the axial-vector (1++ or 1+) correlation functions for the cc̄ (left) and sc̄ (right) sectors at different

temperatures normalized by the zero-temperature results.

Fig. 28. The screening masses for different channels in the cc̄ (left) and sc̄ (right) sectors as functions of temperature. The solid horizontal lines are

the zero-temperature masses of the corresponding ground-state mesons and the dashed lines indicate the free theory result.

distances z & 1 fm, while these modifications occur at much smaller distances for temperatures above T ∼ 200MeV. This
is consistent with the analyses attempting to reconstruct the spectral functions from the temporal correlation function
by solving the inverse problem, Eq. (49) [97]. In contrast, the temperature dependence resolved in these ratios is more
complicated for the open-charm state Ds1, with a deviation of about 20% from the zero-temperature value already in the
crossover region, i.e. at T ∼ 150 MeV. At even higher temperatures, the increase of the ratio stalls below T ∼ 250MeV.
The case of the scalar channels – the respective zero temperature ground states being χc0 or D∗

s0 mesons – is quantitatively
similar. On the other hand, the vector meson channels with J/ψ or D∗

s mesons, or the pseudoscalar meson channels with
ηc or Ds mesons as the respective ground states, exhibit less pronounced features. For both cc̄ channels significant thermal
modifications of the ground states are seen at temperatures above T ∼ 200MeV with a decreasing slope in z, but do not
show any clearly non-monotonic z- or temperature-dependence. For both open-charm channels, a deviation of about 15%
to 20% from the zero-temperature value is present already at T ∼ 170MeV. Therefore, these ratios confirm the intuition of
sequential melting based on the static picture of color screening. A recent analysis of the charm-quark susceptibilities [121]
is also consistent with this observation suggesting that open-charm states start to melt at temperatures around the chiral
crossover temperature Tc = 156.5 MeV.

To further assess thermal modification effects, one can extract the screening masses in the corresponding channels
by fitting the long-distance behavior of the correlation functions, Eq. (64). The temperature dependence of the screening
masses for all four (axial vector, scalar, vector and pseudo-scalar) channels for the cc̄ and sc̄ mesons is shown in Fig. 28.
Three qualitatively distinct regions can be identified: the low temperature region, where the screening masses are close
to the corresponding vacuum masses (horizontal solid lines), the intermediate temperature region, where there are about
10% to 15% changes in the values of the screening masses with respect to the corresponding vacuum masses and the
high temperature region, where the screening masses approach the free theory result (dashed lines). The onset of the
high temperature behavior in the cc̄ sector starts at T > 300 MeV, and in the sc̄ sector earlier, at about T = 250 MeV.
This matches the previous observation in the ratios of the correlation functions that thermal modifications depend on the
quark content of the states and appear earlier for the states containing quarks with lower masses.

The behavior of the screening masses corresponding to the negative and positive parity states in the low and
intermediate temperature regions is qualitatively different. The screening masses of the negative parity states increase
with temperature from their vacuum values monotonically. Those of the positive parity states first decrease, with the
decrease beginning close to the chiral crossover region. In the intermediate temperature region the trend reverses and
the masses increase to eventually follow the high-temperature asymptotics. Moreover, in the intermediate region the
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Fig. 29. The differences in the screening masses for the pseudoscalar and vector charmonia states and the vacuum masses, Eq. (65), for anti-periodic

(filled symbols) and periodic (open symbols) temporal boundary conditions for fermions.

ordering of the screening masses changes and the masses of the opposite parity partners approach each other to become
degenerate at sufficiently high temperatures. While this is less apparent in the cc̄ sector, since it requires temperatures
on the order of the charm mass, it is evident in the sc̄ sector, where the masses of the pseudoscalar and scalar or vector
and axial-vector states become degenerate above 350 MeV. In the high temperature region the pseudoscalar screening
masses stay below the vector screening masses, as was observed in earlier lattice [122] and Dyson–Schwinger formalism
calculations [123].

Following earlier work [124–126] Ref. [120] also considered sensitivity of the charmonia screening masses to the
temporal boundary conditions. At finite temperature the boundary conditions in the temporal direction must be periodic
for the bosonic and anti-periodic for the fermionic fields. However, on the lattice the Euclidean correlation functions,
Eq. (48), can be also measured with artificially imposed periodic temporal boundary conditions for fermions. The vacuum
masses of stable mesons are insensitive to the boundary conditions. At very high temperatures where the bound states
dissolve and the two quarks propagate independently, the mesonic screening masses approach twice the value of the
lowest Matsubara frequency, as evident from Eq. (55), which is 2πT due to the anti-periodic boundary conditions on
fermions. In contrast, if periodic temporal boundary conditions for fermions are imposed, the screening masses should
become vanishingly small at very high temperatures. Thus sensitivity of correlation functions and in turn the screening
masses to the boundary conditions helps one to judge if at a given temperature quarks still constitute a bosonic bound
state, or if thermal modifications uncover its fermionic structure.

The charmonium screening masses in the pseudo-scalar and vector channels calculated using anti-periodic and periodic
boundary conditions are shown in Fig. 29. The difference between the screening mass M(T ) and its vacuum value M0

∆M(T ) = M(T ) − M0 (65)

is normalized with 2πT , since one expects that at asymptotically high temperature the quadratic difference between the
screening masses with the two types of boundary conditions approaches (2πT )2. Although the screening masses become
sensitive to the modification of the boundary conditions already in the chiral crossover region, the sensitivity is small up
to about 170 MeV. The difference gets larger with increasing temperature and the overall picture supports melting of the
ηc and J/ψ states above 200 MeV.

4.4. Meson screening masses for light mesons

The observables that we discussed in the previous sections, related to static or heavy quarks act as external probes
of the deconfined medium since their mass scales are well separated from the temperature scales of the transition. It is
natural to ask how the color screening properties of quark–gluon plasma affect the states in the QCD spectrum composed
of light and strange quarks such as π , K , ρ, etc. The situation there is more complicated since the dynamics of the
transition is driven by the dynamics of the light quarks and their composites. For instance, the Hadron Resonance Gas
(HRG) model [127–131] approximates the partition function of QCD by an ideal gas of stable particles and resonances.
This approximation works surprisingly well up to temperatures of about 140–150 MeV, and, of course, breaks down close
to the chiral crossover. The dominant contribution into the HRG partition function comes from the lightest states, e.g.
the expansion for observables with zero strangeness and baryon number starts with the pion, for non-zero strangeness
with kaon and so on. Light degrees of freedom are also closely related to the fundamental symmetries of QCD such as
the SUL(2)× SUR(2) chiral symmetry and the anomalous axial UA(1) symmetry. While the chiral symmetry is completely
restored at the chiral phase transition temperature T 0

c (in the chiral limit) and is smoothly restored within a narrow
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Fig. 30. The continuum extrapolated mesonic screening masses for different channels in the ūd (left), ūs (middle) and s̄s (right) sectors as functions

of temperature. The solid horizontal lines are the zero-temperature masses of the corresponding ground-state mesons or two-particle states (see

text) and the dashed lines indicate the free theory result.

temperature range around the chiral crossover temperature Tc in QCD with physical light quark masses as indicated by
the melting of the chiral condensate, the fate of the UA(1) is not completely clear at present. Most studies agree that it gets
effectively restored in the high temperature phase in QCD. However, some differ in if it happens at the same temperature
as the chiral symmetry restoration or at some higher temperature.

The large distance behavior of the spatial correlation functions defined in Eq. (52) is sensitive to various patterns of
chiral symmetry restoration [102,103]. A recent analysis of the screening masses for mesons composed of light and strange
quarks was performed in Ref. [132] with the HISQ action. The continuum extrapolated mesonic screening masses for the
four channels are shown in Fig. 30 for the light–light, light–strange and strange–strange mesons. We should first note that
extraction of the scalar state poses difficulties with staggered fermions when the quark masses are light. Due to the taste
exchange interactions there are unphysical contributions in the scalar channel that allow the scalar state composed of u
and d quarks decay into two pions at finite lattice spacing [133], while this decay does not occur in nature due to parity,
isospin and G-parity conservation. For this reason the scalar screening mass in the left panel of Fig. 30 approaches the
energy of the two-pion state instead of the true scalar ground state (a0(980) or a0(1450)) or the allowed πη two-particle
state. This problem could be resolved if the continuum limit is taken for the spatial correlation function (64) first and then
the screening mass is extracted from the continuum correlator. This approach is however difficult due to the oscillating
terms in Eq. (64), and Ref. [132] resorted to extracting the screening masses from correlators at finite lattice spacing and
then taking the continuum limit for the screening masses. In the ūs channel the situation is better since the decay to
Kπ occurs in nature. The continuum limit of the scalar screening mass extracted from the ūs correlator at finite lattice
spacing approaches the Kπ state as indicated in the middle panel of Fig. 30.

The overall trends in Fig. 30 are similar to the ones observed for heavy–heavy and heavy–light states discussed in
Section 4.3. Thermal modifications happen at lower temperatures for the states with lower quark masses. Due to the
restoration of chiral symmetry one expects that the vector (ρ) and axial vector (a1) screening masses become degenerate.
As can be seen from the left panel of Fig. 30, the axial vector screening mass decreases significantly (it is already about 20%
below the vacuum value at the lowest temperature available in the calculation) while the vector mass slightly increases
and the two indeed become degenerate at the chiral crossover temperature. For the states involving the strange quark in
the middle and right panels of Fig. 30 the degeneracy of the axial vector and vector screening masses happens at higher
temperature.

Restoration of the UA(1) symmetry is signaled by degeneracy of the scalar and pseudoscalar screening masses. In the
ūd sector it is observed at temperature about 200 MeV, however, one has to be careful with its interpretation due to the
unphysical effects in the scalar channel. Discussion of the technical subtleties is beyond the scope of this review and we
refer the reader to [132] where another measure such as a difference of continuum extrapolated integrated scalar and
pseudoscalar correlators was constructed to estimate the temperature of the UA(1) symmetry restoration. The numerical
evidence points out to the restoration temperature T ∼ 200 MeV, in general, consistent with the degeneracy of the
screening masses observed in the left panel of Fig. 30.

The temperature dependence of the screening masses becomes qualitatively consistent with the free theory behavior
at temperatures above 300 MeV. Around that temperature the vector and axial vector masses are numerically consistent
with the free theory behavior, the scalar and pseudoscalar masses are below by 10% to 20%. As full degeneracy of the
screening masses is expected at infinite temperature, Ref. [132] followed the temperature dependence of the screening
masses up to T ∼ 2.5 GeV. The screening masses normalized by the temperature in the high temperature region are
shown in Fig. 31. It is argued that above T ∼ 1 GeV the cutoff effects are small and the calculation is performed only on
Nτ = 8 lattices above that temperature.

Perturbatively the correction to the free theory screening mass can be calculated in electrostatic QCD (EQCQ) [23].
Ref. [134] evaluated this correction which turns out to be independent of the spin. Its value is positive and is qualitatively
consistent with the lattice results, as shown by the solid lines in Fig. 31. As can be seen from the figure, the vector and axial
vector screening masses overshoot the free theory result at T ∼ 400 MeV and stay approximately constant reasonably
close to the weak-coupling EQCD result. The scalar and pseudoscalar screening masses increase past the free theory value
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Fig. 31. The mesonic screening masses normalized by the temperature for different channels in the ūd (left), ūs (middle) and s̄s (right) sectors as

functions of temperature shown for higher temperatures in the deconfined phase, compared with Fig. 30. The dashed horizontal line indicates the

free theory result, 2π , and the solid line the EQCD correction (see text).

at T ∼ 1 GeV and in the observed temperature range stay significantly below the weak-coupling result. It hints that
higher-order, spin-dependent corrections [135,136] may be important since the EQCD coupling g2

E is not small in this
temperature range. Moreover, since it decreases logarithmically, only at significantly higher temperatures (by orders of
magnitude) one may expect the screening masses to approach the free theory value 2πT .

5. Summary

In this review paper we discussed the color screening in the quark–gluon plasma as it is studied using lattice QCD. We
presented a brief overview of the field-theoretical foundations and cursorily contrasted specific phenomena associated
with the color screening in QCD with their counterparts in QED or cold nuclear matter. We reviewed in pure gauge theory
and in full QCD the Polyakov loop and its various correlation functions, which are the primary observables by which color
screening is still being studied on the lattice and in other approaches. Going beyond static limit we reviewed the status
of dynamic, spatial meson screening correlation functions for heavy–heavy, heavy–light, and light–light flavors and spin
0 or 1 states. In particular, we reviewed the behavior and phenomena from the upper end of the confined phase at low
temperature all the way up to phenomena in the weakly-coupled quark–gluon plasma at high temperature. To date, all
known color screening phenomena tend to become fairly compatible with the weak-coupling picture for T & 300MeV,
which largely coincides with the QCD scale ΛMS.

We highlighted the role of the Polyakov loop in pure gauge theory as the order parameter of the deconfinement
transition and its continued relevance in full QCD, where its renormalization is required. In full QCD the renormalization
scheme independent static quark entropy shift that signals deconfinement helps with better understanding of the
transition regime at T ∼ Tc (with Tc = 156.5(1.5)MeV). Whether the coincidence of chiral symmetry restoration and
deconfinement, which has been observed down to almost physical quark masses, holds even in the chiral limit is one of
the open questions regarding the Polyakov loop.

We scrutinized the different regimes of static, spatial screening correlation functions in various channels, and how the
corresponding screening behavior changes with the separation of the quark and antiquark, relating these to the picture
sketched by the dimensionally-reduced QCD and the hard thermal loop QCD. In particular, we juxtaposed direct lattice
QCD calculations with results from the weak-coupling approach, where those were available and applicable. Eventually,
direct lattice QCD simulations quantitatively confirm these ideas, establish the existence of a vacuum-like regime, a
dissociation regime, an electric screening regime, and an asymptotic screening regime, where finally the nonperturbative
physics becomes dominant, and in part explain the success of weak-coupling descriptions of color screening phenomena.
We reviewed the existence of the qualitatively different screening patterns at different values of the external control
parameters temperature T , chemical potential µ/T and magnetic field |eB|/T . We indicated open issues regarding these
static screening correlation functions.

Lastly, we addressed the interplay of the real-time dynamical processes and the color screening in quark–gluon plasma,
as it plays out in the complex static energy at finite temperature, which has to be obtained from lattice QCD after solving
the inverse problem of reconstructing the spectral function from the Euclidean correlation functions. Finally passing on
from the static limit to the dynamical heavy and light quarks, we discussed meson correlation functions and repeated the
arguments for using spatial meson screening correlation functions. We reviewed studies of these with a wide variety
of flavor contents down from the charm- to the average light-quark considering hidden and open flavor. The naive
expectation of the earlier modification of correlation functions involving lower quark masses is quantitatively confirmed
and the weak-coupling like behavior is postponed to higher temperatures for larger quark masses, while the approximate
degeneracy between parity partners sets in a bit later. Indications of the degeneracy of scalar and pseudoscalar states that
signals the effective UA(1) restoration is consistent with about T ∼ 200MeV. Open heavy flavor mesons are generally
modified already slightly above the QCD crossover transition.

Taken together, all of these observations largely support the sequential melting picture and suggest that in-medium
quark–antiquark systems can be understood in terms of the weak-coupling picture for T & 300MeV.
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